Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning
2017-09-29
Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.
Wharton, J; Anderson, R H; Springall, D; Power, R F; Rose, M; Smith, A; Espejo, R; Khaghani, A; Wallwork, J; Yacoub, M H
1988-01-01
Atrial natriuretic peptide immunoreactivity was found in ventricular and atrial tissues with specific antisera raised to the amino and carboxy terminal regions of the precursor molecule. In 13 developing human hearts (7-24 weeks' gestation) the immunoreactivity was concentrated in the atrial myocardium and ventricular conduction system but it was also detected in the early fetal ventricular myocardium. Immunoreactivity in five normal adults was largely confined to the atrial myocardium although it was also found in the ventricular conduction tissues of hearts removed from 10 patients who were undergoing cardiac transplantation. The ventricular conduction system is an extra-atrial site for the synthesis of atrial natriuretic peptide. In the failing heart this synthesis may be further supplemented by expression of the gene in the ventricular myocardium. It is possible that ventricular production of the peptide contributes to the raised circulating concentrations of atrial natriuretic peptide immunoreactivity found in severe congestive heart disease, particularly in patients with dilated cardiomyopathy. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 PMID:2973340
Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model
ERIC Educational Resources Information Center
Adams, Christina M.; Wilson, Timothy D.
2011-01-01
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
NASA Astrophysics Data System (ADS)
Aziz, Aamer; Hu, Qingmao; Nowinski, Wieslaw L.
2004-04-01
The human cerebral ventricular system is a complex structure that is essential for the well being and changes in which reflect disease. It is clinically imperative that the ventricular system be studied in details. For this reason computer assisted algorithms are essential to be developed. We have developed a novel (patent pending) and robust anatomical knowledge-driven algorithm for automatic extraction of the cerebral ventricular system from MRI. The algorithm is not only unique in its image processing aspect but also incorporates knowledge of neuroanatomy, radiological properties, and variability of the ventricular system. The ventricular system is divided into six 3D regions based on the anatomy and its variability. Within each ventricular region a 2D region of interest (ROI) is defined and is then further subdivided into sub-regions. Various strict conditions that detect and prevent leakage into the extra-ventricular space are specified for each sub-region based on anatomical knowledge. Each ROI is processed to calculate its local statistics, local intensity ranges of cerebrospinal fluid and grey and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions and correct growing if leakage occurs and connects all unconnected regions grown by relaxing growing conditions. The algorithm was tested qualitatively and quantitatively on normal and pathological MRI cases and worked well. In this paper we discuss in more detail inclusion of anatomical knowledge in the algorithm and usefulness of our approach from clinical perspective.
Inotropic effects of diadenosine tetraphosphate (AP4A) in human and animal cardiac preparations.
Vahlensieck, U; Bokník, P; Gombosová, I; Huke, S; Knapp, J; Linck, B; Lüss, H; Müller, F U; Neumann, J; Deng, M C; Scheld, H H; Jankowski, H; Schlüter, H; Zidek, W; Zimmermann, N; Schmitz, W
1999-02-01
Diadenosine tetraphosphate (AP4A) is an endogenous compound and exerts diverse physiological effects in animal systems. However, the effects of AP4A on inotropy in ventricular cardiac preparations have not yet been studied. The effects of AP4A on force of contraction (FOC) were studied in isolated electrically driven guinea pig and human cardiac preparations. Furthermore, the effects of AP4A on L-type calcium current and [Ca]i were studied in isolated guinea pig ventricular myocytes. In guinea pig left atria, AP4A (0.1-100 microM) reduced FOC maximally by 36.5 +/- 4.3%. In guinea pig papillary muscles, AP4A (100 microM) alone was ineffective, but reduced isoproterenol-stimulated FOC maximally by 29.3 +/- 3.4%. The negative inotropic effects of AP4A in atria and papillary muscles were abolished by the A1-adenosine receptor antagonist 1, 3-dipropyl-cyclopentylxanthine. In guinea pig ventricular myocytes, AP4A (100 microM) attenuated isoproterenol-stimulated L-type calcium current and [Ca]i. In human atrial and ventricular preparations, AP4A (100 microM) alone increased FOC to 158.3 +/- 12.4% and 167.5 +/- 25.1%, respectively. These positive inotropic effects were abolished by the P2-purinoceptor antagonist suramin. On the other hand, AP4A (100 microM) reduced FOC by 27.2 +/- 7.4% in isoproterenol-stimulated human ventricular trabeculae. The latter effect was abolished by 1,3-dipropyl-cyclopentylxanthine. In summary, after beta adrenergic stimulation AP4A exerts negative inotropic effects in animal and human ventricular preparations via stimulation of A1-adenosine receptors. In contrast, AP4A alone can exert positive inotropic effects via P2-purinoceptors in human ventricular myocardium. Thus, P2-purinoceptor stimulation might be a new positive inotropic principle in the human myocardium.
Soft tissue rapid prototyping in neurosurgery.
Vloeberghs, M; Hatfield, F; Daemi, F; Dickens, P
1998-01-01
As part of our research into the fluid hydrodynamics of the human ventricular system, a fused deposition model of the human ventricular system was made using magnetic resonance imaging (MRI) data. This article describes the manufacturing of a positive cast of the ventricles as a first step in the construction of a hollow model. After decryption of the original MRI file (ACR-Nema format), the MRI slices were reassembled semiautomatically and a rapid prototyping station produced a resin model. Because of its ease and speed, this method harbors great potential for teaching purposes, research, and preoperative planning in complex three-dimensional soft tissue targets.
Muscular anatomy of the human ventricular folds.
Moon, Jerald; Alipour, Fariborz
2013-09-01
Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.
Hombach, V; Kebbel, U; Höpp, H W; Winter, U J; Braun, V; Deutsch, H; Hirche, H; Hilger, H H
1982-12-24
A new ECG-amplifier system for recording cardiac microvolt potentials from the body surface is described. The improvement in signal-to-noise ratio was achieved by using specially designed suction electrodes, which were isolated from each other; by applying parallel signal averaging from four electrode pairs via four low-noise amplifiers; and by conducting the registration in Faraday cage. in 14 normal subjects, 12 patients with coronary heart disease and one patient with surgically corrected ventricular septal defect and pulmonary stenosis, pre-P-potentials (possible sinus node activity), His bundle potentials and ventricular late potentials were recorded with differing degrees of success. Variations of the time intervals to the preceding QRS complex were observed within the S-T segment in six of nine patients with demonstrable ventricular late ventricular late potentials. The advantage of such continuously recording ECG system lies in the highly accurate registration of cardiac micropotentials, particularly with ventricular late potentials that are changing in time, whereas the signal-averaging technique does not provide such possibilities.
Subcutaneous chronic implantable defibrillation systems in humans.
Cappato, Riccardo; Smith, Warren M; Hood, Margaret A; Crozier, Ian G; Jordaens, Luc; Spitzer, Stefan G; Ardashev, Andrey V; Boersma, Lucas; Lupo, Pierpaolo; Grace, Andrew A; Bardy, Gust H
2012-09-01
The recent introduction of subcutaneous implantable cardioverter defibrillator (S-ICD) has raised attention about the potential of this technology for clinical use in daily clinical practice. We review the methods and results of the four studies conducted in humans for approval of this innovative technology for daily practice. Two studies using a temporary S-ICD system (acute human studies) were conducted to search for an appropriate lead configuration and energy requirements. For this purpose, 4 S-ICD configurations were tested in 78 patients at the time of transvenous (TV)-ICD implantation. The optimal configuration was tested in 49 more patients to comparatively assess the subcutaneous defibrillation threshold (S-DFT) versus the standard TV-ICD. Long-term implants were evaluated in 55 patients using an implanted system (chronic human study). The acute humans studies led to an optimal S-ICD configuration comprising a parasternal electrode and left anterolateral thoracic pulse generator. Both configurations successfully terminated 98% of induced ventricular fibrillation (VF), but significantly higher energy levels were required with S-ICD than with TV-ICD systems (36.6 ± 19.8 J vs. 11.1 ± 8.5 J). In the chronic study, all 137 VF episodes induced at time of implant were detected with a 98% conversion rate. Two pocket infections and four lead revisions were required during 10 ± 1 months of follow-up. During this period, survival was 98%, and 12 spontaneous ventricular tachyarrhythmias were detected and treated by the device. These data show that the S-ICD systems here consistently detected and converted VF induced at time of implant as well as sustained ventricular tachyarrhythmias occurring during follow-up (248).
Dynamical relations for left ventricular ejection - Flow rate, momentum, force and impulse
NASA Technical Reports Server (NTRS)
Back, L. H.; Selzer, R. H.; Gordon, D. G.; Ledbetter, D. C.; Crawford, D. W.
1984-01-01
An investigation was carried out to quantitatively evaluate left ventricular volume flow rate, momentum, force and impulse derived from application of conservation principles for mass and momentum of blood within the ventricle during the ejection phase. An automated digital image processing system was developed and applied to left ventricular angiograms which are computer processed and analyzed frame by frame to determine the dynamical relations by numerical methods. The initial experience with force and impulse has indicated that neither quantity seemed to be a sensitive indicator of coronary artery disease as evaluated by qualitative angiography for the particular patient group studied. Utilization of the dynamical relations in evaluating human left ventricular performance requires improved means of measurement and interpretation of clinical studies.
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations
Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne R.
2013-01-01
Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity. PMID:24146650
Park, Jun I K; Heikhmakhtiar, Aulia Khamas; Kim, Chang Hyun; Kim, Yoo Seok; Choi, Seong Wook; Song, Kwang Soup; Lim, Ki Moo
2018-05-22
Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José
2013-11-01
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.
Left ventricular function during lower body negative pressure
NASA Technical Reports Server (NTRS)
Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.
1977-01-01
The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.
Shehab, Sajad; Allida, Sabine M; Davidson, Patricia M; Newton, Phillip J; Robson, Desiree; Jansz, Paul C; Hayward, Christopher S
Right ventricular failure after left ventricular assist device (LVAD) implantation is associated with high mortality. Management remains limited to pharmacologic therapy and temporary mechanical support. Delayed right ventricular assist device (RVAD) support after LVAD implantation is associated with poorer outcomes. With the advent of miniaturized, durable, continuous flow ventricular assist device systems, chronic RVAD and biventricular assist device (BiVAD) support has been used with some success. The purpose of this study was to assess combined BiVAD and LVAD with delayed RVAD support within a four-elemental mock circulatory loop (MCL) simulating the human cardiovascular system. Our hypothesis was that delayed continuous flow RVAD (RVAD) would produce similar hemodynamic and flow parameters to those of initial BiVAD support. Using the MCL, baseline biventricular heart failure with elevated right and left filling pressures with low cardiac output was simulated. The addition of LVAD within a biventricular configuration improved cardiac output somewhat, but was associated with persistent right heart failure with elevated right-sided filling pressures. The addition of an RVAD significantly improved LVAD outputs and returned filling pressures to normal throughout the circulation. In conclusion, RVAD support successfully restored hemodynamics and flow parameters of biventricular failure supported with isolated LVAD with persistent elevated right atrial pressure.
D-Sotalol: death by the SWORD or deserving of further consideration for clinical use?
Doggrell, S A; Brown, L
2000-07-01
D-Sotalol is the dextro-rotatory isomer of sotalol and a class III anti-arrhythmic. D-Sotalol prolongs cardiac repolarisation by inhibiting the fast component of the delayed outward rectifying potassium channel. In animal studies, D-sotalol has been shown to be more effective in prolonging atrial, rather than ventricular, action potentials, suggesting that D-sotalol may be more effective against supra-ventricular than ventricular arrhythmias. Furthermore, in animal studies, D-sotalol induces after-depolarisations, which are predictors of pro-arrhythmic activity. D-Sotalol shows little or no reverse use dependence in animal and humans and has slow offset kinetics. This suggests that, in addition to being a preventative treatment for arrhythmias, D-sotalol may be effective at the start or during arrhythmia. As D-sotalol does not block the slow component of the delayed outward rectifying potassium channel, which is activated by the sympathetic nervous system, D-sotalol will not protect against sympathetic hyperactivity. D-Sotalol also has no effect on the K(ATP) channel, which is activated in ischaemia to shorten the action potential. Thus D-sotalol is less effective in ischaemia. Anti-arrhythmic activity with D-sotalol has been demonstrated in dog models of ventricular tachycardia and sudden death. Arrhythmias with D-sotalol have been demonstrated in an ischaemic guinea-pig ventricle model in the absence of action potentials. D-Sotalol is a weak beta-adrenoceptor antagonist and may also be a positive inotrope. In humans, D-sotalol has 100% systemic oral bioavailability, a terminal half-life of 7.2 h and is mainly excreted unchanged in the urine. Preliminary, mainly hospital-based, clinical trials showed that D-sotalol was effective in a variety of supraventricular and ventricular arrhythmias. However, a large clinical trial of D-sotalol as a preventative treatment for arrhythmias and sudden death after myocardial infarction, the SWORD trial, was terminated early because of increased mortality with D-sotalol. The group at greatest risk was those with a remote myocardial infarction and relatively good left ventricular function, the group that showed the lowest mortality when untreated. It is assumed that excessive prolongation of the action potential leading to pro-arrhythmia with D-sotalol, underlies the increased risk of death. However, there is little objective evidence in the SWORD trial to support this. Obviously D-sotalol should not be used in humans with a remote myocardial infarction and relatively good left ventricular function. D-Sotalol could still be considered for short-term hospital use in resistant arrhythmias and for longer-term use to prevent atrial fibrillation in those with remote myocardial infarction and poor left ventricular function.
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531
NASA Astrophysics Data System (ADS)
Svenson, Robert H.; Marroum, Marie-Claire; Frank, Frank; Selle, Jay G.; Gallagher, John J.; Bou-Saba, George; Seifert, Kathleen T.; Linder, Kathy; Tatsis, George P.
1987-04-01
Canine myocardial lesions of predictable dimensions can be achieved with Nd:YAG laser photocoagulation. These lesions are well demarcated from surrounding normal tissue and heal with homogeneous scar formation. Intraoperative Nd:YAG laser photocoagulation successfully ablated 52 of 55 ventricular tachycardias in 17 patients. Histologic examination of tissues from these arrhythmogenic areas showed differences from lesions produced on canine epicardium. Lesions from the human cases were less predictable and not well circumscribed. These differences are felt to be due to optical inhomogeneities present in diseased, scarred human myocardium, geometric irregularities of the endocardial surface, anatomical constraints on tissue-fiber distance, and the angle of incidence of the beam with the tissue. Modifications of current delivery systems may overcome some of these limitations. Ablation of ventricular tachycardia arising deeper than 4.0 to 6.0 mm. from the irradiated surface may require interstitial probes coupled to the fiberoptic.
Hydrocephalus secondary to obstruction of the lateral apertures in two dogs.
Kent, M; Glass, E N; Haley, A C; Shaikh, L S; Sequel, M; Blas-Machado, U; Bishop, T M; Holmes, S P; Platt, S R
2016-11-01
Traditionally, hydrocephalus is divided into communicating or non-communicating (obstructive) based on the identification of a blockage of cerebrospinal fluid (CSF) flow through the ventricular system. Hydrocephalus ex vacuo refers to ventricular enlargement as a consequence of neuroparenchymal loss. Hydrocephalus related to obstruction of the lateral apertures of the fourth ventricles has rarely been described. The clinicopathologic findings in two dogs with hydrocephalus secondary to obstruction of the lateral apertures of the fourth ventricle are reported. Signs were associated with a caudal cervical spinal cord lesion in one dog and a caudal brain stem lesion in the other dog. Magnetic resonance imaging (MRI) disclosed dilation of the ventricular system, including the lateral recesses of the fourth ventricle. In one dog, postmortem ventriculography confirmed obstruction of the lateral apertures. Microscopic changes were identified in the choroid plexus in both dogs, yet a definitive cause of the obstructions was not identified. The MRI findings in both dogs are similar to membranous occlusion of the lateral and median apertures in human patients. MRI detection of dilation of the entire ventricular system in the absence of an identifiable cause should prompt consideration of an obstruction of the lateral apertures. In future cases, therapeutic interventions aimed at re-establishing CSF flow or ventriculoperitoneal catheterisation should be considered. © 2016 Australian Veterinary Association.
Development of an implantable ventricular assist system.
Macris, M P; Parnis, S M; Frazier, O H; Fuqua, J M; Jarvik, R K
1997-02-01
This study describes the present state of progress in the development of the Jarvik 2000 ventricular assist system. Designed for implantation in the human thorax, the system consists of a small (25 cm3, 90 g) intraventricular axial-flow blood pump that transmits power and data via internal electronics and a transcutaneous energy transfer system. The pump is powered by portable internal and external polymer lithium ion batteries. The only moving part, the pump rotor, contains a permanent magnet of a brushless direct-current motor that mounts an axial-flow impeller and partial magnetic thrust support, with blood-immersed radial and thrust bearings. The motor uses a redundant coil and electric lead design, which permits continued operation in case of wire breakage. Seven calves have been supported for an average of 107 days (range, 40 to 162 days) with prototypes of the Jarvik 2000 ventricular assist system. No physiologic complications have occurred. When its user is at rest, the pump produces flows of 5 to 6 L/min with a decreased arterial pulse contour. Renal and hepatic functions have remained normal throughout the duration of all studies. Mean plasma free hemoglobin levels ranged from 4.3 to 11.4 mg/dL (mean, 6.3 mg/dL) for each study. Pathologic analyses of the heart and kidneys revealed no damage related to the device. These studies indicate that the Jarvik 2000 ventricular assist system is feasible in animals and holds promise for long-term support of patients.
Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system
NASA Technical Reports Server (NTRS)
Popp, R. L.; Brown, O. R.; Harrison, D. C.
1975-01-01
An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.
1971-01-01
Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.
Atrial fibrillation: effects beyond the atrium?
Wijesurendra, Rohan S; Casadei, Barbara
2015-03-01
Atrial fibrillation (AF) is the most common sustained clinical arrhythmia and is associated with significant morbidity, mostly secondary to heart failure and stroke, and an estimated two-fold increase in premature death. Efforts to increase our understanding of AF and its complications have focused on unravelling the mechanisms of electrical and structural remodelling of the atrial myocardium. Yet, it is increasingly recognized that AF is more than an atrial disease, being associated with systemic inflammation, endothelial dysfunction, and adverse effects on the structure and function of the left ventricular myocardium that may be prognostically important. Here, we review the molecular and in vivo evidence that underpins current knowledge regarding the effects of human or experimental AF on the ventricular myocardium. Potential mechanisms are explored including diffuse ventricular fibrosis, focal myocardial scarring, and impaired myocardial perfusion and perfusion reserve. The complex relationship between AF, systemic inflammation, as well as endothelial/microvascular dysfunction and the effects of AF on ventricular calcium handling and oxidative stress are also addressed. Finally, consideration is given to the clinical implications of these observations and concepts, with particular reference to rate vs. rhythm control. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Eisenmenger ventricular septal defect in a Humboldt penguin (Spheniscus humboldti).
Laughlin, D S; Ialeggio, D M; Trupkiewicz, J G; Sleeper, M M
2016-09-01
The Eisenmenger ventricular septal defect is an uncommon type of ventricular septal defect characterised in humans by a traditionally perimembranous ventricular septal defect, anterior deviation (cranioventral deviation in small animal patients) of the muscular outlet septum causing malalignment relative to the remainder of the muscular septum, and overriding of the aortic valve. This anomaly is reported infrequently in human patients and was identified in a 45-day-old Humboldt Penguin, Spheniscus humboldti, with signs of poor growth and a cardiac murmur. This case report describes the findings in this penguin and summarises the anatomy and classification of this cardiac anomaly. To the authors' knowledge this is the first report of an Eisenmenger ventricular septal defect in a veterinary patient. Copyright © 2016 Elsevier B.V. All rights reserved.
Diastolic function of the nonfilling human left ventricle.
Paulus, W J; Vantrimpont, P J; Rousseau, M F
1992-12-01
To investigate an early-diastolic left ventricular suction effect in humans, tip-micromanometer left ventricular pressure recordings were obtained in patients with mitral stenosis at the time of balloon inflations during percutaneous mitral valvuloplasty performed with a self-positioning Inoue balloon, which fits tightly in the mitral orifice. When mitral inflow was impeded in anesthetized dogs, left ventricular pressure decayed to a negative asymptote value. This negative asymptote value was consistent with an early diastolic suction effect. Tip-micromanometer left ventricular pressure recordings were obtained in 23 patients with symptomatic mitral stenosis at the time of balloon inflations during percutaneous mitral valvuloplasty performed with a self-positioning Inoue balloon. The left ventricular diastolic asymptote pressure (P(asy)) was determined in 47 nonfilling beats with a sufficiently long (greater than 200 ms) diastolic time interval (that is, the interval from minimal first derivative of left ventricular pressure to left ventricular end-diastolic pressure) and equaled 2 +/- 3 mm Hg for beats with normal intraventricular conduction and 3 +/- 2 mm Hg for beats with aberrant intraventricular conduction. Left ventricular angiography was performed in five patients during the first inflation of the Inoue balloon at the time of complete balloon expansion. Left ventricular end-diastolic volume of the nonfilling beats averaged 38 +/- 14 ml and was comparable to the left ventricular end-systolic volume (39 +/- 19 ml) measured during baseline angiography before mitral valvuloplasty. Time constants of left ventricular pressure decay were calculated on 21 nonfilling beats with a diastolic time interval greater than 200 ms, normal intraventricular conduction and peak left ventricular pressure greater than 50 mm Hg. Time constants (T0 and TBF) derived from an exponential curve fit with zero asymptote pressure and with a best-fit asymptote pressure were compared with a time constant (T(asy)) derived from an exponential curve fit with the measured diastolic left ventricular asymptote pressure. The value for T(asy) (37 +/- 9 ms) was significantly smaller than that for TBF (68 +/- 28 ms, p less than 0.001) and the value for the measured diastolic left ventricular asymptote pressure (2 +/- 4 mm Hg) was significantly larger than that for the best-fit asymptote pressure (-9 +/- 11 mm Hg, p less than 0.001). T0 (44 +/- 20 ms) was significantly (p less than 0.01) different from TBF but not from T(asy). During balloon inflation of a self-positioning Inoue balloon, left ventricular pressure decayed continuously toward a positive asymptote value and left ventricular cavity volume was comparable to the left ventricular end-systolic volume of filling beats. In these nonfilling beats, the best-fit asymptote pressure was unrelated to the measured asymptote pressure and T0 was a better measure of T(asy) than was TBF. Reduced internal myocardial restoring forces, caused by different extracellular matrix of the human heart, reduced external myocardial restoring forces caused by low coronary perfusion pressure during the balloon inflation and inward motion of the balloon-occluded mitral valve into the left ventricular cavity could explain the failure to observe significant diastolic left ventricular suction in the human heart.
Vargas-Barron, Jesús; Antunez-Montes, Omar-Yassef; Roldán, Francisco-Javier; Aranda-Frausto, Alberto; González-Pacheco, Hector; Romero-Cardenas, Ángel; Zabalgoitia, Miguel
2015-01-01
Torrent-Guasp explains the structure of the ventricular myocardium by means of a helical muscular band. Our primary purpose was to demonstrate the utility of echocardiography in human and porcine hearts in identifying the segments of the myocardial band. The second purpose was to evaluate the relation of the topographic distribution of the myocardial band with some post-myocardial infarction ruptures. Five porcine and one human heart without cardiopathy were dissected and the ventricular myocardial segments were color-coded for illustration and reconstruction purposes. These segments were then correlated to the conventional echocardiographic images. Afterwards in three cases with post-myocardial infarction rupture, a correlation of the topographic location of the rupture with the distribution of the ventricular band was made. The human ventricular band does not show any differences from the porcine band, which confirms the similarities of the four segments; these segments could be identified by echocardiography. In three cases with myocardial rupture, a correlation of the intra-myocardial dissection with the distribution of the ventricular band was observed. Echocardiography is helpful in identifying the myocardial band segments as well as the correlation with the topographic distribution of some myocardial post-infarction ruptures.
Zhang, Xiaoqian; Cao, Henghua; Bai, Shuyun; Huo, Weibang; Ma, Yue
2017-04-01
The combination of non-human primate animals and their induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provides not only transplantation models for cell-based therapy of heart diseases, but also opportunities for heart-related drug research on both cellular and animal levels. However, the subtypes and electrophysiology properties of non-human primate iPSC-CMs hadn't been detailed characterized. In this study, we generated rhesus monkey induced pluripotent stem cells (riPSCs), and efficiently differentiated them into ventricular or atrial cardiomyocytes by modulating retinoic acid (RA) pathways. Our results revealed that the electrophysiological characteristics and response to canonical drugs of riPSC-CMs were similar with those of human pluripotent stem cell derived CMs. Therefore, rhesus monkeys and their iPSC-CMs provide a powerful and practicable system for heart related biomedical research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
21 CFR 882.4060 - Ventricular cannula.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventricular cannula. 882.4060 Section 882.4060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4060 Ventricular cannula. (a...
21 CFR 882.4060 - Ventricular cannula.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ventricular cannula. 882.4060 Section 882.4060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4060 Ventricular cannula. (a...
Slit–Robo signalling in heart development
Zhao, Juanjuan; Mommersteeg, Mathilda T M
2018-01-01
Abstract The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit–Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT–ROBO signalling pathway as a candidate for an array of human congenital heart defects. PMID:29538649
21 CFR 870.3545 - Ventricular bypass (assist) device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ventricular bypass (assist) device. 870.3545 Section 870.3545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3545 Ventricular...
21 CFR 870.3545 - Ventricular bypass (assist) device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventricular bypass (assist) device. 870.3545 Section 870.3545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3545 Ventricular...
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José
2014-01-01
Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945
Real-Time Analysis of Electrocardiographic Data for Heart Rate Turbulence
NASA Technical Reports Server (NTRS)
Greco, E. Carl, Jr.
2005-01-01
Episodes of ventricular ectopy (premature ventricular contractions, PVCs) have been reported in several astronauts and cosmonauts during space flight. Indeed, the "Occurrence of Serious Cardiac Dysrhythmias" is now NASA's #1 priority critical path risk factor in the cardiovascular area that could jeopardize a mission as well as the health and welfare of the astronaut. Epidemiological, experimental and clinical observations suggest that severe autonomic dysfunction and/or transient cardiac ischemia can initiate potentially lethal ventricular arrhythmias. On earth, Heart Rate Turbulence (HRT) in response to PVCs has been shown to provide not only an index of baroreflex sensitivity (BRS), but also more importantly, an index of the propensity for lethal ventricular arrhythmia. An HRT procedure integrated into the existing advanced electrocardiographic system under development in JSC's Human Adaptation and Countermeasures Office was developed to provide a system for assessment of PVCs in a real-time monitoring or offline (play-back) scenario. The offline heart rate turbulence software program that was designed in the summer of 2003 was refined and modified for "close to" real-time results. In addition, assistance was provided with the continued development of the real-time heart rate variability software program. These programs should prove useful in evaluating the risk for arrhythmias in astronauts who do and who do not have premature ventricular contractions, respectively. The software developed for these projects has not been included in this report. Please contact Dr. Todd Schlegel for information on acquiring a specific program.
Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle
2017-06-01
Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K 2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K 2p channels. Copyright © 2017 the American Physiological Society.
Ventricular-Fold Dynamics in Human Phonation
ERIC Educational Resources Information Center
Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus
2014-01-01
Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…
Endo, Keiko; Suzuki, Atsushi; Sato, Kayoko; Shiga, Tsuyoshi
2015-04-16
Cryopyrin-associated periodic syndrome (CAPS) is caused by NLRP3 mutations, which result in dysregulated interleukin 1β (IL-1β) production and inflammation. Some patients with CAPS develop systemic amyloidosis via an inflammatory reaction. We describe a case of a 39-year-old woman who experienced cardiopulmonary arrest secondary to ventricular fibrillation complicated by cardiac amyloidosis as well as by CAPS. She was diagnosed with renal amyloidosis at 32 years of age. At 34 years of age, genetic sequencing of the NLRP3 gene demonstrated that she was heterozygous for the p.E304 K mutation, and she was subsequently diagnosed with CAPS. After treatment with canakinumab (human anti-IL-1β monoclonal antibody) for CAPS, the inflammatory reaction was improved. However, she eventually developed cardiac arrest with ventricular fibrillation and was successfully resuscitated. Echocardiography demonstrated mildly reduced left ventricular systolic function (left ventricular ejection fraction of 48%). Coronary angiography revealed no stenosis, but a cardiac biopsy demonstrated cardiac amyloidosis. She received an implantable cardioverter defibrillator. 2015 BMJ Publishing Group Ltd.
Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET.
de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint-Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry
2017-09-01
Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Dynamic PET with 18 F-THK5117, a tracer for tau pathology, was used to estimate the ventricular CSF time-activity as a biomarker for CSF clearance. We tested 3 hypotheses: extracranial CSF is detected at the superior turbinates; CSF clearance is reduced in AD; and CSF clearance is inversely associated with amyloid deposition. Methods: Fifteen subjects, 8 with AD and 7 normal control volunteers, were examined with 18 F-THK5117. Ten subjects additionally underwent 11 C-Pittsburgh compound B ( 11 C-PiB) PET scanning, and 8 were 11 C-PiB-positive. Ventricular time-activity curves of 18 F-THK5117 were used to identify highly correlated time-activity curves from extracranial voxels. Results: For all subjects, the greatest density of CSF-positive extracranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinate CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET-measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.
NASA Technical Reports Server (NTRS)
1984-01-01
CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.
Arráez-Aybar, L A; Turrero-Nogués, A; Marantos-Gamarra, D G
2008-01-01
We performed a morphometric study of cardiac development on human embryos to complement the scarce data on human embryonic cardiac morphometry and to attempt to establish, from these, algorithms describing cardiac growth during the second month of gestation. Thirty human embryos from Carnegie stages 15-23 were included in the study. Shrinkage and compression effects from fixation and inclusion in paraffin were considered in our calculations. Growth of the cardiac (whole heart) volume and volume of ventricular myocardium through the Carnegie stages were analysed by ANOVA. Linear correlation was used to describe the relationship between the ventricular myocardium and cardiac volumes. Comparisons of models were carried out through the R2 statistic. The relationship volume of ventricular myocardium versus cardiac volume is expressed by the equation: cardiac volume = 0.6266 + 2.4778 volume of ventricular myocardium. The relationship cardiac volume versus crown-rump length is expressed by the equation: cardiac volume = 1.3 e(0.126 CR length), where e is the base of natural logarithms. At a clinical level, these results can contribute towards the establishment of a normogram for cardiac development, useful for the design of strategies for early diagnosis of congenital heart disease. They can also help in the study of embryogenesis, for example in the discussion of ventricular trabeculation. Copyright 2007 S. Karger AG, Basel.
Optoelectronic system for the determination of blood volume in pneumatic heart assist devices.
Konieczny, Grzegorz; Pustelny, Tadeusz; Setkiewicz, Maciej; Gawlikowski, Maciej
2015-12-10
The following article describes the concept of optical measurement of blood volume in ventricular assist devices (VAD's) of the pulsatile type. The paper presents the current state of art in blood volume measurements of such devices and introduces a newly developed solution in the optic domain. The objective of the research is to overcome the disadvantages of the previously developed acoustic method-the requirement of additional sensor chamber. The idea of a compact measurement system has been introduced, followed by laboratory measurements. Static tests of the system have been presented, followed by dynamic measurements on a physical model of the human ventricular system. The results involving the measurements of blood chamber volume acquired by means of an optical system have been compared with the results acquired by means of the Transonic T410 ultrasound flow rate sensor (11PLX transducer, uncertainty ±5 %). Preliminary dynamic measurements conducted on the physical model of the human cardiovascular system show that the proposed optical measurement system may be used to measure the transient blood chamber volumes of pulsatile VAD's with the uncertainties (standard mean deviation) lower than 10 %. The results show that the noninvasive measurements of the temporary blood chamber volume in the POLVAD prosthesis with the use of the developed optical system allows us to carry out accurate static and dynamic measurements.
Torres, Jose Luis; Shah, Bindi K; Greenberg, Richard M; Deger, Florin Titus; Gerstenfeld, Edward P
2010-10-01
We hypothesized that in patients with left ventricular dysfunction undergoing implant of a biventricular ICD, the local dominant frequency during early induced ventricular fibrillation would be higher at an epicardial left ventricular position compared to an endocardial right ventricular position. Patients undergoing implant of a biventricular ICD were studied. During ventricular fibrillation induction, bipolar electrograms were recorded from leads at an epicardial left ventricular position and an endocardial right ventricular position. Overlapping 2-s fast Fourier transforms were obtained for 6 s of ventricular fibrillation. The dominant frequency and organizational index were compared. Thirty-four patients (20 men, age 64 ± 11 years) underwent 57 inductions of ventricular fibrillation. Eighteen patients had non-ischemic dilated cardiomyopathy and 16 had ischemic dilated cardiomyopathy. The dominant frequency was higher at a lateral epicardial left ventricular position than an apical endocardial right ventricular position in 18 patients with non-ischemic dilated cardiomyopathy (LV epicardial 5.34 ± 0.37 Hz, RV endocardial 5.09 ± 0.41 Hz, p < 0.001), but not in 16 patients with ischemic dilated cardiomyopathy (LV epicardial 4.99 ± 0.57 Hz, RV epicardial 4.87 ± 0.65 Hz, p = 0.094). In patients with non-ischemic dilated cardiomyopathy, there is a dominant frequency gradient during early ventricular fibrillation induced at ICD testing from the lateral left ventricular epicardium to the apical right ventricular endocardium.
Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Ranadive, Sushant M; Yan, Huimin; Phillips, Shane; Baynard, Tracy; Woods, Jeffrey A; Motl, Robert; Fernhall, Bo
2015-07-01
Aging is commonly accompanied by increased arterial and ventricular stiffness (determined by arterial elastance (Ea) and ventricular elastance (Elv)), augmented ventricular-vascular coupling ratios (Ea/Elv) and systemic inflammation. Acute inflammation may impact ventricular-vascular coupling and predispose older adults to cardiovascular events. However, physically active older adults have more compliant large arteries and left ventricles and lower inflammation than sedentary older adults. We hypothesized that acute inflammation would alter Ea, Elv, and Ea/Elv more in older versus younger adults but that higher levels of physical activity would attenuate inflammation-induced changes. End-systolic and central blood pressures were obtained using applanation tonometry before and at 24 and 48 h post-influenza vaccination in 24 older and 38 younger adults. Ultrasonography was used to measure ventricular volumes and other indices of cardiac performance. Physical activity was measured with accelerometry. Ea and Ea/Elv were maintained (p > 0.05), but Elv was reduced (p < 0.05) 24 h post-inflammation. Other indices of systolic performance were reduced in older but not younger adults; diastolic performance was attenuated in both groups 24 h post-inflammation (p < 0.05 for all). Older, but not younger, adults decreased central pressure during inflammation (p < 0.05). When controlled for age, physical activity was not related to the inflammation-induced changes in elastance (p > 0.05) except in the most active group of seniors (p < 0.05). Aging did not affect the elastance responses but did affect central blood pressure and other ventricular systolic responses to acute inflammation. Aging, not physical activity, appears to modulate cardiovascular responses to acute inflammation, except in the most active older adults. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, M.S.; Tuli, M.M.; Radtke, N.L.
Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a findingmore » is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.« less
Tong, L J; Flach, E J; Sheppard, M N; Pocknell, A; Banerjee, A A; Boswood, A; Bouts, T; Routh, A; Feltrer, Y
2014-07-01
Cardiovascular disease is increasingly recognized as an important cause of morbidity and mortality in captive chimpanzees (Pan troglodytes). This report records 2 cases of sudden cardiac death in closely related subadult captive chimpanzees with marked replacement fibrosis and adipocyte infiltration of the myocardium, which resemble specific atypical forms of the familial human disease arrhythmogenic right ventricular cardiomyopathy. Changes were consistent with left-dominant and biventricular subtypes, which are both phenotypic variants found within human families with familial arrhythmogenic right ventricular cardiomyopathy. Previously reported fibrosing cardiomyopathies in chimpanzees were characterized by nonspecific interstitial fibrosis, in contrast to the replacement fibrofatty infiltration with predilection for the outer myocardium seen in these 2 cases. To the authors' knowledge, this case report is the first to describe cardiomyopathy resembling arrhythmogenic right ventricular cardiomyopathy in nonhuman primates and the first to describe left-dominant arrhythmogenic cardiomyopathy-type lesions in an animal. © The Author(s) 2013.
STUDIES WITH THE ELECTROCARDIOGRAPH ON THE ACTION OF THE VAGUS NERVE ON THE HUMAN HEART
Robinson, G. Canby; Draper, George
1911-01-01
In hearts showing auricular fibrillation mechanical stimulation of the right vagus nerve causes, as a rule, marked slowing or stoppage of ventricular rhythm, without producing any appreciable effect in the electrocardiographic record of the auricular fibrillation. The ventricular pauses are apparently due to the blocking of stimuli from the auricles. The force of ventricular systole is distinctly weakened for several beats after vagus stimulation, and ectopic ventricular systoles have been seen in several instances, apparently the result of the vagus action. There may, in some cases, be lowered excitability of the ventricles, while no constant change is seen in the size of the electrical complexes representing ventricular systole. PMID:19867466
Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308
Yamauchi, Kaori; Li, Junjun; Morikawa, Kumi; Liu, Li; Shirayoshi, Yasuaki; Nakatsuji, Norio; Elliott, David A; Hisatome, Ichiro; Suemori, Hirofumi
2018-01-01
Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5 eGFP/w and MLC2v mCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5 eGFP/w and MLC2v mCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources. Copyright © 2017 Elsevier Inc. All rights reserved.
Uray, Thomas; Lamade, Andrew; Elmer, Jonathan; Drabek, Tomas; Stezoski, Jason P; Missé, Amalea; Janesko-Feldman, Keri; Garman, Robert H; Chen, Niel; Kochanek, Patrick M; Dezfulian, Cameron; Callaway, Clifton W; Doshi, Ankur A; Frisch, Adam; Guyette, Francis X; Reynolds, Josh C; Rittenberger, Jon C
2018-06-01
Cardiac arrest etiology may be an important source of between-patient heterogeneity, but the impact of etiology on organ injury is unknown. We tested the hypothesis that asphyxial cardiac arrest results in greater neurologic injury than cardiac etiology cardiac arrest (ventricular fibrillation cardiac arrest), whereas ventricular fibrillation cardiac arrest results in greater cardiovascular dysfunction after return of spontaneous circulation. Prospective observational human and randomized animal study. University laboratory and ICUs. Five-hundred forty-three cardiac arrest patients admitted to ICU. Seventy-five male Sprague-Dawley rats. We examined neurologic and cardiovascular injury in Isoflurane-anesthetized rat cardiac arrest models matched by ischemic time. Hemodynamic and neurologic outcomes were assessed after 5 minutes no flow asphyxial cardiac arrest or ventricular fibrillation cardiac arrest. Comparison was made to injury patterns observed after human asphyxial cardiac arrest or ventricular fibrillation cardiac arrest. In rats, cardiac output (20 ± 10 vs 45 ± 9 mL/min) and pH were lower and lactate higher (9.5 ± 1.0 vs 6.4 ± 1.3 mmol/L) after return of spontaneous circulation from ventricular fibrillation cardiac arrest versus asphyxial cardiac arrest (all p < 0.01). Asphyxial cardiac arrest resulted in greater early neurologic deficits, 7-day neuronal loss, and reduced freezing time (memory) after conditioned fear (all p < 0.05). Brain antioxidant reserves were more depleted following asphyxial cardiac arrest. In adjusted analyses, human ventricular fibrillation cardiac arrest was associated with greater cardiovascular injury based on peak troponin (7.8 ng/mL [0.8-57 ng/mL] vs 0.3 ng/mL [0.0-1.5 ng/mL]) and ejection fraction by echocardiography (20% vs 55%; all p < 0.0001), whereas asphyxial cardiac arrest was associated with worse early neurologic injury and poor functional outcome at hospital discharge (n = 46 [18%] vs 102 [44%]; p < 0.0001). Most ventricular fibrillation cardiac arrest deaths (54%) were the result of cardiovascular instability, whereas most asphyxial cardiac arrest deaths (75%) resulted from neurologic injury (p < 0.0001). In transcending rat and human studies, we find a consistent phenotype of heart and brain injury after cardiac arrest based on etiology: ventricular fibrillation cardiac arrest produces worse cardiovascular dysfunction, whereas asphyxial cardiac arrest produces worsened neurologic injury associated with greater oxidative stress.
Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki
2013-01-18
Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)-expressing cells and heart-specific ChAT transgenic (ChAT-tg) mice. Compared with cardiomyocytes of wild-type (WT) mice, those of the ChAT-tg mice had high levels of ACh and hypoxia-inducible factor (HIF)-1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT-overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT-tg mice showed similar hemodynamics; after MI, however, the ChAT-tg mice had better survival than did the WT mice. In the ChAT-tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post-MI remodeling. The ChAT-tg heart was more resistant to ischemia-reperfusion injury than was the WT heart. These results suggest that the activated cardiac ACh-HIF-1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self-defense against ischemia.
HeartMate II left ventricular assist system: from concept to first clinical use.
Griffith, B P; Kormos, R L; Borovetz, H S; Litwak, K; Antaki, J F; Poirier, V L; Butler, K C
2001-03-01
The HeartMate II left ventricular assist device (LVAD) (ThermoCardiosystems, Inc, Woburn, MA) has evolved from 1991 when a partnership was struck between the McGowan Center of the University of Pittsburgh and Nimbus Company. Early iterations were conceptually based on axial-flow mini-pumps (Hemopump) and began with purge bearings. As the project developed, so did the understanding of new bearings, computational fluid design and flow visualization, and speed control algorithms. The acquisition of Nimbus by ThermoCardiosystems, Inc (TCI) sped developments of cannulas, controller, and power/monitor units. The system has been successfully tested in more than 40 calves since 1997 and the first human implant occurred in July 2000. Multicenter safety and feasibility trials are planned for Europe and soon thereafter a trial will be started in the United States to test 6-month survival in end-stage heart failure.
A novel time-domain signal processing algorithm for real time ventricular fibrillation detection
NASA Astrophysics Data System (ADS)
Monte, G. E.; Scarone, N. C.; Liscovsky, P. O.; Rotter S/N, P.
2011-12-01
This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.
Radionuclide evaluation of left ventricular function with nonimaging probes.
Wexler, J P; Blaufox, M D
1979-10-01
Portable nonimaging probes have been developed that can evaluate left ventricular function using radionuclide techniques. Two modes of data acquisition are possible with these probe systems, first-pass and gated. Precordial radiocardiograms obtained after a bolus injection can be used to determine cardiac output, pulmonary transit time, pulmonary blood volume, left ventricle ejection fraction, and left-to-right shunts. Gated techniques can be used to determine left ventricular ejection fraction and sytolic time intervals. Probe-determined indices of left ventricular function agree excellently with comparable measurements determined by conventional camera-computer methods as well as by invasive techniques. These have begun to be used in a preliminary manner in a variety of clinical problems associated with left ventricular dysfunction. This review discusses the types of probe systems available, the methods used in positioning them, and details the specifics of their data acquisition and processing capacity. The major criticisms of probe methods are that they are nonimaging and that they measure global rather than regional left ventricular function. In spite of these criticisms, probe systems, because of their portability, high sensitivity, and relatively low cost are useful supplements to conventional camera-computer systems for the measurement of parameters of left ventricular performance using radionuclide techniques.
Oner, Taliha; Ozdemir, Rahmi; Doksöz, Onder; Genc, Dildar B; Guven, Baris; Demirpence, Savas; Yilmazer, Murat M; Yozgat, Yilmaz; Mese, Timur; Tavli, Vedide
2018-07-01
Premature ventricular contractions are accepted as benign in structurally normal hearts. However, reversible cardiomyopathy can sometimes develop. Omega-3 polyunsaturated fatty acids have anti-arrhythmic properties in animals and humans.AimWe evaluated left ventricular function in children with premature ventricular contractions with normal cardiac anatomy and assessed the impact of omega-3 fatty acid supplementation on left ventricular function in a prospective trial. A total of 25 patients with premature ventricular contraction, with more than 2% premature ventricular contractions on 24-hour Holter electrocardiography, and 30 healthy patients were included into study. All patients underwent electrocardiography, left ventricular M-mode echocardiography, and myocardial performance index testing. Patients with premature ventricular contraction were given omega-3 fatty acids at a dose of 1 g/day for 3 months, and control echocardiography and 24-hour Holter electrocardiography were performed. Neither placebo nor omega-3 fatty acids were given to the control group. Compared with the values of the control group, the patients with premature ventricular contraction had significantly lower fractional shortening. The myocardial performance index decreased markedly in the patient groups. The mean heart rate and mean premature ventricular contraction percentage of Group 2 significantly decreased in comparison with their baseline values after the omega-3 supplementation. In conclusion, premature ventricular contractions can lead to systolic cardiac dysfunction in children. Omega-3 supplementation may improve cardiac function in children with premature ventricular contractions. This is the first study conducted in children to investigate the possible role of omega-3 fatty acid supplementation on treatment of premature ventricular contractions.
Dijkman, B; Wellens, H J
2000-12-01
Performance of dual chamber implantable cardioverter defibrillator (ICD) systems has been judged based on functioning of the ventricular tachycardia:supraventricular tachycardia (VT:SVT) discrimination criteria and DDD pacing. The purpose of this study was to evaluate the use of dual chamber diagnostics to improve the electrical and antiarrhythmic therapy of ventricular arrhythmias. Information about atrial and ventricular rhythm in relation to ventricular arrhythmia occurrence and therapy was evaluated in 724 spontaneous arrhythmia episodes detected and treated by three types of dual chamber ICDs in 41 patients with structural heart disease. Device programming was based on clinically documented and induced ventricular arrhythmias. In ambulatory patients, sinus tachycardia preceded ventricular arrhythmias more often than in the hospital during exercise testing. The incidence of these VTs could be reduced by increasing the dose of a beta-blocking agent in only two patients. In five patients in whom sinus tachycardia developed after onset of hemodynamic stable VT, propranolol was more effective than Class III antiarrhythmics combined with another beta-blocking agent with regard to the incidence of VT and pace termination. In all but three cases, atrial arrhythmias were present for a longer time before the onset of ventricular arrhythmias. During atrial arrhythmias, fast ventricular rates before the onset of ventricular rate were observed more often than RR irregularities and short-long RR sequences. Dual chamber diagnostics allowed proper interpretation of detection and therapy outcome in patients with different types of ventricular arrhythmia. The advantages of the dual chamber ICD system go further than avoiding the shortcomings of the single chamber system. Information from the atrial chamber allows better device programming and individualization of drug therapy for ventricular arrhythmia.
2012-01-01
Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the thorax quite distinct from that of atrial filling. The in-vivo tests of the HCP with LVot Doppler resulted in a Pearson’s correlation of R = 0.892, and Bland-Altman plotting of SV yielded a mean bias of -1.6 ml and 2SD =14.8 ml. Conclusions The results indicate that the HCP was able to track the changes in ventricular stroke volume reliably. Furthermore, the HCP produced ventricular volume-time curves that were consistent with the literature, and may be a diagnostic tool as well. PMID:22900831
Berg, Robert A; Sorrell, Vincent L; Kern, Karl B; Hilwig, Ronald W; Altbach, Maria I; Hayes, Melinda M; Bates, Kathryn A; Ewy, Gordon A
2005-03-08
Most out-of-hospital ventricular fibrillation (VF) is prolonged (>5 minutes), and defibrillation from prolonged VF typically results in asystole or pulseless electrical activity. Recent visual epicardial observations in an open-chest, open-pericardium model of swine VF indicate that blood flows from the high-pressure arterial system to the lower-pressure venous system during untreated VF, thereby overdistending the right ventricle and apparently decreasing left ventricular size. Therefore, inadequate left ventricular stroke volume after defibrillation from prolonged VF has been postulated as a major contributor to the development of pulseless rhythms. Ventricular dimensions were determined by MRI for 30 minutes of untreated VF in a closed-chest, closed-pericardium model in 6 swine. Within 1 minute of untreated VF, mean right ventricular volume increased by 29% but did not increase thereafter. During the first 5 minutes of untreated VF, mean left ventricular volume increased by 34%. Between 20 and 30 minutes of VF, stone heart occurred as manifested by dramatic thickening of the myocardium and concomitant substantial decreases in left ventricular volume. In this closed-chest swine model of VF, substantial right ventricular volume changes occurred early and did not result in smaller left ventricular volumes. The changes in ventricular volumes before the late development of stone heart do not explain why defibrillation from brief duration VF (<5 minutes) typically results in a pulsatile rhythm with return of spontaneous circulation, whereas defibrillation from prolonged VF (5 to 15 minutes) does not.
Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian
2013-11-28
Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.
Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian
2013-01-01
Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918
VISCHER, ANNINA S.; CONNOLLY, DAVID J.; COATS, CAROLINE J.; FUENTES, VIRGINIA LUIS; MCKENNA, WILLIAM J.; CASTELLETTI, SILVIA; PANTAZIS, ANTONIOS A.
2017-01-01
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease with an increased risk for ventricular arrhythmias. The condition, which occurs in Boxer dogs, shares phenotypic features with the human disease arrhythmogenic cardiomyopathy (ACM) suggesting its potential as a natural animal model. However, there are currently no universally accepted clinical criteria to diagnose ARVC in Boxer dogs. We aimed to identify diagnostic criteria for ARVC in Boxer dogs defining a more uniform and consistent phenotype. Methods and Results Clinical records from 264 Boxer dogs from a referral veterinary hospital were retrospectively analysed. ARVC was initially diagnosed according to the number of ventricular premature complexes (VPCs) in the 24-hour-Holter-ECG in the absence of another obvious cause. Dogs diagnosed this way had more VPCs, polymorphic VPCs, couplets, triplets, VTs and R-on-T-phenomenon and syncope, decreased right ventricular function and dilatation in comparison to a control group of all other Boxer dogs seen by the Cardiology Service over the same period. Presence of couplets and R-on-T-phenomenon on a 24h-ECG were identified as independent predictors of the diagnosis. A diagnosis based on ≥100 VPCs in 24 hours, presence of couplets and R-on-T phenomenon on a 24h-ECG was able to select Boxer dogs with a phenotype most similar to human ACM. Conclusion We suggest the diagnosis of ARVC in Boxer dogs requires two out of the three following criteria: presence of ≥ 100 VPCs, presence of couplets or R-on-T-phenomenon on a 24 h-ECG. This results in a uniform phenotype similar to that described in human ACM and may result in the adoption of the term ACM for this analogous condition in Boxer dogs. PMID:29774304
Child, Nicholas; Hanson, Ben; Bishop, Martin; Rinaldi, Christopher A; Bostock, Julian; Western, David; Cooklin, Michael; O'Neil, Mark; Wright, Matthew; Razavi, Reza; Gill, Jaswinder; Taggart, Peter
2014-06-01
Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. Activation recovery intervals measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady-state pacing, whilst subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Hemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (P=0.001). APD decreased during the stressful parts of the film clip, for example, for global right ventricular activation recovery interval at end of film clip 193.8 ms (SD, 14) versus 198.0 ms (SD, 13) during the matched breathing control (end film left ventricle 199.8 ms [SD, 16] versus control 201.6 ms [SD, 15]; P=0.004). Respiration rate increased during the stressful part of the film clip (by 2 breaths per minute) and was well matched in the respective control period without any hemodynamic or activation recovery interval changes. Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular APD in conscious humans. The effect of mental challenge on APD was not secondary to emotionally induced altered respiration or heart rate. © 2014 American Heart Association, Inc.
Korstanje, Cees; Suzuki, Masanori; Yuno, Koichiro; Sato, Shuichi; Ukai, Masashi; Schneidkraut, Marlowe J; Yan, Gan X
2017-09-01
Translational assessment of cardiac safety parameters is a challenge in clinical development of beta-3 adrenoceptor agonists. The preclinical tools are presented that were used for assessing human safety for mirabegron. Studies were performed on electrical conductance at ion channels responsible for cardiac repolarization (I Kr , I Ks , I to , I Na , and I Ca,L ), on QT-interval, subendocardial APD 90 , T peak-end interval, and arrhythmia's in ventricular dog wedge tissue in vitro and on cardiovascular function (BP, HR, and QT c ) in conscious dogs. In conscious dogs, mirabegron (0.01-10mg/kg, p.o.) dose-dependently increased HR, reduced SBP but DBP was unchanged. Propranolol blocked the decrease in SBP and attenuated HR increase at 100mg/kg mirabegron. Mirabegron, at 30, 60, or 100mg/kg, p.o., had no significant effect on the QT c interval. In paced dog ventricular wedge, neither mirabegron nor metabolites M5, M11, M12, M14, and M16 prolonged QT, altered transmural dispersion of repolarization, induced premature ventricular contractions, or induced ventricular tachycardia. Mirabegron nor its metabolites inhibited I Kr , I Ks , I to I Na , or I Ca,L at clinically relevant concentrations. Up to exposure levels well exceeding human clinical exposure no discernible effects on ion channel conductance or on arrhythmogenic parameters in ventricular wedge resulted for mirabegron, or its main metabolites, confirming human cardiac safety findings. In vivo, dose-related increases in HR with effects markedly higher than seen clinically, was mediated in part by cross-activation of beta-1 adrenoceptors. This non-clinical cardiac safety test program therefore proved predictive for human cardiac safety for mirabegron. Copyright © 2017. Published by Elsevier Inc.
Non-Invasive Assessment of Susceptibility to Ventricular Arrhythmias During Simulated Microgravity
NASA Technical Reports Server (NTRS)
Cohen, Richard J.
1999-01-01
The Cardiovascular Alterations Team is currently conducting studies to determine what alterations in hemodynamic regulation result from sixteen days of simulated microgravity exposure in normal human subjects. In this project we make additional measurements on these same study subjects in order to determine whether there is an increase in susceptibility to ventricular arrhythmias resulting from simulated microgravity exposure. Numerous anecdotal and documented reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. For example, documented runs of ventricular tachycardia have been recorded from crew members of Skylab and Mir, there was much attention given by the lay press to Mir Commander Vasily Tslbliyev's complaints of heart rhythm irregularities in July of 1997, and cardiovascular mechanisms may have been causal in the recent death of an experimental primate shortly after return from space. In 1986, a Mir cosmonaut, Alexander Laveikin, was brought home and replaced with an alternate cosmonaut as a result of cardiac dysrhythmias that began during extravehicular activity. Furthermore, at a joint NASA/NSBRI workshop held in January 1998, cardiac arrhythmias were identified as the highest priority cardiovascular risk to a human Mars mission. Despite the evidence for the risk of a potentially lethal arrhythmia resulting from microgravity exposure, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project, we are determining whether simulated space flight increases the risk of developing life-threatening heart rhythm disturbances such as sustained ventricular tachycardia (defined as ventricular tachycardia lasting at least 30 seconds or resulting in hemodynamic collapse) and ventricular fibrillation. We are obtaining measures of cardiac susceptibility to ventricular arrhythmias in subjects exposed to simulated space flight in the Human Studies Core protocol being conducted by the Cardiovascular Alterations Team, which involves sixteen days .of bed rest. In particular, we are applying a powerful new non-invasive technology, developed in Professor Cohen's laboratory at MIT for the quantitative assessment of the risk of life-threatening ventricular arrhythmias. This technology involves the measurement of microvolt levels of T wave alternans (TWA) during exercise stress, and was recently granted approval by the Food and Drug Administration to be used for the clinical evaluation of patients suspected to be at risk of ventricular arrhythmias. In addition, we are obtaining 24 hour Holter monitoring (to detect non-sustained ventricular tachycardia and to assess heart rate variability). We are also conducting protocols to obtain these same measures on a monthly basis for up to four months in subjects in the Bone Demineralization/calcium Metaboloism Team's long term bed rest study.
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer
2016-01-01
Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456
Usability and safety of ventricular assist devices: human factors and design aspects.
Geidl, Lorenz; Zrunek, Philipp; Deckert, Zeno; Zimpfer, Daniel; Sandner, Sigrid; Wieselthaler, Georg; Schima, Heinrich
2009-09-01
The purpose of this study was the investigation of the usability and ergonomics of ventricular assist devices (VADs) in everyday usage. Patients with four different VAD types were observed. After implantation, instruction, and discharge from the hospital, the patients returned on a regular basis to the outpatient clinic, where the investigation took place. Data collection took place in two phases. In phase I home-released VAD patients were asked about perceived problems with the system at home. Additionally health-care professionals were interviewed to gather information on frequent VAD inconveniences and shortcomings. This inquiry resulted in a standardized self-assessment questionnaire and a manual skill test, which were performed in phase II by the whole collective (16 patients and ongoing). As a result, 38% of the patients disconnected parts of their system unintentionally at least once. All of them ascribed this problem to their own carelessness. Thirty-eight percent had to replace a cable. Seventy-five percent desired an additional cable strain relief. Thirty-eight percent suffered from rubbing of parts on the body. Sixty-three percent used a separate repository aside from the factory-provided transportation systems. The overall noise emission (pump, ventilators, and alarms) annoyed 56%; however, for 32% the alarm signals were too quiet to wake them up. No correlation between the assessed manual skills and the number of adverse events was found. To conclude, this preliminary study revealed considerable potential for improvements in the usability of ventricular assist systems.
Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki
2013-01-01
Background Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. Methods and Results To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)–expressing cells and heart‐specific ChAT transgenic (ChAT‐tg) mice. Compared with cardiomyocytes of wild‐type (WT) mice, those of the ChAT‐tg mice had high levels of ACh and hypoxia‐inducible factor (HIF)‐1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT‐overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT‐tg mice showed similar hemodynamics; after MI, however, the ChAT‐tg mice had better survival than did the WT mice. In the ChAT‐tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post‐MI remodeling. The ChAT‐tg heart was more resistant to ischemia–reperfusion injury than was the WT heart. Conclusions These results suggest that the activated cardiac ACh‐HIF‐1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self‐defense against ischemia. PMID:23525439
Aerodynamic and acoustic effects of ventricular gap.
Alipour, Fariborz; Karnell, Michael
2014-03-01
Supraglottic compression is frequently observed in individuals with dysphonia. It is commonly interpreted as an indication of excessive circumlaryngeal muscular tension and ventricular medialization. The purpose of this study was to describe the aerodynamic and acoustic impact of varying ventricular medialization in a canine model. Subglottal air pressure, glottal airflow, electroglottograph, acoustic signals, and high-speed video images were recorded in seven excised canine larynges mounted in vitro for laryngeal vibratory experimentation. The degree of gap between the ventricular folds was adjusted and measured using sutures and weights. Data were recorded during phonation when the ventricular gap was narrow, neutral, and large. Glottal resistance was estimated by measures of subglottal pressure and glottal flow. Glottal resistance increased systematically as ventricular gap became smaller. Wide ventricular gaps were associated with increases in fundamental frequency and decreases in glottal resistance. Sound pressure level did not appear to be impacted by the adjustments in ventricular gap used in this research. Increases in supraglottic compression and associated reduced ventricular width may be observed in a variety of disorders that affect voice quality. Ventricular compression may interact with true vocal fold posture and vibration resulting in predictable changes in aerodynamic, physiological, acoustic, and perceptual measures of phonation. The data from this report supports the theory that narrow ventricular gaps may be associated with disordered phonation. In vitro and in vivo human data are needed to further test this association. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
The management of ventricular dysrhythmia in aconite poisoning.
Coulson, James M; Caparrotta, Thomas M; Thompson, John P
2017-06-01
Aconite poisoning is relatively rare but is frequently complicated by ventricular dysrhythmias, which may be fatal. Molecular basis of aconite alkaloid ventricular arrhythmogenicity: Aconite exerts its toxic effects due to the presence of an admixture of alkaloids present in all parts of the plant. The major target of these aconite alkaloids is the fast voltage-gates sodium channel, where they cause persistent activation. This blockade of the channel in the activated state promotes automaticity within the ventricular myocardium and the generation of ventricular arrhythmias. Aconitine-induced arrhythmias: Aconite alkaloids are known to cause many different types of disturbance of heart rhythm. However, this focused review specifically looks at ventricular rhythm disturbances, namely ventricular ectopy, ventricular tachycardia, torsades des pointes and ventricular fibrillation. The objective of this review was to identify the outcome of anti-dysrhythmic strategies from animal studies and case reports in humans in order to guide the management of ventricular dysrhythmias in aconite poisoning in humans. A review of the literature in English was conducted in PubMed and Google Scholar from 1966 to July 2016 using the search terms "aconite/aconitine"; "aconite/aconitine + poisoning" and "aconite/aconitine + dysrhythmia". 168 human case-reports and case-series were identified by these searches, of which 103 were rejected if exposure to aconite did not result in ventricular dysrhythmias, if it was uncertain as to whether aconite had been ingested, if other agents were co-ingested, if there was insufficient information to determine the type of treatments administered or if there was insufficient information to determine outcome. Thus, 65 case reports of probable aconite poisoning that resulted in ventricular dysrhythmias were identified. Toxicokinetic data in aconite poisoning: Data were only available in three papers; the presence of ventricular rhythm disturbances directly correlated with the concentration of aconite alkaloids in the plasma. 54 of 65 cases developed ventricular tachycardia, six developed torsades des pointes, 15 patients developed ventricular fibrillation, 10 developed ventricular ectopics and one developed a broad complex tachycardia not otherwise specified; each dysrhythmia was regarded as separate and patients may have had more than one dysrhythmia. 10 patients died, giving a mortality of 15%. In total, 147 treatments were administered to 65 patients. 46 of the interventions were assessed by the authors as having been associated with successful restoration of sinus rhythm. Flecainide administration was accompanied by dysrhythmia termination in six of seven cases. Mexiletine was connected with correcting dysrhythmias in 3 of 3 cases. Procainamide administration was associated with return to sinus rhythm in 2 of 2 cases. Prolonged cardio-pulmonary resuscitation was administered to 15 patients where it was associated with a return to sinus rhythm in nine of these. Amiodarone was linked to success in correcting dysrhythmias in 11 of 20 cases. Cardiopulmonary bypass use was associated with a return to sinus rhythm in four out of six cases. Epinephrine was documented as being employed on four occasions, and was associated with a restoration of sinus rhythm on two of these. Magnesium sulphate administration was accompanied by dysrhythmia termination in two of nine cases. Direct cardioversion was associated with a return of sinus rhythm in 5 of 30 cases. However, it is not certain whether the drug treatment influenced the course of the dysrhythmia. Based on the evidence available from human case reports, flecainaide or amiodarone appear to be more associated with a return to sinus rhythm than lidocaine and/or cardioversion, although it is not established whether the administration of treatment caused reversion to normal sinus rhythm. The potential beneficial effects of amiodarone were not observed in animal studies. This may be due to intra-species differences between ion channels or relate to the wider cardiovascular toxicity of aconite that extends beyond arrhythmias. Prolonged cardiopulmonary resuscitation and cardiopulmonary bypass should be considered as an integral part of good clinical care as "time-buying" strategies to allow the body to excrete the toxic alkaloids. There may also be a role for mexiletine, procainamide and magnesium sulphate.
Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G
2002-06-01
A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.
FGF-23 and cardiovascular disease: review of literature.
Batra, Jasveen; Buttar, Rupinder Singh; Kaur, Pardeep; Kreimerman, Jacqueline; Melamed, Michal L
2016-12-01
This review examines associations between fibroblast growth factor 23 (FGF-23) and cardiovascular disease. FGF-23 is a hormone produced by osteocytes and osteoblasts that aids with phosphate excretion by the kidney and acts as a negative feedback regulator for activated vitamin D synthesis. Recent studies have found associations between elevated FGF-23 levels and a number of cardiovascular diseases, including hypertension, left ventricular hypertrophy, endothelial dysfunction, cardiovascular events and mortality. Recent studies have explored the possible effects of FGF-23 on the cardiovascular system. In animal and observational human studies, there is a link between elevated FGF-23 levels and multiple cardiovascular outcomes, including hypertension, left ventricular hypertrophy and cardiovascular events and mortality. Further studies are required to evaluate whether decreasing FGF-23 levels improves cardiovascular outcomes.
Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias
Park, David S.; Cerrone, Marina; Morley, Gregory; Vasquez, Carolina; Fowler, Steven; Liu, Nian; Bernstein, Scott A.; Liu, Fang-Yu; Zhang, Jie; Rogers, Christopher S.; Priori, Silvia G.; Chinitz, Larry A.; Fishman, Glenn I.
2014-01-01
SCN5A encodes the α subunit of the major cardiac sodium channel NaV1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure and function similar to humans, to better define the arrhythmic substrate. We introduced a nonsense mutation originally identified in a child with Brugada syndrome into the orthologous position (E558X) in the pig SCN5A gene. SCN5AE558X/+ pigs exhibited conduction abnormalities in the absence of cardiac structural defects. Sudden cardiac death was not observed in young pigs; however, Langendorff-perfused SCN5AE558X/+ hearts had an increased propensity for pacing-induced or spontaneous VF initiated by short-coupled ventricular premature beats. Optical mapping during VF showed that activity often began as an organized focal source or broad wavefront on the right ventricular (RV) free wall. Together, the results from this study demonstrate that the SCN5AE558X/+ pig model accurately phenocopies many aspects of human cardiac sodium channelopathy, including conduction slowing and increased susceptibility to ventricular arrhythmias. PMID:25500882
Meng, Juan; Lu, Yuewu; Dong, Xin; Liu, Hongyan
2014-04-08
To observe the long-term effects of hydroxychloroquine treatment on blood lipids and left ventricular function of systemic lupus erythematosus (SLE) patients. A total of 72 SLE patients were randomly divided into 2 groups of hydroxychloroquine treatment (n = 36) and non-hydroxychloroquine (n = 36). The serum level of lipids, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), interventricular septum thickness (IVST), left ventricular posterior wall thickness (LVPWT), fractional shortening rate (FS), left ventricular ejection fraction (LVEF) and E/A ratio were measured before, 6 month, 12 month and 2 years after treatment. After long-term use of hydroxychloroquine, there were statistically differences in the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). And LVEDD, LVWPT and E/A were statistically different (P < 0.05) before and after hydroxychloroquine dosing. The long-term use of hydroxychloroquine may improve lipid metabolism and left ventricular function in SLE patients.
Iorga, Bogdan; Schwanke, Kristin; Weber, Natalie; Wendland, Meike; Greten, Stephan; Piep, Birgit; dos Remedios, Cristobal G.; Martin, Ulrich; Zweigerdt, Robert; Kraft, Theresia; Brenner, Bernhard
2018-01-01
Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC) isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs) differentiated in vitro resemble those of human ventricular myofibrils (hvMFs) isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs) and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1), reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa) than for hvMFs (94 kPa). At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04) than for hvMFs (pCa50 = 5.80). At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1) than for hvMFs (0.28 s−1). During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1) than for hvMFs (0.21 s−1), while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins, explaining the functional discrepancies. The sarcomeric protein isoform pattern of hESC-CMs had features of human cardiomyocytes at an early developmental stage. The study indicates that morphological and ultrastructural maturation of βMyHC isoform-expressing hESC-CMs is not necessarily accompanied by ventricular-like expression of all sarcomeric proteins. Our data suggest that hPSC-CMs could provide useful tools for investigating inherited cardiac diseases affecting contractile function during early developmental stages. PMID:29403388
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer
2016-12-01
Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Torres, Denise; Gaughan, John P; Houser, Steven; Macha, Mahender
2008-02-01
In a rat model of pressure overload hypertrophy, we studied the effects of intracoronary delivery of mesenchymal stem cells on hemodynamic performance, exercise capacity, systemic inflammation, and left ventricular reverse remodeling. Sprague-Dawley rats underwent aortic banding and were followed up by echocardiographic scanning. After a decrease in fractional shortening of 25% from baseline, animals were randomized to intracoronary injection of mesenchymal stem cells (MSC group; n = 28) or phosphate-buffered saline solution (control group; n = 20). Hemodynamic and echocardiographic assessment, swim testing to exhaustion, and measurement of inflammatory markers were performed before the rats were humanely killed on postoperative day 7, 14, 21, or 28. Injection of mesenchymal stem cells improved systolic function in the MSC group compared with the control group (mean +/- standard deviation: maximum dP/dt 3048 +/- 230 mm Hg/s vs 2169 +/- 97 mm Hg/s at 21 days and 3573 +/- 741 mm Hg/s vs 1363 +/- 322 mm Hg/s at 28 days: P < .001). Time to exhaustion was similarly increased in the MSC group compared with controls (487 +/- 35 seconds vs 306 +/- 27 seconds at 28 days; P < .01). Serum levels of interleukins 1 and 6, tumor necrosis factor-alpha, and brain natriuretic peptide-32 were significantly decreased in animals treated with mesenchymal stem cells. Stem cell transplantation improved left ventricular fractional shortening at 21 and 28 days. Left ventricular end-systolic and end-diastolic diameters were also improved at 28 days. In this model of pressure overload hypertrophy, intracoronary delivery of mesenchymal stem cells during heart failure was associated with an improvement in hemodynamic performance, maximal exercise tolerance, systemic inflammation, and left ventricular reverse remodeling. This study suggests a potential role of this treatment strategy for the management of hypertrophic heart failure resulting from pressure overload.
Katz, Guy; Khoury, Assad; Kurtzwald, Efrat; Hochhauser, Edith; Porat, Eyal; Shainberg, Asher; Seidman, Jonathan G.; Seidman, Christine E.; Lorber, Abraham; Eldar, Michael; Arad, Michael
2014-01-01
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal arrhythmia provoked by physical or emotional stress and mediated by spontaneous Ca2+ release and delayed after-depolarizations. Beta-adrenergic blockers are the therapy of choice but fail to control arrhythmia in up to 50% of patients. OBJECTIVE To optimize antiarrhythmic therapy in recessively inherited CPVT caused by calsequestrin (CASQ2) mutations. METHODS Murine heart rhythm telemetry was obtained at rest, during treadmill exercise, and after injection of epinephrine. The protocol was repeated after injection of different antiarrhythmic drugs. Results were then validated in human patients. RESULTS Adult CASQ2 mutant mice had complex ventricular arrhythmia at rest and developed bidirectional and polymorphic ventricular tachycardia on exertion. Class I antiarrhythmic agents (procainamide, lidocaine, flecainide) were ineffective in controlling arrhythmia. Propranolol and sotalol attenuated arrhythmia at rest but failed to prevent VT during sympathetic stimulation. The calcium channel blocker verapamil showed a dose-dependent protection against CPVT. Verapamil was more effective than the dihydropyridine L-type Ca2+ channel blocker nifedipine, and its activity was markedly enhanced when combined with propranolol. Human patients homozygous for CASQ2D307H mutation, remaining symptomatic despite chronic β-blocker therapy, underwent exercise testing according to the Bruce protocol with continuous electrocardiogram recording. Verapamil was combined with propranolol at maximum tolerated doses. Adding verapamil attenuated ventricular arrhythmia and prolonged exercise duration in five of 11 patients. CONCLUSION Verapamil is highly effective against catecholamine-induced arrhythmia in mice with CASQ2 mutations and may potentiate the antiarrhythmic activity of β-blockers in humans with CPVT2. PMID:20620233
Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.
2010-01-01
In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210
Specialized impulse conduction pathway in the alligator heart
Crossley, Dane A; Conner, Justin; Mohan, Rajiv A; van Duijvenboden, Karel; Postma, Alex V; Gloschat, Christopher R; Elsey, Ruth M; Sedmera, David; Efimov, Igor R
2018-01-01
Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness) and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy. PMID:29565246
Noszczyk-Nowak, Agnieszka; Pasławska, Urszula; Gajek, Jacek; Janiszewski, Adrian; Pasławski, Robert; Zyśko, Dorota; Nicpoń, Józef
2016-01-01
Swine are recognized animal models of human cardiovascular diseases. However, little is known on the CHF-associated changes in the electrophysiological ventricular parameters of humans and animals. The aim of this study was to analyze changes in the durations of ventricular effective refraction period (VERP), QT and QTc intervals of pigs with chronic tachycardia-induced tachycardiomyopathy (TIC). The study was comprised of 28 adult pigs (8 females and 20 males) of the Polish Large White breed. A one-chamber pacemaker was implanted in each of the 28 pigs. Electrocardiographic, echocardiographic and electrophysiological studies were carried out prior to the pacemaker implantation and at subsequent 4-week intervals. All electrocardiographic, echocardiographic and short electrophysiological study measurements in all swine were done under general anesthesia (propofol) after premedication with midazolam, medetomidine, and ketamine. No significant changes in the duration of QT interval and corrected QT interval (QTc) were observed during consecutive weeks of the experiment. The duration of the QTc interval of female pigs was shown to be significantly longer than that of the males throughout the whole study period. Beginning from the 12th week of rapid ventricular pacing, a significant increase in duration of VERP was observed in both male and female pigs. Males and females did not differ significantly in terms of VERP duration determined throughout the whole study period. Ventricular pacing, stimulation with 2 and 3 premature impulses at progressively shorter coupling intervals and an imposed rhythm of 130 bpm or 150 bpm induced transient ventricular tachycardia in one female pig and four male pigs. One episode of permanent ventricular tachycardia was observed. The number of induced arrhythmias increased proportionally to the severity of heart failure and duration of the experiment. However, relatively aggressive protocols of stimulation were required in order to induce arrhythmia in the studied pigs.
Germain, Dominique P; Weidemann, Frank; Abiose, Ademola; Patel, Manesh R; Cizmarik, Marta; Cole, J Alexander; Beitner-Johnson, Dana; Benistan, Karelle; Cabrera, Gustavo; Charrow, Joel; Kantola, Ilkka; Linhart, Ales; Nicholls, Kathy; Niemann, Markus; Scott, C Ronald; Sims, Katherine; Waldek, Stephen; Warnock, David G; Strotmann, Jörg
2013-12-01
The aim of this study was to evaluate the progression of left ventricular hypertrophy in untreated men with Fabry disease and to assess the effects of agalsidase-β (recombinant human α-galactosidase A) on left ventricular hypertrophy. Longitudinal Fabry Registry data were analyzed from 115 men treated with agalsidase-β (1 mg/kg/2 weeks) and 48 untreated men. Measurements included baseline left-ventricular mass and at least one additional left-ventricular mass assessment over ≥ 2 years. Patients were grouped into quartiles, based on left-ventricular mass slopes. Multivariate logistic regression analyses identified factors associated with left ventricular hypertrophy progression. For men in whom treatment was initiated at the age of 18 to <30 years, mean left ventricular mass slope was -3.6 g/year (n = 31) compared with +9.5 g/year in untreated men of that age (n = 15) (P < 0.0001). Untreated men had a 3.4-fold higher risk of having faster increases in left-ventricular mass compared with treated men (odds ratio: 3.43; 95% confidence interval: 1.05-11.22; P = 0.0415). A baseline age of ≥ 40 years was also associated with left--ventricular hypertrophy progression (odds ratio: 5.03; 95% confidence interval: 1.03-24.49; P = 0.0457) compared with men younger than 30 years. Agalsidase-β treatment for ≥2 years may improve or stabilize left-ventricular mass in men with Fabry disease. Further investigations may determine whether early intervention and stabilization of LVM are correlated with clinical outcomes.
Verloop, Willemien L.; Beeftink, Martine M. A.; Santema, Bernadet T.; Bots, Michiel L.; Blankestijn, Peter J.; Cramer, Maarten J.; Doevendans, Pieter A.; Voskuil, Michiel
2015-01-01
Background Heart failure with preserved left ventricular ejection fraction (HFPEF) affects about half of all patients diagnosed with heart failure. The pathophysiological aspect of this complex disease state has been extensively explored, yet it is still not fully understood. Since the sympathetic nervous system is related to the development of systolic HF, we hypothesized that an increased sympathetic nerve activation (SNA) is also related to the development of HFPEF. This review summarizes the available literature regarding the relation between HFPEF and SNA. Methods and Results Electronic databases and reference lists through April 2014 were searched resulting in 7722 unique articles. Three authors independently evaluated citation titles and abstracts, resulting in 77 articles reporting about the role of the sympathetic nervous system and HFPEF. Of these 77 articles, 15 were included for critical appraisal: 6 animal and 9 human studies. Based on the critical appraisal, we selected 9 articles (3 animal, 6 human) for further analysis. In all the animal studies, isoproterenol was administered to mimic an increased sympathetic activity. In human studies, different modalities for assessment of sympathetic activity were used. The studies selected for further evaluation reported a clear relation between HFPEF and SNA. Conclusion Current literature confirms a relation between increased SNA and HFPEF. However, current literature is not able to distinguish whether enhanced SNA results in HFPEF, or HFPEF results in enhanced SNA. The most likely setting is a vicious circle in which HFPEF and SNA sustain each other. PMID:25658630
Tamez, Daniel; LaRose, Jeffrey A.; Shambaugh, Charles; Chorpenning, Katherine; Soucy, Kevin G; Sobieski, Michael A; Sherwood, Leslie; Giridharan, Guruprasad A; Monreal, Gretel; Koenig, Steven C; Slaughter, Mark S
2014-01-01
Implantation of ventricular assist devices (VADs) for treatment of end-stage heart failure (HF) falls decidedly short of clinical demand, which exceeds 100,000 HF patients per year. VAD implantation often requires major surgical intervention with associated risk of adverse events and long recovery periods. To address these limitations, HeartWare, Inc. (Miami Lakes, FL) has developed a platform of miniature ventricular devices with progressively reduced surgical invasiveness and innovative patient peripherals. One surgical implant concept is a transapical version of the miniaturized left ventricular assist device (MVAD). The HeartWare MVAD Pump® is a small, continuous flow, full-support device that has a displacement volume of 22mL. A new cannula configuration has been developed for transapical implantation, where the outflow cannula is positioned across the aortic valve. The two primary objectives for this feasibility study were to evaluate anatomic fit and surgical approach and efficacy of the transapical MVAD configuration. Anatomic fit and surgical approach were demonstrated using human cadavers (n=4). Efficacy was demonstrated in acute (n =2) and chronic (n = 1) bovine model experiments and assessed by improvements in hemodynamics, biocompatibility, flow dynamics, and histopathology. Potential advantages of the MVAD Pump include flow support in the same direction as the native ventricle, elimination of cardiopulmonary bypass, and minimally-invasive implantation. PMID:24399057
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Hamid, M. S.
1977-01-01
The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.
Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.
Lin, Wen; Li, Deqiang
2018-06-01
Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.
Sequential Notch activation regulates ventricular chamber development
D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis
2016-01-01
Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715
Congenital left ventricular aneurysms and diverticula: an entity in search of an identity
Ohlow, Marc-Alexander
2017-01-01
Congenital left ventricular aneurysm or diverticulum are rare cardiac malformations described in 809 cases since the first description in 1816, being associated with other cardiac, vascular or thoraco-abdominal abnormalities in about 70%. It appears to be a developmental anomaly, starting in the 4th embryonic week. In an experimental study, targeted knockdown of cardiac troponin T in the chick was performed at day 3, after the heart tube has formed. Morpholino treatment of gene TNNT2 at this stage led to the development of left ventricular diverticula (LVD) in the primitive left ventricular wall. Diagnosis of left ventricular aneurysms (LVA)/LVD can be made after exclusion of coronary artery disease, local or systemic inflammation or traumatic causes as well as cardiomyopathies. Clinically, most of LVA and LVD are asymptomatic or may cause systemic embolization, congestive heart failure, valvular regurgitation, ventricular wall rupture, ventricular tachycardia or sudden cardiac death. Diagnosis is established by imaging studies (echocardiography, magnetic resonance imaging or left ventricular angiography) visualizing the structural changes and accompanying abnormalities. Mode of treatment has to be individually tailored and depends on clinical presentation, accompanying abnormalities and possible complications, options include surgical resection (especially in symptomatic patients), anticoagulation after systemic embolization, radiofrequency ablation or implantation of an implantable cardioverter defibrillator (ICD) in case of symptomatic ventricular tachycardias, and occasionally combined with class I- or III-antiarrhythmic drugs. Cardiac death occurs usually in childhood, is significantly more frequent in LVA patients and caused by congestive heart failure in most of the cases, whereas patients diagnosed with LVD died more frequently from rupture of the LVD. PMID:29581714
Congenital left ventricular aneurysms and diverticula: an entity in search of an identity.
Ohlow, Marc-Alexander
2017-12-01
Congenital left ventricular aneurysm or diverticulum are rare cardiac malformations described in 809 cases since the first description in 1816, being associated with other cardiac, vascular or thoraco-abdominal abnormalities in about 70%. It appears to be a developmental anomaly, starting in the 4 th embryonic week. In an experimental study, targeted knockdown of cardiac troponin T in the chick was performed at day 3, after the heart tube has formed. Morpholino treatment of gene TNNT2 at this stage led to the development of left ventricular diverticula (LVD) in the primitive left ventricular wall. Diagnosis of left ventricular aneurysms (LVA)/LVD can be made after exclusion of coronary artery disease, local or systemic inflammation or traumatic causes as well as cardiomyopathies. Clinically, most of LVA and LVD are asymptomatic or may cause systemic embolization, congestive heart failure, valvular regurgitation, ventricular wall rupture, ventricular tachycardia or sudden cardiac death. Diagnosis is established by imaging studies (echocardiography, magnetic resonance imaging or left ventricular angiography) visualizing the structural changes and accompanying abnormalities. Mode of treatment has to be individually tailored and depends on clinical presentation, accompanying abnormalities and possible complications, options include surgical resection (especially in symptomatic patients), anticoagulation after systemic embolization, radiofrequency ablation or implantation of an implantable cardioverter defibrillator (ICD) in case of symptomatic ventricular tachycardias, and occasionally combined with class I- or III-antiarrhythmic drugs. Cardiac death occurs usually in childhood, is significantly more frequent in LVA patients and caused by congestive heart failure in most of the cases, whereas patients diagnosed with LVD died more frequently from rupture of the LVD.
Li, Ronald A; Keung, Wendy; Cashman, Timothy J; Backeris, Peter C; Johnson, Bryce V; Bardot, Evan S; Wong, Andy O T; Chan, Patrick K W; Chan, Camie W Y; Costa, Kevin D
2018-05-01
Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca 2+ -handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development. Copyright © 2018. Published by Elsevier Ltd.
Bechard, Jeff; Gibson, John Ken; Killingsworth, Cheryl R; Wheeler, Jeffery J; Schneidkraut, Marlowe J; Huang, Jian; Ideker, Raymond E; McAfee, Donald A
2011-03-01
Vernakalant is a novel antiarrhythmic agent that has demonstrated clinical efficacy for the treatment of atrial fibrillation. Vernakalant blocks, to various degrees, cardiac sodium and potassium channels with a pattern that suggests atrial selectivity. We hypothesized, therefore, that vernakalant would affect atrial more than ventricular effective refractory period (ERP) and have little or no effect on ventricular defibrillation threshold (DFT). Atrial and ventricular ERP and ventricular DFT were determined before and after treatment with vernakalant or vehicle in 23 anesthetized male mixed-breed pigs. Vernakalant was infused at a rate designed to achieve stable plasma levels similar to those in human clinical trials. Atrial and ventricular ERP were determined by endocardial extrastimuli delivered to the right atria or right ventricle. Defibrillation was achieved using external biphasic shocks delivered through adhesive defibrillation patches placed on the thorax after 10 seconds of electrically induced ventricular fibrillation. The DFT was estimated using the Dixon "up-and-down" method. Vernakalant significantly increased atrial ERP compared with vehicle controls (34 ± 8 versus 9 ± 7 msec, respectively) without significantly affecting ventricular ERP or DFT. This is consistent with atrial selective actions and supports the conclusion that vernakalant does not alter the efficacy of electrical defibrillation.
Doppler-guided retrograde catheterization system
NASA Astrophysics Data System (ADS)
Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.
1991-05-01
The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the catheter tip is placed in the aortic root. Such technology may conceivably assist in allowing selective coronary catheterization. These studies have demonstrated that Doppler guided retrograde catheterization provides an accurate method to catheterization the aortic root and left ventricular chamber without x-ray. In humans, it may prove useful in a variety of settings including the development of invasive ultrasonic diagnostic and therapeutic technology.
Remote magnetic navigation to map and ablate left coronary cusp ventricular tachycardia.
Burkhardt, J David; Saliba, Walid I; Schweikert, Robert A; Cummings, Jennifer; Natale, Andrea
2006-10-01
Premature ventricular contractions (PVCs) and ventricular tachycardia may arise from the coronary cusps. Navigation, mapping, and ablation in the coronary cusps can be challenging. Remote magnetic navigation may offer an alternative to conventional manually operated catheters. We report a case of left coronary cusp ventricular tachycardia ablation using remote magnetic navigation. Right ventricular outflow tract and coronary cusp mapping, and ablation of the left coronary cusp using a remote magnetic navigation and three-dimensional (3-D) mapping system was performed in a 28-year-old male with frequent, symptomatic PVCs and ventricular tachycardia. Successful ablation of left coronary cusp ventricular tachycardia was performed using remote magnetic navigation. Remote magnetic navigation may be used to map and ablate PVCs and ventricular tachycardia originating from the coronary cusps.
Heisel, A; Jung, J; Fries, R; Stopp, M; Sen, S; Schieffer, H; Ozbek, C
1997-01-01
The purpose of this study was to investigate the efficacy and safety of atrial cardioversion using an endocardial single lead system presently used for ventricular defibrillation. The study population consisted of 26 recipients of an ICD in combination with a conventional endocardial single lead system with the proximal spring electrode as anode in the SVC and the distal as cathode in the apex of the RV. Atrial tachyarrhythmias were induced by right atrial burst pacing. If the arrhythmia sustained > 1 minute, biphasic shocks synchronized with the R wave were delivered using the implanted device, beginning with an energy of 4 J. If 4 J failed to terminate the arrhythmia, energy was increased stepwise, if the first shock was successful, a step-down testing was performed after reinduction of atrial tachyarrhythmias. The mean atrial defibrillation threshold was 2.3 +/- 1.2 J (range, 0.5-5 J). A total of 154 shocks were delivered and no adverse effects were observed. The mean defibrillation threshold for atrial flutter was somewhat lower than that for AF (1.8 +/- 1 J vs 2.7 +/- 1.4 J, P = 0.08). There was no correlation between the atrial defibrillation threshold and a history of previously occurring atrial tachyarrhythmias, the kind of the underlying heart disease, a prescription of antiarrhythmic drugs, the dimension of the LA, the LVEF, or the ventricular DFT. Internal atrial cardioversion of short duration atrial tachyarrhythmias using a transvenous single lead system designed for ventricular defibrillation is feasible and safe at low energies, and may have important clinical applications.
New micro waveforms firstly recorded on electrocardiogram in human.
Liu, Renguang; Chang, Qinghua; Chen, Juan
2015-10-01
In our study, not only the P-QRS-T waves but also the micro-wavelets before QRS complex (in P wave and PR segment) and after QRS complex (ST segment and upstroke of T wave) were first to be identified on surface electrocardiogram in human by the "new electrocardiogram" machine (model PHS-A10) according to conventional 12-lead electrocardiogram connection methods. By comparison to the conventional electrocardiogram in 100 cases of healthy individuals and several patients with arrhythmias, we have found that the wavelets before P wave theoretically reflected electrical activity of sinus node and the micro-wavelets before QRS complex may be related to atrioventricular conduction system (atrioventricular node, His bundle and bundle branch) potentials. Noninvasive atrioventricular node and His bundle potential tracing will contribute to differentiation of the origin of wide QRS and the location of the atrioventricular block. We also have found that the wavelets after QRS complex may be associated with phase 2 and 3 repolarization of ventricular action potential, which will further reveal ventricular repolarization changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Studying semblances of a true killer: experimental model of human ventricular fibrillation.
Nair, K; Farid, T; Masse, S; Umapathy, K; Watkins, S; Poku, K; Asta, J; Kusha, M; Sevaptsidis, E; Jacob, J; Floras, J S; Nanthakumar, K
2012-04-01
It is unknown whether ventricular fibrillation (VF) studied in experimental models represents in vivo human VF. First, we examined closed chest in vivo VF induced at defibrillation threshold testing (DFT) in four patients with ischemic cardiomyopathy pretransplantation. We examined VF in these same four hearts in an ex vivo human Langendorff posttransplantation. VF from DFT was compared with VF from the electrodes from a similar region in the right ventricular endocardium in the Langendorff using two parameters: the scale distribution width (extracted from continuous wavelet transform) and VF mean cycle length (CL). In a second substudy group where multielectrode phase mapping could be performed, we examined early VF intraoperatively (in vivo open chest condition) in three patients with left ventricular cardiomyopathy. We investigated early VF in the hearts of three patients in an ex vivo Langendorff and compared findings with intraoperative VF using two metrics: dominant frequency (DF) assessed by the Welch periodogram and the number of phase singularities (lasting >480 ms). Wavelet analysis (P = 0.9) and VF CL were similar between the Langendorff and the DFT groups (225 ± 13, 218 ± 24 ms; P = 0.9), indicating that wave characteristics and activation rate of VF was comparable between the two models. Intraoperative DF was slower but comparable with the Langendorff DF over the endocardium (4.6 ± 0.1, 5.0 ± 0.4 Hz; P = 0.9) and the epicardium (4.5 ± 0.2, 5.2 ± 0.4 Hz; P = 0.9). Endocardial phase singularity number (9.6 ± 5, 12.1 ± 1; P = 0.6) was lesser in number but comparable between in vivo and ex vivo VF. VF dynamics in the limited experimental human studies approximates human in vivo VF.
Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L
2015-12-15
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.
1974-01-01
The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.
Arterial Ventricular Uncoupling with Age and Disease and Recoupling with Exercise
Chantler, Paul D
2017-01-01
The deterioration in arterial and cardiac function with aging impairs arterial ventricular coupling, an important determinant of cardiovascular performance. However, exercise training improves arterial ventricular coupling especially during exercise during the age and disease process. This review examines the concept of arterial-ventricular coupling, and how age, and disease uncouples but exercise training recouples the heart and arterial system. PMID:28072585
MURESAN, Lucian; PETCU, Ana; MURESAN, Crina; RINZIS, Mirela; GUSETU, Gabriel; POP, Dana; ZDRENGHEA, Dumitru; REDNIC, Simona
2017-01-01
Background: In patients with systemic sclerosis, NT-proBNP is a useful diagnostic marker for pulmonary hypertension and ventricular dysfunction, with important prognostic significance. The aim of this study was to assess the relationship between the NT-proBNP levels and the presence and severity of ventricular arrhythmias in patients with scleroderma. Methods: Forty consecutive patients with a diagnostic of systemic sclerosis according to the EULAR criteria admitted at the Rheumatology Clinic of Cluj-Napoca, Romania, from Jan 2014 to Apr 2014 were enrolled. Patients underwent a 12-lead ECG and a 24-hour Holter ECG monitoring for ventricular arrhythmias evaluation. Blood sample testing (including NT-proBNP level measurements), echocardiography, spirometry, chest X-ray and, when considered appropriate, high-resolution chest CT were performed. Results: Sixty percent of patients (n=24) had abnormal NT-proBNP serum levels (>125 pg/ml) and 10 patients had >100 PVC/24 h. There was a statistically significant correlation between the NT-proBNP levels and the total number of premature ventricular contractions (PVC) (r=0.445, P=0.006), total number of isolated PVC (r=0,493, P=0.002), total number of ventricular couplets (r=0.379, P=0.021) and the number of PVC morphologies (r=0.501, P=0.002). The presence of an NT-proBNP serum level >287 pg/ml had a sensitivity of 55% and a specificity of 93% in predicting the presence of complex ventricular arrhythmias on 24-hour Holter ECG monitoring. Conclusion: NT-proBNP levels could become a useful ventricular arrhythmia marker for assessing the arrhythmic risk in patients with systemic sclerosis. PMID:28845401
NASA Technical Reports Server (NTRS)
Steele, P.; Kirch, D.
1975-01-01
In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.
Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei
2018-06-21
Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.
Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin
2015-01-01
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Gregori, Mario; Giammarioli, Benedetta; Tocci, Giuliano; Befani, Alberto; Ciavarella, Giuseppino Massimo; Ferrucci, Andrea; Paneni, Francesco
2015-12-01
Right ventricular dysfunction (RVD) is associated with poor cardiovascular outcome. The renin-angiotensin-aldosterone system is involved in alterations of the left ventricular geometry and function. Detrimental effects of the renin-angiotensin-aldosterone system on the right ventricular function are being postulated, but data supporting this assumption are still lacking. The aim of the study was to assess the impact of hyperreninemia, hyperaldosteronism or their combination on right ventricular function in hypertensive individuals. Plasma renin activity (PRA) and plasma aldosterone concentrations (PACs) were measured in 116 hypertensive patients, divided as follows: normal PRA and PAC (n = 38); high PRA and normal PAC (hypereninemia) (n = 26); normal PRA and high PAC (hyperaldosternism) (n = 27); high PRA and PAC (HRA) (n = 25). Echocardiographic evaluation of the left and right ventricles (RV), including tissue Doppler imaging, was performed. RVD was identified by tissue Doppler Imaging-derived Myocardial Performance Index, calculated with a multisegmental approach. Indices of the right ventricular structure and function, as well as the prevalence of RVD, were higher in hyperreninemia and hyperaldosternism groups as compared with the normal group, and a further increase was observed in the HRA patients. Regression models showed a similar risk of RVD in the hyperreninemia and hyperaldosternism patients, regardless of systemic and pulmonary pressure, as well as left ventricular dysfunction. Notably, patients with both hyperreninemia and hyperaldosternism exhibited the strongest association with RVD as compared with patients with only hyperreninemia or hyperaldosternism. Isolated hyperreninemia or hyperaldosternism determines a similar impairment of the right ventricular function, whereas their combination is further detrimental. Renin and aldosterone may represent early biomarkers of right ventricular dysfunction in hypertension.
Shi, Jie; Stonnington, Cynthia M.; Thompson, Paul M.; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C.; Reiman, Eric M.; Caselli, Richard J.; Wang, Yalin
2014-01-01
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer’s disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374
Estimating the probability that the Taser directly causes human ventricular fibrillation.
Sun, H; Haemmerich, D; Rahko, P S; Webster, J G
2010-04-01
This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.
The overloaded right heart and ventricular interdependence.
Naeije, Robert; Badagliacca, Roberto
2017-10-01
The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Left ventricular function in relation to chronic residential air pollution in a general population
Yang, Wen-Yi; Zhang, Zhen-Yu; Thijs, Lutgarde; Bijnens, Esmée M; Janssen, Bram G; Vanpoucke, Charlotte; Lefebvre, Wouter; Cauwenberghs, Nicholas; Wei, Fang-Fei; Luttun, Aernout; Verhamme, Peter; Van Hecke, Etienne; Kuznetsova, Tatiana; D’hooge, Jan; Nawrot, Tim S
2017-01-01
Background In view of the increasing heart failure epidemic and awareness of the adverse impact of environmental pollution on human health, we investigated the association of left ventricular structure and function with air pollutants in a general population. Methods In 671 randomly recruited Flemish (51.7% women; mean age, 50.4 years) we echocardiographically assessed left ventricular systolic strain and strain rate and the early and late peak velocities of transmitral blood flow and mitral annular movement (2005−2009). Using subject-level data, left ventricular function was cross-sectionally correlated with residential long-term exposure to air pollutants, including black carbon, PM2.5, PM10 (particulate matter) and nitrogen dioxide (NO2), while accounting for clustering by residential address and confounders. Results Annual exposures to black carbon, PM2.5, PM10 and NO2 averaged 1.19, 13.0, 17.7, and 16.8 µg/m3. Systolic left ventricular function was worse (p ≤ 0.027) with higher black carbon, PM2.5, PM10 and NO2 with association sizes per interquartile interval increment ranging from −0.339 to −0.458% for longitudinal strain and from −0.033 to −0.049 s−1 for longitudinal strain rate. Mitral E and a′ peak velocities were lower (p ≤ 0.021) with higher black carbon, PM2.5 and PM10 with association sizes ranging from −1.727 to −1.947 cm/s and from −0.175 to −0.235 cm/s, respectively. In the geographic analysis, the systolic longitudinal strain sided with gradients in air pollution. The path analysis identified systemic inflammation as a possible mediator of associations with black carbon. Conclusions Long-term low-level air pollution is associated with subclinical impairment of left ventricular performance and might be a risk factor for heart failure. PMID:28617090
Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition
Xiao, Ling; Koopmann, Tamara T.; Ördög, Balázs; Postema, Pieter G.; Verkerk, Arie O.; Iyer, Vivek; Sampson, Kevin J.; Boink, Gerard J.J.; Mamarbachi, Maya A.; Varro, Andras; Jordaens, Luc; Res, Jan; Kass, Robert S.; Wilde, Arthur A.; Bezzina, C.R.; Nattel, Stanley
2015-01-01
Rationale A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (Ito) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF Ito and that its overexpression might specifically alter PF Ito properties and repolarization. Objective To assess the potential role of DPP6 in PF Ito. Methods and Results Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle Ito had similar density, but PF Ito differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, Ito density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K+-channel interacting β-subunit K+-channel interacting protein type-2, essential for normal expression of Ito in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small Ito; Ito amplitude was greatly enhanced by coexpression with K+-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K+-channel interacting protein type-2 failed to alter Ito compared with Kv4.3/K+-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF Ito composition) greatly enhanced Ito compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that Ito enhancement can greatly accelerate PF repolarization. Conclusions These results point to a previously unknown central role of DPP6 in PF Ito, with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation. PMID:23532596
Koenig, Steven C; Jimenez, Jorge H; West, Seth D; Sobieski, Michael A; Choi, Young; Monreal, Gretel; Giridharan, Guruprasad A; Soucy, Kevin G; Slaughter, Mark S
2014-01-01
APK Advanced Medical Technologies (Atlanta, GA) is developing a sutureless beating heart (SBH) left ventricular assist device (LVAD) connector system consisting of anchoring titanium coil, titanium cannula with integrated silicone hemostatic valve, coring and delivery tool, and LVAD locking mechanism to facilitate LVAD inflow surgical procedures. Feasibility testing was completed in human cadavers (n=4) under simulated normal and hypertensive conditions using saline to observe seal quality in degraded human tissue and assess anatomic fit; acutely in ischemic heart failure (IHF) bovine model (n=2) to investigate short-term performance and ease of use; and chronically for 30-days in healthy calves (n=2) implanted with HeartWare HVAD to evaluate performance and biocompatibility. Complete hemostasis was achieved in human cadavers and animals at LV pressures up to 170 mmHg. In animals, off pump (no cardiopulmonary bypass) anchoring of the connector was accomplished in less than 1 minute with no residual bleeding after full delivery and locking of the LVAD; and implant of connector and LVAD were successfully completed in under 10 minutes with total procedure blood loss less than 100mL. In chronic animals prior to necropsy, no signs of leakage or disruption at the attachment site were observed at systolic LV pressures >200 mmHg. PMID:25238500
Hoffmayer, Kurt S; Bhave, Prashant D; Marcus, Gregory M; James, Cynthia A; Tichnell, Crystal; Chopra, Nagesh; Moxey, Laura; Krahn, Andrew D; Dixit, Sanjay; Stevenson, William; Calkins, Hugh; Badhwar, Nitish; Gerstenfeld, Edward P; Scheinman, Melvin M
2013-04-01
Ventricular arrhythmias in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) and idiopathic ventricular tachycardia (VT) can share a left bundle branch block/inferior axis morphology. We previously reported electrocardiogram characteristics during outflow tract ventricular arrhythmias that helped distinguish VT related to ARVD/C from idiopathic VT. To prospectively validate these criteria. We created a risk score by using a derivation cohort. Two experienced electrophysiologists blinded to the diagnosis prospectively scored patients with VT/premature ventricular contractions (PVCs) with left bundle branch block/inferior axis pattern in a validation cohort of 37 ARVD/C tracings and 49 idiopathic VT tracings. All patients with ARVD/C had their diagnosis confirmed based on the revised task force criteria. Patients with idiopathic VT were selected based on structurally normal hearts with documented right ventricular outflow tract VT successfully treated with ablation. The scoring system provides 3 points for sinus rhythm anterior T-wave inversions in leads V1-V3 and during ventricular arrhythmia: 2 points for QRS duration in lead I≥120 ms, 2 points for QRS notching, and 1 point for precordial transition at lead V5 or later. A score of 5 or greater was able to correctly distinguish ARVD/C from idiopathic VT 93% of the time, with a sensitivity of 84%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 91%. We describe a simple scoring algorithm that uses 12-lead electrocardiogram characteristics to effectively distinguish right ventricular outflow tract arrhythmias originating from patients with ARVD/C versus patients with idiopathic VT. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Defining the molecular signatures of human right heart failure.
Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A
2018-03-01
Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Y; Yuan, H Y; Liu, X B; Wen, S S; Xu, G; Cui, H J; Zhuang, J; Chen, J M
2018-06-01
As a result of right ventricular outflow tract reconstruction, which is the important and basic step of complex cardiac surgery, the blood flow of right ventricular outflow tract is unobstructed, while pulmonary valve regurgitation and right heart dysfunction could be happened. These problems are often ignored in early days, more and more cases of right heart dysfunction need clinical intervention, which is quite difficult and less effective. How to protect effectively the right ventricular function is the focus. At present main methods to protect the right ventricular function include trying to avoid or reduce length of right ventricular incision, reserving or rebuilding the function of the pulmonary valve, using growth potential material for surgery. The protection of the right ventricular function is a systemic project, it involves many aspects, single measures is difficult to provide complete protection, only the comprehensive use of various protection strategy, can help to improve the long-term prognosis.
Singularity now: using the ventricular assist device as a model for future human-robotic physiology.
Martin, Archer K
2016-04-01
In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.
Singularity now: using the ventricular assist device as a model for future human-robotic physiology
Martin, Archer K.
2016-01-01
In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480
Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew
2009-01-01
Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981
Porter, Bradley; van Duijvenboden, Stefan; Bishop, Martin J.; Orini, Michele; Claridge, Simon; Gould, Justin; Sieniewicz, Benjamin J.; Sidhu, Baldeep; Razavi, Reza; Rinaldi, Christopher A.; Gill, Jaswinder S.; Taggart, Peter
2018-01-01
Background: The temporal pattern of ventricular repolarization is of critical importance in arrhythmogenesis. Enhanced beat-to-beat variability (BBV) of ventricular action potential duration (APD) is pro-arrhythmic and is increased during sympathetic provocation. Since sympathetic nerve activity characteristically exhibits burst patterning in the low frequency range, we hypothesized that physiologically enhanced sympathetic activity may not only increase BBV of left ventricular APD but also impose a low frequency oscillation which further increases repolarization instability in humans. Methods and Results: Heart failure patients with cardiac resynchronization therapy defibrillator devices (n = 11) had activation recovery intervals (ARI, surrogate for APD) recorded from left ventricular epicardial electrodes alongside simultaneous non-invasive blood pressure and respiratory recordings. Fixed cycle length was achieved by right ventricular pacing. Recordings took place during resting conditions and following an autonomic stimulus (Valsalva). The variability of ARI and the normalized variability of ARI showed significant increases post Valsalva when compared to control (p = 0.019 and p = 0.032, respectively). The oscillatory behavior was quantified by spectral analysis. Significant increases in low frequency (LF) power (p = 0.002) and normalized LF power (p = 0.019) of ARI were seen following Valsalva. The Valsalva did not induce changes in conduction variability nor the LF oscillatory behavior of conduction. However, increases in the LF power of ARI were accompanied by increases in the LF power of systolic blood pressure (SBP) and the rate of systolic pressure increase (dP/dtmax). Positive correlations were found between LF-SBP and LF-dP/dtmax (rs = 0.933, p < 0.001), LF-ARI and LF-SBP (rs = 0.681, p = 0.001) and between LF-ARI and LF-dP/dtmax (rs = 0.623, p = 0.004). There was a strong positive correlation between the variability of ARI and LF power of ARI (rs = 0.679, p < 0.001). Conclusions: In heart failure patients, physiological sympathetic provocation induced low frequency oscillation (~0.1 Hz) of left ventricular APD with a strong positive correlation between the LF power of APD and the BBV of APD. These findings may be of importance in mechanisms underlying stability/instability of repolarization and arrhythmogenesis in humans. PMID:29670531
Morphology and Classification of Right Ventricular Bands in the Domestic Dog (Canis familiaris).
Cope, L A
2017-10-01
Ventricular bands, also designated as 'false tendons', are described as single or multiple strands that cross the ventricles and have no connection to valvular cusps. Previous work indicates these strands are present in the ventricles of humans and some animal hearts and not always associated with cardiac pathologies. Despite these previous studies, the published literature is limited in documenting the morphology of these strands and incidence in animals. In this study, examination of 89 hearts showed six types of ventricular bands in the right ventricle of the domestic dog. These bands were classified according to their prevalence and points of attachment. Type I extended from the interventricular septum to the ventricular free wall, type II connected a musculus papillaris parvus to the ventricular free wall and type III connected trabeculae carneae on the interventricular septum. Type IV connected the trabeculae carneae on the ventricular free wall, type V interconnected papillary muscles and type VI connected the interventricular septum to a papillary muscle. While the study of these ventricular bands provided additional information on the cardiac anatomy of the domestic dog, it also showed their clinical importance. Several studies have proposed that their position in the ventricle may interfere with cardiac catheterization and pacemaker lead placement or be misinterpreted during echocardiography. © 2017 Blackwell Verlag GmbH.
Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.
De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia
2017-10-01
Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Annulus fibrosus of the mitral valve: reality or myth.
Berdajs, Denis; Zünd, Gregor; Camenisch, Colette; Schurr, Ulrich; Turina, Marko I; Genoni, Michele
2007-01-01
Surgical repair of the mitral valve is in most cases limited to the posterior leaflet of the mitral valve and to the annulus fibrosus. The term annulus fibrosus is still used in anatomical and clinical terminology and is described as a cord like structure providing the attachment of the mitral vale. However, to date no evidence exists of a ring-or cord-like structure at this area. Herein, we describe the attachment of the mitral valve by using the macroscopical and microscopical techniques. The ventricular attachment of the posterior mitral valve leaflet was investigated in 10 human hearts. In dry dissected specimens, the intraventricular illumination was used to identify the attachment of the mitral valve to the left ventricular muscle. Using the histological techniques, we verified the position of the annulus fibrosus. The attachment of the posterior mitral valve leaflet is a band-like structure positioned between the left ventricular muscle and the left atrium. This fibrous band illustrates the morphological attachment of the mitral valve and, as thus, was interpreted as the annulus fibrosus of the mitral valve. Based on our data, no ring-like structure was found corresponding to the anatomical description of the annulus fibrosus, instead the band-like fibrous tissue was identified positioned between the mitral valve and the left ventricle. Histologicaly, we detected that this structure is part of the greater structural system that is directly connected to the membranous septum, to the left and right fibrous trigone and the attachment aortic root to the left ventricular muscle.
Buikema, Jan Willem; Mady, Ahmed S.; Mittal, Nikhil V.; Atmanli, Ayhan; Caron, Leslie; Doevendans, Pieter A.; Sluijter, Joost P. G.; Domian, Ibrahim J.
2013-01-01
In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications. PMID:24026118
NASA Technical Reports Server (NTRS)
Reiber, J. H. C.
1976-01-01
To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.
Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.
Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J
1996-06-01
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.
Clinical application of a light-pen computer system for quantitative angiography
NASA Technical Reports Server (NTRS)
Alderman, E. L.
1975-01-01
The paper describes an angiographic analysis system which uses a video disk for recording and playback, a light-pen for data input, minicomputer processing, and an electrostatic printer/plotter for hardcopy output. The method is applied to quantitative analysis of ventricular volumes, sequential ventriculography for assessment of physiologic and pharmacologic interventions, analysis of instantaneous time sequence of ventricular systolic and diastolic events, and quantitation of segmental abnormalities. The system is shown to provide the capability for computation of ventricular volumes and other measurements from operator-defined margins by greatly reducing the tedium and errors associated with manual planimetry.
Child, Nicholas; Hanson, Ben; Bishop, Martin; Rinaldi, Christopher A; Bostock, Julian; Western, David; Cooklin, Michael; O’Neil, Mark; Wright, Matthew; Razavi, Reza; Gill, Jaswinder; Taggart, Peter
2014-01-01
Background Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. Methods and Results Activation recovery intervals (ARI) measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady state pacing while subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Haemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (p=0.001). APD decreased during the stressful parts of the film clip, eg for global RV ARI at end of film clip 193.8ms (SD 14) vs 198.0ms (SD13) during the matched breathing control (end film LV 199.8ms (SD16) vs control 201.6ms (SD15), p=0.004. Respiration rate increased during the stressful part of the film clip (by 2 breaths/minute), and was well matched in the respective control period without any haemodynamic or ARI changes. Conclusions Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular action potential duration in conscious humans. The effect of mental challenge on APD was not secondary to emotionally-induced altered respiration or heart rate. PMID:24833641
De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco
2014-02-01
Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The double switch for atrioventricular discordance.
Brawn, William J
2005-01-01
Conventional surgery for atrioventricular discordance usually associated with ventricular arterial discordance leaves the morphologic right ventricle in the systemic circulation. Long-term follow-up results with this approach reveal a high incidence of right ventricular failure. The double switch procedure was introduced to restore the morphologic left ventricle to the systemic circulation. This operation is performed in two main ways: the atrial-arterial switch and the atrial switch plus Rastelli procedure. This double switch approach has been successful at least in the medium term in abolishing morphologic right ventricular failure and its associated tricuspid valve regurgitation. In the atrial-arterial switch group, there is an incidence of morphologic left ventricular dysfunction, sometimes associated with neoaortic valve regurgitation, and the minority of cases need aortic valve replacement. The long-term function of the morphologic left ventricle and the aortic valve need careful surveillance in the future. The atrial-Rastelli group of patients has not in the medium term shown evidence of ventricular dysfunction but will require change on a regular basis of their ventricular to pulmonary artery valved conduits.
Zheng, Huan; Xie, Nanzi; Xu, Huifeng; Huang, Junling; Xie, Xiaoyun; Luo, Ming
2016-03-01
We sought to investigate effects of supervised exercise training on left ventricular remodeling, left ventricular function and autonomic nervous system of hypertensive patients without medication. Fifty borderline and mildly hypertensive patients were enrolled and randomly divided into 2 groups (25 in each). Exercise group received a 4 months' exercise program, prescribed according to their first cardiopulmonary exercise tests, while the control group received routine dietary recommendation. All patients underwent noradrenalin assay, cardiopulmonary exercise tests and echocardiographic studies at enrollment and 4 month follow-up. At baseline no statistically difference between the two groups were observed in clinical characteristics, echographic variants or cardiopulmonary test index. Four months later, exercise group showed higher values of VO2peak, Powermax (max workload), AT (anaerobic threshold), VO2AT (VO2 at anaerobic threshold), tAT (time from beginning to anaerobic threshold) and heart rate recovery compared to the control group (P<0.05). Additionally, systolic/diastolic blood pressure decreased significantly in the exercise group compared to the control group (P<0.05). Moreover, there was significant reduction in left ventricular mass index in the exercise group (P<0.01), and there was also an inverse correlation between changes in left ventricular mass index and heart rate recovery (r=-0.52, P<0.01). Four-month exercise training in borderline and mildly hypertensive patients not only decreased their blood pressure levels, but also induced an improvement of exercise capability, left ventricular remodeling and heart rate recovery. Heart rate recovery improvement was significantly associated with decrease of left ventricular mass index, which indicated that favorable adjustment in autonomic nervous system of exercise training might be an important pathway to reverse left ventricular remodeling.
Implantable physiologic controller for left ventricular assist devices with telemetry capability.
Asgari, Siavash S; Bonde, Pramod
2014-01-01
Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
van der Bom, Teun; Winter, Michiel M; Bouma, Berto J; Groenink, Maarten; Vliegen, Hubert W; Pieper, Petronella G; van Dijk, Arie P J; Sieswerda, Gertjan T; Roos-Hesselink, Jolien W; Zwinderman, Aeilko H; Mulder, Barbara J M
2013-01-22
The role of angiotensin II receptor blockers in patients with a systemic right ventricle has not been elucidated. We conducted a multicenter, double-blind, parallel, randomized controlled trial of angiotensin II receptor blocker valsartan 160 mg twice daily compared with placebo in patients with a systemic right ventricle caused by congenitally or surgically corrected transposition of the great arteries. The primary end point was change in right ventricular ejection fraction during 3-year follow-up, determined by cardiovascular magnetic resonance imaging or, in patients with contraindication for magnetic resonance imaging, multirow detector computed tomography. Secondary end points were change in right ventricular volumes and mass, Vo(2)peak, and quality of life. Primary analyses were performed on an intention-to-treat basis. A total of 88 patients (valsartan, n=44; placebo, n=44) were enrolled in the trial. No serious adverse effects occurred in either group. There was no significant effect of 3-year valsartan therapy on systemic right ventricular ejection fraction (treatment effect, 1.3%; 95% confidence interval, -1.3% to 3.9%; P=0.34), maximum exercise capacity, or quality of life. There was a larger increase in right ventricular end-diastolic volume (15 mL; 95% confidence interval, 3-28 mL; P<0.01) and mass (8 g; 95% confidence interval, 2-14 g; P=0.01) in the placebo group than in the valsartan group. There was no significant treatment effect of valsartan on right ventricular ejection fraction, exercise capacity, or quality of life. Valsartan was associated with a similar frequency of significant clinical events as placebo. Small but significant differences between valsartan and placebo were present for change in right ventricular volumes and mass. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN52352170.
Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp
2013-12-05
Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.
Bartoli, Carlo R; Kang, Jooeun; Zhang, David; Howard, Jessica; Acker, Michael; Atluri, Pavan; Motomura, Tadashi
2017-04-01
Supraphysiologic shear stress from continuous-flow left ventricular assist devices (LVADs) accelerates von Willebrand factor (vWF) degradation and predisposes patients to nonsurgical bleeding. It is unknown whether unique design characteristics of LVADs differentially affect vWF degradation. We tested the hypothesis that the centrifugal-flow EVAHEART (Evaheart, Houston, TX) left ventricular assist system (LVAS), which was designed to minimize shear stress (low operational revolutions per minute [rpm], larger flow gaps, low shear stress, flat H-Q curve), reduced vWF degradation versus the axial-flow HeartMate II (Thoratec, Pleasanton, CA) LVAD. Whole human blood was obtained from volunteer donors (n = 22). Blood was circulated for 12 hours in mock circulatory loops through a HeartMate II (n = 10; 11,400 rpm, 6.3 ± 0.8 L/min, 76 ± 2 mm Hg) or an EVAHEART LVAS (n = 12; 2,300 rpm, 5.7 ± 0.1 L/min, 80 ± 1 mm Hg). vWF degradation was characterized with electrophoresis and immunoblotting for large vWF multimers and 11 vWF degradation fragments. The HeartMate II eliminated large vWF multimers and significantly (p < 0.05) increased 10 of 11 vWF degradation fragments at 6 and 12 hours. The increase was approximately 2.0-fold at 6 hours and 2.2-fold at 12 hours. In contrast, the EVAHEART LVAS modestly reduced large vWF multimers and significantly increased 5 of 11 and 8 of 11 vWF degradation fragments at 6 and 12 hours, respectively. The increase was approximately 1.5-fold at 6 hours and 1.7-fold at 12 hours. The EVAHEART LVAS caused significantly less degradation (p < 0.01) than the HeartMate II of the 140 kDa vWF fragment (cleavage product of ADAMTS-13, the vWF protease). The EVAHEART LVAS caused significantly less vWF degradation than the HeartMate II in a mock circulatory loop with whole human blood. LVAD design features may minimize vWF degradation. These data may inform the design and operation of next-generation LVADs to minimize blood trauma. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.
Barnes, Brian J; Howard, Patricia A
2005-01-01
To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.
[Corrected transposition of the great arteries].
Alva-Espinosa, Carlos
2016-01-01
Corrected transposition of the great arteries is one of the most fascinating entities in congenital heart disease. The apparent corrected condition is only temporal. Over time, most patients develop systemic heart failure, even in the absence of associated lesions. With current imaging studies, precise visualization is achieved in each case though the treatment strategy remains unresolved. In asymptomatic patients or cases without associated lesions, focalized follow-up to assess systemic ventricular function and the degree of tricuspid valve regurgitation is important. In cases with normal ventricular function and mild tricuspid failure, it seems unreasonable to intervene surgically. In patients with significant associated lesions, surgery is indicated. In the long term, the traditional approach may not help tricuspid regurgitation and systemic ventricular failure. Anatomical correction is the proposed alternative to ease the right ventricle overload and to restore the systemic left ventricular function. However, this is a prolonged operation and not without risks and long-term complications. In this review the clinical, diagnostic, and therapeutic aspects are overviewed in the light of the most significant and recent literature.
Quasiperiodicity and chaos in cardiac fibrillation.
Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N
1997-01-01
In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches. PMID:9005999
Quasiperiodicity and chaos in cardiac fibrillation.
Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N
1997-01-15
In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches.
Peters, T H; Sharma, H S; Yilmaz, E; Bogers, A J
1999-06-30
One of the main features in human tetralogy of Fallot (TF) is right ventricular hypertrophy (RVH) due to pressure (sub-pulmonary stenosis) and volume overload (ventricular septal defect). Currently, primary correction at a young age is the treatment of choice. To unravel the role of extracellular matrix in RVH, we examined myocardial expression of collagens and fibronectin in TF patients with primary correction (TF1, age 0.7 +/- 0.2 yr.), secondary surgery (TF2, age 36.9 +/- 4.6 yr), and in age-matched control patients. Sirius red staining quantified by video imaging showed significantly increased interstitial staining for collagens in both TF1 and TF2 groups as compared to respective controls. Fibronectin was expressed in extracellular spaces, perivascular regions, and in some cardiomyocytes. Quantitative analysis of fibronectin revealed increased expression in only TF1 group as compared to respective control. Our results indicate an increased amount of myocardial extracellular matrix deposition as a sign of fibrosis during RVH in patients with TF.
Novel ion channel targets in atrial fibrillation.
Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk
2016-08-01
Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.
About the specialized myocardial conducting tissue.
de Micheli Serra, Alfredo; Iturralde Torres, Pedro; Aranda Fraustro, Alberto
2013-01-01
The chronological succession of discoveries on the location and structure of the atrio-ventricular conducting system are described. The starting point of this system is located in the sinus atrial node, identified by the English scientists A. Keith and M. W. Flack in 1907. The atrioventricular conducting system was pointed out by the Swiss physician Wilhelm His Jr. in 1893. The atrioventricular node (AV) was first identified by the Japanese pathologist Sumao Tawara and his German professor Ludwig Aschoff in 1906. Likewise the structure and routes of the three internodal bundles are described. These bundles include: Bachmann's bundle (1916) connecting the right with the left atrium and the AV node; the middle Wenckebach's bundle (1910) and the posterior or Thörel's bundle (1910), extending from the region of the sinus atrial node towards the posterior margin of the AV node. Lastly, the ventricular left and right conduction systems are detailed. These include the main trunk and their peripheral subdivisions with respective networks. Regarding the controversial existence of the left middle subdivision, it can exist in animal and human hearts. Nevertheless, an intermediate left septal network of specialized fibers seems to act as a functional equivalent of this subdivision. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Electronic circuit detects left ventricular ejection events in cardiovascular system
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1972-01-01
Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.
Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S
1997-01-01
We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.
Maslow, Andrew; Schwartz, Carl; Mahmood, Feroze; Singh, Arun; Heerdt, Paul M
2009-07-01
In this report, a case of right ventricular (RV) failure, hemodynamic instability, and systemic organ failure is described to highlight how paradoxical ventricular systolic septal motion (PVSM), or a rightward systolic displacement of the interventricular septum, may contribute to RV ejection. Multiple inotropic medications and vasopressors were administered to treat right heart failure and systemic hypotension in a patient following combined aortic and mitral valve replacement. In the early postoperative period, echocardiographic evaluation revealed adequate left ventricular systolic function, akinesis of the RV myocardial tissues, and PVSM. In the presence of PVSM, RV fractional area of contraction was > or =35% despite akinesis of the primary RV myocardial walls. The PVSM appeared to contribute toward RV ejection. As a result, the need for multiple inotropes was re-evaluated, in considering that end-organ dysfunction was the result of systemic hypotension and prolonged vasopressor administration. After discontinuation of phosphodiesterase inhibitors, native vascular tone returned and the need for vasopressors declined. This was followed by recovery of systemic organ function. Echocardiographic re-evaluation two years later, revealed persistent akinesis of the RV myocardial tissues and PVSM, the latter appearing to contribute toward RV ejection. This case highlights the importance of left to RV interactions, and how PVSM may mediate these hemodynamic interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ognibene, F.P.; Parker, M.M.; Natanson, C.
Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was amore » strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock.« less
Rat strain differences in brain structure and neurochemistry in response to binge alcohol.
Zahr, Natalie M; Mayer, Dirk; Rohlfing, Torsten; Hsu, Oliver; Vinco, Shara; Orduna, Juan; Luong, Richard; Bell, Richard L; Sullivan, Edith V; Pfefferbaum, Adolf
2014-01-01
Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.
NASA Astrophysics Data System (ADS)
Hatfield, Fraser N.; Dehmeshki, Jamshid
1998-09-01
Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.
Atrial fibrillation and sudden cardiac death: catheter-based sensor and mapping system of the heart
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.
2017-04-01
Ventricular arrhythmias in the heart and the rapid heartbeat of ventricular tachycardia can lead to sudden cardiac death. This is a major health issue worldwide. What is needed is to develop a catheter based sensor and mapping approach which will provide the mechanisms of ventricular arrhythmia, and effectively prevent and treat the same, potentially save life.
Yuan, Yuan; Long, Deyong; Dong, Jianzeng; Tao, Ling; Ma, Changsheng
2017-12-01
We report a case of a patient with right axillary ventricular. Similar congenital anomaly of the right atrium was reported as "right appendage diverticulum or right atrial diverticulum." However, this independent chamber has its own annulus, synchronizes with the right ventricular, and generates large ventricular potential. Under the guidance of the CARTO mapping system (Biosense Webster, Diamond Bar, CA, USA), a right atrioventricular accessory pathway associated with type B Wolff-Parkinson-White syndrome was ablated successfully. This pathway was close to the annulus of the axillary ventricular. The patient remained free of arrhythmia at 1-year follow-up. © 2017 Wiley Periodicals, Inc.
Kishimoto, Satoru; Takewa, Yoshiaki; Tsukiya, Tomonori; Mizuno, Toshihide; Date, Kazuma; Sumikura, Hirohito; Fujii, Yutaka; Ohnuma, Kentaro; Togo, Konomi; Katagiri, Nobumasa; Naito, Noritsugu; Kishimoto, Yuichiro; Nakamura, Yoshinobu; Nishimura, Motonobu; Tatsumi, Eisuke
2018-03-01
The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. We developed a new temporary left ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing. We used three adult goats (body weight, 58-68 kg) to investigate the 30-day performance and hemocompatibility of the newly developed left ventricular assist system, which included the pump, inflow and outflow cannulas, the extracorporeal circuit, and connectors. Hemodynamic, hematologic, and blood chemistry measurements were investigated as well as end-organ effect on necropsy. All goats survived for 30 days in good general condition. The blood pump was operated at a rotational speed of 3000-4500 rpm and a mean pump flow of 3.2 ± 0.6 L min. Excess hemolysis, observed in one goat, was due to the inadequate increase in pump rotational speed in response to drainage insufficiency caused by continuous contact of the inflow cannula tip with the left ventricular septal wall in the early days after surgery. At necropsy, no thrombus was noted in the pump, and no damage caused by mechanical contact was found on the bearing. The newly developed temporary left ventricular assist system using a disposable centrifugal pump with hydrodynamic bearing demonstrated consistent and satisfactory hemodynamic performance and hemocompatibility in the goat model.
Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions.
Roy, Ashbeel; Dakroub, Mouhamed; Tezini, Geisa C S V; Liu, Yin; Guatimosim, Silvia; Feng, Qingping; Salgado, Helio C; Prado, Vania F; Prado, Marco A M; Gros, Robert
2016-02-01
Autonomic dysfunction is a characteristic of cardiac disease and decreased vagal activity is observed in heart failure. Rodent cardiomyocytes produce de novo ACh, which is critical in maintaining cardiac homeostasis. We report that this nonneuronal cholinergic system is also found in human cardiomyocytes, which expressed choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). Furthermore, VAChT expression was increased 3- and 1.5-fold at the mRNA and protein level, respectively, in ventricular tissue from patients with heart failure, suggesting increased ACh secretion in disease. We used mice with genetic deletion of cardiomyocyte-specific VAChT or ChAT and mice overexpressing VAChT to test the functional significance of cholinergic signaling. Mice deficient for VAChT displayed an 8% decrease in fractional shortening and 13% decrease in ejection fraction compared with angiotensin II (Ang II)-treated control animals, suggesting enhanced ventricular dysfunction and pathologic remodeling in response to Ang II. Similar results were observed in ChAT-deficient mice. Conversely, no decline in ventricular function was observed in Ang II-treated VAChT overexpressors. Furthermore, the fibrotic area was significantly greater (P < 0.05) in Ang II-treated VAChT-deficient mice (3.61 ± 0.64%) compared with wild-type animals (2.24 ± 0.11%). In contrast, VAChT overexpressing mice did not display an increase in collagen deposition. Our results provide new insight into cholinergic regulation of cardiac function, suggesting that a compensatory increase in cardiomyocyte VAChT levels may help offset cardiac remodeling in heart failure. © FASEB.
Ischemic Ventricular Tachycardia Presenting as a Narrow Complex Tachycardia
Page, Stephen P; Watts, Troy; Yeo, Wee Tiong; Mehul, Dhinoja
2014-01-01
This report describes a patient presenting with a narrow complex tachycardia in the context of prior myocardial infarction and impaired ventricular function. Electrophysiological studies confirmed ventricular tachycardia and activation and entrainment mapping demonstrated a critical isthmus within an area of scar involving the His-Purkinje system accounting for the narrow QRS morphology. This very rare case shares some similarities with upper septal ventricular tachycardia seen in patients with structurally normal hearts, but to our knowledge has not been seen previously in patients with ischemic heart disease. PMID:25057222
Taggart, Peter; Orini, Michele; Hanson, Ben; Hayward, Martin; Clayton, Richard; Dobrzynski, Halina; Yanni, Joseph; Boyett, Mark; Lambiase, Pier D
2014-08-01
Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of HeartMate left ventricular assist device on cardiac autonomic nervous activity.
Kim, S Y; Montoya, A; Zbilut, J P; Mawulawde, K; Sullivan, H J; Lonchyna, V A; Terrell, M R; Pifarré, R
1996-02-01
Clinical performance of a left ventricular assist device is assessed via hemodynamic parameters and end-organ function. This study examined effect of a left ventricular assist device on human neurophysiology. This study evaluated the time course change of cardiac autonomic activity of 3 patients during support with a left ventricular assist device before cardiac transplantation. Cardiac autonomic activity was determined by power spectral analysis of short-term heart rate variability. The heart rate variability before cardiac transplantation was compared with that on the day before left ventricular assist device implantation. The standard deviation of the mean of the R-R intervals of the electrocardiogram, an index of vagal activity, increased to 27 +/- 7 ms from 8 +/- 0.6 ms. The modulus of power spectral components increased. Low frequency (sympathetic activity) and high frequency power (vagal activity) increased by a mean of 9 and 22 times of each baseline value (low frequency power, 5.2 +/- 3.0 ms2; high frequency power, 2.1 +/- 0.7 ms2). The low over high frequency power ratio decreased substantially, indicating an improvement of cardiac sympatho-vagal balance. The study results suggest that left ventricular assist device support before cardiac transplantation may exert a favorable effect on cardiac autonomic control in patients with severe heart failure.
MRI as a tool to study brain structure from mouse models for mental retardation
NASA Astrophysics Data System (ADS)
Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie
1998-07-01
Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.
Xi, Er-Ping; Zhu, Jian; Zhu, Shui-Bo; Yin, Gui-Lin; Liu, Yong; Dong, Yong-Qiang; Zhang, Yu; Xia, Feng
2012-11-01
Ventricular septal defects resulting from post-traumatic cardiac injury are very rare. Percutaneous closure has emerged as a method for treating this disorder. We wish to report our experience in three patients who underwent percutaneous closure of a post-traumatic ventricular septal defect with a patent ductus arteriosus occluder. We treated three patients with post-traumatic ventricular septal defects caused by stab wounds with knives. After the heart wound was repaired, patient examinations revealed ventricular septal defects with pulmonary/systemic flow ratios (Qp/Qs) of over 1.7. The post-traumatic ventricular septal defects were closed percutaneously with a patent ductus arteriosus occluder (Lifetech Scientific (Shenzhen) Co., LTD, Guangdong, China) utilizing standard techniques. Post-operative transthoracic echocardiography revealed no residual left-to-right shunt and indicated normal ventricular function. In addition, 320-slice computerized tomography showed that the occluder was well placed and exhibited normal morphology. Our experiences indicate that closure of a post-traumatic ventricular septal defect using a patent ductus arteriosus occluder is feasible, safe, and effective.
Xi, Er-Ping; Zhu, Jian; Zhu, Shui-Bo; Yin, Gui-Lin; Liu, Yong; Dong, Yong-Qiang; Zhang, Yu; Xia, Feng
2012-01-01
OBJECTIVE: Ventricular septal defects resulting from post-traumatic cardiac injury are very rare. Percutaneous closure has emerged as a method for treating this disorder. We wish to report our experience in three patients who underwent percutaneous closure of a post-traumatic ventricular septal defect with a patent ductus arteriosus occluder. METHODS: We treated three patients with post-traumatic ventricular septal defects caused by stab wounds with knives. After the heart wound was repaired, patient examinations revealed ventricular septal defects with pulmonary/systemic flow ratios (Qp/Qs) of over 1.7. The post-traumatic ventricular septal defects were closed percutaneously with a patent ductus arteriosus occluder (Lifetech Scientific (Shenzhen) Co., LTD, Guangdong, China) utilizing standard techniques. RESULTS: Post-operative transthoracic echocardiography revealed no residual left-to-right shunt and indicated normal ventricular function. In addition, 320-slice computerized tomography showed that the occluder was well placed and exhibited normal morphology. CONCLUSION: Our experiences indicate that closure of a post-traumatic ventricular septal defect using a patent ductus arteriosus occluder is feasible, safe, and effective. PMID:23184204
Norman, John C.
1976-01-01
The purpose of this report is to present documenting evidence of the clinical readiness of an abdominal left ventricular assist device (ALVAD) according to NHLI criteria,‡ and the initiation of clinical trials of this device in otherwise irretrievable adult post-cardiotomy patients at the Texas Heart Institute of St. Luke's Episcopal and Texas Children's Hospitals. The ALVAD system has been developed, modified, and improved under NHLI auspices over the last eight years,‡‡ with annual reviews. Over 20,000 hours of in-vivo testing in the calf have been accomplished in our laboratories. The current clinical trials underwent two federal reviews (May 22, 1973 and October 17, 1974) and were the topic of an Ad Hoc Workshop at NHLI on October 28, 1973.‡‡‡ More recently, a consecutive series of 26 bovine ALVAD implantations were undertaken; acute and chronic hemodynamic effectiveness with maintenance or augmentation of the systemic circulation during profound ventricular unloading without undue blood trauma, intra-or extra-prosthetic thrombosis, or sepsis was demonstrated; no biomaterials problems were encountered. In-vivo realibility and durability, histologic and pathologic results were detailed, summarized, and submitted to NHLI. Patient acceptability surveys and geometric and volumetric human configuration studies were analyzed. Categorizations of the patients at risk in our institutions and the needs for such a device were documented. The periods of intended use (two weeks-one month), weaning procedures, and the possibility of pump dependence have been discussed. The legal, moral, ethical and informed consent issues were addressed. Clinical protocols (anesthesia, surgical, cardiologic, hematologic, engineering, computerized data-acquisition, follow-up) and cost analyses were developed. The device has now been used in four terminal patients since December, 1975; all subsequently succumbed, but their circulations were temporarily supported during total left ventricular unloading for periods up to eight hours. Continued systematic, controlled clinical investigations of this nature are warranted. A comprehensive listing of pertinent references is included. Images PMID:15216148
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tools. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device (PVAD), the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5-15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient's behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mm Hg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition, high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood.
1986-05-01
effects of DC- countershock on 12 patients without evidence of acute 19 myocardial infarction, following conversion of supra - ventricular tachyarrhythmias...atrial flutter, and supra - ventricular tachycardias. Termination of dysrhythmias--occurs when countershock disrupts a chaotic ectopic rhythm allowing the... catheters in dogs. Circulation, 69(5), 1006-1012. Lown, B., Amarasingham, R., & Neuman, J. (1962). New method for terminating cardiac arrhythmias. Use of
Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca
2017-10-01
Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fuller, Geraldine A; Bicer, Sabahattin; Hamlin, Robert L; Yamaguchi, Mamoru; Reiser, Peter J
2007-10-01
Dilated cardiomyopathy is a naturally occurring disease in humans and dogs. Human studies have shown increased levels of myosin heavy chain (MHC)-beta in failing ventricles and the left atria (LA) and of ventricular light chain (VLC)-2 in the right atria in dilated cardiomyopathy. This study evaluates the levels of MHC-beta in all heart chambers in prolonged canine right ventricular pacing. In addition, we determined whether levels of VLC2 were altered in these hearts. Failing hearts demonstrated significantly increased levels of MHC-beta in the right atria, right atrial appendage, LA, left atrial appendage (LAA), and right ventricle compared with controls. Significant levels of VLC2 were detected in the right atria of paced hearts. Differences in MHC-beta expression were observed between the LA and the LAA of paced and control dogs. MHC-beta expression was significantly greater in the LA of paced and control dogs compared with their respective LAA. The cardiac myosin isoform shifts in this study were similar to those observed in end-stage human heart failure and more severe than those reported in less prolonged pacing models, supporting the use of this model for further study of end-stage human heart failure. The observation of consistent differences between sampling sites, especially LA versus LAA, indicates the need for rigorous sampling consistency in future studies.
Hemodynamics on abrupt stoppage of centrifugal pumps during left ventricular assist.
Kono, S; Nishimura, K; Nishina, T; Akamatsu, T; Komeda, M
2000-01-01
A magnetically suspended centrifugal pump (MSCP), developed for long-term ventricular assist, is reliable and durable because it has no shaft or seal. However, with nonvalve pumps such as a MSCP, regurgitation occurs when they accidentally stop without cannula clamping. We investigated the hemodynamics during temporary stoppage of a MSCP being used as a left ventricular assist system (LVAS), comparing two inflow cannulation sites. In four sheep (weight, 35-45 kg), microspheres were injected into the left main coronary artery to induce heart failure. An outflow cannula was sutured onto the descending aorta, and two inflow cannulae were inserted into the left atrium and the left ventricle. The MSCP was stopped with both the left ventricular cannula and left atrial cannula clamped, and the hemodynamics and P-V loops were recorded. Each cannula was then unclamped in order, and similar parameters were recorded. LVEDP increased at unclamping of the left ventricular cannula (ULVC), and rose further at unclamping of the left atrial cannula (ULAC). Aortic pressure did not change at ULVC, but decreased at ULAC. The effective systemic flow that subtracted the regurgitant flow through the MSCP from left ventricular output was half at ULVC and almost 0 at ULAC. When stopping centrifugal pumps without circuit clamping, hemodynamic deterioration is less at ULVC than at ULAC. This finding suggests that left ventricular inflow cannulation is recommended to allow more time in emergency situations.
Scandura, Salvatore; Dipasqua, Fabio; Gargiulo, Giuseppe; Capodanno, Davide; Caggegi, Anna; Grasso, Carmelo; Mangiafico, Sarah; Pistritto, Anna Maria; Immè, Sebastiano; Chiarandà, Marta; Ministeri, Margherita; Ronsivalle, Giuseppe; Cannata, Stefano; Arcidiacono, Antonio Andrea; Capranzano, Piera; Tamburino, Corrado
2016-11-01
To appraise the early effect of percutaneous mitral valve repair with the MitraClip system on myocardial function using real-time three-dimensional speckle-tracking echocardiography (3D-STE). Consecutive patients with moderate-to-severe or severe mitral regurgitation, undergoing mitral valve repair with the MitraClip system, were prospectively evaluated during the peri-procedural workout and follow-up. Left ventricular deformation was evaluated by a two-dimensional and 3D speckle-tracking analysis. 3D-STE acquisitions were elaborated obtaining real-time 3D global longitudinal strain evaluation, and by appraising both volumetric and hemodynamic parameters (i.e. left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, cardiac output, and stroke volume). In all, 30 patients were included. At 1-month follow-up, 3D-STE analysis revealed no changes in left ventricular end-diastolic volume (162.6 ± 73.7 ml at baseline vs. 159.8 ± 64.5 ml at 1-month follow-up; P = 0.63) and a downward trend in left ventricular end-systolic volume (104.7 ± 52.0 vs. 100.1 ± 50.4 ml, respectively; P = 0.06). Left ventricular ejection fraction did not significantly increase (38.1 ± 11.3% at baseline vs. 39.4 ± 11.0% at 1-month follow-up; P = 0.20). No significant changes were reported in cardiac output (4.3 ± 2.0 l/min at baseline vs. 4.0 ± 1.5 l/min at follow-up; P = 0.377) and in stroke volume (59.5 ± 25.5 ml at baseline vs. 59.9 ± 20.7 ml at follow-up; P = 0.867). On the contrary, left ventricular deformation capability significantly improved, with the real-time 3D global longitudinal strain value changing from -9.8 ± 4.1% at baseline to -11.0 ± 4.4% at follow-up (P = 0.018). Accurately assessing myocardial function by the use of 3D-STE, this study reported irrelevant early changes in left ventricular size, but a positive effect on left ventricular deformation capability following mitral valve repair with the MitraClip system. These preliminary results need to be confirmed in larger series and extended to long-term follow-up.
Lemoine, H.; Schönell, H.; Kaumann, A. J.
1988-01-01
1. (-)-Atenolol was used as a tool to assess the function of beta 1- and beta 2-adrenoceptors in human heart. Right atrial and left ventricular preparations from patients undergoing open heart surgery were set up to contract isometrically. Membrane particles were prepared for beta-adrenoceptor labelling with [3H]-(-)-bupranolol and adenylate cyclase assays. 2. The positive inotropic effects of (-)-noradrenaline were antagonized to a similar extent by (-)-atenolol in atrial and ventricular preparations. (-)-Atenolol consistently antagonized the effects of (-)-adrenaline to a lesser extent than those of (-)-noradrenaline in atrial preparations. In ventricular preparations (-)-atenolol antagonized the effects of low concentrations of (-)-adrenaline to a lesser extent than those of high concentrations. 3. pKB values (M) of (-)-atenolol, estimated with non-linear analysis from the blockade of the positive inotropic effects of the catecholamines, were 7.4 for beta 1-adrenoceptors and 6.0 for beta 2-adrenoceptors. 4. (-)-Atenolol inhibited the binding of [3H]-(-)-bupranolol to ventricular beta 1-adrenoceptors with a pKD (M) of 5.9 and to ventricular beta 2-adrenoceptors with a pKD of 4.6. 5. (-)-Atenolol inhibited the catecholamine-induced adenylate cyclase stimulation in the atrium and ventricle with pKB values of 5.8-6.4 for beta 1- and pKB values of 4.7-5.7 for beta 2-adrenoceptors. The binding and cyclase assays suggest a partial affinity loss for (-)-atenolol inherent to membrane preparations. 6. beta 1-Adrenoceptors mediate the maximum positive inotropic effects of (-)-noradrenaline in both the atrium and ventricle of man. beta 2-Adrenoceptors appear to be capable of mediating maximal positive inotropic effects of (-)-adrenaline in atrium. In contrast, ventricular beta 2-adrenoceptors mediated only submaximal effects of (-)-adrenaline. PMID:2851354
Right and left ventricular volumes in vitro by a new nongeometric method
NASA Technical Reports Server (NTRS)
Buckey, J. C.; Beattie, J. M.; Nixon, J. V.; Gaffney, F. A.; Blomqvist, C. G.
1987-01-01
We present an evaluation of a new nongeometric technique for calculating right and left ventricular volumes. This method calculates ventricular chamber volumes from multiple cross-sectional echocardiographic views taken from a single point as the echo beam is tilted progressively through the ventricle. Right and left ventricular volumes are calculated from both the approximate short axis and approximate apical position on 20 in vitro human hearts and compared with the actual chamber volumes. The results for both ventricles from both positions are excellent. Correlation coefficients are > 0.95 for all positions; the standard errors are in the range of 5 to 7 mL and the slopes and intercepts for the regression lines are not significantly different from 1 and 0, respectively (except for the left ventricular short-axis intercept). For all positions, approximately 6 to 8 views are needed for peak accuracy (7.5 degrees to 10 degrees separation). This approach offers several advantages. No geometric assumptions about ventricular shape are made. All images are acquired from a single point (or window), and the digitized points can be used to make a three-dimensional reconstruction of the ventricle. Also, during the calculations a volume distribution curve for the ventricle is produced. The shape of this curve can be characteristic for certain situations (ie, right ventricle, short axis) and can be used to make new simple equations for calculating volume. We conclude that this is an accurate nongeometric method for determining both right and left ventricular volumes in vitro.
Ventricular efficiency in pregnant women with congenital heart disease.
Muneuchi, Jun; Yamasaki, Keiko; Watanabe, Mamie; Fukumitsu, Azusa; Kawakami, Takeshi; Nakahara, Hiromasa; Joo, Kunitaka
2018-06-15
Pregnant women with congenital heart disease (CHD) are at risk of cardiovascular events during pregnancy as well as postpartum. The aim of our study is to address the feasibility of echocardiography-derived ventricular-arterial coupling during pregnancy and postpartum among women with CHD. In 31 pregnant women with CHD, we performed serial echocardiography at the first and third trimesters, early and late postpartum. The indices of contractility (single-beat determined end-systolic elastance, Ees ab ) and afterload (effective arterial elastance, Ea) were approximated on the basis of the systemic blood pressure and systemic ventricular volume. The ratio of stroke work and pressure-volume area (SW/PVA) representing ventricular efficiency was also calculated. Age at the delivery was 28 (24-31) years. ZAHARA score was 0.75 (0.75-1.50). Gestational age and birth weight of newborns were 38 (37-39) weeks and 2.73 (2.42-2.92) kg, respectively. Heart rate, systemic ventricular end-diastolic volume and stroke volume significantly increased from the first trimester to the third trimester and reversed postpartum to the values of the first trimester. Ees ab and Ea significantly decreased from the first trimester to the third trimester (Ees ab ; 4.90 [2.86-7.14] vs 3.41 [2.53-4.61] mm Hg/ml, p = 0.0001, Ea; 2.83 [1.74-3.30] vs 2.18 [1.67-2.68] mm Hg/ml, p = 0.0012), and reversed early postpartum parallelly. Ejection fraction and SW/PVA remained unchanged throughout pregnancy and postpartum. Echocardiography-derived ventricular-arterial coupling is feasible to understand ventricular function in pregnant women with CHD. Copyright © 2018 Elsevier B.V. All rights reserved.
Mulpuru, Siva K; Cha, Yong-Mei; Asirvatham, Samuel J
2016-11-01
Right ventricular apical pacing is associated with an increased incidence of heart failure, atrial fibrillation, and overall mortality. As a result, pacing the ventricles in a manner that closely mimics normal AV conduction with an intact His-Purkinje system has been explored. Recently, the sustainable benefits of selective His-bundle stimulation have been demonstrated and proposed as the preferred method of ventricular stimulation for appropriate patients. Ideally, conduction system pacing should be selective without myocardial capture, overcome distal bundle branch block when present, and not compromise tricuspid valve function. Contemporary literature on conduction system pacing is confusing largely because of inconsistent terminology and, at times, anatomically inaccurate terms used interchangeably for nonsynonymous anatomic sites. In this review, we discuss the functional anatomy of AV conduction access with specific emphasis on terminology, relationship to the membranous septum, tricuspid valve tissue, and proximity to atrial or ventricular myocardium. The potential benefits of each specific site as well as associated unique difficulties with those sites are described. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Cardiovascular studies using the chimpanzee (Pan troglodytes)
NASA Technical Reports Server (NTRS)
Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.
1977-01-01
Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.
Kobayashi, Shinya; Ishikawa, Tatsuya; Mutoh, Tatsushi; Hikichi, Kentaro; Suzuki, Akifumi
2012-01-01
Background: Surgical placement of a ventriculoperitoneal shunt (VPS) is the main strategy to manage hydrocephalus. However, the failure rate associated with placement of ventricular catheters remains high. Methods: A hybrid operating room, equipped with a flat-panel detector digital subtraction angiography system containing C-arm cone-beam computed tomography (CB-CT) imaging, has recently been developed and utilized to assist neurosurgical procedures. We have developed a novel technique using intraoperative fluoroscopy and a C-arm CB-CT system to facilitate accurate placement of a VPS. Results: Using this novel technique, 39 consecutive ventricular catheters were placed accurately, and no ventricular catheter failures were experienced during the follow-up period. Only two patients experienced obstruction of the VPS, both of which occurred in the extracranial portion of the shunt system. Conclusion: Surgical placement of a VPS assisted by flat panel detector CT-guided real-time fluoroscopy enabled accurate placement of ventricular catheters and was associated with a decreased need for shunt revision. PMID:23226605
Sasikumar, Navaneetha; Krishna Manohar, Soman R; Philip, Saji; Cherian, Kottoorathu Mammen; Suresh Kumar, Raghavannair
2013-08-01
A 20 year-old male was diagnosed to have Ebstein's anomaly with severe right ventricular dysfunction. He was taken up for 1.5 ventricle repair. Post procedure, there was difficulty in weaning from cardiopulmonary bypass due to progressive right ventricular dilatation compromising the systemic output. An atrial septectomy did not help. Progressive right ventricular dilatation compressing the left ventricle, demonstrated on transoesophageal echocardiogram, prompted us to perform a right ventricular exclusion and univentricular palliation. The patient was successfully weaned off cardiopulmonary bypass and had a smooth postoperative recovery. Judicious use of right ventricular exclusion and univentricular palliation could be an effective bailout strategy in difficult surgical scenarios in Ebstein's anomaly. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc
2004-03-01
The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles involved in this action. This contraction occurs during the last part of classical systole and the first part of diastole. Therefore, the most important part of ventricular diastole (i.e. the rapid filling phase), in which it receives >70% of the stroke volume, belongs to the active muscular contraction of the ascendent segment. We hope that these facts will give rise to new understanding of the principal mechanisms involved in normal and abnormal diastolic heart function.
Initial experience with remote magnetic navigation for left ventricular lead placement.
Mischke, Karl; Knackstedt, Christian; Schmid, Michael; Hatam, Nima; Becker, Michael; Spillner, Jan; Fache, Kerstin; Kelm, Malte; Schauerte, Patrick
2009-08-01
A novel magnetic navigation system allows remote steering of guidewires and catheters. This system may be used for left ventricular lead placement for cardiac resynchronization therapy (CRT). We sought to evaluate the feasibility and safety of magnetic guidewire navigation for CRT procedures. 123 consecutive patients underwent CRT implantation/revision procedures (including pacemaker upgrades in n=22 and left ventricular lead placement after dislocation in n=4 patients). Left ventricular lead placement in a coronary sinus side branch was performed either conventionally or using magnetic navigation. The magnetic navigation system (Niobe) consists of two permanent magnets creating a steerable magnetic field. Guidewires with integrated magnets align to the magnetic field and were used for over-the-wire implantation of pacemaker leads in the coronary sinus. Patients were assigned to conventional (n=93) or magnetic (n=30) navigation according to room availability. Venography of the coronary venous system was performed to select a target vessel for lead implantation. Guidewire access to the target vessel was achieved in 100% using magnetic navigation compared to 87% with the conventional approach (P < 0.05). Implantation success rates, total procedure and fluoroscopy times did not differ significantly between groups. No periprocedural death and no intraoperative device dysfunction occurred in either group.The magnetic guidewire ruptured in one patient. Left ventricular lead placement using magnetic guidewire navigation to engage the desired coronary sinus side branch can be successfully performed for CRT.
Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E
2013-07-09
Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Using Hybrid Magnetic Bearings to Completely Suspend the Impeller of a Ventricular Assist Device.
Khanwilkar, Pratap; Olsen, Don; Bearnson, Gill; Allaire, Paul; Maslen, Eric; Flack, Ron; Long, James
1996-05-01
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CF-VAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans. © 1996 International Society for Artificial Organs.
Cardiac changes induced by immersion and breath-hold diving in humans.
Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; L'Abbate, Antonio; Bedini, Remo
2009-01-01
To evaluate the separate cardiovascular response to body immersion and increased environmental pressure during diving, 12 healthy male subjects (mean age 35.2 +/- 6.5 yr) underwent two-dimensional Doppler echocardiography in five different conditions: out of water (basal); head-out immersion while breathing (condition A); fully immersed at the surface while breathing (condition B) and breath holding (condition C); and breath-hold diving at 5-m depth (condition D). Heart rate, left ventricular volumes, stroke volume, and cardiac output were obtained by underwater echocardiography. Early (E) and late (A) transmitral flow velocities, their ratio (E/A), and deceleration time of E (DTE) were also obtained from pulsed-wave Doppler, as left ventricular diastolic function indexes. The experimental protocol induced significant reductions in left ventricular volumes, left ventricular stroke volume (P < 0.05), cardiac output (P < 0.001), and heart rate (P < 0.05). A significant increase in E peak (P < 0.01) and E/A (P < 0.01) and a significant reduction of DTE (P < 0.01) were also observed. Changes occurring during diving (condition D) accounted for most of the changes observed in the experimental series. In particular, cardiac output at condition D was significantly lower compared with each of the other experimental conditions, E/A was significantly higher during condition D than in conditions A and C. Finally, DTE was significantly shorter at condition D than in basal and condition C. This study confirms a reduction of cardiac output in diving humans. Since most of the changes were observed during diving, the increased environmental pressure seems responsible for this hemodynamic rearrangement. Left ventricular diastolic function changes suggest a constrictive effect on the heart, possibly accounting for cardiac output reduction.
A computer model of the pediatric circulatory system for testing pediatric assist devices.
Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M
2007-01-01
Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.
Evolving targeted therapies for right ventricular failure.
Di Salvo, Thomas G
2015-01-01
Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.
Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model.
Despa, Sanda; Sharma, Savita; Harris, Todd R; Dong, Hua; Li, Ning; Chiamvimonvat, Nipavan; Taegtmeyer, Heinrich; Margulies, Kenneth B; Hammock, Bruce D; Despa, Florin
2014-08-21
Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Yamaguchi, Yukiko; Cavallero, Susana; Patterson, Michaela; Shen, Hua; Xu, Jian; Kumar, S. Ram; Sucov, Henry M.
2015-01-01
The hearts of many mammalian species are surrounded by an extensive layer of fat called epicardial adipose tissue (EAT). The lineage origins and determinative mechanisms of EAT development are unclear, in part because mice and other experimentally tractable model organisms are thought to not have this tissue. In this study, we show that mouse hearts have EAT, localized to a specific region in the atrial–ventricular groove. Lineage analysis indicates that this adipose tissue originates from the epicardium, a multipotent epithelium that until now is only established to normally generate cardiac fibroblasts and coronary smooth muscle cells. We show that adoption of the adipocyte fate in vivo requires activation of the peroxisome proliferator activated receptor gamma (PPARγ) pathway, and that this fate can be ectopically induced in mouse ventricular epicardium, either in embryonic or adult stages, by expression and activation of PPARγ at times of epicardium–mesenchymal transformation. Human embryonic ventricular epicardial cells natively express PPARγ, which explains the abundant presence of fat seen in human hearts at birth and throughout life. PMID:25646471
Mattson, Alexander R; Soto, Mario J; Iaizzo, Paul A
2018-07-01
Epicardial electrophysiological procedures rely on dependable interfacing with the myocardial tissue. For example, epicardial pacing systems must generate sustainable chronic pacing capture, while epicardial ablations must effectively deliver energy to the target hyper-excitable myocytes. The human heart has a significant adipose layer which may impede epicardial procedures. The objective of this study was to quantitatively assess the relative location of epicardial adipose on the human heart, to define locations where epicardial therapies might be performed successfully. We studied perfusion-fixed human hearts (n = 105) in multiple isolated planes including: left ventricular margin, diaphragmatic surface, and anterior right ventricle. Relative adipose distribution was quantitatively assessed via planar images, using a custom-generated image analysis algorithm. In these specimens, 76.7 ± 13.8% of the left ventricular margin, 72.7 ± 11.3% of the diaphragmatic surface, and 92.1 ± 8.7% of the anterior right margin were covered with superficial epicardial adipose layers. Percent adipose coverage significantly increased with age (P < 0.001) and history of coronary artery disease (P < 0.05). No significant relationships were identified between relative percent adipose coverage and gender, body weight or height, BMI, history of hypertension, and/or history of congestive heart failure. Additionally, we describe two-dimensional probability distributions of epicardial adipose coverage for each of the three analysis planes. In this study, we detail the quantitative assessment and probabilistic mapping of the distribution of superficial epicardial adipose on the adult human heart. These findings have implications relative to performing epicardial procedures and/or designing procedures or tools to successfully perform such treatments. Clin. Anat. 31:661-666, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Tan, Qiang; Chen, Qianwei; Feng, Zhou; Shi, Xia; Tang, Jun; Tao, Yihao; Jiang, Bing; Tan, Liang; Feng, Hua; Zhu, Gang; Yang, Yunfeng; Chen, Zhi
2017-01-01
Fibrosis in ventricular system has a role in hydrocephalus following intraventricular hemorrhage (IVH). The cannabinoid receptor 2 (CB2) has been reported to participate in alleviating the fibrosis process of many diseases. However, its role in fibrosis after IVH was unclear so far, and we hypothesized that CB2 activation has potential to attenuate hydrocephalus after IVH via restricting fibrosis. So the present study was designed to investigate this hypothesis in a modified rat IVH model. Autologous non-anticoagulative blood injection model was induced to mimic ventricular extension of hemorrhage in adult Sprague-Dawley rats. Rats were randomized to receive JWH-133(CB2 agonist), SR144528 (CB2 antagonist) or saline. The lateral ventricular volumes, fibrosis in the subarachnoid space and ventricular wall, transforming growth factor-β 1(TGF-β1) in cerebrospinal fluid and brain tissue, and animal neurological scores were measured to evaluate the effects of CB2 in hydrocephalus following IVH. CB2 agonist JWH-133 significantly decreased the lateral ventricular volumes, improved the associated neurological deficits, down-regulated TGF-β1 expression, and alleviated fibrosis in the subarachnoid space and ventricular wall after IVH. All of these effects were reversed by SR144528. In conclusion, CB2 may have anti-fibrogenic effects after IVH. CB2 agonist suppressed fibrosis of ventricular system and alleviated hydrocephalus following IVH, which is partly mediated by inhibiting TGF-β1. Copyright © 2016 Elsevier B.V. All rights reserved.
Krummen, David E.; Hayase, Justin; Morris, David J.; Ho, Jeffrey; Smetak, Miriam R.; Clopton, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.
2014-01-01
Objective We mapped human ventricular fibrillation (VF) to define mechanistic differences between episodes requiring defibrillation versus those that spontaneously terminate. Background VF is a leading cause of mortality, yet episodes may also self-terminate. We hypothesized that the initial maintenance of human VF is dependent upon the formation and stability of VF rotors. Methods We enrolled 26 consecutive patients (age 64±10 years, n=13 with LV dysfunction) during ablation procedures for ventricular arrhythmias, using 64-electrode basket catheters in both ventricles to map VF prior to prompt defibrillation per IRB-approved protocol. Fifty-two inductions were attempted and 36 VF episodes were observed. Phase analysis was applied to identify bi-ventricular rotors in the first 10 seconds or until VF terminated, whichever came first (11.4±2.9 seconds to defibrillator charging). Results Rotors were present in 16 of 19 patients with VF, and in all patients with sustained VF. Sustained, but not self-limiting VF, was characterized by greater rotor stability: (1) rotors were present in 68±17% of cycles in sustained versus 11±18% of cycles in self-limiting VF (p<0.001); with (2) maximum continuous rotations greater in sustained (17±11, range 7–48) versus self-limiting VF (1.1±1.4, range 0–4, p<0.001). Additionally, biventricular rotor locations in sustained VF were conserved across multiple inductions (7/7 patients, p=0.025). Conclusions In patients with and without structural heart disease, the formation of stable rotors identifies individuals whose VF requires defibrillation from those in whom VF spontaneously self-terminates. Future work should define the mechanisms that stabilize rotors and evaluate whether rotor modulation may reduce subsequent VF risk. PMID:24794115
Strauer, B E; Brehm, M; Zeus, T; Gattermann, N; Hernandez, A; Sorg, R V; Kögler, G; Wernet, P
2001-08-24
The regenerative potential of human autologous adult stem cells on myocardial regeneration and neovascularisation after myocardial infarction may contribute to healing of the infarction area. But no clinical application has previously been reported. We here describe for the first time the results of this method applied in a patient who had sustained an acute myocardial infarction. 14 hours after the onset of left precordial pain a 46-year-old man was admitted to our hospital for interventional diagnosis and treatment. Coronary angiography demonstrated occlusion of the anterior descending branch of the left coronary artery with transmural infarction. This was treated by percutaneous transluminal catheter angioplasty and stent placement. Mononuclear bone marrow cells of the patient were prepared and 6 days after infaction 1,2 infinity 107 cells were transplanted at low pressure via a percutaneous transluminal catheter placed in the infarct-related artery. Before and 10 weeks after this procedure left ventricular function, infarct size, ventricular geometry and myocardial perfusion were measured by (201)thallium SPECT both at rest and on exercise, together with bull's-eye analysis, dobutamine stress echocardiography, right heart catheterisation and radionuclide ventriculography. At 10 weeks after the stem cell transplantation the transmural infarct area had been reduced from 24.6 % to 15.7 % of left ventricular circumference, while ejection fraction, cardiac index and stroke volume had increased by 20-30 %. On exercise the end diastolic volume had decreased by 30 % and there was a comparable fall in left ventricular filling pressure (mean pulmonary capillary pressure). These results for the first time demonstrate that selective intracoronary transplantation of human autologous adult stem cells is possible under clinical conditions and that it can lead to regeneration of the myocardial scar after transmural infarction. The therapeutic effects may be ascribed to stem cell-associated myocardial regeneration and neovascularisation.
Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure
Badie, Nima; Bursac, Nenad
2009-01-01
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovetz, H.S.; Shaffer, F.; Schaub, R.
This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.
García-Verdugo, Jose Manuel; Ferrón, Sacri; Flames, Nuria; Collado, Lucía; Desfilis, Ester; Font, Enrique
2002-04-01
Although evidence accumulated during the last decades has advanced our understanding of adult neurogenesis in the vertebrate brain, many aspects of this intriguing phenomenon remain controversial. Here we review the organization and cellular composition of the ventricular wall of reptiles, birds, and mammals in an effort to identify differences and commonalities among these vertebrate classes. Three major cell types have been identified in the ventricular zone of reptiles and birds: migrating (Type A) cells, radial glial (Type B) cells, and ependymal (Type E) cells. Cells similar anatomically and functionally to Types A, B, and E have also been described in the ventricular wall of mammals, which contains an additional cell type (Type C) not found in reptiles or birds. The bulk of the evidence points to a role of Type B cells as primary neural precursors (stem cells) in the three classes of living amniotic vertebrates. This finding may have implications for the development of strategies for the possible treatment of human neurological disorders.
Towards new understanding of the heart structure and function.
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio F; Komeda, Masashi; Carreras-Costa, Francesc; Flotats, A; Cosin-Aguillar, Juan; Wen, Han
2005-02-01
Structure and function in any organ are inseparable categories, both in health and disease. Whether we are ready to accept, or not, many questions in cardiovascular medicine are still pending, due to our insufficient insight in the basic science. Even so, any new concept encounters difficulties, mainly arising from our inert attitude, which may result either in unjustified acceptance or denial. The ventricular myocardial band concept, developed over the last 50 years, has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium. After more than five centuries long debate on macroscopic structure of the ventricular myocardium, this concept has provided a promising ground for its final understanding. Recent validations of the ventricular myocardial band, reviewed here, as well as future research directions that are pointed out, should initiate much wider scientific interest, which would, in turn, lead to reconciliation of some exceeded concepts about developmental, electrical, mechanical and energetical events in human heart. The benefit of this, of course, would be the most evident in the clinical arena.
Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Férnandez, Marco A; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo; Bayes-Genis, Antoni
2015-08-01
Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. ©AlphaMed Press.
Polte, Christian L; Lagerstrand, Kerstin M; Gao, Sinsia A; Lamm, Carl R; Bech-Hanssen, Odd
2015-07-01
Two-dimensional echocardiography and real-time 3-D echocardiography have been reported to underestimate human left ventricular volumes significantly compared with cardiovascular magnetic resonance. We investigated the ability of 2-D echocardiography, real-time 3-D echocardiography and cardiovascular magnetic resonance to delineate dimensions of increasing complexity (diameter-area-volume) in a multimodality phantom model and in vivo, with the aim of elucidating the main cause of underestimation. All modalities were able to delineate phantom dimensions with high precision. In vivo, 2-D and real-time 3-D echocardiography underestimated short-axis end-diastolic linear and areal and all left ventricular volumetric dimensions significantly compared with cardiovascular magnetic resonance, but not short-axis end-systolic linear and areal dimensions. Underestimation increased successively from linear to volumetric left ventricular dimensions. When analyzed according to the same principles, 2-D and real-time 3-DE echocardiography provided similar left ventricular volumes. In conclusion, echocardiographic underestimation of left ventricular dimensions is due mainly to inherent technical differences in the ability to differentiate trabeculated from compact myocardium. Identical endocardial border definition criteria are needed to minimize differences between the modalities and to ensure better comparability in clinical practice. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
An architecture for rapid prototyping of control schemes for artificial ventricles.
Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio
2004-01-01
This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.
A servo-controlled canine model of stable severe ischemic left ventricular failure.
Wagner, Richard L; Hood, William B; Howland, Peter A
2009-12-01
Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.
Wink, Jeroen; de Wilde, Rob B P; Wouters, Patrick F; van Dorp, Eveline L A; Veering, Bernadette Th; Versteegh, Michel I M; Aarts, Leon P H J; Steendijk, Paul
2016-10-18
Blockade of cardiac sympathetic fibers by thoracic epidural anesthesia may affect right ventricular function and interfere with the coupling between right ventricular function and right ventricular afterload. Our main objectives were to study the effects of thoracic epidural anesthesia on right ventricular function and ventricular-pulmonary coupling. In 10 patients scheduled for lung resection, right ventricular function and its response to increased afterload, induced by temporary, unilateral clamping of the pulmonary artery, was tested before and after induction of thoracic epidural anesthesia using combined pressure-conductance catheters. Thoracic epidural anesthesia resulted in a significant decrease in right ventricular contractility (ΔESV 25 : +25.5 mL, P=0.0003; ΔEes: -0.025 mm Hg/mL, P=0.04). Stroke work, dP/dt MAX , and ejection fraction showed a similar decrease in systolic function (all P<0.05). A concomitant decrease in effective arterial elastance (ΔEa: -0.094 mm Hg/mL, P=0.004) yielded unchanged ventricular-pulmonary coupling. Cardiac output, systemic vascular resistance, and mean arterial blood pressure were unchanged. Clamping of the pulmonary artery significantly increased afterload (ΔEa: +0.226 mm Hg/mL, P<0.001). In response, right ventricular contractility increased (ΔESV 25 : -26.6 mL, P=0.0002; ΔEes: +0.034 mm Hg/mL, P=0.008), but ventricular-pulmonary coupling decreased (Δ(Ees/Ea) = -0.153, P<0.0001). None of the measured indices showed significant interactive effects, indicating that the effects of increased afterload were the same before and after thoracic epidural anesthesia. Thoracic epidural anesthesia impairs right ventricular contractility but does not inhibit the native positive inotropic response of the right ventricle to increased afterload. Right ventricular-pulmonary arterial coupling was decreased with increased afterload but not affected by the induction of thoracic epidural anesthesia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2844. Unique identifier: NTR2844. © 2016 American Heart Association, Inc.
Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector.
Wagner, H N; Rigo, P; Baxter, R H; Alderson, P O; Douglass, K H; Housholder, D F
1979-05-01
A portable nonimaging device, the nuclear stethoscope, for measuring beat to beat ventricular time-activity curves in normal people and patients with heart disease, both at rest and during exercise, is being developed and evaluated. The latest device has several operating modes that facilitate left ventricular and background localization, measurement of transit times and automatic calculation and display of left ventricular ejection fraction. The correlation coefficient of left ventricular ejection fraction obtained with the device and with a camera-computer system was 0.92 in 35 subjects. During bicycle exercise the ejection fraction in 15 normal persons increased from 44 to 64 percent (P less than 0.001), whereas among 12 patients with heart disease it was unchanged in 5 and decreased in 7.
[Extracorporeal ventriculoatrial shunt with the use of one-way ball valve].
Kubo, Shigeki; Takimoto, Hiroshi; Hosoi, Kazuki; Toyota, Shingo; Takakura, Shuji; Hayashi, Yasuhiro; Ueno, Masato; Morisako, Toshitaka; Karasawa, Jun; Ninaga, Hideo; Yoshimine, Toshiki
2002-04-01
We developed a simple system of an "extracorporeal" ventriculoatrial (VA) shunt using a one-way ball valve (Acty valve II, Kaneka Medix) to release the patient from postoperative constraint during the ventricular drainage. The system is constructed in such a way that the ventricular drainage tube is connected to the central venous catheter via a one-way valve. The CSF is regulated by using the valve and is diverted into the systemic circulation as in the conventional ventriculoatrial shunt. After 2 or 3 weeks of CSF diversion through the extracorporeal VA shunt, a ventriculoperitoneal shunt is placed if hydrocephalus is apparent by temporary occlusion of the system. We applied this system to 4 patients with hydrocephalus, and we found it useful and free from adverse effects. The patient was freed from physical constraint involved in conventional ventricular drainage and an effective program of early rehabilitation was able to be started.
Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing
NASA Technical Reports Server (NTRS)
Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.
1996-01-01
OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular rather than dual-chamber pacing may be due in part to increased sympathetic nervous outflow.
[Complex ventricular arrhythmias and carvedilol: efficacy in hemodialyzed uremic patients].
Cice, G; Tagliamonte, E; Ferrara, L; Di Benedetto, A; Iacono, A
1998-06-01
Carvedilol has been shown to be effective in systemic hypertension and coronary artery disease in patients with end-stage renal disease, on maintenance hemodialysis. The aim of our study was to assess the effects of carvedilol on ventricular arrhythmias in these patients. Ninety-eight uremic patients maintained on hemodialysis, with complex ventricular arrhythmias (class III, IV and V of Lown's classification), not only during dialysis, were included in the study. They were divided into two groups, with mild-to-moderate hypertension or coronary artery disease. The efficacy and safety of carvedilol (50 mg/day) was compared to placebo in a 6-week randomized, double-blind study. Carvedilol significantly reduced, in both hypertensive and ischemic patients, total ventricular premature contractions (82.7 +/- 11.3 vs 358.1 +/- 73.9, p < 0.001; 88.3 +/- 24.4 vs 369.9 +/- 77.8, p < 0.001), repetitive ventricular premature contractions (1.3 +/- 1.3 vs 6.3 +/- 3.5, p < 0.001; 1.2 +/- 0.7 vs 6.9 +/- 2.6, p < 0.001) and episodes of ventricular tachycardia (1.1 +/- 1.2 vs 11.8 +/- 7.5, p < 0.001; 1.4 +/- 1.2 vs 14.0 +/- 8.3, p < 0.001). In placebo-treated patients, instead, these parameters were not significantly changed (329.1 +/- 76.5 vs 361.7 +/- 71.7, NS, and 324.6 +/- 79.7 vs 359.3 +/- 58.1, NS; 6.2 +/- 3.7 vs 7.3 +/- 3.7, NS, and 4.9 +/- 2.2 vs 6.1 +/- 3.2, NS; 9.8 +/- 6.3 vs 13.3 +/- 8.0, NS, and 9.0 +/- 6.2 vs 12.4 +/- 7.8, NS). Carvedilol confirmed a significant effect on myocardial ischemia and systemic hypertension. No significant side effects were reported. Ventricular arrhythmias are frequent in patients with end-stage renal disease maintained on hemodialysis. They are often due to an underlying cardiac disease, namely systemic hypertension with left ventricular hypertrophy and coronary artery disease. The results of our study show that the antiarrhythmic effect of carvedilol is linked, at least partly, to an improvement of the underlying cardiac disease. Uremic patients have a chronic increase in adrenergic tone, with a direct correlation between norepinephrine plasmatic concentration and frequence of premature ventricular contractions. Beta-blockers are very important in these patients because of their modulation on the adrenergic system. They also reduce potassium flow, from extracellular to intracellular fluid. Therefore carvedilol can affect the sudden hypokalemia occurring in the first phase of hemodialysis treatment, that may be an important cause of intradialytic arrhythmias.
[Wearable Automatic External Defibrillators].
Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan
2015-11-01
Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.
The Biological Role of Nestin(+)-Cells in Physiological and Pathological Cardiovascular Remodeling
Calderone, Angelino
2018-01-01
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein. PMID:29492403
A porcine model for acute ischaemic right ventricular dysfunction.
Haraldsen, Pernille; Lindstedt, Sandra; Metzsch, Carsten; Algotsson, Lars; Ingemansson, Richard
2014-01-01
To establish an experimental model for acute ischaemic isolated right ventricular dysfunction and the subsequent haemodynamic changes. An open-chest porcine model with ischaemic dysfunction of the right ventricle induced by ligation of the three main branches supporting the right ventricular free wall. Invasive monitoring of mean arterial blood pressure (MAP), central venous pressure (CVP), left atrial pressure (LAP) and right ventricular pressure (RVP); ultrasonic measurement of cardiac output (CO) and calculation of haemodynamic parameters such as stroke volume (SV), systemic vascular resistance (SVR), pulmonary vascular resistance (PVR) and right ventricular stroke work (RVSW) using standard formulae. The ischaemic challenge to the right ventricle resulted in a significant (≥30%) reduction in RVSW associated with an increase (6-25%) in CVP and reduction (8-18%) in pulmonary artery pressure (PAP) despite unchanged PVR, all reflecting the failing right ventricle. There was also a significant drop in CO (14-22%) despite unchanged LAP indicating lessened transpulmonary delivery of left ventricular preload due to the failing right ventricle causing the haemodynamic compromise rather than left ventricular failure. Supraventricular and ventricular arrhythmias occurred in three and two out of seven pigs, respectively-all of which except one were successfully resuscitated with cardioversion and/or defibrillation. This novel open-chest porcine model of induced ischaemia of the right ventricular free wall resulted in significant haemodynamic compromise confirmed using standard haemodynamic measurements making it useful for further research on acute, ischaemic isolated right ventricular failure.
Manson, Amy; Poyade, Matthieu; Rea, Paul
2015-10-19
The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. In addition to this, our established workflow pattern presented here also shows how tutorials, animations and self-assessment tools can also be embedded into the training application. Through our creation of an established workflow in the generation of educational and training material for demonstrating cerebral ventricular anatomy and flow of cerebrospinal fluid, it has enormous potential to be adopted into student training in this field. With the digital age advancing rapidly, this has the potential to be used as an innovative tool alongside other methodologies for the training of future healthcare practitioners and scientists. This workflow could be used in the creation of other tools, which could be developed for use not only on desktop and laptop computers but also smartphones, tablets and fully immersive stereoscopic environments. It also could form the basis on which to build surgical simulations enhanced with haptic interaction.
Beyond the VAD: Human Factors Engineering for Mechanically Assisted Circulation in the 21st Century.
Throckmorton, Amy L; Patel-Raman, Sonna M; Fox, Carson S; Bass, Ellen J
2016-06-01
Thousands of ventricular assist devices (VADs) currently provide circulatory support to patients worldwide, and dozens of heart pump designs for adults and pediatric patients are under various stages of development in preparation for translation to clinical use. The successful bench-to-bedside development of a VAD involves a structured evaluation of possible system states, including human interaction with the device and auxiliary component usage in the hospital or home environment. In this study, we review the literature and present the current landscape of preclinical design and assessment, decision support tools and procedures, and patient-centered therapy. Gaps of knowledge are identified. The study findings support the need for more attention to user-centered design approaches for medical devices, such as mechanical circulatory assist systems, that specifically involve detailed qualitative and quantitative assessments of human-device interaction to mitigate risk and failure. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Boonpeng, Hoh; Yusoff, Khalid
2013-03-01
The ultimate goal of human genetics is to understand the role of genome variation in elucidating human traits and diseases. Besides single nucleotide polymorphism (SNP), copy number variation (CNV), defined as gains or losses of a DNA segment larger than 1 kb, has recently emerged as an important tool in understanding heritable source of human genomic differences. It has been shown to contribute to genetic susceptibility of various common and complex diseases. Despite a handful of publications, its role in cardiovascular diseases remains largely unknown. Here, we deliberate on the currently available technologies for CNV detection. The possible utility and the potential roles of CNV in exploring the mechanisms of cardiac remodeling in hypertension will also be addressed. Finally, we discuss the challenges for investigations of CNV in cardiovascular diseases and its possible implications in diagnosis of hypertension-related left ventricular hypertrophy (LVH).
NASA Astrophysics Data System (ADS)
Gulothungan, G.; Malathi, R.
2018-04-01
Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.
Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy.
Kang, Guoxin; Giovannone, Steven F; Liu, Nian; Liu, Fang-Yu; Zhang, Jie; Priori, Silvia G; Fishman, Glenn I
2010-08-20
The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.
Dangers of collapsible ventricular drainage systems. Technical note.
Kaye, A H; Wallace, D
1982-02-01
Ventricular drainage systems employing a collapsible plastic bag for fluid collection were postulated to cause an increasing back-pressure produced in part by the elasticity of the bag. This postulate was shown to be correct in an experimental situation. There was a logarithmic rise in cerebrospinal fluid pressure as the bag filled. By increasing the size of the bag, the problem was overcome.
Current Perspectives on Systemic Hypertension in Heart Failure with Preserved Ejection Fraction.
Tam, Marty C; Lee, Ran; Cascino, Thomas M; Konerman, Matthew C; Hummel, Scott L
2017-02-01
Heart failure with preserved ejection fraction (HFpEF) is a prevalent but incompletely understood syndrome. Traditional models of HFpEF pathophysiology revolve around systemic HTN and other causes of increased left ventricular afterload leading to left ventricular hypertrophy (LVH) and diastolic dysfunction. However, emerging models attribute the development of HFpEF to systemic proinflammatory changes secondary to common comorbidities which include HTN. Alterations in passive ventricular stiffness, ventricular-arterial coupling, peripheral microvascular function, systolic reserve, and chronotropic response occur. As a result, HFpEF is heterogeneous in nature, making it difficult to prescribe uniform therapies to all patients. Nonetheless, treating systemic HTN remains a cornerstone of HFpEF management. Antihypertensive therapies have been linked to LVH regression and improvement in diastolic dysfunction. However, to date, no therapies have definitive mortality benefit in HFpEF. Non-pharmacologic management for HTN, including dietary modification, exercise, and treating sleep disordered breathing, may provide some morbidity benefit in the HFpEF population. Future research is need to identify effective treatments, perhaps in more specific subgroups, and focus may need to shift from reducing mortality to improving exercise capacity and symptoms. Tailoring antihypertensive therapies to specific phenotypes of HFpEF may be an important component of this strategy.
Aoki, Takuma; Sunahara, Hiroshi; Sugimoto, Keisuke; Ito, Tetsuro; Kanai, Eiichi; Neo, Sakurako; Fujii, Yoko; Wakao, Yoshito
2015-09-01
Dynamic left ventricular outflow tract obstruction (DLVOTO) is a common condition in cats and humans. In this case report, a dog is described with DLVOTO secondary to severe intra-abdominal hemorrhage caused by a hemangiosarcoma. The dog was a 9-year-old, 35.7-kg, spayed female German Shepard dog that presented with a history of tachypnea and collapse. A Levine II/VI systolic murmur was present at the heart base. Abdominal ultrasonography revealed a splenic mass and a large amount of ascites. Echocardiography showed a reduced left ventricular diameter and an increased aortic velocity caused by systolic anterior motion (SAM) of the mitral valve apparatus. The heart murmur and the SAM were resolved after treatment including a splenectomy and a blood transfusion.
Cerebellar Development and Disease
Gleeson, Joseph G.
2008-01-01
Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948
Yan, Ling; Bowman, Marion A Hofmann
Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. This review paper focuses on S100 proteins and their receptor for advanced glycation end products (RAGE) and summarizes recent findings obtained in novel developed transgenic hBAC-S100 mice that express S100A12 and S100A8/9 proteins. A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9 and S100A12 was expressed in C57BL/6J mice (hBAC-S100). CKD was induced by ureteral ligation, and hBAC-S100 mice and WT mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased FGF23 in the heart, left ventricular hypertrophy (LVH), diastolic dysfunction, focal cartilaginous metaplasia and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in WT mice with CKD or in hBAC-S100 mice lacking RAGE with CKD, suggesting that the inflammatory milieu mediated by S100/RAGE promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including IL-6, TNFα, LPS, or serum from hBAC-S100 mice up regulated FGF23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. Taken together, our study shows that myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a RAGE dependent manner in a mouse model of CKD. We speculate that FGF23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate LVH and diastolic dysfunction in hBAC-S100 mice with CKD. We suggest that S100/RAGE-mediated chronic sustained systemic inflammation is linked to pathological cardiac remodeling via direct up regulation of FGF23 in cardiac fibroblasts, thereby providing a new mechanistic understanding for the common association between CKD, diabetes, metabolic syndrome, or hypertension with left ventricular hypertrophy with diastolic dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.
1984-01-19
To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thalliummore » defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.« less
Can using a peel-away sheath in shunt implantation prevent ventricular catheter obstruction?
Camlar, Mahmut; Ersahin, Yusuf; Ozer, Fusun Demirçivi; Sen, Fatih; Orman, Mehmet
2011-02-01
Shunt obstruction is the most common shunt complication. In 2003, Kehler et al. used peel-away sheath while implanting the ventricular catheter in 20 patients. They found less revision rate in the peel-away sheath group. We aimed to test the efficacy of this technique in cadavers. We used 100 fresh brains obtained from medicolegal autopsies. Posterior parietal and frontal approaches were used to puncture the lateral ventricle in each cerebral hemisphere. The ventricle is punctured with a peel-away sheath system. After the ventricle is reached, the mandarin is retracted and the ventricular catheter is introduced through the opening. The ventricular catheter was removed from the ventricle, the opening at the tip of the ventricular catheter was checked out for obstruction, and the number of patent and plugged openings was recorded. This procedure was repeated four times for each location with and without using peel-away sheath. The control group consisted of the procedures done without using peel-away sheath. The number of the plugged openings in the peel-away sheath group was significantly smaller than the control group. There was no significant difference between the two groups in terms of gender and left and right cerebral hemispheres. The obstruction rate was significantly lower in the posterior parietal approach. Pearson's correlation showed that increasing age was associated with less obstruction rate. Peel-away sheath decreases the number of plugged openings of the ventricular catheter. A clinical cooperative study is needed to prove that a peel-away sheath should be included in the ventricular shunt systems in the market.
Matsumoto, M; Hanrath, P; Kremer, P; Tams, C; Langenstein, B A; Schlüter, M; Weiter, R; Bleifeld, W
1982-01-01
In order to evaluate left ventricular function during dynamic exercise transoesophageal M-mode recordings of the left ventricle were carried out with a newly developed transducer gastroscope system. Twelve healthy subjects performed a graded supine bicycle exercise test. Stable and good quality images of the left ventricle at rest and during exercise at different steps up to a maximum workload of 100 watts were obtained in all patients. Isotonic maximum exercise resulted in a significant increase in fractional shortening of the left ventricle, peak shortening rate, and peak lengthening rate of the left ventricular minor axis. Left ventricular end-diastolic dimension decreased significantly. With increasing workload the pressure rate product increased significantly. It is concluded that transoesophageal M-mode echocardiography is a useful method of evaluating left ventricular performance during dynamic exercise. Images PMID:7082515
Marcella, J J; Ursell, P C; Goldberger, M; Lovejoy, W; Fenoglio, J J; Weiss, M B
1983-08-01
Kawasaki syndrome, an acute systemic inflammatory illness of unknown origin usually affecting children, may develop into a serious illness complicated by coronary artery aneurysms or myocarditis. This report describes an adult with Kawasaki syndrome studied by right ventricular endomyocardial biopsy and cardiac catheterization during the acute and recovery phases of illness. The initial biopsy specimen showed acute myocarditis and was associated with hemodynamic evidence of biventricular dysfunction, a severely depressed left ventricular ejection fraction and global hypokinesia. With time, there was spontaneous and rapid resolution of the inflammatory cell infiltrate with concurrent return to normal myocardial function. Right ventricular endomyocardial biopsy studies early in the course of the cardiac disease associated with Kawasaki syndrome may correlate with ventricular function and may be useful for monitoring immunosuppressive therapy in patients with this syndrome.
38 CFR 4.97 - Schedule of ratings-respiratory system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension (shown by... hypertension (shown by Echo or cardiac catheterization), or; episode(s) of acute respiratory failure, or...; cor pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension...
38 CFR 4.97 - Schedule of ratings-respiratory system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension (shown by... hypertension (shown by Echo or cardiac catheterization), or; episode(s) of acute respiratory failure, or...; cor pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension...
38 CFR 4.97 - Schedule of ratings-respiratory system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension (shown by... hypertension (shown by Echo or cardiac catheterization), or; episode(s) of acute respiratory failure, or...; cor pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension...
38 CFR 4.97 - Schedule of ratings-respiratory system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension (shown by... hypertension (shown by Echo or cardiac catheterization), or; episode(s) of acute respiratory failure, or...; cor pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension...
38 CFR 4.97 - Schedule of ratings-respiratory system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension (shown by... hypertension (shown by Echo or cardiac catheterization), or; episode(s) of acute respiratory failure, or...; cor pulmonale (right heart failure), or; right ventricular hypertrophy, or; pulmonary hypertension...
Yang, Peiran; Read, Cai; Kuc, Rhoda E.; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D.; Crosby, Alexi; Sawiak, Stephen J.; Carpenter, T. Adrian; Glen, Robert C.; Morrell, Nicholas W.; Maguire, Janet J.
2017-01-01
Background: Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein–coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. Methods: In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr1]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. Results: ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein– and β-arrestin–dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. Conclusions: These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans. PMID:28137936
Yang, Peiran; Read, Cai; Kuc, Rhoda E; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D; Crosby, Alexi; Sawiak, Stephen J; Carpenter, T Adrian; Glen, Robert C; Morrell, Nicholas W; Maguire, Janet J; Davenport, Anthony P
2017-03-21
Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein-coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr 1 ]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein- and β-arrestin-dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans. © 2017 The Authors.
Marcantoni, Lina; Toselli, Tiziano; Urso, Giulia; Pratola, Claudio; Ceconi, Claudio; Bertini, Matteo
2015-11-01
In the last decade, there has been an exponential increase in cardioverter-defibrillator (ICD) implants. Remote monitoring systems, allow daily follow-ups of patients with ICD. To evaluate the impact of remote monitoring on the management of cardiovascular events associated with supraventricular and ventricular arrhythmias during long-term follow-up. A total of 207 patients undergoing ICD implantation/replacement were enrolled: 79 patients received remote monitoring systems and were followed up every 12 months, and 128 patients were followed up conventionally every 6 months. All patients were followed up and monitored for the occurrence of supraventricular and ventricular arrhythmia-related cardiovascular events (ICD shocks and/or hospitalizations). During a median follow-up of 842 days (interquartile range 476-1288 days), 32 (15.5%) patients experienced supraventricular arrhythmia-related events and 51 (24.6%) patients experienced ventricular arrhythmia-related events. Remote monitoring had a significant role in the reduction of supraventricular arrhythmia-related events, but it had no effect on ventricular arrhythmia-related events. In multivariable analysis, remote monitoring remained as an independent protective factor, reducing the risk of supraventricular arrhythmia-related events of 67% [hazard ratio, 0.33; 95% confidence interval (CI), 0.13-0.82; P = 0.017]. Remote monitoring systems improved outcomes in patients with supraventricular arrhythmias by reducing the risk of cardiovascular events, but no benefits were observed in patients with ventricular arrhythmias.
Evaluation of wireless stimulation of the endocardium, WiSE, technology for treatment heart failure.
Seifert, M; Butter, C
2016-06-01
There are several unsolved limitations in delivering cardiac resynchronization therapy. 30-40% of patients fail to have any clinical benefit after 6 months caused by different reasons. Endocardial stimulation rather than conventional epicardial pacing has been shown to: be more physiologically, improve electrical stimulation of the left ventricular, give less dispersion of repolarisation and result in better resynchronization. The Wireless Cardiac Stimulation in Left Ventricle, WiCS-LV, system provides an option for wireless, left ventricular endocardial pacing triggered from a conventional right ventricular pacing spike from a co-implant. Expert commentary: The feasibility of the WiCS-LV system has been successfully demonstrated in a population of failed cardiac resynchronization patients, either failed implantation procedure of a conventional system, non-responder to conventional therapy or upgrade from pacemaker or defibrillator, where a conventional system was not an option. WiCS-LV is innovative technology with promising safety, performance and preliminary efficacy.
Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Ardell, Jeffrey L; Armour, J Andrew
2009-01-28
Ganglionated plexuses (GPs) are major constituents of the intrinsic cardiac nervous system, the final common integrator of regional cardiac control. We hypothesized that nicotinic stimulation of individual GPs exerts divergent regional influences, affecting atrial as well as ventricular functions. In 22 anesthetized canines, unipolar electrograms were recorded from 127 atrial and 127 ventricular epicardial loci during nicotine injection (100 mcg in 0.1 ml) into either the 1) right atrial (RA), 2) dorsal atrial, 3) left atrial, 4) inferior vena cava-inferior left atrial, 5) right ventricular, 6) ventral septal ventricular or 7) cranial medial ventricular (CMV) GP. In addition to sinus and AV nodal function, neural effects on atrial and ventricular repolarization were identified as changes in the area subtended by unipolar recordings under basal conditions and at maximum neurally-induced effects. Animals were studied with intact AV node or following ablation to achieve ventricular rate control. Atrial rate was affected in response to stimulation of all 7 GPs with an incidence of 50-95% of the animals among the different GPs. AV conduction was affected following stimulation of 6/7 GP with an incidence of 22-75% among GPs. Atrial and ventricular repolarization properties were affected by atrial as well as ventricular GP stimulation. Distinct regional patterns of repolarization changes were identified in response to stimulation of individual GPs. RAGP predominantly affected the RA and posterior right ventricular walls whereas CMVGP elicited biatrial and biventricular repolarization changes. Spatially divergent and overlapping cardiac regions are affected in response to nicotinic stimulation of neurons in individual GPs.
Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-04-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.
Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-01-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441
Axell, Richard G; Giblett, Joel P; White, Paul A; Klein, Andrew; Hampton-Til, James; O'Sullivan, Michael; Braganza, Denise; Davies, William R; West, Nick E J; Densem, Cameron G; Hoole, Stephen P
2017-06-06
We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P <0.001) and BO (end-diastolic pressure [mm Hg]: 8.1 ± 4.0 versus 8.7±4.0, P =0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P <0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P <0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P =0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P <0.01). RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Alcalai, Ronny; Wakimoto, Hiroko; Arad, Michael; Planer, David; Konno, Tetsuo; Wang, Libin; Seidman, Jon G; Seidman, Christine E; Berul, Charles I
2011-03-01
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmic syndrome caused by mutations in genes encoding the calcium-regulation proteins cardiac ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2). Mechanistic studies indicate that CPVT is mediated by diastolic Ca(2+) overload and increased Ca(2+) leak through the RyR2 channel, implying that treatment targeting these defects might be efficacious in CPVT. CPVT mouse models that lack CASQ2 were treated with Ca(2+) -channel inhibitors, β-adrenergic inhibitors, or Mg(2+) . Treatment effects on ventricular arrhythmia, sarcoplasmic reticulum (SR) protein expression and Ca(2+) transients of isolated myocytes were assessed. Each study agent reduced the frequency of stress-induced ventricular arrhythmia in mutant mice. The Ca(2+) channel blocker verapamil was most efficacious and completely prevented arrhythmia in 85% of mice. Verapamil significantly increased the SR Ca(2+) content in mutant myocytes, diminished diastolic Ca(2+) overload, increased systolic Ca(2+) amplitude, and prevented Ca(2+) oscillations in stressed mutant myocytes. Ca(2+) channel inhibition by verapamil rectified abnormal calcium handling in CPVT myocytes and prevented ventricular arrhythmias. Verapamil-induced partial normalization of SR Ca(2+) content in mutant myocytes implicates CASQ2 as modulator of RyR2 activity, rather than or in addition to, Ca(2+) buffer protein. Agents such as verapamil that attenuate cardiomyocyte calcium overload are appropriate for assessing clinical efficacy in human CPVT. © 2010 Wiley Periodicals, Inc.
Alcalai, Ronny; Wakimoto, Hiroko; Arad, Michael; Planer, David; Konno, Tetsuo; Wang, Libin; Seidman, Jon G.; Seidman, Christine E.; Berul, Charles I
2010-01-01
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmic syndrome caused by mutations in genes encoding the calcium-regulation proteins cardiac ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2). Mechanistic studies indicate that CPVT is mediated by diastolic Ca2+ overload and increased Ca2+ leak through the RyR2 channel, implying that treatment targeting these defects might be efficacious in CPVT. Method and results CPVT mouse models that lack CASQ2 were treated with Ca2+-channel inhibitors, β-adrenergic inhibitors, or Mg2+. Treatment effects on ventricular arrhythmia, sarcoplasmic reticulum (SR) protein expression and Ca2+ transients of isolated myocytes were assessed. Each study agent reduced the frequency of stress-induced ventricular arrhythmia in mutant mice. The Ca2+ channel blocker verapamil was most efficacious and completely prevented arrhythmia in 85% of mice. Verapamil significantly increased the SR Ca2+ content in mutant myocytes, diminished diastolic Ca2+ overload, increased systolic Ca2+ amplitude, and prevented Ca2+ oscillations in stressed mutant myocytes. Conclusions Ca2+ channel inhibition by verapamil rectified abnormal calcium handling in CPVT myocytes and prevented ventricular arrhythmias. Verapamil-induced partial normalization of SR Ca2+ content in mutant myocytes implicates CASQ2 as modulator of RyR2 activity, rather than or in addition to, Ca2+ buffer protein. Agents such as verapamil that attenuate cardiomyocyte calcium overload are appropriate for assessing clinical efficacy in human CPVT. PMID:20807279
Weiss, Eric H.; Merchant, Faisal M.; d’Avila, Andre; Foley, Lori; Reddy, Vivek Y.; Singh, Jagmeet P.; Mela, Theofanie; Ruskin, Jeremy N.; Armoundas, Antonis A.
2011-01-01
Background Electrical alternans is a pattern of variation in the shape of electrocardiographic waveform that occurs every other beat. In humans, alternation in ventricular repolarization, known as repolarization alternans (RA), has been associated with increased vulnerability to ventricular tachycardia/fibrillation and sudden cardiac death. Methods and Results This study investigates the spatio-temporal variability of intracardiac RA and its relationship to body surface RA in an acute myocardial ischemia model in swine. We developed a real-time multi-channel repolarization signal acquisition, display and analysis system to record electrocardiographic signals from catheters in the right ventricle, coronary sinus, left ventricle, and epicardial surface prior to and following circumflex coronary artery balloon occlusion. We found that RA is detectable within 4 minutes following the onset ischemia, and is most prominently seen during the first half of the repolarization interval. Ischemia-induced RA was detectable on unipolar and bipolar leads (both in near- and far-field configurations) and on body surface leads. Far-field bipolar intracardiac leads were more sensitive for RA detection than body surface leads, with the probability of body surface RA detection increasing as the number of intracardiac leads detecting RA increased, approaching 100% when at least three intracardiac leads detected RA. We developed a novel, clinically-applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular (RV) and coronary sinus (CS) catheters which provided the highest sensitivity for intracardiac RA detection when compared to any other far-field bipolar sensing configurations (p < 0.0001). Conclusions In conclusion, intracardiac alternans, a complex spatio-temporal phenomenon associated with arrhythmia susceptibility and sudden cardiac death, can be reliably detected through a novel triangular RV-CS lead configuration. PMID:21430127
Akkaya, Mehmet; Bacaksiz, Ahmet; Tasal, Abdurrahman; Sevgili, Emrah
2013-01-01
Noncompaction of the ventricular myocardium is a rare congenital heart disease, presumably caused by the intrauterine arrest of the myocardial compaction process at the beginning of fetal development. It could remain asymptomatic or manifest with congestive heart failure, arrhythmias, and systemic thromboemboli. Here we report a 55-year-old man who was admitted to hospital with chest pain and dyspnea, whose further evaluation revealed left ventricular noncompaction cardiomyopathy accompanying myocardial bridging and stenosis of the right coronary artery. PMID:24570713
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Ludwig, D. A.; Reister, C.; Fanton, J. W.; Ewert, D.; Convertino, V. A.
2001-01-01
Effects of prescribed doses of ketamine five minutes after application and influences of transesophageal echocardiography (TEE) on left ventricular, systemic arterial, and baroreflex responses were investigated to test the hypothesis that ketamine and/or TEE probe insertion alter cardiovascular function. Seven rhesus monkeys were tested under each of four randomly selected experimental conditions: (1) intravenous bolus dose of ketamine (0.5 ml), (2) continuous infusion of ketamine (500 mg/kg/min), (3) continuous infusion of ketamine (500 mg/kg/min) with TEE, and (4) control (no ketamine or TEE). Monkeys were chronically instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to measure aortic flow. These measures were used to calculate left ventricular function. A 4-element Windkessel lumped-parameter model was used to estimate total peripheral resistance and systemic arterial compliance. Baroreflex response was calculated as the change in R-R interval divided by the change in mean aortic pressure measured during administration of graded concentrations of nitroprusside. The results indicated that five minutes after ketamine application heart rate and left ventricular diastolic compliance decreased while TEE increased aortic systolic and diastolic pressure. We conclude that ketamine may be administered as either a bolus or continuous infusion without affecting cardiovascular function 5 minutes after application while the insertion of a TEE probe will increase aortic pressure. The results for both ketamine and TEE illustrate the classic "Hawthorne Effect," where the observed values are partly a function of the measurement process. Measures of aortic pressure, heart rate, and left ventricular diastolic pressure should be viewed as relative, as opposed to absolute, when organisms are sedated with ketamine or instrumented with a TEE probe.
Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging.
Florentine, M S; Grosskreutz, C L; Chang, W; Hartnett, J A; Dunn, V D; Ehrhardt, J C; Fleagle, S R; Collins, S M; Marcus, M L; Skorton, D J
1986-07-01
Alterations of left ventricular mass occur in a variety of congenital and acquired heart diseases. In vivo determination of left ventricular mass, using several different techniques, has been previously reported. Problems inherent in some previous methods include the use of ionizing radiation, complicated geometric assumptions and invasive techniques. We tested the ability of gated nuclear magnetic resonance imaging to determine in vivo left ventricular mass in animals. By studying both dogs (n = 9) and cats (n = 2) of various sizes, a broad range of left ventricular mass (7 to 133 g) was examined. With a 0.5 tesla superconducting nuclear magnetic resonance imaging system the left ventricle was imaged in the transaxial plane and multiple adjacent 10 mm thick slices were obtained. Endocardial and epicardial edges were manually traced in each computer-displayed image. The wall area of each image was determined by computer and the areas were summed and multiplied by the slice thickness and the specific gravity of muscle, providing calculated left ventricular mass. Calculated left ventricular mass was compared with actual postmortem left ventricular mass using linear regression analysis. An excellent relation between calculated and actual mass was found (r = 0.95; SEE = 13.1 g; regression equation: magnetic resonance mass = 0.95 X actual mass + 14.8 g). Intraobserver and interobserver reproducibility were also excellent (r = 0.99). Thus, gated nuclear magnetic resonance imaging can accurately determine in vivo left ventricular mass in anesthetized animals.
Computational and Organotypic Modeling of Microcephaly ...
Microcephaly is associated with reduced cortical surface area and ventricular dilations. Many genetic and environmental factors precipitate this malformation, including prenatal alcohol exposure and maternal Zika infection. This complexity motivates the engineering of computational and experimental models to probe the underlying molecular targets, cellular consequences, and biological processes. We describe an Adverse Outcome Pathway (AOP) framework for microcephaly derived from literature on all gene-, chemical-, or viral- effects and brain development. Overlap with NTDs is likely, although the AOP connections identified here focused on microcephaly as the adverse outcome. A query of the Mammalian Phenotype Browser database for ‘microcephaly’ (MP:0000433) returned 85 gene associations; several function in microtubule assembly and centrosome cycle regulated by (microcephalin, MCPH1), a gene for primary microcephaly in humans. The developing ventricular zone is the likely target. In this zone, neuroprogenitor cells (NPCs) self-replicate during the 1st trimester setting brain size, followed by neural differentiation of the neocortex. Recent studies with human NPCs confirmed infectivity with Zika virions invoking critical cell loss (apoptosis) of precursor NPCs; similar findings have been shown with fetal alcohol or methylmercury exposure in rodent studies, leading to mathematical models of NPC dynamics in size determination of the ventricular zone. A key event
The human cardiovascular system in the absence of gravity
NASA Technical Reports Server (NTRS)
Bungo, M. W.; Charles, J. B.
1985-01-01
The data collected from a Space Shuttle crew to investigate cardiovascular changes due to microgravity are presented. The experimental procedures which involved preflight, immediate postflight, and one week following postflight echocardiograms of 13 individuals are described. The immediate postflight results reveal a 20 percent decrease in stroke volume, a 16 percent decrease in left ventricular diastolic volume index (LVDVI), no change in systolic volume, blood pressure, or cardiac index, and a 24 percent increase in heart rate. One week later a 17 percent stroke volume increase, a 29 percent increase in cardiac index, and normal blood pressure, and LVDVI were observed. It is concluded that upon reexposure to gravity a readaptation process for the cardiovascular system occurs.
de Oliveira, Luciano Fonseca Lemos; Romano, Minna Moreira Dias; de Carvalho, Eduardo Elias Vieira; Cabeza, Jorge Mejia; Salgado, Hélio Cesar; Fazan Júnior, Rubens; Costa, Renata Sesti; da Silva, João Santana; Higuchi, Maria de Lourdes; Maciel, Benedito Carlos; Cunha-Neto, Edécio; Marin-Neto, José Antônio; Simões, Marcus Vinícius
2016-01-21
Chronic Chagas cardiomyopathy in humans is characterized by segmental left ventricular wall motion abnormalities (WMA), mainly in the early stages of disease. This study aimed at investigating the detection of WMA and its correlation with the underlying histopathological changes in a chronic Chagas cardiomyopathy model in hamsters. Female Syrian hamsters (n=34) infected with 3.5×10(4) or 10(5) blood trypomastigote Trypanosoma cruzi (Y strain) forms and an uninfected control group (n=7) were investigated. After 6 or 10 months after the infection, the animals were submitted to in vivo evaluation of global and segmental left ventricular systolic function by echocardiography, followed by euthanasia and histological analysis for quantitative assessment of fibrosis and inflammation with tissue sampling in locations coinciding with the left ventricular wall segmentation employed at the in vivo echocardiographic evaluation. Ten of the 34 infected animals (29%) showed reduced left ventricular ejection fraction (<73%). Left ventricular ejection fraction was more negatively correlated with the intensity of inflammation (r=-0.63; P<0.0001) than with the extent of fibrosis (r=-0.36; P=0.036). Among the 24 animals with preserved left ventricular ejection fraction (82.9±5.5%), 8 (33%) showed segmental WMA predominating in the apical, inferior, and posterolateral segments. The segments exhibiting WMA, in comparison to those with normal wall motion, showed a greater extent of fibrosis (9.3±5.7% and 7±6.3%, P<0.0001) and an even greater intensity of inflammation (218.0±111.6 and 124.5±84.8 nuclei/mm², P<0.0001). Isolated WMA with preserved global systolic left ventricular function is frequently found in Syrian hamsters with experimental chronic Chagas cardiomyopathy whose underlying histopathological features are mainly inflammatory. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
The pathophysiology of heart failure.
Kemp, Clinton D; Conte, John V
2012-01-01
Heart failure is a clinical syndrome that results when the heart is unable to provide sufficient blood flow to meet metabolic requirements or accommodate systemic venous return. This common condition affects over 5 million people in the United States at a cost of $10-38 billion per year. Heart failure results from injury to the myocardium from a variety of causes including ischemic heart disease, hypertension, and diabetes. Less common etiologies include cardiomyopathies, valvular disease, myocarditis, infections, systemic toxins, and cardiotoxic drugs. As the heart fails, patients develop symptoms which include dyspnea from pulmonary congestion, and peripheral edema and ascites from impaired venous return. Constitutional symptoms such as nausea, lack of appetite, and fatigue are also common. There are several compensatory mechanisms that occur as the failing heart attempts to maintain adequate function. These include increasing cardiac output via the Frank-Starling mechanism, increasing ventricular volume and wall thickness through ventricular remodeling, and maintaining tissue perfusion with augmented mean arterial pressure through activation of neurohormonal systems. Although initially beneficial in the early stages of heart failure, all of these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Treatment strategies have been developed based upon the understanding of these compensatory mechanisms. Medical therapy includes diuresis, suppression of the overactive neurohormonal systems, and augmentation of contractility. Surgical options include ventricular resynchronization therapy, surgical ventricular remodeling, ventricular assist device implantation, and heart transplantation. Despite significant understanding of the underlying pathophysiological mechanisms in heart failure, this disease causes significant morbidity and carries a 50% 5-year mortality. Copyright © 2012 Elsevier Inc. All rights reserved.
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B.
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tool. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device, the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5 to 15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient’s behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mmHg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood. PMID:22929894
Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review.
Trenor, Beatriz; Cardona, Karen; Romero, Lucia; Gomez, Juan F; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne
2018-05-01
Potassium levels in the plasma, [K + ] o , are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K + ] o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K + -sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K + ] o result in significant alterations in two different K + currents, I K1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K + currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow
Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.
2014-01-01
Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541
Acquired tricuspid valve stenosis associated with two ventricular endocardial pacing leads in a dog.
Tompkins, Emily; Dulake, Michelle I; Ghaffari, Shadie; Nakamura, Reid K
2015-01-01
Acquired tricuspid valve stenosis (TVS) is a rare complication of endocardial pacing lead implantation in humans that has only been described once previously in the veterinary literature in a dog with excessive lead redundancy. A 12 yr old terrier presented with right-sided congestive heart failure 6 mo after implantation of a second ventricular endocardial pacing lead. The second lead was placed due to malfunction of the first lead, which demonstrated abnormally low impedance. Transthoracic echocardiography identified hyperechoic tissue associated with the pacing leads as they crossed the tricuspid valve annulus as well as a stenotic tricuspid inflow pattern via spectral Doppler interrogation. Medical management was ultimately unsuccessful and the dog was euthanized 6 wk after TVS was diagnosed. The authors report the first canine case of acquired TVS associated with two ventricular endocardial pacing leads.
Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin
Ni, Haibo; Whittaker, Dominic G.; Wang, Wei; Giles, Wayne R.; Narayan, Sanjiv M.; Zhang, Henggui
2017-01-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF. PMID:29218016
Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan
2012-01-01
A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.
Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko
2015-01-01
Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.
Lung function and left ventricular hypertrophy in morbidly obese candidates for bariatric surgery
Müller, Paulo de Tarso; Domingos, Hamilton; Patusco, Luiz Armando Pereira; Rapello, Gabriel Victor Guimarães
2015-01-01
Objective: To look for correlations between lung function and cardiac dimension variables in morbidly obese patients, in order to test the hypothesis that the relative size of the small airways is independently correlated with left ventricular hypertrophy. Methods: This was a retrospective study involving 192 medical records containing a clinical protocol employed in candidates for bariatric surgery between January of 2006 and December of 2010. Results: Of the 192 patients evaluated, 39 (10 males and 29 females) met the inclusion criteria. The mean BMI of the patients was 49.2 ± 7.6 kg/m2, and the mean age was 35.5 ± 7.7 years. The FEF25-75/FVC, % correlated significantly with left ventricular posterior wall thickness and relative left ventricular posterior wall thickness, those correlations remaining statistically significant (r = −0.355 and r = −0.349, respectively) after adjustment for weight, gender, and history of systemic arterial hypertension. Stepwise multivariate linear regression analysis showed that FVC and FEV1 were the major determinants of left ventricular mass (in grams or indexed to body surface area). Conclusions: A reduction in the relative size of the small airways appears to be independently correlated with obesity-related cardiac hypertrophy, regardless of factors affecting respiratory mechanics (BMI and weight), gender, or history of systemic arterial hypertension. However, FEV1 and FVC might be important predictors of left ventricular mass in morbidly obese individuals. PMID:26578134
A hemodynamics model to study the collective behavior of the ventricular-arterial system
NASA Astrophysics Data System (ADS)
Lin Wang, Yuh-Ying; Wang, Wei-Kung
2013-01-01
Applying principles from complex systems to study the efficacy of integrative therapies has become a new interest in medical research. We aimed to construct a concise model for the ventricular-arterial (VA) system and to provide a systematic method for exploring its overall behavior. The transportation of blood from the heart to the peripheral arterioles via hydraulic pressure forces was described by a multi-rank model. Parts of the VA system that have strong mutual interactions were combined into a single sub system. Sub systems of four different ranks were characterized. We then applied the multi-rank model to analyze the aortic pressure wave generated by the periodic ventricular blood ejection, the renal pressure in response to the input from the VA system, and the blood flowing from the renal artery to its arterioles. Maintaining the pressure distribution along the main arteries and in all of the organs with the lowest possible ventricular input turned out to be the first principle for the operation of an efficient VA system. By this principle, we pointed out the benefit of some arterial structures in mammals, derived specific regulation rules and deduced some fundamental concepts for healing. The justification of the biomechanics in our model that differed greatly from those in the prevailing models was given. We concluded that the oscillatory motion and the pressure pulse of the arterial system can be analyzed as steady states with resonance behaviors and suggested utilizing this model to construct integrative therapies for diseases correlated with abnormality in blood circulation.
Fukushima, Norihide; Tatsumi, Eisuke; Seguchi, Osamu; Takewa, Yoshiaki; Hamasaki, Toshimitsu; Onda, Kaori; Yamamoto, Haruko; Hayashi, Teruyuki; Fujita, Tomoyuki; Kobayashi, Junjiro
2018-06-08
The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. The purpose of this study (NCVC-BTD_01, National Cerebral and Cardiovascular Center-Bridge to Dicision_01) is to assess the safety and effectiveness of the newly developed extracorporeal continuous-flow ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing (BR16010) use as a bridge-to-decision therapy for patients with severe heart failure or refractory cardiogenic shock. NCVC-BTD_01 is a single-center, single-arm, open-label, exploratory, medical device, investigator-initiated clinical study. It is conducted at the National Cerebral and Cardiovascular Center in Japan. A total of nine patients will be enrolled in the study. The study was planned using Simon's minimax two-stage phase design. The primary endpoint is a composite of survival free of device-related serious adverse events and complications during device support. For left ventricular assistance, withdrawal of a trial device due to cardiac function recovery or exchange to other ventricular assist devices (VADs) for the purpose of bridge to transplantation (BTT) during 30 days after implantation will be considered study successes. For right ventricular assistance, withdrawal of tal device due to right ventricular function recovery within 30 days after implantation will be considered a study success. Secondary objectives include changes in brain natriuretic peptide levels (7 days after implantation of a trial device and the day of withdrawal of a trial device), period of mechanical ventricular support, changes in left ventricular ejection fraction (7 days after implantation of a trial device and the day of withdrawal of a trial device), and changes in left ventricular diastolic dimension (7 days after implantation of a trial device and the day of withdrawal of a trial device). We will disseminate the findings through regional, national, and international conferences and through peer-reviewed journals. UMIN Clinical Trials Registry (UMIN-CTR; R000033243) registered on 8 September 2017.
Ferrari, Gianfranco; Khir, Ashraf W; Fresiello, Libera; Di Molfetta, Arianna; Kozarski, Maciej
2011-09-01
We investigated the effects of the intra-aortic balloon pump (IABP) on endocardial viability ratio (EVR), cardiac output (CO), end-systolic (V(es)) and end-diastolic (V(ed)) ventricular volumes, total coronary blood flow (TCBF), and ventricular energetics (external work [EW], pressure-volume area [PVA]) under different ventricular (E(max) and diastolic stiffness) and circulatory (arterial compliance) parameters. We derived a hybrid model from a computational model, which is based on merging computational and hydraulic submodels. The lumped parameter computational submodel consists of left and right hearts and systemic, pulmonary, and coronary circulations. The hydraulic submodel includes part of the systemic arterial circulation, essentially a silicone rubber tube representing the aorta, which contains a 40-mL IAB. EVR, CO, V(es), and V(ed), TCBF and ventricular energetics (EW, PVA) were analyzed against the ranges of left ventricular E(max) (0.3-0.5-1 mm Hg/cm(3)) and diastolic stiffness V(stiffness) (≈0.08 and ≈0.3 mm Hg/cm(3), obtained by changing diastolic stiffness constant) and systemic arterial compliance (1.8-2.5 cm(3)/mm Hg). All experiments were performed comparing the selected variables before and during IABP assistance. Increasing E(maxl) from 0.5 to 2 mm Hg/cm(3) resulted in IABP assistance producing lower percentage changes in the selected variables. The changes in ventricular diastolic stiffness strongly influence both absolute value of EVR and its variations during IABP (71 and 65% for lower and higher arterial compliance, respectively). V(ed) and V(es) changes are rather small but higher for lower E(max) and higher V(stiffness). Lower E(max) and higher V(stiffness) resulted in higher TCBF and CO during IABP assistance (∼35 and 10%, respectively). The use of this hybrid model allows for testing real devices in realistic, stable, and repeatable circulatory conditions. Specifically, the presented results show that IABP performance is dependent, at least in part, on left ventricular filling, ejection characteristics, and arterial compliance. It is possible in this way to simulate patient-specific conditions and predict the IABP performance at different values of the circulatory or ventricular parameters. Further work is required to study the conditions for heart recovery modeling, baroreceptor controls, and physiological feedbacks. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Weiss, J M; Simson, P G; Hoffman, L J; Ambrose, M J; Cooper, S; Webster, A
1986-04-01
These studies examined how pharmacological stimulation and blockade of alpha receptors would affect active motor behavior in rats. In experiment I, alpha-2 receptor antagonists (piperoxane, yohimbine) and agonists [clonidine, norepinephrine (NE)] were infused into various locations in the ventricular system of the brain, including the locus coeruleus region, and motor activity was measured. Activity was measured principally in a swim test but spontaneous (ambulatory) activity was also recorded while drugs were being infused. When infused into the locus coeruleus region, small doses of the antagonists piperoxane and yohimbine depressed activity in the swim test while infusion of the agonists clonidine and NE had the opposite effect of stimulating activity. These effects were highly specific to the region of the locus coeruleus, since infusions of these drugs into other nearby locations in the ventricular system or use of larger doses had different, often opposite effects. This was especially true of clonidine and NE which profoundly depressed activity when infused posterior to the locus coeruleus, particularly over the dorsal vagal complex. Infusion of small doses of these drugs into the lateral ventricle had effects similar to infusion into the locus coeruleus region, though less pronounced. Changes in spontaneous motor activity were also observed, but this measure differentiated the groups less well than did the swim test. In experiment II, the predominantly postsynaptic receptor agonists isoproterenol (beta agonist) and phenylephrine (alpha-1 agonist) were infused into the ventricular system. Since infusions of piperoxane and yohimbine into the locus coeruleus that decreased activity in experiment I increase the release of NE by blocking alpha-2 inhibitory receptors on cell bodies and dendrites of the locus coeruleus, experiment II tested whether ventricular infusion of predominantly postsynaptic receptor agonists would also decrease activity in the swim test. Both isoproterenol and phenylephrine produced this effect, but did so selectively with respect to dose and location of infusion in the ventricular system. These findings are consistent with recent results relating to the mechanism that underlies stress-induced depression of active behavior.
Specific considerations with the automatic implantable atrial defibrillator.
Jung, W; Wolpert, C; Esmailzadeh, B; Spehl, S; Herwig, S; Schumacher, B; Lewalter, T; Omran, H; Kirchhoff, P G; Lüderitz, B
1998-08-01
Internal atrial defibrillation has been evaluated as an alternative approach to the external technique for more than two decades. Previous studies in animals and humans have shown that internal atrial defibrillation is feasible with relatively low energies. The promising results achieved with internal atrial defibrillation have facilitated the development of an implantable atrial defibrillator (IAD). For any new therapy, it is imperative to demonstrate safety, efficacy, tolerability with improvement in quality of life, and cost-effectiveness compared with therapeutic options already available. Maintenance of sinus rhythm or prolonged duration in arrhythmia-free intervals should be demonstrated clearly with an IAD. Initial clinical experience with the Metrix system indicates stable atrial defibrillation thresholds, appropriate R wave synchronization markers, no shock-induced ventricular proarrhythmia, and excellent detection of atrial fibrillation (AF) with a specificity of 100%. Ventricular proarrhythmia has not been reported for correctly R wave synchronized low-energy shocks when closely coupled to RR intervals, and long-short cycles are avoided. Preliminary experience with the Metrix system suggests that the IAD may offer a therapeutic alternative for a subgroup of patients with drug-refractory, symptomatic, long-lasting, and infrequent episodes of AF. Further efforts must be undertaken to reduce the patient discomfort associated with internal atrial defibrillation in an attempt to make this new therapy acceptable to a larger patient population with AF.
Jouni, Mariam; Si-Tayeb, Karim; Es-Salah-Lamoureux, Zeineb; Latypova, Xenia; Champon, Benoite; Caillaud, Amandine; Rungoat, Anais; Charpentier, Flavien; Loussouarn, Gildas; Baró, Isabelle; Zibara, Kazem; Lemarchand, Patricia; Gaborit, Nathalie
2015-09-01
Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients' genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell-derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients' specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients' specific arrhythmia mechanisms. Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method.UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial- and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient's UhiPS-CMs to the mother's UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier K(+) current (IKr). This phenotype gave rise to action potential prolongation and arrhythmias. UhiPS cells from patients carrying ion channel mutations can be used as novel tools to differentiate functional CMs that recapitulate cardiac arrhythmia phenotypes. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
McFarlane, N. J. B.; Lin, X.; Zhao, Y.; Clapworthy, G. J.; Dong, F.; Redaelli, A.; Parodi, O.; Testi, D.
2011-01-01
Ischaemic heart failure remains a significant health and economic problem worldwide. This paper presents a user-friendly software system that will form a part of the virtual pathological heart of the Virtual Physiological Human (VPH2) project, currently being developed under the European Commission Virtual Physiological Human (VPH) programme. VPH2 is an integrated medicine project, which will create a suite of modelling, simulation and visualization tools for patient-specific prediction and planning in cases of post-ischaemic left ventricular dysfunction. The work presented here describes a three-dimensional interactive visualization for simulating left ventricle restoration surgery, comprising the operations of cutting, stitching and patching, and for simulating the elastic deformation of the ventricle to its post-operative shape. This will supply the quantitative measurements required for the post-operative prediction tools being developed in parallel in the same project. PMID:22670207
Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.
2008-01-01
While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516
Change of heart dimensions and function during pregnancy in goats.
Szaluś-Jordanow, Olga; Czopowicz, Michał; Witkowski, Lucjan; Moroz, Agata; Mickiewicz, Marcin; Frymus, Tadeusz; Markowska-Daniel, Iwona; Bagnicka, Emilia; Kaba, Jarosław
2018-03-08
The study aimed to evaluate the effect of pregnancy on heart diameters and function in goats. Transthoracic echocardiography of 12 female dairy goats of two Polish regional breeds was performed. A Mindray M7 diagnostic ultrasound system with Phased Array transducer was used. Simultaneously, electrocardiography was recorded. All animals were examined four times - at mating season, at the end of the first trimester, at the end of the second trimester and just before kidding. Eleven measurements were taken each time: aortic and left atrial diameter (AoD and LAD), right and left ventricular internal diameter in diastole (RVIDd and LVIDd), left ventricular internal diameter in systole (LVIDs), inter-ventricular septum thickness in diastole and systole (IVSd and IVSd) and left ventricular posterior wall in diastole and systole (LVPWd and LVPWs), maximum left and right ventricular outflow tract velocity (RVOT Vmax and LVOT Vmax). Nine consecutive measurements were derived: the ratio of the left atrial diameter to the aortic diameter (AoD/LAD), left ventricular fractional shortening (FS%), left ventricular ejection fraction (EF%), maximum outflow tract pressure gradients (RVOT PGmax and LVOT PGmax), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV), stroke volume (SV) and cardiac output (CO). HR, LAD, LVPWs, IVSs increased significantly in the first trimester. AoD and RVIDd were significantly higher around parturition. LVIDd, FS%, EF%, SV and CO rose both in the first and third trimester. No measurement decreased during pregnancy. The study confirms that pregnancy causes changes in the heart size and functioning. Copyright © 2018. Published by Elsevier Ltd.
Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L
2008-08-18
While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.
Wagh, Vilas; Pomorski, Alexander; Wilschut, Karlijn J; Piombo, Sebastian; Bernstein, Harold S
2014-06-06
Posttranscriptional control of mRNA by microRNA (miRNA) has been implicated in the regulation of diverse biologic processes from directed differentiation of stem cells through organism development. We describe a unique pathway by which miRNA regulates the specialized differentiation of cardiomyocyte (CM) subtypes. We differentiated human embryonic stem cells (hESCs) to cardiac progenitor cells and functional CMs, and characterized the regulated expression of specific miRNAs that target transcriptional regulators of left/right ventricular-subtype specification. From >900 known human miRNAs in hESC-derived cardiac progenitor cells and functional CMs, a subset of differentially expressed cardiac miRNAs was identified, and in silico analysis predicted highly conserved binding sites in the 3'-untranslated regions (3'UTRs) of Hand-and-neural-crest-derivative-expressed (HAND) genes 1 and 2 that are involved in left and right ventricular development. We studied the temporal and spatial expression patterns of four miRNAs in differentiating hESCs, and found that expression of miRNA (miR)-363, miR-367, miR-181a, and miR-181c was specific for stage and site. Further analysis showed that miR-363 overexpression resulted in downregulation of HAND1 mRNA and protein levels. A dual luciferase reporter assay demonstrated functional interaction of miR-363 with the full-length 3'UTR of HAND1. Expression of anti-miR-363 in-vitro resulted in enrichment for HAND1-expressing CM subtype populations. We also showed that BMP4 treatment induced the expression of HAND2 with less effect on HAND1, whereas miR-363 overexpression selectively inhibited HAND1. These data show that miR-363 negatively regulates the expression of HAND1 and suggest that suppression of miR-363 could provide a novel strategy for generating functional left-ventricular CMs.
NASA Technical Reports Server (NTRS)
Koide, M.; Nagatsu, M.; Zile, M. R.; Hamawaki, M.; Swindle, M. M.; Keech, G.; DeFreyte, G.; Tagawa, H.; Cooper, G. 4th; Carabello, B. A.
1997-01-01
BACKGROUND: When a pressure overload is placed on the left ventricle, some patients develop relatively modest hypertrophy whereas others develop extensive hypertrophy. Likewise, the occurrence of contractile dysfunction also is variable. The cause of this heterogeneity is not well understood. METHODS AND RESULTS: We recently developed a model of gradual proximal aortic constriction in the adult canine that mimicked the heterogeneity of the hypertrophic response seen in humans. We hypothesized that differences in outcome were related to differences present before banding. Fifteen animals were studied initially. Ten developed left ventricular dysfunction (dys group). Five dogs maintained normal function (nl group). At baseline, the nl group had a lower mean systolic wall stress (96 +/- 9 kdyne/cm2; dys group, 156 +/- 7 kdyne/cm2; P < .0002) and greater relative left ventricular mass (left ventricular weight [g]/body wt [kg], 5.1 +/- 0.36; dys group, 3.9 +/- 0.26; P < .02). On the basis of differences in mean systolic wall stress at baseline, we predicted outcome in the next 28 dogs by using a cutoff of 115 kdyne/cm2. Eighteen of 20 dogs with baseline mean systolic stress > 115 kdyne/cm2 developed dysfunction whereas 6 of 8 dogs with resting stress < or = 115 kdyne/cm2 maintained normal function. CONCLUSIONS: We conclude that this canine model mimicked the heterogeneous hypertrophic response seen in humans. In the group that eventually developed dysfunction there was less cardiac mass despite 60% higher wall stress at baseline, suggesting a different set point for regulating myocardial growth in the two groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics
NASA Astrophysics Data System (ADS)
Yang, Albert C.-C.; Hseu, Shu-Shya; Yien, Huey-Wen; Goldberger, Ary L.; Peng, C.-K.
2003-03-01
Complex physiologic signals may carry unique dynamical signatures that are related to their underlying mechanisms. We present a method based on rank order statistics of symbolic sequences to investigate the profile of different types of physiologic dynamics. We apply this method to heart rate fluctuations, the output of a central physiologic control system. The method robustly discriminates patterns generated from healthy and pathologic states, as well as aging. Furthermore, we observe increased randomness in the heartbeat time series with physiologic aging and pathologic states and also uncover nonrandom patterns in the ventricular response to atrial fibrillation.
NASA Technical Reports Server (NTRS)
Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.
2003-01-01
Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.
Provost, Jean; Costet, Alexandre; Wan, Elaine; Gambhir, Alok; Whang, William; Garan, Hasan; Konofagou, Elisa E.
2015-01-01
Minimally-invasive treatments of cardiac arrhythmias such as radio-frequency ablation are gradually gaining in importance in clinical practice but still lack a noninvasive imaging modality which provides insight into the source or focus of an arrhythmia. Cardiac deformations imaged at high temporal and spatial resolution can be used to elucidate the electrical activation sequence in normal and paced human subjects non-invasively and could potentially aid to better plan and monitor ablation-based arrhythmia treatments. In this study, a novel ultrasound-based method is presented that can be used to quantitatively characterize focal and reentrant arrhythmias. Spatio-temporal maps of the full-view of the atrial and ventricular mechanics were obtained in a single heartbeat, revealing with otherwise unobtainable detail the electromechanical patterns of atrial flutter, fibrillation, and tachycardia in humans. During focal arrhythmias such as premature ventricular complex and focal atrial tachycardia, the previously developed electromechanical wave imaging methodology is hereby shown capable of identifying the location of the focal zone and the subsequent propagation of cardiac activation. During reentrant arrhythmias such as atrial flutter and fibrillation, Fourier analysis of the strains revealed highly correlated mechanical and electrical cycle lengths and propagation patterns. High frame rate ultrasound imaging of the heart can be used non-invasively and in real time, to characterize the lesser-known mechanical aspects of atrial and ventricular arrhythmias, also potentially assisting treatment planning for intraoperative and longitudinal monitoring of arrhythmias. PMID:26361338
NASA Technical Reports Server (NTRS)
Estes, N. A. 3rd; Michaud, G.; Zipes, D. P.; El-Sherif, N.; Venditti, F. J.; Rosenbaum, D. S.; Albrecht, P.; Wang, P. J.; Cohen, R. J.
1997-01-01
This investigation was performed to evaluate the feasibility of detecting repolarization alternans with the heart rate elevated with a bicycle exercise protocol. Sensitive spectral signal-processing techniques are able to detect beat-to-beat alternation of the amplitude of the T wave, which is not visible on standard electrocardiogram. Previous animal and human investigations using atrial or ventricular pacing have demonstrated that T-wave alternans is a marker of vulnerability to ventricular arrhythmias. Using a spectral analysis technique incorporating noise reduction signal-processing software, we evaluated electrical alternans at rest and with the heart rate elevated during a bicycle exercise protocol. In this study we defined optimal criteria for electrical alternans to separate patients from those without inducible arrhythmias. Alternans and signal-averaged electrocardiographic results were compared with the results of vulnerability to ventricular arrhythmias as defined by induction of sustained ventricular tachycardia or fibrillation at electrophysiologic evaluation. In 27 patients alternans recorded at rest and with exercise had a sensitivity of 89%, specificity of 75%, and overall clinical accuracy of 80% (p <0.003). In this patient population the signal-averaged electrocardiogram was not a significant predictor of arrhythmia vulnerability. This is the first study to report that repolarization alternans can be detected with heart rate elevated with a bicycle exercise protocol. Alternans measured using this technique is an accurate predictor of arrhythmia inducibility.
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J.
2015-01-01
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619
[Atmospheric pollution and cardiovascular damage].
Román, Oscar; Prieto, María José; Mancilla, Pedro
2004-06-01
The damaging effect of atmospheric pollution with particulate matter and toxic gases on the respiratory system and its effect in the incidence and severity of respiratory diseases, is well known. A similar effect on the cardiovascular system is currently under investigation. Epidemiological studies have demonstrated that the inhalation of particulate matter can increase cardiovascular disease incidence and mortality, specially ischemic heart disease. The damage would be mediated by alterations in the autonomic nervous system, inflammation, infections and free radicals. In human studies, environmental pollution is associated with alterations in cardiac frequency variability and blood pressure and with changes in ventricular repolarization. Experimentally, an enhancement of ischemia, due to coronary obstruction, has been demonstrated. The study of the toxic effects of environmental pollution over the cardiovascular system, is an open field, specially in Chile, were the big cities have serious contamination problems.
Compensatory Hypertrophy Induced by Ventricular Cardiomyocyte Specific COX-2 Expression in Mice
Streicher, John M.; Kamei, Kenichiro; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin
2010-01-01
Cyclooxygenase-2 (COX-2) is an important mediator of inflammation in stress and disease states. Recent attention has focused on the role of COX-2 in human heart failure and diseases, due to the finding that highly specific COX-2 inhibitors (i.e. Vioxx) increased the risk of myocardial infarction and stroke in chronic users. However, the specific impact of COX-2 expression in the intact heart remains to be determined. We report here the development of a transgenic mouse model, using a loxP-Cre approach, that displays robust COX-2 overexpression and subsequent prostaglandin synthesis specifically in ventricular myocytes. Histological, functional and molecular analyses showed that ventricular myocyte specific COX-2 overexpression led to cardiac hypertrophy and fetal gene marker activation, but with preserved cardiac function. Therefore, specific induction of COX-2 and prostaglandin in vivo is sufficient to induce compensated hypertrophy and molecular remodeling. PMID:20170663
HWANG, HUI-JEONG; YOON, KYUNG LIM; SOHN, IL SUK
2016-01-01
The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans. PMID:26998021
Hwang, Hui-Jeong; Yoon, Kyung Lim; Sohn, Il Suk
2016-03-01
The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans.
Huelnhagen, Till; Hezel, Fabian; Serradas Duarte, Teresa; Pohlmann, Andreas; Oezerdem, Celal; Flemming, Bert; Seeliger, Erdmann; Prothmann, Marcel; Schulz-Menger, Jeanette; Niendorf, Thoralf
2017-06-01
Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Conditional Lineage Ablation to Model Human Diseases
NASA Astrophysics Data System (ADS)
Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.
1998-09-01
Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.
Li, Rui; Sun, Le; Fang, Ai; Li, Peng; Wu, Qian; Wang, Xiaoqun
2017-11-01
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Kral Kollars, Catharine A; Gelehrter, Sarah; Bove, Edward L; Ensing, Gregory
2010-03-01
Congenitally corrected transposition of the great arteries (CCTGA) is associated with tricuspid regurgitation (TR), which has been postulated to arise from the effect of ventricular septal position on the attachments of the tricuspid valve. This study was performed to determine the effect of left ventricular (LV) pressure on right ventricular (RV) and LV geometry and the degree of TR. Serial echocardiograms were reviewed from, 30 patients with CCTGA who underwent pulmonary artery banding to train the morphologic left ventricle (n = 14) or left ventricle-to-pulmonary artery conduit placement and ventricular septal defect closure in conjunction with physiologic repair (n = 16). The degree of TR, the LV/RV pressure ratio, RV and LV sphericity indexes, and tricuspid valve tethering distance and coaptation length were analyzed. After pulmonary artery banding, an increase in LV systolic pressure to > or =2/3 systemic resulted in a decrease in TR from severe to moderate (p = 0.02). The percentage of patients with severe TR decreased from 64% to 18% (p = 0.06). The RV sphericity index decreased (p = 0.05), and the LV sphericity index increased (p = 0.02). After left ventricle-to-pulmonary artery conduit placement, a decrease in LV pressure to < or =1/2 systemic resulted in an increase in TR from none to mild (p = 0.003). In conclusion, these data indicate that LV pressure in patients with CCTGA affects the degree of TR and that septal shift caused by changes in LV and RV pressure is an important mechanism. Copyright 2010. Published by Elsevier Inc.
How best to assess right ventricular function by echocardiography*
DiLorenzo, Michael P.; Bhatt, Shivani M.; Mercer-Rosa, Laura
2016-01-01
Right ventricular function is a crucial determinant of long-term outcomes of children with heart disease. Quantification of right ventricular systolic and diastolic performance by echocardiography is of paramount importance, given the prevalence of children with heart disease, particularly those with involvement of the right heart, such as single or systemic right ventricles, tetralogy of Fallot, and pulmonary arterial hypertension. Identification of poor right ventricular performance can provide an opportunity to intervene. In this review, we will go through the different systolic and diastolic indices, as well as their application in practice. Quantification of right ventricular function is possible and should be routinely performed using a combination of different measures, taking into account each disease state. Quantification is extremely useful for individual patient follow-up. Laboratories should continue to strive to optimise reproducibility through quality improvement and quality assurance efforts in addition to investing in technology and training for new, promising techniques, such as three-dimensional echocardiography. PMID:26675593
Echocardiographic measurements of left ventricular mass by a non-geometric method
NASA Technical Reports Server (NTRS)
Parra, Beatriz; Buckey, Jay; Degraff, David; Gaffney, F. Andrew; Blomqvist, C. Gunnar
1987-01-01
The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epi- and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements.
Garcia, M J; Smedira, N G; Greenberg, N L; Main, M; Firstenberg, M S; Odabashian, J; Thomas, J D
2000-01-01
To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.
NASA Technical Reports Server (NTRS)
Garcia, M. J.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D.
2000-01-01
OBJECTIVES: To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). BACKGROUND: The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. METHODS: We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. RESULTS: In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). CONCLUSIONS: Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.
Left ventricular outflow obstruction and necrotizing enterocolitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, H.A.; Haney, P.J.
1984-02-01
Two neonates had unusually rapid development of necrotizing enterocolitis within 24 hours of birth. Both patients had decreased systemic perfusion secondary to aortic atresia. Onset of either clinical or radiographic manifestations of necrotizing enterocolitis in the first day of life should alert one to the possible presence of severe left ventricular outflow obstruction.
Testuz, Ariane; Roffi, Marco; Bonvini, Robert Francis
2013-03-01
This case aims to describe the hemodynamic effects of intra-aortic balloon pump (IABP) in patients with ventricular septal defect (VSD) complicating myocardial infarction (MI). A 79-year-old man with no previous cardiovascular history presented to the emergency department with subacute inferior myocardial infarction associated with mild signs of systemic hypoperfusion. A transthoracic echocardiography revealed a large akinesia of the left ventricular inferior wall with preserved global left ventricular ejection fraction, as well as a large VSD in the midinferior portion of the interventricular septum. Coronary angiography showed an occlusion of the mid portion of a dominant circumflex coronary artery. The invasive hemodynamic evaluation showed a sizable left-to-right shunt (Q(p)/Q(s) = 3.1). Activation of the IABP led to an immediate reduction of the shunt (Q(p)/Q(s) = 2.4 = 22% reduction), an increase in systemic cardiac output (from 2.1 L/min to 2.4 L/min = +12%) and a decrease in the systemic vascular resistances (from 2240 to 1920 dyne-sec/cm(5) = 15% reduction). In patients with post-MI VSD, placement of IABP leads to an immediate reduction in left-to-right shunt and as a consequence to an increase in systemic cardiac output, which may allow hemodynamic stabilization of the patient prior to surgical VSD closure. Copyright © 2012 Wiley Periodicals, Inc.
Orthostatic effects on echocardiographic measures of ventricular function.
Rowland, Thomas; Unnithan, Viswanath; Barker, Piers; Guerra, Miriam; Roche, Denise; Lindley, Martin
2012-05-01
Orthostatic-induced alterations in Doppler echocardiographic measures of ventricular function have not been well-defined. Identifying such changes may provide useful insights regarding the responses of these measures to variations in ventricular loading conditions. Standard assessment of mitral inflow velocity and tissue Doppler imaging (TDI) of left ventricular longitudinal myocardial velocities was performed on 14 young males (mean age 17.9 ± 0.7 years) in the supine position and then 5 minutes after assuming a sitting position with legs dependent. Upon sitting, average values of stroke volume and cardiac output fell by 28% and 18%, respectively, while heart rate increased from 64 ± 10 to 73 ± 12 beats/min (+14%) and calculated systemic vascular resistance rose from 12.9 ± 2.2 to 16.4 ± 3.1 units (+27%). Mitral E peak velocity declined from 87 ± 16 to 64 ± 16 cm/sec, and average TDI-E' and TDI-S both decreased (by -44% and -20%, respectively). When adjusted for orthostatic decreases in left ventricular end-diastolic volume, the mean decrease in TDI-E' was reduced to -29 (P < 0.01), but no significant decline was observed in adjusted TDI-S. Average E/E' rose with sitting by 40% (P = 0.02). These findings suggest that (a) decreases in TDI measures when assuming the upright position reflect the reduction of left ventricular size; (b) orthostatic fall in TDI-E' is also related to smaller ventricular size but, in addition, to a nonspecified reduction in ventricular relaxation; and (c) values of E/E' do not reflect alterations in ventricular preload, which occur during an orthostatic challenge. © 2012, Wiley Periodicals, Inc.
Step voltage analysis for the catenoid lightning protection system
NASA Technical Reports Server (NTRS)
Chai, J. C.; Briet, R.; Barker, D. L.; Eley, H. E.
1991-01-01
The main objective of the proposed overhead Catenoid Lightning Protection System (CLPS) is personnel safety. To ensure working personnel's safety in lightning situations, it is necessary that the potential difference developed across a distance equal to a person's pace (step voltage) does not exceed a separately established safe voltage in order to avoid electrocution (ventricular fibrillation) of humans. Therefore, the first stage of the analytical effort is to calculate the open circuit step voltage. An impedance model is developed for this purpose. It takes into consideration the earth's complex impedance behavior and the transient nature of the lightning phenomenon. In the low frequency limit, this impedance model is shown to reduce to results similar to those predicted by the conventional resistor model in a DC analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.
1984-09-01
Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patientsmore » with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.« less
New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure.
Amit, Uri; Kain, David; Wagner, Allon; Sahu, Avinash; Nevo-Caspi, Yael; Gonen, Nir; Molotski, Natali; Konfino, Tal; Landa, Natalie; Naftali-Shani, Nili; Blum, Galia; Merquiol, Emmanuelle; Karo-Atar, Danielle; Kanfi, Yariv; Paret, Gidi; Munitz, Ariel; Cohen, Haim Y; Ruppin, Eytan; Hannenhalli, Sridhar; Leor, Jonathan
2017-05-20
The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra , is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1 -deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P =0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P =0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Luo, Jun; Weaver, Matthew S; Dennis, James E; Whalen, Elizabeth; Laflamme, Michael A; Allen, Margaret D
2014-12-01
Generating myocyte grafts that bridge across infarcts could maximize their functional impact and best utilize small numbers of stem cells. To date, however, graft survival within acute infarcts has not been feasible. To enhance intrainfarct graft viability, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were pretreated before implantation with cobalt protoporphyrin (CoPP), a pharmacologic inducer of cytoprotective heme oxygenase-1. After preculturing with CoPP (vs phosphate-buffered saline), hESC-CMs were injected intramyocardially into acutely infarcted rat hearts, using directed injections to span the infarct. A further group received CoPP-pretreated hESC-CMs plus 4 weekly doses of systemic CoPP to prolong exposure to cytoprotectants. Two control groups with infarcts received vehicle-only intramyocardial injections or weekly systemic CoPP without cell therapy. Postinfarct ventricular function was gauged by echocardiography and graft size quantified at 8 weeks by histomorphometry. CoPP-preconditioned hESC-CMs formed stable grafts deep within infarcted myocardium, while grafts without CoPP exposure survived mainly at the infarct periphery. Fractional shortening was improved at 4 and 8 weeks in all hearts receiving cell therapies (P < .01 vs vehicle-only injections). CoPP treatment of both graft hESC-CMs and recipient animals resulted in the largest grafts, highest fractional shortening, preserved wall thickness, and reduced infarct dimensions. Cellular therapy delivered acutely after infarction significantly improved postinfarct ventricular function at 1 and 2 months. CoPP pretreatment of cells resulted in stable hESC-CM grafts within infarcted myocardium. This design enables construction of directionally oriented, infarct-spanning bands of new cardiomyocytes that might further improve functional restoration as engrafted myocytes proliferate and mature. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Di Pasquale, E; Lodola, F; Miragoli, M; Denegri, M; Avelino-Cruz, J E; Buonocore, M; Nakahama, H; Portararo, P; Bloise, R; Napolitano, C; Condorelli, G; Priori, S G
2013-01-01
Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro ‘patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca2+/calmodulin-dependent serine–threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies. PMID:24113177
Using thermal stress to model aspects of disease states.
Wilson, Thad E; Klabunde, Richard E; Monahan, Kevin D
2014-07-01
Exposure to acute heat or cold stress elicits numerous physiological responses aimed at maintaining body temperatures. Interestingly, many of the physiological responses, mediated by the cardiovascular and autonomic nervous systems, resemble aspects of, or responses to, certain disease states. The purpose of this Perspective is to highlight some of these areas in order to explore how they may help us better understand the pathophysiology underlying aspects of certain disease states. The benefits of using this human thermal stress approach are that (1) no adjustments for inherent comparative differences in animals are needed, (2) non-medicated healthy humans with no underlying co-morbidities can be studied in place of complex patients, and (3) more mechanistic perturbations can be safely employed without endangering potentially vulnerable populations. Cold stress can be used to induce stable elevations in blood pressure. Cold stress may also be used to model conditions where increases in myocardial oxygen demand are not met by anticipated increases in coronary blood flow, as occurs in older adults. Lower-body negative pressure has the capacity to model aspects of shock, and the further addition of heat stress improves and expands this model because passive-heat exposure lowers systemic vascular resistance at a time when central blood volume and left-ventricular filling pressure are reduced. Heat stress can model aspects of heat syncope and orthostatic intolerance as heat stress decreases cerebral blood flow and alters the Frank-Starling mechanism resulting in larger decreases in stroke volume for a given change in left-ventricular filling pressure. Combined, thermal perturbations may provide in vivo paradigms that can be employed to gain insights into pathophysiological aspects of certain disease states. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bogun, Frank; Taj, Majid; Ting, Michael; Kim, Hyungjin Myra; Reich, Stephen; Good, Eric; Jongnarangsin, Krit; Chugh, Aman; Pelosi, Frank; Oral, Hakan; Morady, Fred
2008-03-01
Pace mapping has been used to identify the site of origin of focal ventricular arrhythmias. The spatial resolution of pace mapping has not been adequately quantified using currently available three-dimensional mapping systems. The purpose of this study was to determine the spatial resolution of pace mapping in patients with idiopathic ventricular tachycardia or premature ventricular contractions originating in the right ventricular outflow tract. In 16 patients with idiopathic ventricular tachycardia/ectopy from the right ventricular outflow tract, comparisons and classifications of pace maps were performed by two observers (good pace map: match >10/12 leads; inadequate pace map: match < or =10/12 leads) and a customized MATLAB 6.0 program (assessing correlation coefficient and normalized root mean square of the difference (nRMSd) between test and template signals). With an electroanatomic mapping system, the correlation coefficient of each pace map was correlated with the distance between the pacing site and the effective ablation site. The endocardial area within the 10-ms activation isochrone was measured. The ablation procedure was effective in all patients. Sites with good pace maps had a higher correlation coefficient and lower nRMSd than sites with inadequate pace maps (correlation coefficient: 0.96 +/- 0.03 vs 0.76 +/- 0.18, P <.0001; nRMSd: 0.41 +/- 0.16 vs 0.89 +/- 0.39, P <.0001). Using receiver operating characteristic curves, appropriate cutoff values were >0.94 for correlation coefficient (sensitivity 81%, specificity 89%) and < or =0.54 for nRMSd (sensitivity 76%, specificity 80%). Good pace maps were located a mean of 7.3 +/- 5.0 mm from the effective ablation site and had a mean activation time of -24 +/- 7 ms. However, in 3 (18%) of 16 patients, the best pace map was inadequate at the effective ablation site, with an endocardial activation time at these sites of -25 +/- 12 ms. Pace maps with correlation coefficient > or =0.94 were confined to an area of 1.8 +/- 0.6 cm2. The 10-ms isochrone measured 1.2 +/- 0.7 cm2. The spatial resolution of a good pace map for targeting ventricular tachycardia/ectopy is 1.8 cm2 in the right ventricular outflow tract and therefore is inferior to the spatial resolution of activation mapping as assessed by isochronal activation. In approximately 20% of patients, pace mapping is unreliable in identifying the site of origin, possibly due a deeper site of origin and preferential conduction via fibers connecting the focus to the endocardial surface.
A computational fluid dynamics simulation framework for ventricular catheter design optimization.
Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A
2017-11-10
OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.
Tuominen, Heikki; Haarala, Atte; Tikkakoski, Antti; Kähönen, Mika; Nikus, Kjell; Sipilä, Kalle
2018-05-02
In up to 65% of cardiac sarcoidosis patients, the disease is confined to the heart. Diagnosing isolated cardiac sarcoidosis is challenging due to the low sensitivity of endomyocardial biopsy. If cardiac sarcoidosis is part of biopsy-confirmed systemic sarcoidosis, the diagnosis can be based on cardiac imaging studies. We compared the imaging features of patients with isolated cardiac FDG uptake on positron emission tomography with those who had findings indicative of systemic sarcoidosis. 137 consecutive cardiac FDG-PET/CT studies performed on subjects suspected of having cardiac sarcoidosis were retrospectively analyzed. 33 patients had pathological left ventricular FDG uptake, and 12 of these also had pathological right ventricular uptake. 16/33 patients with pathological cardiac uptake had pathological extracardiac uptake. 10/12 patients with both LV- and RV-uptake patterns had extracardiac uptake compared to 6/21 of those with pathological LV uptake without RV uptake. SUVmax values in the myocardium were higher among patients with abnormal extracardiac uptake. The presence of extracardiac uptake was the only imaging-related factor that could predict a biopsy indicative of sarcoidosis. Right ventricular involvement seems to be more common in patients who also have findings suggestive of suspected systemic sarcoidosis, compared with patients with PET findings indicative of isolated cardiac disease.
Outcomes of HeartWare Ventricular Assist System support in 141 patients: a single-centre experience.
Wu, Long; Weng, Yu-Guo; Dong, Nian-Guo; Krabatsch, Thomas; Stepanenko, Alexander; Hennig, Ewald; Hetzer, Roland
2013-07-01
A third-generation ventricular assist device, the HeartWare Ventricular Assist System, has demonstrated its reliability and durability in animal models and clinical experience. However, studies of a large series of applications are still lacking. We evaluate the safety and efficacy of the HeartWare pump in 141 patients with end-stage heart failure at a single centre. A total of 141 patients (116 men and 25 women with a mean age of 52 years) in New York Heart Association (NYHA) Class IV received implantation of the HeartWare Ventricular Assist System between August 2009 and April 2011 at the Deutsches Herzzentrum Berlin. The outcomes were measured in terms of laboratory data, adverse events, NYHA functional class and survival during device support. The HeartWare system provided an adequate haemodynamic support for patients both inside and outside the hospital. NYHA class improved to I-II. Organ function and pulmonary vascular resistance improved significantly. In this cohort of patients, 14 patients underwent heart transplantation, one had had the device explanted following myocardial recovery, one had changed to another assist device, 81 were on ongoing support and 44 died. The overall actuarial survival rates at 6 and 12 months were 70 and 67%, respectively, and the 3-, 6- and 12-month survival rates on a left ventricular assist device (LVAD) support for bridge to transplantation patients were 82, 81 and 79%, respectively. Infection and bleeding were the main adverse events. Four patients underwent an LVAD exchange for pump thrombosis. The HeartWare system provides a safe and effective circulatory support in a population with a wide range of body surface areas, with a satisfactory actuarial survival time and an improved quality of life. It can be used for univentricular or biventricular support, being implanted into the pericardial space with simplified surgical techniques.
Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.
Michaloudi, H C; Papadopoulos, G C
1996-01-01
Immunocytochemistry with antisera against serotonin (5-HT), dopamine (DA) and noradrenaline (NA) was used to detect monoaminergic (MA) fibres in the ventricular system of the hedgehog Erinaceus europaeus. Light microscopic examination of immunocytochemically stained sections revealed that the ventricular system of the hedgehog is unique among mammals in that the choroid plexuses receive CA axons and that the supraependyma and subependyma of the cerebral ventricles and the spinal central canal are innervated both by serotoninergic and catecholaminergic (CA) fibres. Supraependymal 5-HT axons were generally more abundant and created at places a large number of interconnected basket-like structures, whereas CA fibres were usually directed towards the ventricular lumen. In the lateral ventricles, CA fibres were more numerous in the ependyma lining grey matter, whereas a higher 5-HT innervation density was observed in the area between the corpus callosum and the caudate nucleus or the septum. In the 3rd ventricle, the ependyma of its dorsal part exhibited a higher 5-HT and NA innervation density, whereas DA fibres were preferentially distributed in the ventral half of the basal region. The ependyma lining the cerebral aqueduct displayed a higher MA innervation density in its ventral part. The ependymal wall of the 4th ventricle exhibited an extremely dense 5-HT innervation, mainly in the floor of the ventricle, relatively fewer NA fibres and only sparse DA ones. Few NA and relatively more 5-HT fibres were detected in the ependyma of the central canal. Finally, the circumventricular organs were unevenly innervated by the 3 types of MA fibres. The extensive monoaminergic innervation of the hedgehog ventricular system described here probably reflects a transitory evolutionary stage in the phylogeny of the MA systems with presently unknown functional implications. Images Fig. 1 Fig. 2 Figs 3-8 Figs 9-14 Figs 15-20 PMID:8886949
Schocke, Michael F H; Metzler, Bernhard; Wolf, Christian; Steinboeck, Peter; Kremser, Christian; Pachinger, Otmar; Jaschke, Werner; Lukas, Peter
2003-06-01
Previous echocardiographic and experimental animal studies have shown that cardiac function, structure, and metabolism change with age. The aim of this study was to evaluate the impact of age on left ventricular high-energy phosphate metabolism. Using a 1.5 Tesla whole-body MR scanner 31P 2D CSI (8 x 8 phase encoding steps, 320 mm field of view) was performed in 76 healthy male volunteers (41.7 +/- 13 years) without any history of coronary heart disease. Fourier interpolation, corrections for T1 saturation effects, the nucleus Overhauser effect, and the blood contamination were applied to the spectroscopic data. The volunteers were divided into two groups, younger (n = 37) and older (n = 39) than 41.7 years. In all volunteers, laboratory specimen were sampled, and transthoracal echocardiography was carried out. Significant differences in left ventricular phosphocreatine (PCr) to beta-adenosine-triphosphate (beta-ATP) ratios (2.16 vs. 1.83, p < 0.001), fasting serum glucose levels (83.3 vs. 98.7 mg/dl, p < 0.001), E/A (1.51 vs. 1.14 p < 0.001), and ejection fraction (EF, 65.3 vs. 59.9%, p = 0.005) were detected between the two groups of volunteers, younger and older than 41.7 years. Moreover, age correlated moderately to well with left ventricular PCr to beta-ATP ratios (r = -0.44), fasting serum glucose levels (r = 0.4), E/A (r = -0.7), left ventricular myocardial mass (r = -0.41), and EF (r = -0.55). In conclusion, our study shows that left ventricular PCr to beta-ATP ratios decrease moderately with age, as suggested by previous experimental animal studies. Additionally, age correlates negatively with E/A, left ventricular myocardial mass, and EF, as reported by previous echocardiography studies. The present study is the first to show the impact of age on left ventricular PCr to beta-ATP values in humans.
In vitro characterization of a magnetically suspended continuous flow ventricular assist device.
Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E
1995-01-01
A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.
Ellawindy, Alia; Satoh, Kimio; Sunamura, Shinichiro; Kikuchi, Nobuhiro; Suzuki, Kota; Minami, Tatsuro; Ikeda, Shohei; Tanaka, Shinichi; Shimizu, Toru; Enkhjargal, Budbazar; Miyata, Satoshi; Taguchi, Yuhto; Handoh, Tetsuya; Kobayashi, Kenta; Kobayashi, Kazuto; Nakayama, Keiko; Miura, Masahito; Shimokawa, Hiroaki
2015-10-01
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice. © 2015 American Heart Association, Inc.
Oxidative stress is associated with increased pulmonary artery systolic pressure in humans.
Ghasemzadeh, Nima; Patel, Riyaz S; Eapen, Danny J; Veledar, Emir; Al Kassem, Hatem; Manocha, Pankaj; Khayata, Mohamed; Zafari, A Maziar; Sperling, Laurence; Jones, Dean P; Quyyumi, Arshed A
2014-06-01
Oxidative stress contributes to the development of pulmonary hypertension in experimental models, but this association in humans is unknown. We investigated the relationship between pulmonary artery systolic pressure measured by echocardiography and plasma aminothiol oxidative stress markers, with the hypothesis that oxidative stress will be higher in those with pulmonary hypertension. A group of 347 patients aged 65±12 years from the Emory Cardiovascular Biobank underwent echocardiographic assessment of left ventricular ejection fraction and pulmonary artery systolic pressure. Plasma aminothiols, cysteine, its oxidized form, cystine, glutathione, and its oxidized disulphide were measured and the redox potentials (Eh) of cysteine/cystine and glutathione/oxidized glutathione couples were calculated. Non-normally distributed variables were log transformed (Ln). Univariate predictors of pulmonary artery systolic pressure included age (P<0.001), sex (P=0.002), mitral regurgitation (P<0.001), left ventricular ejection fraction (P<0.001), left atrial size (P<0.001), diabetes mellitus (P=0.03), plasma Ln cystine (β=9.53; P<0.001), Ln glutathione (β=-5.4; P=0.002), and Eh glutathione (β=0.21; P=0.001). A multivariate linear regression model adjusting for all confounding variables demonstrated that Ln cystine (β=6.56; P=0.007), mitral regurgitation (β=4.52; P<0.001), statin use (β=-3.39; P=0.03), left ventricular ejection fraction (β=-0.26; P=0.003), and age (β=0.17; P=0.003) were independent predictors of pulmonary artery systolic pressure. For each 1% increase in plasma cystine, pulmonary artery systolic pressure increased by 16%. This association persisted in the subgroup with preserved left ventricular ejection fraction (≥50%) and no significant mitral regurgitation. Whether treatment of oxidative stress will improve pulmonary hypertension requires further study.
Brooks, Daina; Chandra, Akhil; Jaimes, Rafael; Sarvazyan, Narine; Kay, Matthew
2015-01-01
Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10−9-10−4 M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca2+ transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca2+ handling within whole hearts (reduced diastolic and systolic Ca2+ transient potentiation) and neonatal cardiomyocytes (reduced Ca2+ transient amplitude and prolonged Ca2+ transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca2+ handing, and ventricular contractility. PMID:25980024
Mortazavi, M M; Adeeb, N; Griessenauer, C J; Sheikh, H; Shahidi, S; Tubbs, R I; Tubbs, R S
2014-01-01
The cerebral ventricles have been recognized since ancient medical history. Their true function started to be realized more than a thousand years later. Their anatomy and function are extremely important in the neurosurgical panorama. The literature was searched for articles and textbooks of different topics related to the history, anatomy, physiology, histology, embryology and surgical considerations of the brain ventricles. Herein, we summarize the literature about the cerebral ventricular system.
Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.
Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan
2018-06-01
In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.
A Successful Anticoagulation Protocol for the First HeartMate® II Implantation in the United States
Amir, Offer; Bracey, Arthur W.; Smart, Frank W.; Delgado, Reynolds M.; Shah, Nyma; Kar, Biswajit; Gregoric, Igor D.
2005-01-01
Bleeding and thrombus formation are common problems with life-threatening implications in patients receiving a left ventricular assist device. We describe the anticoagulation protocol for the 1st patient in the United States to undergo successful implantation of the HeartMate® II left ventricular assist system. PMID:16392229
Response of the Cardiovascular System to Vibration and Combined Stresses
1975-08-31
Canines were chronically instrumented for continuous measurements of ascending aortic flow ( Zepeda ), left ventricular pressure (Konigsberg), circum- flex...different animals. Each dog was chronically instrumented for continuous measuremernt of ascending aortic flow ( Zepeda ), left ventricular pressure...vibration protocol as those animals restrained vertically. METHODS Canines (16 to 22 kg) were chronically instrumented with electromagnetic flow cuffs ( Zepeda
Research and Development of Advanced Life Support Equipment.
1999-02-01
kg.) were catheterized f or measurement of left ventricular pressure (LVP), right ventricular pressure (RVP), mean aortic pressure (MAP), central ...Orientation Laboratory Venous Gas Emboli Variable Profile Breathing Simulator Wingate Anaerobic Test Weapons System Trainer World Wide Web... history screening of the potential subjects was conducted to eliminate those individuals who have known health conditions/ histories which would
NASA Astrophysics Data System (ADS)
Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.
2017-09-01
Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.
Fox, Philip R; Basso, Cristina; Thiene, Gaetano; Maron, Barry J
2014-01-01
Spontaneously occurring small animal models of myocardial disease, closely resembling the human condition, have been reported for hypertrophic cardiomyopathy (in cats) and arrhythmogenic right ventricular cardiomyopathy (in cats and boxer dogs). Nonhypertrophied restrictive cardiomyopathy (RCM) is a well-recognized but relatively uncommon primary heart muscle disease causing substantial morbidity in humans. We describe RCM occurring in felines here as a potential model of human disease. We used two-dimensional and Doppler echocardiography to define morphologic and functional features of RCM in 35 domestic cats (25 male; 10±4 years old) presenting to a subspecialty veterinary clinic. Ten underwent complete necropsy examination. Echocardiographic parameters of diastolic filling were compared to those in 41 normal controls. The 35 cats presented with congestive heart failure (n=32), lethargy (n=2), or syncope (n=1), associated with thromboembolism in 5 and supraventricular tachyarrhythmias in 8. During an average 4.4-year follow-up period, 18 died or were euthanized due to profound heart failure, and 3 died suddenly; survival from clinical presentation to death was 0.1 to 52 months. Echocardiographic and necropsy examination showed biatrial enlargement, nondilated ventricular chambers, and normal wall thicknesses and atrioventricular valves. Histopathology demonstrated disorganized myocyte architecture and patchy replacement myocardial fibrosis. Pulsed Doppler demonstrated restrictive physiology with increased early (E) mitral filling velocity (1.1±0.3 m/s) and peak E to peak late (A) flow ratios (4.3±1.2), reduced A filling velocity (0.3±0.1 m/s), and shortened mitral deceleration time (40.7±9.3 ms; all P<.001 vs. controls), with preserved left ventricular systolic function. A primary myocardial disease occurring spontaneously in domestic cats is remarkably similar to restrictive nondilated and nonhypertrophied cardiomyopathy in man and represents another potential animal model for human disease. © 2013.
Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro
2003-06-01
Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.
Neurogenic radial glia in the outer subventricular zone of human neocortex.
Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R
2010-03-25
Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.
Muka, Taulant; Vargas, Kris G; Jaspers, Loes; Wen, Ke-xin; Dhana, Klodian; Vitezova, Anna; Nano, Jana; Brahimaj, Adela; Colpani, Veronica; Bano, Arjola; Kraja, Bledar; Zaciragic, Asija; Bramer, Wichor M; van Dijk, Gaby M; Kavousi, Maryam; Franco, Oscar H
2016-04-01
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Experimental study on the effect of an artificial cardiac valve on the left ventricular flow
NASA Astrophysics Data System (ADS)
Wang, JiangSheng; Gao, Qi; Wei, RunJie; Wang, JinJun
2017-09-01
The use of artificial valves to replace diseased human heart valves is currently the main solution to address the malfunctioning of these valves. However, the effect of artificial valves on the ventricular flow still needs to be understood in flow physics. The left ventricular flow downstream of a St. Jude Medical (SJM) bileaflet mechanical heart valve (BMHV), which is a widely implanted mechanical bileaflet valve, is investigated with time-resolved particle image velocimetry in the current work. A tilting-disk valve is installed on the aortic orifice to guarantee unidirectional flow. Several post-processing tools are applied to provide combined analyses of the physics involved in the ventricular flow. The triple jet pattern that is closely related to the characteristics of the bileaflet valve is discussed in detail from both Eulerian and Lagrangian views. The effects of large-scale vortices on the transportation of blood are revealed by the combined analysis of the tracking of Lagrangian coherent structures, the Eulerian monitoring of the shear stresses, and virtual dye visualization. It is found that the utilization of the SJM BMHV complicates the ventricular flow and could reduce the efficiency of blood transportation. In addition, the kinematics of the bileaflets is presented to explore the effects of flow structures on their motion. These combined analyses could elucidate the properties of SJM BMHV. Furthermore, they could provide new insights into the understanding of other complex blood flows.
Mynard, Jonathan P; Smolich, Joseph J
2016-07-01
Coronary hemodynamics are known to be affected by intravascular and extravascular factors that vary regionally and transmurally between the perfusion territories of left and right coronary arteries. However, despite clinical evidence that left coronary arterial dominance portends greater cardiovascular risk, relatively little is known about the effects of left or right dominance on regional conduit arterial and microcirculatory blood flow patterns, particularly in the presence of systemic or pulmonary hypertension. We addressed this issue using a multiscale numerical model of the human coronary circulation situated in a closed-loop cardiovascular model. The coronary model represented left or right dominant anatomies and accounted for transmural and regional differences in vascular properties and extravascular compression. Regional coronary flow dynamics of the two anatomical variants were compared under normotensive conditions, raised systemic or pulmonary pressures with maintained flow demand, and after accounting for adaptations known to occur in acute and chronic hypertensive states. Key findings were that 1) right coronary arterial flow patterns were strongly influenced by dominance and systemic/pulmonary hypertension; 2) dominance had minor effects on left coronary arterial and all microvascular flow patterns (aside from mean circumflex flow); 3) although systemic hypertension favorably increased perfusion pressure, this benefit varied regionally and transmurally and was offset by increased left ventricular and septal flow demands; and 4) pulmonary hypertension had a substantial negative effect on right ventricular and septal flows, which was exacerbated by greater metabolic demands. These findings highlight the importance of interactions between coronary arterial dominance and hypertension in modulating coronary hemodynamics. Copyright © 2016 the American Physiological Society.
Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.
Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni
2017-01-01
Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post-infarct remodeling.
Quest for the basic plan of nervous system circuitry
Swanson, Larry W.
2007-01-01
The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the seventeenth century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late nineteenth century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for circulation in the cardiovascular system. As Cajal wrote in 1909, “To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan—the overview—can be grasped in the blink of an eye.” PMID:17267046
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade
NASA Technical Reports Server (NTRS)
Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.
1995-01-01
INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Following myocardial infarction, the size of the infarcted region and the systolic functioning of the noninfarcted region are commonly assessed by various cross- sectional imaging techniques. A series of images representing successive phases of the cardiac cycle can be acquired by several imaging modalities including electron beam computed tomography, magnetic resonance imaging, and echocardiography. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the 'long' axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in our laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity. Each of these choices for origin of coordinate system can be derived from the end- diastolic image or from the end-systolic image. Alternately, new coordinate systems can be selected for each phase of the cardiac cycle. These are referred to as 'floating' coordinate systems. A series of computer models have been developed in our laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction. The most sophisticated of these is an interactive program with a graphical user interface which facilitates the simulation of a wide variety of dynamic ventricular cross sections. Analysis of these simulations has led to a better understanding of how polar coordinate system placement influences the results of quantitative regional ventricular function assessment. It has also created new insight into how the appropriateness of the placement of such a polar coordinate systems can be objectively assessed. The validity of the conclusions drawn from the analysis of simulated ventricular shapes was validated through the analysis of outlines extracted from cine electron beam computed tomographic images. This was done using another interactive software tool developed specifically for this purpose. With this tool, the effects on regional function parameters of various choices for origin placement can be directly observed. This has proven to reinforce the conclusions drawn from the simulations and has led to the modification of the procedures used in our laboratory. Conclusions: The so-called floating coordinate systems are superior to fixed ones for quantification of regional left ventricular contraction in almost every respect. The use of regional ejection fractions with a coordinate system origin located at the centroid of the endocardial surface can lead to 180 degree errors in identifying the location of a myocardial infarction. This problem is less pronounced with midline and epicardium- based centroids and does not occur when the centroid of the myocardium is used. The quantified migration of myocardial mass across sector boundaries is a useful indicator of an inappropriate choice of coordinate system origin. When the centroid of the myocardium falls well within the ventricular cavity, as it usually does, it is a better location for the origin for regional analysis than any of the other centroids analyzed.
Sack, Kevin L; Dabiri, Yaghoub; Franz, Thomas; Solomon, Scott D; Burkhoff, Daniel; Guccione, Julius M
2018-01-01
Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, which is increasingly used as more than just a bridge-to-transplant therapy. The high incidence of right ventricular failure following left ventricular assistance reflects an undesired consequence of treatment, which has been hypothesized to be related to the mechanical interdependence between the two ventricles. To investigate the implication of this interdependence specifically in the setting of left ventricular assistance device (LVAD) support, we introduce a patient-specific finite-element model of dilated chronic heart failure. The model geometry and material parameters were calibrated using patient-specific clinical data, producing a mechanical surrogate of the failing in vivo heart that models its dynamic strain and stress throughout the cardiac cycle. The model of the heart was coupled to lumped-parameter circulatory systems to simulate realistic ventricular loading conditions. Finally, the impact of ventricular assistance was investigated by incorporating a pump with pressure-flow characteristics of an LVAD (HeartMate II™ operating between 8 and 12 k RPM) in parallel to the left ventricle. This allowed us to investigate the mechanical impact of acute left ventricular assistance at multiple operating-speeds on right ventricular mechanics and septal wall motion. Our findings show that left ventricular assistance reduces myofiber stress in the left ventricle and, to a lesser extent, right ventricle free wall, while increasing leftward septal-shift with increased operating-speeds. These effects were achieved with secondary, potentially negative effects on the interventricular septum which showed that support from LVADs, introduces unnatural bending of the septum and with it, increased localized stress regions. Left ventricular assistance unloads the left ventricle significantly and shifts the right ventricular pressure-volume-loop toward larger volumes and higher pressures; a consequence of left-to-right ventricular interactions and a leftward septal shift. The methods and results described in the present study are a meaningful advancement of computational efforts to investigate heart-failure therapies in silico and illustrate the potential of computational models to aid understanding of complex mechanical and hemodynamic effects of new therapies.
Cardiovascular responses to spaceflight
NASA Technical Reports Server (NTRS)
Nicogossian, A.; Pool, S. L.; Rambaut, P. C.
1983-01-01
The cardiovascular system's adaptive changes during and after spaceflight are discussed. Cephalic fluid shifts are demonstrated by photographs along with calf girth and leg volume changes. Inflight measurements show an increase in average resting heart rate and systolic blood pressure, and a sympathetic-parasympathetic neural imbalance. Postflight findings include a small but reversible decrease in the left ventricular muscle mass. Since 1980, NASA's research has emphasized cardiovascular deconditioning and countermeasures: hemodynamic changes, endocrine and neurohumoral aspects, etiologic factors, and lower body negative pressure devices. Though human beings acclimate to the space environment, questions concerning the immediate and long-term aspects of spaceflight need to be answered for adequate planning of extended space missions.
Maron, Bradley A
2014-12-01
Despite the importance of preserved right ventricular structure and function with respect to outcome across the spectrum of lung, cardiac, and pulmonary vascular diseases, only recently have organized efforts developed to consider the pulmonary vascular-right ventricular apparatus as a specific unit within the larger context of cardiopulmonary pathophysiology. The Third International Right Heart Failure Summit (Boston, MA) was a multidisciplinary event dedicated to promoting a dialogue about the scientific and clinical basis of right heart disease. The current review provides a synopsis of key discussions presented during the section of the summit titled "Emerging Hemodynamic Signatures of the Right Heart." Specifically, topics emphasized in this element of the symposium included (1) the effects of pulmonary vascular dysfunction at rest or provoked by exercise on the right ventricular pressure-volume relationship, (2) the role of pressure-volume loop analysis as a method to characterize right ventricular inefficiency and predict right heart failure, and (3) the importance of a systems biology approach to identifying novel factors that contribute to pathophenotypes associated with pulmonary arterial hypertension and/or right ventricular dysfunction. Collectively, these concepts frame a forward-thinking paradigm shift in the approach to right heart disease by emphasizing factors that regulate the transition from adaptive to maladaptive right ventricular-pulmonary vascular (patho)physiology.
Iseler, Jackeline; Fox, John; Wierenga, Kelly
2018-06-01
The 30-day readmission rate for patients with a left ventricular assist device implantation at a large, urban, Midwest hospital system (from October 2013 to September 2014) was estimated at 32.1%. Readmission rates were a concern at this facility. Review of the readmissions, change in practice, and home expectations of patients and families have identified an opportunity to improve the transitions of care for this left ventricular assist device (LVAD) program. Therefore, the purpose of this project was to evaluate the effectiveness and feasibility of a transitional care model (TCM) for care of patients with left ventricular devices. Ten patients were enrolled in the pilot that was implemented in June 2015. A transitional care nurse trained to support patients with ventricular assist devices was used to facilitate patient flow. The goal was to create an individualized plan for the development or improvement of self-management skills to decrease readmission rates. The transitional care nurse collaborated with the ventricular device team. The 30-day readmission rate during the pilot was 14.3% compared to the previous annual overall rate of 42.6%. Based on these results, further research is recommended into interventions consistent with the TCM to advance care coordination and to facilitate care transition in the this fragile patient population.
Liakopoulos, Oliver J; Ho, Jonathan K; Yezbick, Aaron B; Sanchez, Elizabeth; Singh, Vivek; Mahajan, Aman
2010-11-01
Augmentation of coronary perfusion may improve right ventricular (RV) failure following acute increases of RV afterload. We investigated whether intra-aortic balloon counterpulsation (IABP) can improve cardiac function by enhancing myocardial perfusion and reversing compromised biventricular interactions using a model of acute pressure overload. In 10 anesthetized pigs, RV failure was induced by pulmonary artery constriction and systemic hypertension strategies with IABP, phenylephrine (PE), or the combination of both were tested. Systemic and ventricular hemodynamics [cardiac index(CI), ventricular pressures, coronary driving pressures (CDP)] were measured and echocardiography was used to assess tricuspid valve regurgitation, septal positioning (eccentricity index (ECI)), and changes in ventricular and septal dimensions and function [myocardial performance index (MPI), peak longitudinal strain]. Pulmonary artery constriction resulted in doubling of RV systolic pressure (54 ± 4mm Hg), RV distension, severe TR (4+) with decreased RV function (strain: -33%; MPI: +56%), septal flattening (Wt%: -35%) and leftward septal shift (ECI:1.36), resulting in global hemodynamic deterioration (CI: -51%; SvO(2): -26%), and impaired CDP (-30%; P<0.05). IABP support alone failed to improve RV function despite higher CDP (+33%; P<0.05). Systemic hypertension by PE improved CDP (+70%), RV function (strain: +22%; MPI: -21%), septal positioning (ECI:1.12) and minimized TR, but LV dysfunction (strain: -25%; MPI: +31%) occurred after LV afterloading (P<0.05). With IABP, less PE (-41%) was needed to maintain hypertension and CDP was further augmented (+25%). IABP resulted in LV unloading and restored LV function, and increased CI (+46%) and SvO(2) (+29%; P<0.05). IABP with minimal vasopressors augments myocardial perfusion pressure and optimizes RV function after pressure-induced failure. Copyright © 2010 Elsevier Inc. All rights reserved.
Overview of adult congenital heart transplants
Morales, David
2018-01-01
Transplantation for adult patients with congenital heart disease (ACHD) is a growing clinical endeavor in the transplant community. Understanding the results and defining potential high-risk patient subsets will allow optimization of patient outcomes. This review summarizes the scope of ACHD transplantation, the mechanisms of late ventricular dysfunction, the ACHD population at risk of developing heart failure, the indications and potential contraindications for transplant, surgical considerations, and post-transplant outcomes. The findings reveal that 3.3% of adult heart transplants occur in ACHD patients. The potential mechanisms for the development of late ventricular dysfunction include a morphologic systemic right ventricle, altered coronary perfusion, and ventricular noncompaction. The indications for transplant in ACHD patients include systemic ventricular failure refractory medical therapy, Fontan patients failing from chronic passive pulmonary circulation, and progressive cyanosis leading to functional decline. Transplantation in ACHD patients can be quite complex and may require extensive reconstruction of the branch pulmonary arteries, systemic veins, or the aorta. Vasoplegia, bleeding, and graft right ventricular dysfunction can complicate the immediate post-transplant period. The post-transplant operative mortality ranges between 14% and 39%. The majority of early mortality occurs in ACHD patients with univentricular congenital heart disease. However, there has been improvement in operative survival in more contemporary studies. In conclusion, the experience with cardiac transplantation for ACHD patients with end-stage heart failure is growing, and high-risk patient subsets have been defined. Significant strides have been made in developing evidence-based guidelines of indications for transplant, and the intraoperative management of complex reconstruction has evolved. With proper patient selection, more aggressive use of mechanical circulatory support, and earlier referral of patients with failing Fontan physiology, outcomes should continue to improve. PMID:29492392
Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo
2010-01-01
The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.
High Spatial Resolution Multi-Organ Finite Element Modeling of Ventricular-Arterial Coupling
Shavik, Sheikh Mohammad; Jiang, Zhenxiang; Baek, Seungik; Lee, Lik Chuan
2018-01-01
While it has long been recognized that bi-directional interaction between the heart and the vasculature plays a critical role in the proper functioning of the cardiovascular system, a comprehensive study of this interaction has largely been hampered by a lack of modeling framework capable of simultaneously accommodating high-resolution models of the heart and vasculature. Here, we address this issue and present a computational modeling framework that couples finite element (FE) models of the left ventricle (LV) and aorta to elucidate ventricular—arterial coupling in the systemic circulation. We show in a baseline simulation that the framework predictions of (1) LV pressure—volume loop, (2) aorta pressure—diameter relationship, (3) pressure—waveforms of the aorta, LV, and left atrium (LA) over the cardiac cycle are consistent with the physiological measurements found in healthy human. To develop insights of ventricular-arterial interactions, the framework was then used to simulate how alterations in the geometrical or, material parameter(s) of the aorta affect the LV and vice versa. We show that changing the geometry and microstructure of the aorta model in the framework led to changes in the functional behaviors of both LV and aorta that are consistent with experimental observations. On the other hand, changing contractility and passive stiffness of the LV model in the framework also produced changes in both the LV and aorta functional behaviors that are consistent with physiology principles. PMID:29551977
Carrasco, H A; Vicuña, A V; Molina, C; Landaeta, A; Reynosa, J; Vicuña, N; Fuenmayor, A; López, F
1985-12-01
Low-dose (7 mg/kg per day) disopyramide administration to arrhythmic chagasic patients decreased the frequency of ventricular extrasystoles in 4 of 17 patients (24%) and suppressed most complex ventricular arrhythmias in 12 of 15 patients (80%). This assessment was made from 72-h continuous Holter monitoring recorded during the course of this double blind, placebo-controlled randomized crossover study. Seven patients (41%) complained of anticholinergic side effects, but no contractile or conduction system depression was seen. Amiodarone (200 mg) given on a single blind, placebo-controlled basis to 9 of these patients reduced the frequency of ventricular extrasystoles in 6 of 9 patients (67%) and suppressed complex ventricular ectopy in 6 of 7 patients (85%). One patient was unable to tolerate this drug (11%). Both drugs seemed less effective in controlling supraventricular arrhythmias, although disopyramide eliminated paroxysms of supraventricular tachycardia in 9 of 13 (69%) and amiodarone in all 6 patients with this arrhythmia. Amiodarone appears to be a better antiarrhythmic drug for chagasic patients, due to its greater effectiveness and lower incidence of side effects.
Speckle tracking evaluation of right ventricular functions in children with sickle cell disease.
Tolba, Osama Abd Rab Elrasol; El-Shanshory, Mohamed Ramadan; El-Gamasy, Mohamed Abd Elaziz; El-Shehaby, Walid Ahmed
2017-01-01
Cardiac dysfunction is a risk factor for death in patients with sickle cell disease (SCD). Aim of the work is to evaluate the right ventricular systolic and diastolic functions by tissue Doppler and speckling tracking imaging in children with SCD. Thirty children with SCD and thirty controls were subjected to clinical, laboratory evaluations, and echocardiographic study using GE Vivid 7 (GE Medical System, Horten, Norway with a 3.5-MHz multifrequency transducer) including; Two-dimensional and tissue Doppler echocardiographic study (lateral tricuspid valve annulus peak E' velocity, lateral tricuspid valve annulus peak A' velocity, E'/A' ratio, isovolumetric relaxation time, lateral tricuspid valve annulus S' and septal S' waves and peak longitudinal systolic strain [PLSS] and time to PLSS) were done in six right ventricular segments. There was a significant decrease in right ventricular systolic and diastolic function in patients group when compared to controls. Children with SCD have impaired right ventricular systolic and diastolic functions when compared to healthy children with early evaluation of the systolic dysfunction by speckle tracking imaging technique.
Aldosterone is associated with left ventricular hypertrophy in hemodialysis patients.
Feniman De Stefano, Greicy Mara Mengue; Zanati-Basan, Silméia Garcia; De Stefano, Laercio Martins; Silva, Viviana Rugolo Oliveira E; Xavier, Patrícia Santi; Barretti, Pasqual; da Silva Franco, Roberto Jorge; Caramori, Jacqueline Costa Teixeira; Martin, Luis Cuadrado
2016-10-01
Patients with chronic kidney disease present a higher degree of left ventricular hypertrophy than expected for hypertension levels. In chronic kidney disease the plot between the quotient extracellular water/total body water and aldosterone is shifted up and to the right. There are few studies that verified the role of aldosterone in cardiac remodeling in this set of patients. The aim of this study was to evaluate the relationship between serum aldosterone and left ventricular mass index in patients with chronic kidney disease on hemodialysis. The patients were submitted to clinical and laboratory evaluation, bioelectrical impedance, echocardiography and ambulatory blood pressure monitoring. The 27 patients included were divided into two groups according to aldosterone level and compared with each other. The group of patients with higher aldosterone levels had higher left ventricular mass index. These groups were heterogeneous with regard to ambulatory systolic blood pressure, body mass index, and aldosterone levels and homogeneous with regard to the quotient extracellular water/total body water, renin-angiotensin-aldosterone system blockers, beta blocker use and other clinical characteristics. The association between aldosterone levels and left ventricular mass index was adjusted to confounding variables by a multiple linear regression analysis in which aldosterone was independently associated with left ventricular mass index. The data presented are consistent with a pathogenic role of aldosterone in left ventricular hypertrophy in patients with chronic kidney dialysis in dialysis patients. ClinicalTrials.gov identifier: NCT01128101. © The Author(s), 2016.
Implantable cardioverter defibrillator does not cure the heart.
Sławuta, Agnieszka; Boczar, Krzysztof; Ząbek, Andrzej; Gajek, Jacek; Lelakowski, Jacek; Vijayaraman, Pugazhendhi; Małecka, Barbara
2018-01-23
A man with non-ischemic cardiomyopathy, EF 22%, permanent AF and ICD was admitted for elective device replacement. The need for the optimization of the ventricular rate and avoidance of right ventricular pacing made it necessary to up-grade the existing pacing system using direct His bundle pacing and dual chamber ICD. This enabled the regularization of ventricular rate, avoiding the RV pacing and optimize the beta-blocker dose. The one month follow-up already showed reduction in left ventricle diameter, improvement in ejection fraction, NYHA class decrease to II. The His bundle pacing enabled the optimal treatment of the patient resulting in excellent clinical improvement.
Automatically measuring brain ventricular volume within PACS using artificial intelligence.
Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon
2018-01-01
The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.
Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.
Cysyk, Joshua; Newswanger, Ray; Popjes, Eric; Pae, Walter; Jhun, Choon-Sik; Izer, Jenelle; Weiss, William; Rosenberg, Gerson
2018-05-10
The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.
Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia.
Hoover, D B; Isaacs, E R; Jacques, F; Hoard, J L; Pagé, P; Armour, J A
2009-12-15
Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.
Berg, Robert A
2004-09-01
To evaluate published data regarding the treatment of prolonged pediatric defibrillation, with special emphasis on the use of attenuated adult biphasic shocks for pediatric defibrillation. Review relevant human and animal literature. Rhythm analysis algorithms from two manufacturers of automated external defibrillators can accurately distinguish shockable from nonshockable rhythms in children. Theoretical considerations and transthoracic impedance data from animals and children suggest that pediatric defibrillation doses should not necessarily vary in a simple weight-based manner. Two piglet studies have established that an attenuated adult biphasic dosage can be successfully used for 3.5- to 24-kg animals in ventricular fibrillation. One study established that the attenuated adult biphasic dosage was at least as safe and effective as the standard monophasic weight-based dosing. This review supports the American Heart Association's new guidelines for pediatric automated external defibrillator usage: "Automated external defibrillators may be used for children 1 to 8 yrs of age who have no signs of circulation. Ideally the device should deliver a pediatric dose. The arrhythmia detection system used in the device should demonstrate high specificity for pediatric shockable rhythms, i.e., it will not recommend delivery of a shock for nonshockable rhythms."
Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y
2007-03-13
Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.
Difference in propagation of Ca2+ release in atrial and ventricular myocytes.
Tanaami, Takeo; Ishida, Hideyuki; Seguchi, Hidetaka; Hirota, Yuki; Kadono, Toshie; Genka, Chokoh; Nakazawa, Hiroe; Barry, William H
2005-04-01
Intracellular [Ca2+] ([Ca2+]i) was imaged in atrial and ventricular rat myocytes by means of a high-speed Nipkow confocal microscope. Atrial myocytes with an absent t-tubule system on 8-di- ANEPPS staining showed an initial rise in Ca2+ at the periphery of the cell, which propagated to the interior of the cell. Ventricular myocytes showed a uniform rise in [Ca2+]i after electrical stimulation, consistent with a prominent t-tubular network. In atrial myocytes, there was a much shorter time between the peak of the [Ca2+]i transient and the peak contraction as compared to ventricular myocytes. A regional release of Ca2+ induced by an exposure of one end of the myocyte to caffeine with a rapid solution switcher resulted in a uniform propagation of Ca2+ down the length of the cell in atrial myocytes, but we found no propagation in ventricular myocytes. A staining with rhodamine 123 indicated a much greater density of mitochondria in ventricular myocytes than in atrial myocytes. Thus the atrial myocytes display a lack of "local control" of Ca2+ release, with propagation after the Ca2+ release at the periphery induced by stimulation or at one end of the cell induced by exposure to caffeine. Ventricular myocytes showed the presence of local control, as indicated by an absence of the propagation of a local caffeine-induced Ca2+ transient. We suggest that this finding, as well as a reduced delay between the peak of the [Ca2+]i transient and the peak shortening in atrial myocytes, could be due in part to reduced Ca2+ buffering provided by mitochondria in atrial myocytes as opposed to ventricular myocytes.
Mansfield, Robert T; Lin, Kimberly Y; Zaoutis, Theoklis; Mott, Antonio R; Mohamad, Zeinab; Luan, Xianqun; Kaufman, Beth D; Ravishankar, Chitra; Gaynor, J William; Shaddy, Robert E; Rossano, Joseph W
2015-07-01
The use of ventricular assist devices has increased dramatically in adult heart failure patients. However, the overall use, outcome, comorbidities, and resource utilization of ventricular assist devices in pediatric patients have not been well described. We sought to demonstrate that the use of ventricular assist devices in pediatric patients has increased over time and that mortality has decreased. A retrospective study of the Pediatric Health Information System database was performed for patients 20 years old or younger undergoing ventricular assist device placement from 2000 to 2010. None. Four hundred seventy-five pediatric patients were implanted with ventricular assist devices during the study period: 69 in 2000-2003 (era 1), 135 in 2004-2006 (era 2), and 271 in 2007-2010 (era 3). Median age at ventricular assist device implantation was 6.0 years (interquartile range, 0.5-13.8), and the proportion of children who were 1-12 years old increased from 29% in era 1 to 47% in era 3 (p = 0.002). The majority of patients had a diagnosis of cardiomyopathy; this increased from 52% in era 1 to 72% in era 3 (p = 0.003). Comorbidities included arrhythmias (48%), pulmonary hypertension (16%), acute renal failure (34%), cerebrovascular disease (28%), and sepsis/systemic inflammatory response syndrome (34%). Two hundred forty-seven patients (52%) underwent heart transplantation and 327 (69%) survived to hospital discharge. Hospital mortality decreased from 42% in era 1 to 25% in era 3 (p = 0.004). Median hospital length of stay increased (37 d [interquartile range, 12-64 d] in era 1 vs 69 d [interquartile range, 35-130] in era 3; p < 0.001) and median adjusted hospital charges increased ($630,630 [interquartile range, $227,052-$853,318] in era 1 vs $1,577,983 [interquartile range, $874,463-$2,280,435] in era 3; p < 0.001). Factors associated with increased mortality include age less than 1 year (odds ratio, 2.04; 95% CI, 1.01-3.83), acute renal failure (odds ratio, 2.1; 95% CI, 1.26-3.65), cerebrovascular disease (odds ratio, 2.1; 95% CI, 1.25-3.62), and extracorporeal membrane oxygenation (odds ratio, 3.16; 95% CI, 1.79-5.60). Ventricular assist device placement in era 3 (odds ratio, 0.3; 95% CI, 0.15-0.57) and a diagnosis of cardiomyopathy (odds ratio, 0.5; 95% CI, 0.32-0.84), were associated with decreased mortality. Large-volume centers had lower mortality (odds ratio, 0.55; 95% CI, 0.34-0.88), lower use of extracorporeal membrane oxygenation, and higher charges. The use of ventricular assist devices and survival after ventricular assist device placement in pediatric patients have increased over time, with a concomitant increase in resource utilization. Age under 1 year, certain noncardiac morbidities, and the use of extracorporeal membrane oxygenation are associated with worse outcomes. Lower mortality was seen at larger volume ventricular assist device centers.
A multiport MR-compatible neuroendoscope: spanning the gap between rigid and flexible scopes
Manjila, Sunil; Mencattelli, Margherita; Rosa, Benoit; Price, Karl; Fagogenis, Georgios; Dupont, Pierre E.
2017-01-01
OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments—a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)—is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope’s ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device’s utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy. PMID:27581309
Molenaar, Peter; Christ, Torsten; Hussain, Rizwan I; Engel, Andreas; Berk, Emanuel; Gillette, Katherine T; Chen, Lu; Galindo-Tovar, Alejandro; Krobert, Kurt A; Ravens, Ursula; Levy, Finn Olav; Kaumann, Alberto J
2013-01-01
Background and Purpose PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3–1 μM) or PDE4 inhibitor rolipram (1–10 μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental Approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1 adrenoceptors (β2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2 adrenoceptors (β1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key Results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and Implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1 and β2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle. Linked Article This article is commented on by Eschenhagen, pp 524–527 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12168 PMID:23489141
Ouwerkerk, Ronald; Bottomley, Paul A.; Solaiyappan, Meiyappan; Spooner, Amy E.; Tomaselli, Gordon F.; Wu, Katherine C.; Weiss, Robert G.
2008-01-01
Purpose: To prospectively determine whether the absolute tissue sodium concentration (TSC) increases in myocardial infarctions (MIs) in humans and whether TSC is related to infarct size, infarct age, ventricular dysfunction, and/or electrophysiologic inducibility of ventricular arrhythmias. Materials and Methods: Delayed contrast material–enhanced 1.5-T hydrogen 1 (1H) magnetic resonance (MR) imaging was used to measure the size and location of nonacute MIs in 20 patients (18 men, two women; mean age, 63 years ± 9 [standard deviation]; age range, 48–82 years) examined at least 90 days after MI. End-systolic and end-diastolic volumes, ejection fraction, and left ventricle (LV) mass were measured with cine MR imaging. The TSC in normal, infarcted, and adjacent myocardial tissue was measured on sodium 23 (23Na) MR images coregistered with delayed contrast-enhanced 1H MR images. Programmed electric stimulation to induce monomorphic ventricular tachycardia (MVT) was used to assess arrhythmic potential, and myocardial TSC was compared between the inducible MVT and noninducible MVT patient groups. Results: The mean TSC for MIs (59 μmol/g wet weight ± 10) was 30% higher than that for noninfarcted (remote) LV regions (45 μmol/g wet weight ± 5, P < .001) and that for healthy control subjects, and TSC did not correlate with infarct age or functional and morphologic indices. The mean TSC for tissue adjacent to the MI (50 μmol/g wet weight ± 6) was intermediate between that for the MI and that for remote regions. The elevated TSC measured in the MI at 23Na MR imaging lacked sufficient contrast and spatial resolution for routine visualization of MI. Cardiac TSC did not enable differentiation between patients in whom MVT was inducible and those in whom it was not. Conclusion: Absolute TSC is measurable with 23Na MR imaging and is significantly elevated in human MI; however, TSC increase is not related to infarct age, infarct size, or global ventricular function. In regions adjacent to the MI, TSC is slightly increased but not to levels in the MI. © RSNA, 2008 PMID:18566171
Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.
Rhee, Siyeon; Chung, Jae I; King, Devin A; D'amato, Gaetano; Paik, David T; Duan, Anna; Chang, Andrew; Nagelberg, Danielle; Sharma, Bikram; Jeong, Youngtae; Diehn, Maximilian; Wu, Joseph C; Morrison, Ashby J; Red-Horse, Kristy
2018-01-25
During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.
NASA Astrophysics Data System (ADS)
Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.
2013-11-01
In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.
Dallaglio, Paolo Domenico; Anguera, Ignasi; Martínez Ferrer, José B; Pérez, Luisa; Viñolas, Xavier; Porres, Jose Manuel; Fontenla, Adolfo; Alzueta, Javier; Martínez, Juan Gabriel; Rodríguez, Aníbal; Basterra, Nuria; Sabaté, Xavier
2017-12-11
Fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator are susceptible to antitachycardia pacing (ATP) termination. Some manufacturers allow programming 2 ATP bursts: before charging (BC) and during (DC) charging. The aim of this study was to describe the safety and effectiveness of ATP BC and DC for fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator in daily clinical practice. Data proceeded from the multicenter UMBRELLA trial, including implantable cardioverter-defibrillator patients followed up by the CareLink monitoring system. Fast ventricular tachycardias in the ventricular fibrillation zone until a cycle length of 200ms with ATP BC and/or ATP DC were included. We reviewed 542 episodes in 240 patients. Two ATP bursts (BC/DC) were programmed in 291 episodes (53.7%, 87 patients), while 251 episodes (46.3%, 153 patients) had 1 ATP burst only DC. The number of episodes terminated by 1 ATP DC was 139, representing 55.4% effectiveness (generalized estimating equation-adjusted 60.4%). There were 256 episodes terminated by 1 or 2 ATP (BC/DC), representing 88% effectiveness (generalized estimating equation-adjusted 79.3%); the OR for ATP effectiveness BC/DC vs DC was 2.5, 95%CI, 1.5-4.1; P <.001. Shocked episodes were 112 (45%) for ATP DC vs 35 (12%) for ATP BC/DC, representing an absolute reduction of 73%. The mean shocked episode duration was 16seconds for ATP DC vs 19seconds for ATP BC/DC (P=.07). The ATP DC in the ventricular fibrillation zone for fast ventricular tachycardia is moderately effective. Adding an ATP burst BC increases the overall effectiveness, reduces the need for shocks, and does not prolong episode duration. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Human responses to electricity: A literature review
NASA Technical Reports Server (NTRS)
Turner, H. S.
1972-01-01
An extensive review of literature on research concerning biomedical sensors is presented for establishing standards for current limiting devices. The physiological and pathological responses of the human, when exposed to electricity are reported including the thresholds: for perception of electricity, pain by electric current, induction of muscular contraction by electric shock, and ventricular fibrillation. The passive electrical properties of cells and tissues are also reported.
Physiological Characterization of the SynCardia Total Artificial Heart in a Mock Circulation System
Crosby, Jessica R.; DeCook, Katrina J.; Tran, Phat L.; Smith, Richard G.; Larson, Douglas F.; Khalpey, Zain I.; Burkhoff, Daniel; Slepian, Marvin J.
2014-01-01
The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving bi-ventricular replacement system for a wide variety of patients with end-stage heart failure. While the clinical performance of the TAH is established, modern physiologic characterization, in terms of elastance behavior and pressure-volume characterization has not been defined. Herein we examine the TAH in terms of elastance using a non-ejecting left-ventricle, and then characterize the pressure-volume relationship of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Further, we show that the TAH has a pressure-volume relationship behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload, however this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared to the human heart. PMID:25551416
Garcia, M J; Firstenberg, M S; Greenberg, N L; Smedira, N; Rodriguez, L; Prior, D; Thomas, J D
2001-02-01
Shortened early transmitral deceleration times (E(DT)) have been qualitatively associated with increased filling pressure and reduced survival in patients with cardiac disease and increased left ventricular operating stiffness (K(LV)). An equation relating K(LV) quantitatively to E(DT) has previously been described in a canine model but not in humans. During several varying hemodynamic conditions, we studied 18 patients undergoing open-heart surgery. Transesophageal echocardiographic two-dimensional volumes and Doppler flows were combined with high-fidelity left atrial (LA) and left ventricular (LV) pressures to determine K(LV). From digitized Doppler recordings, E(DT) was measured and compared against changes in LV and LA diastolic volumes and pressures. E(DT) (180 +/- 39 ms) was inversely associated with LV end-diastolic pressures (r = -0.56, P = 0.004) and net atrioventricular stiffness (r = -0.55, P = 0.006) but had its strongest association with K(LV) (r = -0.81, P < 0.001). K(LV) was predicted assuming a nonrestrictive orifice (K(nonrest)) from E(DT) as K(nonrest) = (0.07/E(DT))(2) with K(LV) = 1.01 K(nonrest) - 0.02; r = 0.86, P < 0.001, DeltaK (K(nonrest) - K(LV)) = 0.02 +/- 0.06 mm Hg/ml. In adults with cardiac disease, E(DT) provides an accurate estimate of LV operating stiffness and supports its application as a practical noninvasive index in the evaluation of diastolic function.
NASA Technical Reports Server (NTRS)
Garcia, M. J.; Firstenberg, M. S.; Greenberg, N. L.; Smedira, N.; Rodriguez, L.; Prior, D.; Thomas, J. D.
2001-01-01
Shortened early transmitral deceleration times (E(DT)) have been qualitatively associated with increased filling pressure and reduced survival in patients with cardiac disease and increased left ventricular operating stiffness (K(LV)). An equation relating K(LV) quantitatively to E(DT) has previously been described in a canine model but not in humans. During several varying hemodynamic conditions, we studied 18 patients undergoing open-heart surgery. Transesophageal echocardiographic two-dimensional volumes and Doppler flows were combined with high-fidelity left atrial (LA) and left ventricular (LV) pressures to determine K(LV). From digitized Doppler recordings, E(DT) was measured and compared against changes in LV and LA diastolic volumes and pressures. E(DT) (180 +/- 39 ms) was inversely associated with LV end-diastolic pressures (r = -0.56, P = 0.004) and net atrioventricular stiffness (r = -0.55, P = 0.006) but had its strongest association with K(LV) (r = -0.81, P < 0.001). K(LV) was predicted assuming a nonrestrictive orifice (K(nonrest)) from E(DT) as K(nonrest) = (0.07/E(DT))(2) with K(LV) = 1.01 K(nonrest) - 0.02; r = 0.86, P < 0.001, DeltaK (K(nonrest) - K(LV)) = 0.02 +/- 0.06 mm Hg/ml. In adults with cardiac disease, E(DT) provides an accurate estimate of LV operating stiffness and supports its application as a practical noninvasive index in the evaluation of diastolic function.
Li, Y Y; McTiernan, C F; Feldman, A M
2000-05-01
Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.
Patient-specific models of cardiac biomechanics
NASA Astrophysics Data System (ADS)
Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.
2013-07-01
Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.
Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.
Bettiol, Esther; Sartiani, Laura; Chicha, Laurie; Krause, Karl Heinz; Cerbai, Elisabetta; Jaconi, Marisa E
2007-10-01
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.
English, Brett A; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M; Lund, David; Wright, Jane; Keller, Nancy R; Louderback, Katherine M; Robertson, David; Blakely, Randy D
2010-09-01
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT(-/-)) mice exhibit early postnatal lethality, CHT heterozygous (CHT(+/-)) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT(+/-) mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT(+/-) mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT(+/-) mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease.
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
NASA Technical Reports Server (NTRS)
Ritman, E. L.; Sturm, R. E.; Wood, E. H.
1973-01-01
An operator interactive video system for the measurement of roentgen angiographically outlined structures is described. Left ventricular volume and three-dimensional shapes are calculated from up to 200 pairs of diameters measured from ventriculograms at the rate of 60 pairs of biplane images per second. The accuracy and reproducibility of volumes calculated by the system were established by analysis of roentgenograms of inanimate objects of known volume and by comparison of left ventricular stroke volumes calculated by the system with the stroke volumes calculated by an indicator-dilution technique and an aortic root electromagnetic flowmeter. Computer-generated display of the large amounts of data obtained by the videometry system is described.
Impact of Ancillary Subunits on Ventricular Repolarization
Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.
2007-01-01
Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, e.g. KChIP2 and the epicardial-endocardial Ito current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium. PMID:17993327
Abramov, Dmitry; Haglund, Nicholas A; Di Salvo, Thomas G
2017-08-01
Although milrinone infusion is reported to benefit left ventricular function in chronic left heart failure, few insights exist regarding its effects on pulmonary circulation and right ventricular function. We retrospectively reviewed right heart catheterization data at baseline and during continuous infusion of milrinone in 69 patients with advanced heart failure and analyzed the effects on ventricular stroke work indices, pulmonary vascular resistance and pulmonary arterial compliance. Compared to baseline, milrinone infusion after a mean 58 ± 61 days improved mean left ventricular stroke work index (1540 ± 656 vs. 2079 ± 919 mmHg·mL/m 2 , p = 0.0007) to a much greater extent than right ventricular stroke work index (616 ± 346 vs. 654 ± 332, p = 0.053); however, patients with below median stroke work indices experienced a significant improvement in both left and right ventricular stroke work performance. Overall, milrinone reduced left and right ventricular filling pressures and pulmonary and systemic vascular resistance by approximately 20%. Despite an increase in pulmonary artery capacitance (2.3 ± 1.6 to 3.0 ± 2.0, p = 0.013) and a reduction in pulmonary vascular resistance (3.8 ± 2.3 to 3.0 ± 1.7 Wood units), milrinone did not reduce the transpulmonary gradient (13 ± 7 vs. 12 ± 6 mmHg, p = 0.252), the pulmonary artery pulse pressure (25 ± 10 vs. 24 ± 10, p = 0.64) or the pulmonary artery diastolic to pulmonary capillary wedge gradient (2.0 ± 6.5 vs. 2.4 ± 6.0, p = 0.353). Milrinone improved left ventricular stroke work indices to a greater extent than right ventricular stroke work indices and had beneficial effects on right ventricular net input impedance, predominantly via augmentation of left ventricular stroke volume and passive unloading of the pulmonary circuit. Patients who had the worst biventricular performance benefited the most from chronic milrinone infusion.
Childs, Charmaine; Shen, Liang
2015-06-23
Intraparenchymal, multimodality sensors are commonly used in the management of patients with severe traumatic brain injury (TBI). The 'gold standard', based on accuracy, reliability and cost for intracranial pressure (ICP) monitoring is within the cerebral ventricle (external strain gauge). There are no standards yet for intracerebral temperature monitoring and little is known of temperature differences between brain tissue and ventricle. The aim of the study therefore was to determine pressure and temperature differences at intraparenchymal and ventricular sites during five days of continuous neuromonitoring. Patients with severe TBI requiring emergency surgery. patients who required ICP monitoring were eligible for recruitment. Two intracerebral probe types were used: a) intraventricular, dual parameter sensor (measuring pressure, temperature) with inbuilt catheter for CSF drainage: b) multiparameter intraparenchymal sensor measuring pressure, temperature and oxygen partial pressure. All sensors were inserted during surgery and under aseptic conditions. Seventeen patients, 12 undergoing neurosurgery (decompressive craniectomy n = 8, craniotomy n = 4) aged 21-78 years were studied. Agreement of measures for 9540 brain tissue-ventricular temperature 'pairs' and 10,291 brain tissue-ventricular pressure 'pairs' were determined using mixed model to compare mean temperature and pressure for longitudinal data. There was no significant overall difference for mean temperature (p = 0.92) or mean pressure readings (p = 0.379) between tissue and ventricular sites. With 95.8 % of paired temperature readings within 2SD (-0.4 to 0.4 °C) differences in temperature between brain tissue and ventricle were clinically insignificant. For pressure, 93.5 % of readings pairs fell within the 2SD range (-9.4756 to 7.8112 mmHg). However, for individual patients, agreement for mean tissue-ventricular pressure differences was poor on occasions. There is good overall agreement between paired temperature measurements obtained from deep white matter and brain ventricle in patients with and without early neurosurgery. For paired ICP measurements, 93.5 % of readings were within 2SD of mean difference. Whilst the majority of paired readings were comparable (within 10 mmHg) clinically relevant tissue-ventricular dissociations were noted. Further work is required to unravel the events responsible for short intervals of pressure dissociation before tissue pressure readings can be definitively accepted as a reliable surrogate for ventricular pressure.
Kcne3 deletion initiates extracardiac arrhythmogenesis in mice
Hu, Zhaoyang; Crump, Shawn M.; Anand, Marie; Kant, Ritu; Levi, Roberto; Abbott, Geoffrey W.
2014-01-01
Mutations in the human KCNE3 potassium channel ancillary subunit gene are associated with life-threatening ventricular arrhythmias. Most genes underlying inherited cardiac arrhythmias, including KCNE3, are not exclusively expressed in the heart, suggesting potentially complex disease etiologies. Here we investigated mechanisms of KCNE3-linked arrhythmogenesis in Kcne3−/− mice using real-time qPCR, echo- and electrocardiography, ventricular myocyte patch-clamp, coronary artery ligation/reperfusion, blood analysis, cardiac synaptosome exocytosis, microarray and pathway analysis, and multitissue histology. Kcne3 transcript was undetectable in adult mouse atria, ventricles, and adrenal glands, but Kcne3−/− mice exhibited 2.3-fold elevated serum aldosterone (P=0.003) and differentially expressed gene networks consistent with an adrenal-targeted autoimmune response. Furthermore, 8/8 Kcne3−/− mice vs. 0/8 Kcne3+/+ mice exhibited an activated-lymphocyte adrenal infiltration (P=0.0002). Kcne3 deletion also caused aldosterone-dependent ventricular repolarization delay (19.6% mean QTc prolongation in females; P<0.05) and aldosterone-dependent predisposition to postischemia arrhythmogenesis. Thus, 5/11 Kcne3−/− mice vs. 0/10 Kcne3+/+ mice exhibited sustained ventricular tachycardia during reperfusion (P<0.05). Kcne3 deletion is therefore arrhythmogenic by a novel mechanism in which secondary hyperaldosteronism, associated with an adrenal-specific lymphocyte infiltration, impairs ventricular repolarization. The findings highlight the importance of considering extracardiac pathogenesis when investigating arrhythmogenic mechanisms, even in inherited, monogenic channelopathies.—Hu, Z., Crump, S. M., Anand, M., Kant, R., Levi, R., Abbott, G. W. Kcne3 deletion initiates extracardiac arrhythmogenesis in mice. PMID:24225147
Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe
2015-01-01
New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.
The New Concept of Univentricular Heart
Frescura, Carla; Thiene, Gaetano
2014-01-01
The concept of univentricular heart moved from hearts with only one ventricle connected with atria [double inlet ventricle or absent atrioventricular (AV) connection] to hearts not amenable to biventricular repair, namely hearts with two ventricles unable to sustain separately pulmonary and systemic circulations in sequence. In the latter definition, even hearts with one hypoplastic ventricle are considered “functional” univentricular hearts. They include pulmonary/aortic atresia or severe stenosis with hypoplastic ventricle, and rare conditions like huge intramural cardiac tumors and Ebstein anomaly with extreme atrialization of right ventricular cavity. In this setting, the surgical repair is univentricular with “Fontan” operation, bypassing the ventricular mass. In other words, functionally univentricular heart is a condition in which, after surgery, only one ventricle sustain systemic circulation. Univentricular hearts (double inlet or absent AV connection) almost invariably show two ventricular chambers, one main and one accessory, which lacks an inlet portion. The latter is located posteriorly when morphologically left and anteriorly when morphologically right. As far as double inlet left ventricle, this is usually associated with discordant ventriculo-arterial (VA) connection (transposition of the great arteries) and all the blood flow to the aorta, which takes origin from the hypoplastic anterior right ventricle, is ventricular septal defect (bulbo-ventricular foramen) dependent. If restrictive, an aortic arch obstruction may be present. Double inlet left ventricle may be rarely associated with VA concordance (Holmes heart). As far as double inlet right ventricle with posterior hypoplastic left ventricular cavity, ventriculo-arterial connection is usually of double outlet type; thus the term double inlet–outlet right ventricle may be coined. Absent right or left AV connection may develop in the setting of both d- or l-loop, whatever the situs. In this condition, the contra-lateral patent AV valve may be either mitral or tricuspid in terms of morphology and the underlying ventricle (main chamber) either morphologically left or right. Establishing the loop, whatever right or left (also called right or left ventricular topology), is a fundamental step in the segmental-sequential analysis of congenital heart disease. PMID:25072035
Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín
2015-01-01
It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. PMID:25994124
Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín
2015-06-01
It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. © 2015 Anatomical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.
1987-12-01
In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4more » hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.« less
Vulnerability to ventricular fibrillation
NASA Astrophysics Data System (ADS)
Janse, Michiel J.
1998-03-01
One of the factors that favors the development of ventricular fibrillation is an increase in the dispersion of refractoriness. Experiments will be described in which an increase in dispersion in the recovery of excitability was determined during brief episodes of enhanced sympathetic nerve activity, known to increase the risk of fibrillation. Whereas in the normal heart ventricular fibrillation can be induced by a strong electrical shock, a premature stimulus of moderate intensity only induces fibrillation in the presence of regional ischemia, which greatly increases the dispersion of refractoriness. One factor that is of importance for the transition of reentrant ventricular tachycardia to ventricular fibrillation during acute regional ischemia is the subendocardial Purkinje system. After selective destruction of the Purkinje network by lugol, reentrant tachycardias still develop in the ischemic region, but they do not degenerate into fibrillation. Finally, attempts were made to determine the minimal mass of thin ventricular myocardium required to sustain fibrillation induced by burst pacing. This was done by freezing of subendocardial and midmural layers. The rim of surviving epicardial muscle had to be larger than 20 g. Extracellular electrograms during fibrillation in both the intact and the "frozen" left ventricle were indistinguishable, but activation patterns were markedly different. In the intact ventricle epicardial activation was compatible with multiple wavelet reentry, in the "frozen" heart a single, or at most two wandering reentrant waves were seen.
Kim, Gi Beom; Song, Mi Kyoung; Bae, Eun Jung; Park, Eun-Ah; Lee, Whal; Lim, Hong-Gook; Kim, Yong Jin
2018-06-01
Self-expandable percutaneous pulmonary valve implantation (PPVI) for native right ventricular outflow tract lesions is still in the clinical trial phase. The aim of this study is to present the result of feasibility study of a novel self-expandable knitted nitinol wire stent mounted with a treated trileaflet α-Gal-free porcine pericardial valve for PPVI. A feasibility study using Pulsta valve (TaeWoong Medical Co, Gyeonggi-do, South Korea) was designed for patients with severe pulmonary regurgitation in the native right ventricular outflow tract, and 6-month follow-up outcomes were reviewed. Ten tetralogy of Fallot patients were enrolled. Before PPVI, severe pulmonary regurgitation (mean pulmonary regurgitation fraction, 45.5%±7.2%; range, 34.9%-56%) and enlarged right ventricular volume (mean indexed right ventricular end-diastolic volume, 176.7±14.3 mL/m 2 ; range, 158.9-205.9 mL/m 2 ) were present. The median age at PPVI was 21.7±6.5 years (range, 13-36 years). Five patients were successfully implanted with 28 mm and the other 5 with 26 mm valves loaded on the 18F delivery cable. No significant periprocedural complications were noted in any patient. At the 6-month follow-up, indexed right ventricular end-diastolic volume was dramatically decreased to 126.3±20.3 mL/m 2 (range, 99-164.2 mL/m 2 ), and the mean value of peak instantaneous pressure gradient between the right ventricle and the pulmonary artery decreased from 6.8±3.5 mm Hg (range, 2-12 mm Hg) before PPVI to 5.7±6.7 mm Hg (range, 2-12 mm Hg) without significant pulmonary regurgitation. There was no adverse event associated with the valve. A feasibility study of the Pulsta valve for native right ventricular outflow tract lesions was completed successfully with planned Pulsta valve implantation and demonstrated good short-term effectiveness without serious adverse events. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02555319. © 2018 American Heart Association, Inc.
Thibault, Bernard; Roy, Denis; Guerra, Peter G; Macle, Laurent; Dubuc, Marc; Gagné, Pierre; Greiss, Isabelle; Novak, Paul; Furlani, Aldo; Talajic, Mario
2005-07-01
Cardiac resynchronization therapy (CRT) has been shown to improve symptoms of patients with moderate to severe heart failure. Optimal CRT involves biventricular or left ventricular (LV) stimulation alone, atrio-ventricular (AV) delay optimization, and possibly interventricular timing adjustment. Recently, anodal capture of the right ventricle (RV) has been described for patients with CRT-pacemakers. It is unknown whether the same phenomenon exists in CRT systems associated with defibrillators (CRT-ICD). The RV leads used in these systems are different from pacemaker leads: they have a larger diameter and shocking coils, which may affect the occurrence of anodal capture. We looked for anodal RV capture during LV stimulation in 11 consecutive patients who received a CRT-ICD system with RV leads with a true bipolar design. Fifteen patients who had RV leads with an integrated design were used as controls. Anodal RV and LV thresholds were determined at pulse width (pw) durations of 0.2, 0.5, and 1.0 ms. RV anodal capture during LV pacing was found in 11/11 patients at some output with true bipolar RV leads versus 0/15 patients with RV leads with an integrated bipolar design. Anodal RV capture threshold was more affected by changes in pw duration than LV capture threshold. In CRT-ICD systems, RV leads with a true bipolar design with the proximal ring also used as the anode for LV pacing are associated with a high incidence of anodal RV capture during LV pacing. This may affect the clinical response to alternative resynchronization methods using single LV stimulation or interventricular delay programming.
Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso
2017-06-23
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.
A new "twist" on right heart failure with left ventricular assist systems.
Houston, Brian A; Shah, Keyur B; Mehra, Mandeep R; Tedford, Ryan J
2017-07-01
Despite significant efforts to predict and prevent right heart failure, it remains a leading cause of morbidity and mortality after implantation of left ventricular assist systems (LVAS). In this Perspective, we review the underappreciated anatomic and physiologic principles that govern the relationship between left and right heart function and contribute to this phenomenon. This includes the importance of considering the right ventricle (RV) and pulmonary arterial circuit as a coupled system; the contribution of the left ventricle (LV) to RV contractile function and the potential negative impact of acutely unloading the LV; the influence of the pericardium and ventricular twist on septal function; the role of RV deformation in reduced mechanical efficiency after device placement; and the potential of ongoing stressors of an elevated right-sided preload. We believe an appreciation of these complex issues is required to fully understand the expression of the unique phenotypes of right heart failure after LVAS implantation and for developing better prognostic and therapeutic strategies. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Jan, Matevž; Žižek, David; Rupar, Katja; Mazić, Uroš; Kuhelj, Dimitrij; Lakič, Nikola; Geršak, Borut
2016-11-01
Electrophysiology study (EPS) and catheter ablation (CA) in children and adolescents carries a potentially harmful effect of radiation exposure when performed with the use of fluoroscopy. Our aim was to evaluate the feasibility, safety and effectiveness of fluoroless EPS and CA of various supra-ventricular tachycardias (SVTs) with the use of the 3D mapping system and intracardiac echocardiography (ICE). Forty-three consecutive children and adolescents (age 13 ± 3 years) underwent fluoroless EPS and CA for various supra-ventricular tachycardias. A three-dimensional (3D) mapping system NavX™ was used for guidance of diagnostic and ablation catheters in the heart. ICE was used as a fundamental imaging tool for transseptal punctures. Acute procedural success rate was 100 %. There were no procedure related complications and short-term follow up (10 ± 3 months) revealed 93 % arrhythmia free survival rate. Fluoroless CA of various SVTs in the paediatric population is feasible, safe and can be performed successfully with 3D mapping system and ICE.
Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias
2017-08-10
Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kropp, J.; Reske, S.N.; Biersack, H.J.
Stimulated Renin-Angiotensin System (RAS) in aortic insufficiency (AI) leads to increased afterload and consequently to augmented aortic regurgitation (R). Therefore Captopril (C) mediated RAS-inhibition should diminish systemic vascular resistance and thus reduce R. In 9 patients (pts) with pure severe AI regurgitation fraction (RF) and left ventricular ejection fraction (LVEF) were determined before and 1 hr after i.v. injection of 25 mg C by gated radionuclide ventriculographie (RNV), using red blood cells labeled in vivo with 15 mCi Tc-99m. Enddiastolic and endsystolid frames were derived from the left ventricular volume curve. ROI's were selected over both ventricles. Ventricular boundaries weremore » defined by a fourier phase image overlay. RF was calculated by the background corrected count rate ratio of left and right ventricular ROI. Arterial blood pressure (BP), heart rate (HR), plasma levels of angiotensin I, II (A1,A2), and the activity of angiotensin converting enzyme (ACE) were determined before and 1 hr after C-injection. Before C-medication mean RF was 54% (range 34% - 67%), after C mean RF decreased to 37% (17% - 59% range, rho<.05). Mean LVEF increased not significantly from 60% (range 51%-70%) to 66% (range 56% - 77%, rho>0.55). C did not significantly change HR or BP (HR: rho>0.9, BP: rho>0.6). A2 and ACE activity decreased to 40% and 50% of control values (rho<.01), respectively. A1 increased excessively. The authors conclude that the inhibition of ACE reduces significantly aortic regurgitation in patients with A1 and has thus a beneficial effect on left ventricular performance.« less
Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function
Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134
Tanaka, Yasuaki; Rahmutula, Dolkun; Duggirala, Srikant; Nazer, Babak; Fang, Qizhi; Olgin, Jeffrey; Sievers, Richard; Gerstenfeld, Edward P
2016-02-01
Frequent premature ventricular contractions (PVCs) may lead to dilated cardiomyopathy. A leftward shift in the unipolar voltage distribution in patients with cardiomyopathy has also been described and attributed to increased fibrosis. We established a swine model of PVC-induced cardiomyopathy and assessed (1) whether an increase in left ventricular fibrosis occurs and (2) whether increased fibrosis leads to a leftward shift in the unipolar voltage distribution. Ten swine underwent implantation of ventricular pacemakers; 6 programmed to deliver a 50% PVC burden and 4 controls without pacing. Voltage maps were acquired at baseline and after 14 weeks of ventricular bigeminy. In the PVC group, left ventricular ejection fraction decreased from 67% ± 7% to 44% ± 15% (P < .05) with no change in controls (71% ± 6% to 73% ± 4%; P = .56). The fifth percentile of the bipolar and unipolar voltage distribution at baseline was 1.63 and 5.36 mV, respectively. In the control group, after 14 weeks of pacing there was no significant change in % bipolar voltage <1.5 mV (pre 1.2% vs post 2.2%; P = .34) or % unipolar voltage <5.5 mV (pre 4.0% vs post 3.5%; P = .20). In the PVC group, there was a significant increase in % unipolar voltage <5.5 mV (5.4% vs 12.6%; P < .01), with a leftward shift in the unipolar voltage distribution. Histologically, % fibrosis was increased in the PVC group (control 1.8% ± 1.3% vs PVC 3.4% ± 2.6%; P < .01). PVC-induced cardiomyopathy in swine leads to an increase in interstitial fibrosis and a leftward shift in the unipolar voltage distribution. These findings are consistent with findings in humans with PVC-induced cardiomyopathy. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Suetomi, Takeshi; Yano, Masafumi; Uchinoumi, Hitoshi; Fukuda, Masakazu; Hino, Akihiro; Ono, Makoto; Xu, Xiaojuan; Tateishi, Hiroki; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Ikeda, Yasuhiro; Yamamoto, Takeshi; Ikemoto, Noriaki; Matsuzaki, Masunori
2011-08-09
The molecular mechanism by which catecholaminergic polymorphic ventricular tachycardia is induced by single amino acid mutations within the cardiac ryanodine receptor (RyR2) remains elusive. In the present study, we investigated mutation-induced conformational defects of RyR2 using a knockin mouse model expressing the human catecholaminergic polymorphic ventricular tachycardia-associated RyR2 mutant (S2246L; serine to leucine mutation at the residue 2246). All knockin mice we examined produced ventricular tachycardia after exercise on a treadmill. cAMP-dependent increase in the frequency of Ca²⁺ sparks was more pronounced in saponin-permeabilized knockin cardiomyocytes than in wild-type cardiomyocytes. Site-directed fluorescent labeling and quartz microbalance assays of the specific binding of DP2246 (a peptide corresponding to the 2232 to 2266 region: the 2246 domain) showed that DP2246 binds with the K201-binding sequence of RyR2 (1741 to 2270). Introduction of S2246L mutation into the DP2246 increased the affinity of peptide binding. Fluorescence quench assays of interdomain interactions within RyR2 showed that tight interaction of the 2246 domain/K201-binding domain is coupled with domain unzipping of the N-terminal (1 to 600)/central (2000 to 2500) domain pair in an allosteric manner. Dantrolene corrected the mutation-caused domain unzipping of the domain switch and stopped the exercise-induced ventricular tachycardia. The catecholaminergic polymorphic ventricular tachycardia-linked mutation of RyR2, S2246L, causes an abnormally tight local subdomain-subdomain interaction within the central domain involving the mutation site, which induces defective interaction between the N-terminal and central domains. This results in an erroneous activation of Ca²⁺ channel in a diastolic state reflecting on the increased Ca²⁺ spark frequency, which then leads to lethal arrhythmia.
Development of heart failure is independent of K+ channel-interacting protein 2 expression
Speerschneider, Tobias; Grubb, Søren; Metoska, Artina; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2013-01-01
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K+ channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K+ current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2−/− mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2−/− mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2−/− control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2−/− mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2−/− with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K+ current. PMID:24099801
Fatal acute Chagas Disease in a Chimpanzee
2009-08-01
infection in nonhuman primates (NHP) may remain sub-clinical for years with occasional symptoms of anorexia, lymphadenopathy, fever , hepatosplenomegaly...raised in rabbit anti-TC serum (LAB AIIR/IOC, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil) and rabbit ABC Staining System (sc- 2018 ), according to...ventricular wall of the heart and a moderate amount of yellow to orange fluid was evident in both ventricular walls and the septum. The thickness of the left
Mueller, Indra; Jansen-Park, So-Hyun; Neidlin, Michael; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas; Sonntag, Simon Johannes
2017-04-01
Right heart failure (RHF), e.g. due to pulmonary hypertension (PH), is a serious health issue with growing occurrence and high mortality rate. Limited efficacy of medication in advanced stages of the disease constitutes the need for mechanical circulatory support of the right ventricle (RV). An essential contribution to the process of developing right ventricular assist devices (RVADs) is the in vitro test bench, which simulates the hemodynamic behavior of the native circulatory system. To model healthy and diseased arterial-pulmonary hemodynamics in adults (mild and severe PH and RHF), a right heart mock circulation loop (MCL) was developed. Incorporating an anatomically shaped silicone RV and a silicone atrium, it not only enables investigations of hemodynamic values but also suction events or the handling of minimal invasive RVADs in an anatomical test environment. Ventricular pressure-volume loops of all simulated conditions as well as pressure and volume waveforms were recorded and compared to literature data. In an exemplary test, an RVAD was connected to the apex to further test the feasibility of studying such devices with the developed MCL. In conclusion, the hemodynamic behavior of the native system was well reproduced by the developed MCL, which is a useful basis for future RVAD tests.
Long-term Results After Open Mitral Commissurotomy for a One-Month-Old Infant With Mitral Stenosis.
Kitaichi, Takashi; Sugano, Mikio; Arase, Hiroki; Kawatani, Yohei; Kameta, Kanako; Kurobe, Hirotsugu; Fujimoto, Eiki; Ono, Akemi; Hayabuchi, Yasunobu; Fujita, Hiroshi; Sogabe, Hitoshi; Kitagawa, Tetsuya
2017-01-01
The strategy for an infant with congenital mitral stenosis should be determined by three important factors: left ventricular volume, the degree of the systemic outflow tract obstruction, and the type of mitral valve dysfunction. A successful staged biventricular repair in early infancy for a patient who had congenital mitral stenosis with short chordae, hypoplastic left ventricle and coarctation of the aorta, and the long-term results are described. There were the following important hemodynamic factors that led to the successful biventricular repair in the patient. Total systemic output was barely supplied through the hypoplastic left ventricle after closure of the ductus arteriosus on admission. The neonate underwent repair of coarctation of the aorta alone as the initial stage at 9 days after birth. Also, spontaneous closure of the foramen ovale following repair of coarctation of the aorta accelerated the progressive left ventricular growth. Open mitral commissurotomy with an interatrial fenestration using the modified Brawley's approach was performed for a 40-day-old infant. Good left ventricular growth and good mitral valve function have been observed for 18 years after open mitral commissurotomy. Appropriate early augmentation of left ventricular inflow through the mitral valve might be effective for growth of a hypoplastic left ventricle. J. Med. Invest. 64: 187-191, February, 2017.
Waters, Benjamin; Sample, Alanson; Smith, Joshua; Bonde, Pramod
2011-11-01
Heart failure is a terminal disease with a very poor prognosis. Although the gold standard of treatment remains heart transplant, only a minority of patients can benefit from transplants. Another promising alternative is mechanical circulatory assistance using ventricular assist devices. The authors envision a completely implantable cardiac assist system affording tether-free mobility in an unrestricted space powered wirelessly by the innovative Free-Range Resonant Electrical Energy Device (FREE-D) system. Patients will have no power drivelines traversing the skin, and this system will allow power to be delivered over room distances and will eliminate trouble-prone wirings, bulky consoles, and replaceable batteries. Copyright © 2011 Elsevier Inc. All rights reserved.
A hydroelastic model of hydrocephalus
NASA Astrophysics Data System (ADS)
Smillie, Alan; Sobey, Ian; Molnar, Zoltan
2005-09-01
We combine elements of poroelasticity and of fluid mechanics to construct a mathematical model of the human brain and ventricular system. The model is used to study hydrocephalus, a pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the brain to become deformed. Our model extends recent work in this area by including flow through the aqueduct, by incorporating boundary conditions that we believe accurately represent the anatomy of the brain and by including time dependence. This enables us to construct a quantitative model of the onset, development and treatment of this condition. We formulate and solve the governing equations and boundary conditions for this model and give results that are relevant to clinical observations.
Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M
2016-01-01
Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles. © 2016. Published by The Company of Biologists Ltd.
3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates
NASA Astrophysics Data System (ADS)
Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.
2013-11-01
Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH.
McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.
2013-01-01
Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313
Hollow mandrin facilitates external ventricular drainage placement.
Heese, O; Regelsberger, J; Kehler, U; Westphal, M
2005-07-01
Placement of ventricular catheters is a routine procedure in neurosurgery. Ventricle puncture is done using a flexible ventricular catheter stabilised by a solid steel mandrin in order to improve stability during brain penetration. A correct catheter placement is confirmed after removing the solid steel mandrin by observation of cerebrospinal fluid (CSF) flow out of the flexible catheter. Incorrect placement makes further punctures necessary. The newly developed device allows CSF flow observation during the puncture procedure and in addition precise intracranial pressure (ICP) measurement. The developed mandrin is hollow with a blunt tip. On one side 4-5 small holes with a diameter of 0.8 mm are drilled corresponding exactly with the holes in the ventricular catheter, allowing CSF to pass into the hollow mandrin as soon as the ventricle is reached. By connecting a small translucent tube at the distal portion of the hollow mandrin ICP can be measured without loss of CSF. The system has been used in 15 patients with subarachnoid haemorrhage (SAH) or intraventricular haemeorrhage (IVH) and subsequent hydrocephalus. The new system improved the external ventricular drainage implantation procedure. In all 15 patients catheter placement was correct. ICP measurement was easy to perform immediately at ventricle puncture. In 4 patients at puncture no spontaneous CSF flow was observed, therefore by connecting a syringe and gentle aspiration of CSF correct placement was confirmed in this unexpected low pressure hydrocephalus. Otherwise by using the conventional technique further punctures would have been necessary. Advantages of the new technique are less puncture procedures with a lower risk of damage to neural structures and reduced risk of intracranial haemorrhages. Implantation of the ventricular catheter to far into the brain can be monitored and this complication can be overcome. Using the connected pressure monitoring tube an exact measurement of the opening intracranial pressure can be obtained performed without losing CSF.
Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance
van Geuns, Robert‐Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J.G.M.
2017-01-01
Abstract Aims Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast‐enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. Methods and results We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast‐enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non‐invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P < 0.001). Right ventricular enhancement correlated with systolic ventricular dysfunction (P < 0.001), hypertrophy (P = 0.001), and dilation (P < 0.001). Conclusions Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. PMID:29154434
Byron, Kelly; Bluvshtein, Vlad; Lucke, Lori
2013-01-01
Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.
Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming
2014-01-01
Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.
Lim, Ki Moo; Constantino, Jason; Gurev, Viatcheslav; Zhu, Renjun; Trayanova, Natalia A.
2012-01-01
Left ventricular-assist devices (LVADs) are used to supply blood to the body of patients with heart failure. Pressure unloading is greater for counter-pulsating LVADs than for continuous LVADs. However, several clinical trials have demonstrated that myocardial recovery is similar for both types of LVAD. This study examined the contractile energy consumption of the myocardium with continuous and counter-pulsating LVAD support to ascertain the effect of the different LVADs on myocardial recovery. We used a three-dimensional electromechanical model of canine ventricles, with models of the circulatory system and an LVAD. We compared the left ventricular peak pressure (LVPP) and contractile ATP consumption between pulsatile and continuous LVADs. With the continuous and counter-pulsating LVAD, the LVPP decreased to 46 and 10%, respectively, and contractile ATP consumption decreased to 60 and 50%. The small difference between the contractile ATP consumption of these two types of LVAD may explain the comparable effects of the two types on myocardial recovery. PMID:22076841
John Paul Jones: An Overlooked Autopsy Finding that May Explain His Terminal Illness.
Hamrell, Burt B
2016-03-01
A finding in the autopsy of John Paul Jones, the American Revolutionary War naval hero, may explain his terminal illness. During his last 2 years, he had a persistent productive cough and dyspnea. Ten days before death, he developed rapidly progressive dependent edema and ascites. He died in France in 1792. His body, preserved in alcohol in a lead coffin, was, in 1905, removed to the United States. Glomerulonephritis was noted on an autopsy, performed in France, but there was no comment then or since about ventricular wall thickness being the same in both ventricles at 5-6 mm. Hypertrophy and dilatation with biventricular failure followed by tissue shrinkage during 113 years in alcohol could have resulted in these ventricular wall findings. Systemic hypertension and left ventricular failure are consistent with his respiratory symptoms complicated perhaps by pulmonary emboli, right ventricular failure with tricuspid regurgitation, peripheral congestion, and jaundice. © 2015 American Academy of Forensic Sciences.
Wallner, Markus; Kolesnik, Ewald; Ablasser, Klemens; Khafaga, Mounir; Wakula, Paulina; Ljubojevic, Senka; Thon-Gutschi, Eva Maria; Sourij, Harald; Kapl, Martin; Edmunds, Nicholas J; Kuzmiski, J Brent; Griffith, David A; Knez, Igor; Pieske, Burkert; von Lewinski, Dirk
2015-12-01
Glucagon-like peptide-1 receptor (GLP-1R) agonists are a rapidly growing class of drugs developed for treating type-2 diabetes mellitus. Patients with diabetes carry an up to 5-fold greater mortality risk compared to non-diabetic patients, mainly as a result of cardiovascular diseases. Although beneficial cardiovascular effects have been reported, exact mechanisms of GLP-1R-agonist action in the heart, especially in human myocardium, are poorly understood. The effects of GLP-1R-agonists (exenatide, GLP-1(7-36)NH2, PF-06446009, PF-06446667) on cardiac contractility were tested in non-failing atrial and ventricular trabeculae from 72 patients. The GLP-1(7-36)NH2 metabolite, GLP-1(9-36)NH2, was also examined. In electrically stimulated trabeculae, the effects of compounds on isometric force were measured in the absence and presence of pharmacological inhibitors of signal transduction pathways. The role of β-arrestin signaling was examined using a β-arrestin partial agonist, PF-06446667. Expression levels were tested by immunoblots. Translocation of GLP-1R downstream molecular targets, Epac2, GLUT-1 and GLUT-4, were assessed by fluorescence microscopy. All tested GLP-1R-agonists significantly increased developed force in human atrial trabeculae, whereas GLP-1(9-36)NH2 had no effect. Exendin(9-39)NH2, a GLP-1R-antagonist, and H-89 blunted the inotropic effect of exenatide. In addition, exenatide increased PKA-dependent phosphorylation of phospholamban (PLB), GLUT-1 and Epac2 translocation, but not GLUT-4 translocation. Exenatide failed to enhance contractility in ventricular myocardium. Quantitative real-time PCR (qRT-PCR) revealed a significant higher GLP-1R expression in the atrium compared to ventricle. Exenatide increased contractility in a dose-dependent manner via GLP-1R/cAMP/PKA pathway and induced GLUT-1 and Epac2 translocation in human atrial myocardium, but had no effect in ventricular myocardium. Therapeutic use of GLP-1R-agonists may therefore impart beneficial effects on myocardial function and remodelling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxygen-saving effect of a new cardiotonic agent, MCI-154, in diseased human hearts.
Mori, M; Takeuchi, M; Takaoka, H; Hata, K; Hayashi, Y; Yamakawa, H; Yokoyama, M
1997-03-01
The aim of this study was to examine the left ventricular mechanoenergetic effects of a novel Ca2+ sensitizing agent, MCI-154, on diseased human hearts compared with dobutamine. Unlike conventional cardiotonic agents, a Ca2+ sensitizer that could produce a positive inotropic action by altering the responsiveness of myofilament to Ca2+ could generate force with smaller amounts of Ca2+; thus, it may potentially save energy expenditure. The left ventricular pressure-volume relation and myocardial oxygen consumption per beat (Vo2) were measured by a conductance (volume) catheter and a Webster catheter. Left ventricular contractility (Emax), systolic pressure-volume area (PVA [index of left ventricular total mechanical energy]) and Vo2 were assessed before and after infusion of MCI-154 or dobut-amine. The PVA-independent Vo2 (Vo2 mainly for excitation-contraction coupling) was assessed as the Vo2 at zero PVA. Both agents increased Emax comparably (dobutamine: from 3.55 +/- 1.10 [mean +/- SD] to 5.04 +/- 1.16 mm Hg/ml per m2, p < 0.0001; MCI-154: from 3.36 +/- 1.26 to 5.37 +/- 2.14 mm Hg/ml per m2, p < 0.0001); dobutamine increased total Vo2 (from 0.22 +/- 0.08 to 0.27 +/- 0.09 ml O2, p < 0.05) and PVA-independent Vo2 (from 0.019 +/- 0.019 to 0.091 +/- 0.051 ml O2, p < 0.005); but MCI-154 did not change these variables significantly. Consequently, the oxygen cost of contractility (delta PVA-independent Vo2/delta Emax) was less with MCI-154 than with dobutamine (0.14 +/- 0.18 vs. 1.10 +/- 0.80 J/mm Hg per ml per m2, p < 0.05). These results suggest that the cardiotonic action mediated by MCI-154 could provide an energetic advantage over the conventional cardiotonic action with currently used inotropic agents.
Röger, Susanne; Said, Samir; Kloppe, Axel; Lawo, Thomas; Emig, Ulf; Rousso, Benny; Gutterman, David; Borggrefe, Martin; Kuschyk, Jürgen
2017-01-01
Cardiac contractility modulation (CCM) is an electrical stimulation treatment for symptomatic heart failure (HF) patients. The procedure involves implantation of two ventricular leads for delivery of CCM impulses. The purpose of this study is to compare the efficacy and safety of CCM when the signal is delivered through one vs. two ventricular leads. This prospective blinded randomized trial enrolled 48 patients. Eligible subjects had symptoms despite optimal HF medications, left ventricular ejection fraction <40% and peakVO 2 ≥9ml O 2 /kg/min. All patients received a CCM system with two ventricular leads, and were randomized to CCM active through both or just one ventricular lead; 25 patients were randomized to receive signal delivery through two leads (Group A) and 23 patients to signal delivery through one lead (Group B). The study compared the mean changes from baseline to 6 months follow-up in peakVO 2 , New York Heart Association (NYHA) classification, and quality of life (by MLWHFQ). Following 6 months, similar and significant (p<0.05) improvements from baseline in NYHA (-0.7±0.5 vs. -0.9±0.7) and MLWHFQ (-14±20 vs. -16±22) were observed in Group A and in Group B. PeakVO 2 showed improvement trends in both groups (0.34±1.52 vs. 0.10±2.21ml/kg/min; p=ns). No patient died. Serious adverse event rates (20 events in 10 subjects) were not different between groups. No statistically significant difference was found in any of the study endpoints. The efficacy and safety of CCM in this study were similar when the signal was delivered through either one or two ventricular leads. These results support the potential use of a single ventricular lead for delivery of CCM. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?
ERIC Educational Resources Information Center
Bloomer, Richard J.
2003-01-01
Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…
Kizil, Caghan; Brand, Michael
2011-01-01
The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157
Effect of upright tilt on ventricular/vascular coupling in chronically instrumented primates
NASA Technical Reports Server (NTRS)
Tran, C. C.; Latham, R. D.; Self, D. A.; Fanton, J. W.; White, C. D.; Owens, R. W.
1993-01-01
Studies of the hydraulic loading conditions on the heart in humans, especially pulsatile load, have primarily been limited to the supine state. Therefore, we have chosen a nonhuman primate model, the baboon, to assess left ventricular/vascular coupling in both supine and upright positions. Primate subjects were studied by catheterization under sedation and then after surgical implantation of transducers. This allowed the evaluation of postural stress in the chronically instrumented conscious baboon and then after light dissociative doses of ketamine. Basic hemodynamic variables were evaluated for baboons in supine and upright positions. Fourier analysis was applied to aortic pressure and flow to obtain input and characteristic impedance and the ratio of pulsatile (Wp) to total (Wt) left ventricular power (Wp/Wt). The aortic reflected, or backward, pressure was also calculated. Peripheral resistance increased (P = 0.01) and reflected pressure decreased (17.74 +/- 1.50 vs. 15.21 +/- 2 mmHg; P < 0.01) in upright subjects. Characteristic impedance and Wp/Wt were unchanged. Postoperatively, peripheral resistance increased (2,651 +/- 311 vs. 3,667 +/- 276; P < 0.05) and mean power and Wt decreased (P < 0.01) without changes in reflected pressure. All variables were unchanged after light dissociative doses of ketamine. Thus there is no significant change in efficiency of left ventricular/vascular coupling formulated in terms of Wp/Wt or input impedance with postural stress.
Separation of large mammalian ventricular myosin differing in ATPase activity.
Rupp, Heinz; Maisch, Bernhard
2007-01-01
To investigate a possible heterogeneity of human ventricular myosin, papillary muscles of patients with valvular dysfunction were examined using a modified native gel electrophoresis. Myosin was separated into 2 components termed VA and VB, whereby the VA to VB proportion appeared to depend on the ventricular load. The proportion of the faster migrating band VA was correlated (P<0.05) with end-diastolic pressure and the aortic pressure-cardiac index product. The regression based on these variables accounted for 67% of the variation in VA (R2=0.67). The VA proportion was, however, not significantly correlated with cardiac norepinephrine concentration. The ATPase activity of the 2 components of myosin was assessed from the Ca3(PO4)2 precipitation by incubating the gel in the presence of ATP and CaCl2. The ATPase activity of VA was 60% of that of VB. The VA and VB forms were observed also in the cat (31.4% VA), dog (32.1% VA), pig (28.5% VA), wild pig (33.7% VA), and roe deer (30.5% VA). VA and VB were not detected in the rat exhibiting the 3 isoforms V1, V2, and V3, rabbit (100% V3), and hare (86% V1). The data demonstrate a heterogeneity of large mammalian ventricular myosin, whereby an increased cardiac load appeared to be associated with a higher myosin VA proportion that exhibited a reduced ATPase activity.
Schocke, Michael F; Martinek, Martin; Kremser, Christian; Wolf, Christian; Steinboeck, Peter; Lechleitner, Monika; Jaschke, Werner; Pachinger, Otmar; Metzler, Bernhard
2003-01-01
We intended to prove that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or statins have a beneficial impact on the human myocardial, high-energy, phosphate metabolism. The present study included 18 male patients (mean age 49.8 +/- 10.3) with statin-treated, familiar hypercholesterolemia (FH) and 13 male patients with untreated FH (mean age 44.6 +/- 9.5). Twenty-six healthy male volunteers served as controls (mean age 44.2 +/- 12.1). Phosphorus-31, two-dimensional chemical shift imaging (31P 2D CSI) of the heart was performed in all subjects using a 1.5 Tesla whole-body magnetic resonance (MR) scanner. The ratios between phosphocreatine (PCr) and beta-adenosine-triphosphate (beta-ATP) were calculated for the left ventricular myocardium. Furthermore, echocardiographic evaluation and stress tests were performed in all individuals. The untreated patients with FH exhibited a significant decrease in left ventricular PCr to beta-ATP ratios (1.78 +/- 0.34) compared with statin-treated FH patients (2.15 +/- 0.26, p < 0.001) and healthy controls (2.04 +/- 0.26, p = 0.009). The left ventricular PCr-to-beta-ATP ratios of the treated FH patients were in the range of the healthy controls. Our study shows for the first time an-improvement of the high-energy, phosphate metabolism in the left ventricular myocardium of patients with statin-treated FH compared with untreated FH patients.
English, Brett A.; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M.; Lund, David; Wright, Jane; Keller, Nancy R.; Louderback, Katherine M.; Robertson, David
2010-01-01
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT−/−) mice exhibit early postnatal lethality, CHT heterozygous (CHT+/−) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT+/− mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT+/− mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT+/− mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease. PMID:20601463
Carnevali, Luca; Vacondio, Federica; Rossi, Stefano; Macchi, Emilio; Spadoni, Gilberto; Bedini, Annalida; Neumann, Inga D.; Rivara, Silvia; Mor, Marco; Sgoifo, Andrea
2015-01-01
In humans, chronic anxiety represents an independent risk factor for cardiac arrhythmias and sudden death. Here we evaluate in male Wistar rats bred for high (HAB) and low (LAB) anxiety-related behavior, as well as non-selected (NAB) animals, the relationship between trait anxiety and cardiac electrical instability and investigate whether pharmacological augmentation of endocannabinoid anandamide-mediated signaling exerts anxiolytic-like and cardioprotective effects. HAB rats displayed (i) a higher incidence of ventricular tachyarrhythmias induced by isoproterenol, and (ii) a larger spatial dispersion of ventricular refractoriness assessed by means of an epicardial mapping protocol. In HAB rats, acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), with URB694 (0.3 mg/kg), (i) decreased anxiety-like behavior in the elevated plus maze, (ii) increased anandamide levels in the heart, (iii) reduced isoproterenol-induced occurrence of ventricular tachyarrhythmias, and (iv) corrected alterations of ventricular refractoriness. The anti-arrhythmic effect of URB694 was prevented by pharmacological blockade of the cannabinoid type 1 (CB1), but not of the CB2, receptor. These findings suggest that URB694 exerts anxiolytic-like and cardioprotective effects in HAB rats, the latter via anandamide-mediated activation of CB1 receptors. Thus, pharmacological inhibition of FAAH might be a viable pharmacological strategy for the treatment of anxiety-related cardiac dysfunction. PMID:26656183
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Qin, J. X.; White, R. D.; Thomas, J. D.
2001-01-01
The measurement of the left ventricular ejection fraction is important for the evaluation of cardiomyopathy and depends on the measurement of left ventricular volumes. There are no existing conventional echocardiographic means of measuring the true left atrial and ventricular volumes without mathematical approximations. The aim of this study was to test anew real time 3-dimensional echocardiographic system of calculating left atrial and ventricular volumes in 40 patients after in vitro validation. The volumes of the left atrium and ventricle acquired from real time 3-D echocardiography in the apical view, were calculated in 7 sections parallel to the surface of the probe and compared with atrial (10 patients) and ventricular (30 patients) volumes calculated by nuclear magnetic resonance with the simpson method and with volumes of water in balloons placed in a cistern. Linear regression analysis showed an excellent correlation between the real volume of water in the balloons and volumes given in real time 3-dimensional echocardiography (y = 0.94x + 5.5, r = 0.99, p < 0.001, D = -10 +/- 4.5 ml). A good correlation was observed between real time 3-dimensional echocardiography and nuclear magnetic resonance for the measurement of left atrial and ventricular volumes (y = 0.95x - 10, r = 0.91, p < 0.001, D = -14.8 +/- 19.5 ml and y = 0.87x + 10, r = 0.98, P < 0.001, D = -8.3 +/- 18.7 ml, respectively. The authors conclude that real time three-dimensional echocardiography allows accurate measurement of left heart volumes underlying the clinical potential of this new 3-D method.
Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance.
Smedema, Jan-Peter; van Geuns, Robert-Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J G M
2017-11-01
Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast-enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast-enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non-invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P < 0.001). Right ventricular enhancement correlated with systolic ventricular dysfunction (P < 0.001), hypertrophy (P = 0.001), and dilation (P < 0.001). Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
A Clinical Feasibility Study of Atrial and Ventricular Electromechanical Wave Imaging
Provost, Jean; Gambhir, Alok; Vest, John; Garan, Hasan; Konofagou, Elisa E.
2014-01-01
Background Cardiac Resynchronization Therapy (CRT) and atrial ablation currently lack a noninvasive imaging modality for reliable treatment planning and monitoring. Electromechanical Wave Imaging (EWI) is an ultrasound-based method that has previously been shown to be capable of noninvasively and transmurally mapping the activation sequence of the heart in animal studies by estimating and imaging the electromechanical wave, i.e., the transient strains occurring in response to the electrical activation, at both very high temporal and spatial resolution. Objective Demonstrate the feasibility of noninvasive transthoracic EWI for mapping the activation sequence during different cardiac rhythms in humans. Methods EWI was performed in CRT patients with a left bundle-branch block (LBBB), during sinus rhythm, left-ventricular pacing, and right-ventricular pacing and in atrial flutter (AFL) patients before intervention and correlated with results from invasive intracardiac electrical mapping studies during intervention. Additionally, the feasibility of single-heartbeat EWI at 2000 frames/s, is demonstrated in humans for the first time in a subject with both AFL and right bundle-branch-block. Results The electromechanical activation maps demonstrated the capability of EWI to localize the pacing sites and characterize the LBBB activation sequence transmurally in CRT patients. In AFL patients, the propagation patterns obtained with EWI were in agreement with results obtained from invasive intracardiac mapping studies. Conclusion Our findings demonstrate the potential capability of EWI to aid in monitoring and follow-up of patients undergoing CRT pacing therapy and atrial ablation with preliminary validation in vivo. PMID:23454060
Channel sialic acids limit hERG channel activity during the ventricular action potential.
Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S
2013-02-01
Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.
Features of Brain MRI in Dogs with Treated and Untreated Mucopolysaccharidosis Type I
Vite, Charles H; Nestrasil, Igor; Mlikotic, Anton; Jens, Jackie K; Snella, Elizabeth M; Gross, William; Shapiro, Elsa G; Kovac, Victor; Provenzale, James M; Chen, Steven; Le, Steven Q; Kan, Shih-hsin; Banakar, Shida; Wang, Raymond Y; Haskins, Mark E; Ellinwood, N Matthew; Dickson, Patricia I
2013-01-01
The mucopolysaccharidosis type I (MPS I) dog model has been important in the development of therapies for human patients. We treated dogs with enzyme replacement therapy (ERT) by various approaches. Dogs assessed included untreated MPS I dogs, heterozygous carrier dogs, and MPS I dogs treated with intravenous ERT as adults (beginning at age 13 to 16 mo), intrathecal and intravenous ERT as adults (beginning at age 13 to 16 mo), or intrathecal ERT as juveniles (beginning at age 4 mo). We then characterized the neuroimaging findings of 32 of these dogs (age, 12 to 30 mo). Whole and midsagittal volumes of the corpus callosum, measured from brain MRI, were significantly smaller in affected dogs compared with unaffected heterozygotes. Corpus callosum volumes in dogs that were treated with intrathecal ERT from 4 mo until 21 mo of age were indistinguishable from those of age-matched carrier controls. Dogs with MPS I showed cerebral ventricular enlargement and cortical atrophy as early as 12 mo of age. Ventricular enlargement was greater in untreated MPS I dogs than in age-matched dogs treated with intrathecal ERT as juveniles or adults. However, treated dogs still showed some ventricular enlargement or cortical atrophy (or both). Understanding the progression of neuroimaging findings in dogs with MPS I and their response to brain-directed therapy may improve preclinical studies for new human-directed therapies. In particular, corpus callosum volumes may be useful quantitative neuroimaging markers for MPS-related brain disease and its response to therapy. PMID:23582423
Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model
NASA Astrophysics Data System (ADS)
Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain
2011-01-01
Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.
Wang, Jake X; Smith, Joshua R; Bonde, Pramod
2014-04-01
Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Hasin, Tal; Huebner, Marianne; Li, Zhuo; Brown, Daniel; Stulak, John M; Boilson, Barry A; Joyce, Lyle; Pereira, Naveen L; Kushwaha, Sudhir S; Park, Soon J
2014-01-01
Cardiac output (CO) assessment is important in treating patients with heart failure. Durable left ventricular assist devices (LVADs) provide essentially all CO. In currently used LVADs, estimated device flow is generated by a computerized algorithm. However, LVAD flow estimate may be inaccurate in tracking true CO. We correlated LVAD (HeartMate II) flow with thermodilution CO during postoperative care (day 2-10 after implant) in 81 patients (5,616 paired measurements). Left ventricular assist device flow and CO correlated with a low correlation coefficient (r = 0.42). Left ventricular assist device readings were lower than CO measurements by approximately 0.36 L/min, trending for larger difference with higher values. Left ventricular assist device flow measurements showed less temporal variability compared with CO. Grouping for simultaneous measured blood pressure (BP < 60, 60-70, 70-80, 80-90, and ≥90), the correlation of CO with LVAD flow differed (R = 0.42, 0.67, 0.48, 0.32, 0.32, respectively). Indicating better correlation when mean blood pressure is 60 to 70 mm Hg. Left ventricular assist device flow generally trends with measured CO, but large variability exists, hence flow measures should not be assumed to equal with CO. Clinicians should take into account variables such as high CO, BP, and opening of the aortic valve when interpreting LVAD flow readout. Direct flow sensors incorporated in the LVAD system may allow for better estimation.
Chen, Xuedi; Gao, Cuixia; Gong, Ningning; Wang, Yu; Tian, Limin
2018-01-01
The main purpose of this study was to explore the relationships between serca2a, Ryr2, adipokines, and the left ventricular function in the subclinical hypothyroidism with different TSH levels and to determine the impact of L-T4 treatment on these indexes. Sixty-five male Wistar rats were randomly divided into five groups: control group; sHT A, B, and C group; and sHT + T4 group. The sHT rats were induced by methimazole (MMI), and the sHT + T4 rats were administered with L-T4 treatment after 8 weeks of MMI administration. Serum TT4, TSH, APN, chemerin, and TNF- α were detected by radioimmunoassay kits and ELISA kits; left ventricular function was measured by PowerLab system via subclavian artery catheter. The expression of Serca2a, Ryr2, APN, chemerin, and TNF- α were detected by RT-PCR, Western blot, and immunohistochemistry. The sHT groups had significantly higher TSH, chemerin, and TNF- α and lower Serca2a, Ryr2, and APN. The left ventricular pressure and heart rate in sHT groups were significantly lower in control and sHT + T4 group. Histopathological examination revealed the pathological changes in the sHT rats' heart. L-T4 administration reduced TSH level and improved left ventricular function. TSH can impair left ventricular function by regulating several factors, and L-T4 treatment ameliorates it in sHT rats.
Kashimura, Takeshi; Kodama, Makoto; Watanabe, Tohru; Tanaka, Komei; Hayashi, Yuka; Ohno, Yukako; Obata, Hiroaki; Ito, Masahiro; Hirono, Satoru; Hanawa, Haruo; Minamino, Tohru
2014-02-01
Mechanical alternans (MA) and electrical alternans (EA) are predictors of cardiac events. Experimental studies have suggested that refractoriness of calcium cycling underlies these cardiac alternans. However, refractoriness of left ventricular contraction has not been examined in patients with cardiac alternans. In 51 patients with miscellaneous heart diseases, incremental right atrial pacing was performed to induce MA and EA. MA was quantified by alternans amplitude (AA: the difference between left ventricular dP/dt of a strong beat and that of a weak beat), and AA at 100/min (AA100) and maximal AA (AAmax) were measured. EA was defined as alternation of T wave morphology in 12-lead electrocardiogram. Relative refractoriness of left ventricular contraction was examined by drawing the mechanical restitution curve under a basal coupling interval (BCL) of 600 ms (100/min) and was assessed by the slope at BCL (Δmechanical restitution). Postextrasystolic potentiation (PESP) was also examined and the slope of PESP curve (ΔPESP) was assessed as a property to alternate strong and weak beats. MA and EA were induced in 19 patients and in none at 100/min or less, and at any heart rate in 32 and in 10, respectively. AA100 and AAmax correlated positively with Δmechanical restitution and negatively with ΔPESP. Patients with EA had a significantly larger Δmechanical restitution and a significantly larger absolute value of ΔPESP than those without. In patients with MA and EA, the left ventricular contractile force during tachycardia is under relative refractoriness and prone to cause large fluctuation of contractile force. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.
Cardiac troponin T is necessary for normal development in the embryonic chick heart.
England, Jennifer; Pang, Kar Lai; Parnall, Matthew; Haig, Maria Isabel; Loughna, Siobhan
2016-09-01
The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial septal defects. However, cardiac troponin T (cTNT encoded by gene TNNT2) has not. Using gene-specific antisense oligonucleotides, we have investigated the role of cTNT in chick cardiogenesis. TNNT2 is expressed throughout heart development and in the postnatal heart. TNNT2-morpholino treatment resulted in abnormal atrial septal growth and a reduction in the number of trabeculae in the developing primitive ventricular chamber. External analysis revealed the development of diverticula from the ventricular myocardial wall which showed no evidence of fibrosis and still retained a myocardial phenotype. Sarcomeric assembly appeared normal in these treated hearts. In humans, congenital ventricular diverticulum is a rare condition, which has not yet been genetically associated. However, abnormal haemodynamics is known to cause structural defects in the heart. Further, structural defects, including atrial septal defects and congenital diverticula, have previously been associated with conduction anomalies. Therefore, to provide mechanistic insights into the effect that cTNT knockdown has on the developing heart, quantitative PCR was performed to determine the expression of the shear stress responsive gene NOS3 and the conduction gene TBX3. Both genes were differentially expressed compared to controls. Therefore, a reduction in cTNT in the developing heart results in abnormal atrial septal formation and aberrant ventricular morphogenesis. We hypothesize that alterations to the haemodynamics, indicated by differential NOS3 expression, causes these abnormalities in growth in cTNT knockdown hearts. In addition, the muscular diverticula reported here suggest a novel role for mutations of structural sarcomeric proteins in the pathogenesis of congenital cardiac diverticula. From these studies, we suggest TNNT2 is a gene worthy of screening for those with a congenital heart defect, particularly atrial septal defects and ventricular diverticula. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
A motor-driven ventricular assist device controlled with an optical encoder system.
Nakamura, T; Hayashi, K; Yamane, H
1993-01-01
An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.
Effects of Frequent Hemodialysis on Ventricular Volumes and Left Ventricular Remodeling
Greene, Tom; Chertow, Glenn M.; Kliger, Alan S.; Stokes, John B.; Beck, Gerald J.; Daugirdas, John T.; Kotanko, Peter; Larive, Brett; Levin, Nathan W.; Mehta, Ravindra L.; Rocco, Michael; Sanz, Javier; Yang, Phillip C.; Rajagopalan, Sanjay
2013-01-01
Summary Background and objectives Higher left ventricular volume is associated with death in patients with ESRD. This work investigated the effects of frequent hemodialysis on ventricular volumes and left ventricular remodeling. Design, setting, participants, & measurements The Frequent Hemodialysis Network daily trial randomized 245 patients to 12 months of six times per week versus three times per week in-center hemodialysis; the Frequent Hemodialysis Network nocturnal trial randomized 87 patients to 12 months of six times per week nocturnal hemodialysis versus three times per week predominantly home-based hemodialysis. Left and right ventricular end systolic and diastolic volumes, left ventricular mass, and ejection fraction at baseline and end of the study were ascertained by cardiac magnetic resonance imaging. The ratio of left ventricular mass/left ventricular end diastolic volume was used as a surrogate marker of left ventricular remodeling. In each trial, the effect of frequent dialysis on left or right ventricular end diastolic volume was tested between predefined subgroups. Results In the daily trial, frequent hemodialysis resulted in significant reductions in left ventricular end diastolic volume (−11.0% [95% confidence interval, −16.1% to −5.5%]), left ventricular end systolic volume (−14.8% [−22.7% to −6.2%]), right ventricular end diastolic volume (−11.6% [−19.0% to −3.6%]), and a trend for right ventricular end systolic volume (−11.3% [−21.4% to 0.1%]) compared with conventional therapy. The magnitude of reduction in left and right ventricular end diastolic volumes with frequent hemodialysis was accentuated among patients with residual urine output<100 ml/d (P value [interaction]=0.02). In the nocturnal trial, there were no significant changes in left or right ventricular volumes. The frequent dialysis interventions had no substantial effect on the ratio of left ventricular mass/left ventricular end diastolic volume in either trial. Conclusions Frequent in-center hemodialysis reduces left and right ventricular end systolic and diastolic ventricular volumes as well as left ventricular mass, but it does not affect left ventricular remodeling. PMID:23970131
How implantable cardioverter-defibrillators work and simple programming.
Bryant, Randall M
2017-01-01
Following the sudden death of a friend in 1966, Dr Michel Mirowski began pioneering work on the first implantable cardioverter-defibrillator. By 1969 he had developed an experimental model and performed the first transvenous defibrillation. In 1970 he reported on the use of a "standby automatic defibrillator" that was tested successfully in dogs. He postulated that such a device "when adapted for clinical use, might be implanted temporarily or permanently in selected patients particularly prone to develop ventricular fibrillation and thus provide them with some degree of protection from sudden coronary death". In 1980 he reported on the first human implants of an "electronic device designed to monitor cardiac electrical activity, to recognise ventricular fibrillation and ventricular tachyarrhythmias … and then to deliver corrective defibrillatory discharges". Through innovations in circuitry, battery, and capacitor technologies, the current implantable cardioverter-defibrillator is 10 times smaller and exponentially more sophisticated than that first iteration. This article will review the inner workings of the implantable cardioverter-defibrillator and outline several features that make it the wonder in technology that it has become.
NASA Astrophysics Data System (ADS)
Tan, Sean Guo-Dong; Kim, Sangho; Leo, Hwa Liang
2016-06-01
Mechanical heart valve prostheses are often implanted in young patients due to their durability and long-term reliability. However, existing designs are known to induce elevated levels of blood damage and blood platelet activation. As a result, there is a need for patients to undergo chronic anti-coagulation treatment to prevent thrombosis, often resulting in bleeding complications. Furthermore, recent studies have suggested that the implantation of a mechanical prosthetic valve at the mitral position results in a significant alteration of the left ventricular flow field which may contribute to flow turbulence. This study proposes a bi-leaflet mechanical heart valve design (Bio-MHV) that mimics the geometry of a human mitral valve, with the aim of reducing turbulence levels in the left ventricle by replicating physiological flow patterns. An in vitro three-dimensional particle velocimetry imaging experiment was carried out to compare the hemodynamic performance of the Bio-MHV with that of the clinically established ATS valve. The Bio-MHV was found to replicate physiological left ventricular flow patterns and produced lower turbulence levels.
Yu, Huimin; Smallwood, Philip M.; Wang, Yanshu; Vidaltamayo, Roman; Reed, Randall; Nathans, Jeremy
2010-01-01
The closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and eye. In mice, targeted mutations of the genes encoding frizzled 1 (Fz1) and frizzled 2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity gene Vangl2 (Vangl2Lp), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and misorientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans. PMID:20940229
Balenovic, Dijana; Bencic, Martina Lovric; Udovicic, Mario; Simonji, Karol; Hanzevacki, Jadranka Separovic; Barisic, Ivan; Kranjcevic, Stjepan; Prkacin, Ingrid; Coric, Vedran; Brcic, Luka; Coric, Marijana; Brcic, Iva; Borovic, Suzana; Radic, Bozo; Drmic, Domagoj; Vrcic, Hrvoje; Seiwerth, Sven; Sikiric, Predrag
2009-08-07
Pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419) reversed congestive heart failure and various arrhythmias, influenced the NO-system and showed no proarrhythmic effect. In therapy analogy, we challenged rats with digitalis, to show attenuation by BPC 157 and the relation between the NO-system and digitalis toxicity. (i). BPC 157 prophylactic effect. Development of cumulative intravenous digitalis toxicity, BPC 157 (50 microg, 10 microg, 10 ng/kg applied intravenously immediately before a methyldigoxin increment regimen (2.0/1.5/1.5/1.0 mg/kg at 15 min-intervals, total dose 6.0 mg/kg/45 min)) reduced the number of ventricular premature beats, prolonged the time before onset of ventricular tachycardia, reduced ventricular tachycardia and AV-block duration (microg-regimes) or reduced mainly the AV-block duration (ng-regimen). (ii). BPC 157 therapy. Advanced methyldigoxin toxicity (6.0 mg/kg i.v. bolus). BPC 157 applied at the 20th second of the grade 3 AV-block shortened AV-blocks, mitigated a further digitalis toxicity course. Ventricular tachycardias were either avoided (50 microg), or markedly reduced (10 microg, 10 ng). Fatal outcome was either avoided (50 microg), reduced (10 microg), or only delayed (10 ng) (iii) BPC 157, L-NAME, l-arginine, L-NAME+l-arginine application. L-NAME-application (5 mg/kg i.p.) aggravated methyldigoxin-arrhythmias. l-arginine (200 mg/kg i.p.) alone had no effect but blunted L-NAME-exaggeration (L-NAME+l-arginine). In this respect, BPC 157 (50 microg/kg i.p.) was prophylactically and therapeutically more effective: the antagonism of L-NAME with BPC 157 produced an effect similar to BPC 157 alone. In conclusion, digitalis-induced arrhythmias in rats could be prevented and counteracted by pentadecapeptide BPC 157, mainly through an interaction with the NO-system.
Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam
2017-04-01
Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.
Huang, He; Jing, Xian-chao; Hu, Zhang-xue; Chen, Xi; Liu, Xiao-qin
2015-12-01
To observe the ventricular global and regional function of the patients with systemic amyloidosis using two-dimensional speckle tracking echocardiography. The study enrolled 31 consecutive biopsy-proved patients with systemic amyloidosis who underwent echocardiographic examination and EF ≥ 55% and 37 age- and gender-matched healthy controls. We compared systolic strain and strain rate, diastolic strain rate, time to peak strain, peak delay time in longitudinal, radial, circumferential directions in 16 left ventricular segments. The global peak systolic longitudinal and radial strain of left ventricle, peak systolic longitudinal strain and strain rate, diastolic strain rate of right ventricular free wall were also compared. (1) Global peak systolic longitudinal strain (GPSLS), peak systolic longitudinal strain (PSLS) and strain rate (PSLSR), peak early diastolic longitudinal strain rate (PELSR) in 16 segments were decreased in case (P < 0.05). (2) Peak systolic radial strain and strain rate of inferoseptum and inferolateral at the level of papillary muscle were lower (P < 0.05), and peak early diastolic radial strain rate (PERSR) was reduced (P < 0.05). (3) Peak early diastolic circumferential strain rate was lower (P < 0.05). (4) Time to peak systolic longitudinal, radial, circumferential strain was longer, and peak delay time at the same level retarded (P < 0.05). (5) Into right ventricular wall, PSLS and PSLSR at mid-segment, and PSLSR, PELSR, peak atrial systolic longitudinal strain rate (PALSR) at basal were reduced (P < 0.05). (6) Inverse correlation between interventricular septum (IVS) thickness and GPSLS and GPSRS was found (P < 0.05). Systolic and diastolic dysfunction existed in systemic amyloidosis with preserved EF. Mechanical contraction disorder may be one reason for systolic dysfunction. GPLSR and GPRSR were negatively related to IVS thickness. © 2015, Wiley Periodicals, Inc.
The calcium–frequency response in the rat ventricular myocyte: an experimental and modelling study
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E.; Niederer, Steven A.
2016-01-01
Key points In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force–frequency response (FFR). The majority of mammals have a positive force–frequency relationship (FFR). In rat the FFR is controversial.We derive a species‐ and temperature‐specific data‐driven model of the rat ventricular myocyte.As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium–frequency response (CFR) in our model and three altered models.The results show a biphasic peak calcium–frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency‐dependent increase in diastolic calcium.Alterations to the model reveal that inclusion of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated L‐type channel and transient outward K+ current activity enhances the positive magnitude calcium–frequency response, and the absence of CAMKII‐mediated increase in activity of the sarco/endoplasmic reticulum Ca2+‐ATPase induces a negative magnitude calcium–frequency response. Abstract An increase in heart rate affects the strength of cardiac contraction by altering the Ca2+ transient as a response to physiological demands. This is described by the force–frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat‐based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca2+ transient characteristics and showed a biphasic peak calcium–frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated increase in sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L‐type channel and transient outward K+ current activity and (3) Na+/K+ pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca2+–frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca2+. PMID:26916026
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai
2017-02-14
The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
Friedman, Paul A; Kushwaha, Sudhir S; Bruce, Charles J; Park, Soon J; Ladewig, Dorothy J; Mikell, Susan B; Johnson, Susan B; Suddendorf, Scott H; Danielsen, Andrew J; Asirvatham, Samuel J
2011-06-01
Left ventricular assist devices (LVADs) are increasingly used to treat patients with refractory heart failure. Current-generation LVADs have major limitations, including the need for open chest surgery, limiting their widespread use. We hypothesized that the aortoatrial continuity could be used as a unique anatomic vantage point for entirely percutaneous LVAD placement. Forty human autopsied hearts were examined to ascertain the presence and define the dimensions of the continuity between the posterior aortic wall and the left atrium. In all cases, a "septum" between the aorta and left atrium was identified. In 3 animal experiments, a custom mechanical shunt was deployed in the wall between the left atrium and noncoronary cusp. With continuous intracardiac ultrasound imaging, and at necropsy, there was no evidence of device dislodgement, pericardial effusion, or aortic or coronary artery trauma noted. It is feasible to use the wall between the aorta and left atrium as an access route for a potentially entirely percutaneous LVAD. Such a system obviates the need for accessing the left ventricle, minimizing complications. In the future, such devices may allow widespread treatment of heart failure, malignant cardiac arrhythmia, and severe aortic and mitral valvular disease. Copyright © 2011 Elsevier Inc. All rights reserved.
Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging
NASA Astrophysics Data System (ADS)
Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.
2018-02-01
Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.
Right ventricular dysfunction affects survival after surgical left ventricular restoration.
Couperus, Lotte E; Delgado, Victoria; Palmen, Meindert; van Vessem, Marieke E; Braun, Jerry; Fiocco, Marta; Tops, Laurens F; Verwey, Harriëtte F; Klautz, Robert J M; Schalij, Martin J; Beeres, Saskia L M A
2017-04-01
Several clinical and left ventricular parameters have been associated with prognosis after surgical left ventricular restoration in patients with ischemic heart failure. The aim of this study was to determine the prognostic value of right ventricular function. A total of 139 patients with ischemic heart failure (62 ± 10 years; 79% were male; left ventricular ejection fraction 27% ± 7%) underwent surgical left ventricular restoration. Biventricular function was assessed with echocardiography before surgery. The independent association between all-cause mortality and right ventricular fractional area change, tricuspid annular plane systolic excursion, and right ventricular longitudinal peak systolic strain was assessed. The additive effect of multiple impaired right ventricular parameters on mortality also was assessed. Baseline right ventricular fractional area change was 42% ± 9%, tricuspid annular plane systolic excursion was 18 ± 3 mm, and right ventricular longitudinal peak systolic strain was -24% ± 7%. Within 30 days after surgery, 15 patients died. Right ventricular fractional area change (hazard ratio, 0.93; 95% confidence interval, 0.88-0.98; P < .01), tricuspid annular plane systolic excursion (hazard ratio, 0.80; 95% confidence interval, 0.66-0.96; P = .02), and right ventricular longitudinal peak systolic strain (hazard ratio, 1.15; 95% confidence interval, 1.05-1.26; P < .01) were independently associated with 30-day mortality, after adjusting for left ventricular ejection fraction and aortic crossclamping time. Right ventricular function was impaired in 21%, 20%, and 27% of patients on the basis of right ventricular fractional area change, tricuspid annular plane systolic excursion, and right ventricular longitudinal peak systolic strain, respectively. Any echocardiographic parameter of right ventricular dysfunction was present in 39% of patients. The coexistence of several impaired right ventricular parameters per patient was independently associated with increased 30-day mortality (hazard ratio, 2.83; 95% confidence interval, 1.64-4.87, P < .01 per additional impaired parameter). Baseline right ventricular systolic dysfunction is independently associated with increased mortality in patients with ischemic heart failure undergoing surgical left ventricular restoration. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Nomoto, Shinichi; Utsumi, Momoe; Minakata, Kenji
2016-07-04
Since implantable left ventricular assist devices (LVAD) with smaller configurations became available for bridge-to-transplant or even destination therapy in patients with end-stage heart failure, an increasing number of patients with these devices are receiving home medical management. However, these patients may be anxious about potential complications such as pump failure, thromboembolism, and infections that may occur during home management. To provide a sense of security during home management of patients with LVAD and to establish an ideal shared-care system, we developed a patient-centered cloud-based home management system for patients with LVAD. In this case report, we describe this system and report a trial of it in a 64-year-old patient with an LVAD.
What the Psychiatrist Needs to Know About Ventricular Assist Devices: A Comprehensive Review.
Caro, Mario A; Rosenthal, Julie L; Kendall, Kay; Pozuelo, Leopoldo; Funk, Margo C
2016-01-01
The number of patients with end-stage heart failure using mechanical circulatory support has dramatically increased over the past decade. Left ventricular assist devices, the most common type of mechanical circulatory support, can be used as a bridge to transplant, destination therapy, and as a bridge to recovery. As this patient population continues to grow, consultation-liaison psychiatrists will become increasingly involved in their care. A thorough biopsychosocial assessment is required to ensure adequate recognition and management of medical, psychiatric, social, and ethical challenges posed by this population. We performed a literature review to identify key issues relevant to the practice of consultation-liaison psychiatrists. General functioning of left ventricular assist devices, device types, system components, life with a left ventricular assist device, preoperative evaluation, treatment of psychiatric comorbidities, and end-of-life decision-making are discussed. Consultation-liaison psychiatrists need to be familiar with the high prevalence of psychopathology in patients implanted with left ventricular assist devices. A detailed biopsychosocial formulation is required to adequately identify and, if possible, resolve a myriad of medical, psychiatric, social, and ethical challenges presented by this population. Future efforts should accurately identify and report specific psychiatric disorders and adverse events within this cohort. Copyright © 2016 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.
Provencio, J Javier; Kivisäkk, Pia; Tucky, Barbara H; Luciano, Mark G; Ransohoff, Richard M
2005-06-01
The aim of the present study was to define the cellular composition of ventricular, as compared with lumbar, cerebrospinal fluid (CSF) in patients with non-inflammatory neurological disorders (NIND). We addressed this issue by determining the cellular composition of lumbar CSF from patients with normal pressure hydrocephalus (NPH) who were undergoing lumbar CSF drainage during evaluation for shunting procedures, and evaluating ventricular CSF from a subset of these who underwent subsequent placement of ventriculoperitoneal shunts. We determined the cellular composition of lumbar CSF from 18 patients with NPH, and found that the leukocyte differentials, and relative proportions of CD4+ and CD8+ central memory (TCM), effector memory (TEM) and naive cell (TNaive) populations, were equivalent to those found previously in studies of CSF from patients with NIND. We further evaluated cells in the ventricular CSF of five patients who had previously undergone lumbar drainage. Leukocyte differential counts, as well as CD4+ and CD8+ TCM, TEM, and TNaive proportions, were equivalent in matched ventricular and lumbar CSF samples. These observations support the hypothesis that leukocytes enter the CSF in a selective fashion, at its site of formation in the choroid plexus. The results implicate CSF T cells in the immune surveillance of the central nervous system.
Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Vettorazzi, Eik; Lezius, Susanne; Koenig, Wolfgang; Weidemann, Frank; Smith, Gillian; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut
2018-03-01
The SERVE-HF trial investigated the impact of treating central sleep apnoea (CSA) with adaptive servo-ventilation (ASV) in patients with systolic heart failure. A preplanned substudy was conducted to provide insight into mechanistic changes underlying the observed effects of ASV, including assessment of changes in left ventricular function, ventricular remodelling, and cardiac, renal and inflammatory biomarkers. In a subset of the 1325 randomised patients, echocardiography, cardiac magnetic resonance imaging (cMRI) and biomarker analysis were performed at baseline, and 3 and 12 months. In secondary analyses, data for patients with baseline and 12-month values were evaluated; 312 patients participated in the substudy. The primary endpoint, change in echocardiographically determined left ventricular ejection fraction from baseline to 12 months, did not differ significantly between the ASV and the control groups. There were also no significant between-group differences for changes in left ventricular dimensions, wall thickness, diastolic function or right ventricular dimensions and ejection fraction (echocardiography), and on cMRI (in small patient numbers). Plasma N-terminal pro B-type natriuretic peptide concentration decreased in both groups, and values were similar at 12 months. There were no significant between-group differences in changes in cardiac, renal and systemic inflammation biomarkers. In patients with systolic heart failure and CSA, addition of ASV to guideline-based medical management had no statistically significant effect on cardiac structure and function, or on cardiac biomarkers, renal function and systemic inflammation over 12 months. The increased cardiovascular mortality reported in SERVE-HF may not be related to adverse remodelling or worsening heart failure. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Luo, Runlan; Cui, Hongyan; Huang, Dongmei; Sun, Lihua; Song, Shengda; Sun, Mengyao; Li, Guangsen
2018-06-11
Right ventricular function is a crucial factor of the prognosis of systemic lupus erythematosus (SLE). To evaluate the right ventricular function in SLE patients with different degrees of pulmonary hypertension (PH) by strain and strain rate imaging. A total of 102 SLE patients and 30 healthy volunteers were studied between October 2015 and May 2016. Patients were divided into three groups according to pulmonary artery systolic pressure (PASP) estimated by echocardiography: group control (A); PASP ≤ 30 mmHg (group B, n = 37); PASP 30-50 mmHg (mild PH; group C, n = 34); and PASP ≥ 50 mmHg (moderate-to-severe PH; group D, n = 31). Longitudinal peak systolic strain (ε) and strain rate (SR), including systolic strain rate (SRs), early diastolic strain rate (SRe) and late diastolic strain rate (SRa) were measured in the basal, middle and apical segments of the right ventricular free wall in participants by two-dimensional speckle tracking echocardiography (2D-STE) from the apical four-chamber view. A p < 0.05 was set for statistical significance. The parameters of ε, SRs, SRe, and SRa were significantly decreased in groups C and D compared with groups A and B. The ε of each segments was significantly lower in group D than in group C, while there were no differences in SRs, SRe and SRa between groups C and D. Strain and strain rate imaging could early detect the right ventricular dysfunction in SLE patients with PH, and provide important value for clinical therapy and prognosis of these patients. (Arq Bras Cardiol. 2018; [online].ahead print, PP.0-0).
Darouian, Navid; Aro, Aapo L; Narayanan, Kumar; Uy-Evanado, Audrey; Rusinaru, Carmen; Reinier, Kyndaron; Gunson, Karen; Jui, Jonathan; Chugh, Sumeet S
2017-07-01
The Romhilt-Estes point score system (RE) is an established ECG criterion for diagnosing left ventricular hypertrophy (LVH). In this study, we assessed for the first time, whether RE and its components are predictive of sudden cardiac arrest (SCA) independent of left ventricular (LV) mass. Sudden cardiac arrest (SCA) cases occurring between 2002 and 2014 in a Northwestern US metro region (catchment area approx. 1 million) were compared to geographic controls. ECGs and echocardiograms performed prior to the SCA and those of controls were acquired from the medical records and evaluated for the ECG criteria established in the RE score and for LV mass. Two hundred forty-seven SCA cases (age 68.3 ± 14.6, male 64.4%) and 330 controls (age 67.4 ± 11.5, male 63.6) were included in the analysis. RE scores were greater in cases than controls (2.5 ± 2.1 vs. 1.9 ± 1.7, p < .001), and SCA cases were more likely to meet definite LVH criteria (18.6% vs. 7.9%, p < .001). In a multivariable model including echocardiographic LVH and LV function, definite LVH remained independently predictive of SCA (OR 2.04, 95% CI 1.16-3.59, p = .013). The model was replicated with the individual ECG criteria, and only SV 1.2 ≥ 30 mm and delayed intrinsicoid deflection remained significant predictors of SCA. Left ventricular hypertrophy (LVH) as defined by the RE point score system is associated with SCA independent of echocardiographic LVH and reduced LV ejection fraction. These findings support an independent role for purely electrical LVH, in the genesis of lethal ventricular arrhythmias. © 2017 Wiley Periodicals, Inc.
Pereda, Daniel; García-Lunar, Inés; Sierra, Federico; Sánchez-Quintana, Damián; Santiago, Evelyn; Ballesteros, Constanza; Encalada, Juan F; Sánchez-González, Javier; Fuster, Valentín; Ibáñez, Borja; García-Álvarez, Ana
2016-09-01
Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are strong predictors of morbidity and mortality among patients with congenital heart disease. Early detection of RV involvement may be useful in the management of these patients. We aimed to assess progressive cardiac adaptation and quantify myocardial extracellular volume in an experimental porcine model of PH because of aorto-pulmonary shunt using cardiac magnetic resonance (CMR). To characterize serial cardiac adaptation, 12 pigs (aorto-pulmonary shunt [n=6] or sham operation [n=6]) were evaluated monthly with right heart catheterization, CMR, and computed tomography during 4 months, followed by pathology analysis. Extracellular volume by CMR in different myocardial regions was studied in 20 animals (aorto-pulmonary shunt [n=10] or sham operation [n=10]) 3 months after the intervention. All shunted animals developed PH. CMR evidenced progressive RV hypertrophy and dysfunction secondary to increased afterload and left ventricular dilatation secondary to volume overload. Shunt flow by CMR strongly correlated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation. T1-mapping sequences demonstrated increased extracellular volume at the RV insertion points, the interventricular septum, and the left ventricular lateral wall, reproducing the pattern of fibrosis found on pathology. Extracellular volume at the RV insertion points strongly correlated with pulmonary hemodynamics and RV dysfunction. Prolonged systemic-to-pulmonary shunting in growing piglets induces PH with biventricular remodeling and myocardial fibrosis that can be detected and monitored using CMR. These results may be useful for the diagnosis and management of congenital heart disease patients with pulmonary overcirculation. © 2016 American Heart Association, Inc.
Ozcan Abacıoglu, Ozge; Kaplan, Mehmet; Abacıoglu, Serkan; Quisi, Ala
2017-09-01
Several studies have been conducted regarding the effects of coal mining on the respiratory system. However, there is a lack of data concerning potential effects of coal mining on the cardiovascular system. In this study, we aimed to evaluate the potential subclinical right and left ventricular dysfunction in coal miners. This single-center, prospective study included a total of 102 patients. Patient and control groups consisted of 54 coal miners and 48 healthy men, respectively. All patients underwent 12-lead electrocardiography, transthoracic echocardiography, and pulmonary function test. As compared to control group, coal miners had significantly higher right ventricular myocardial performance index (RVMPI) (0.41 ± 0.03 vs 0.37 ± 0.02, P < .001), lower right ventricular fractional area change (RVFAC) (33.55% ± 6.70% vs 37.04 ± 9.26 P < .05), lower tricuspid annular plane systolic excursion (TAPSE) (1.54 ± 0.17 vs 1.73 ± 0.25, P < .001), lower myocardial isovolumic acceleration (IVA) (2.13 ± 0.16 vs 2.56 ± 0.36 P < .001) and decreased aortic distensibility (AD) (4.14 ± 2.18 vs 6.63 ± 3.91 P < .001). All of the echocardiographic parameters were positively correlated with exposure time to coal mine dust, except IVA. Echocardiographic parameters of both right and left ventricular dysfunction, including RVMPI, RVFAC, TAPSE, IVA, and AD, are impaired in coal miners. © 2017 The Authors Echocardiography Published by Wiley Periodicals, Inc.
Zhang, Fengxiang; Yang, Bing; Chen, Hongwu; Ju, Weizhu; Kojodjojo, Pipin; Cao, Kejiang; Chen, Minglong
2013-08-01
No randomized controlled study has prospectively compared the performance and clinical outcomes of remote magnetic control (RMC) vs manual catheter control (MCC) during ablation of right ventricular outflow tract (RVOT) ventricular premature complexes (VPC) or ventricular tachycardia (VT). The purpose of this study was to prospectively evaluate the efficacy and safety of using either RMC vs MCC for mapping and ablation of RVOT VPC/VT. Thirty consecutive patients with idiopathic RVOT VPC/VT were referred for catheter ablation and randomized into either the RMC or MCC group. A noncontact mapping system was deployed in the RVOT to identify origins of VPC/VT. Conventional activation and pace-mapping was performed to guide ablation. If ablation performed using 1 mode of catheter control was acutely unsuccessful, the patient crossed over to the other group. The primary endpoints were patients' and physicians' fluoroscopic exposure and times. Mean procedural times were similar between RMC and MCC groups. The fluoroscopic exposure and times for both patients and physicians were much lower in the RMC group than in the MCC group. Ablation was acutely successful in 14 of 15 patients in the MCC group and 10 of 15 in the RMC group. Following crossover, acute success was achieved in all patients. No major complications occurred in either group. During 22 months of follow-up, RVOT VPC recurred in 2 RMC patients. RMC navigation significantly reduces patients' and physicians' fluoroscopic times by 50.5% and 68.6%, respectively, when used in conjunction with a noncontact mapping system to guide ablation of RVOT VPC/VT. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices
Kauer, Floris; Geleijnse, Marcel Leonard; van Dalen, Bastiaan Martijn
2015-01-01
Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in “the cardiology community” as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial (microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the “diagnostic toolbox” for cardiomyopathies. PMID:26322187
Simons, G R; Newby, K H; Kearney, M M; Brandon, M J; Natale, A
1998-02-01
The objective of this study was to assess the safety and efficacy of transvenous low energy cardioversion of atrial fibrillation in patients with ventricular tachycardia and atrial fibrillation and to study the mechanisms of proarrhythmia. Previous studies have demonstrated that cardioversion of atrial fibrillation using low energy, R wave synchronized, direct current shocks applied between catheters in the coronary sinus and right atrium is feasible. However, few data are available regarding the risk of ventricular proarrhythmia posed by internal atrial defibrillation shocks among patients with ventricular arrhythmias or structural heart disease. Atrial defibrillation was performed on 32 patients with monomorphic ventricular tachycardia and left ventricular dysfunction. Shocks were administered during atrial fibrillation (baseline shocks), isoproterenol infusion, ventricular pacing, ventricular tachycardia, and atrial pacing. Baseline shocks were also administered to 29 patients with a history of atrial fibrillation but no ventricular arrhythmias. A total of 932 baseline shocks were administered. No ventricular proarrhythmia was observed after well-synchronized baseline shocks, although rare inductions of ventricular fibrillation occurred after inappropriate T wave sensing. Shocks administered during wide-complex rhythms (ventricular pacing or ventricular tachycardia) frequently induced ventricular arrhythmias, but shocks administered during atrial pacing at identical ventricular rates did not cause proarrhythmia. The risk of ventricular proarrhythmia after well-synchronized atrial defibrillation shocks administered during narrow-complex rhythms is low, even in patients with a history of ventricular tachycardia. The mechanism of proarrhythmia during wide-complex rhythms appears not to be related to ventricular rate per se, but rather to the temporal relationship between shock delivery and the repolarization time of the previous QRS complex.
Value of right ventricular mapping in patients with postinfarction ventricular tachycardia.
Yokokawa, Miki; Good, Eric; Crawford, Thomas; Chugh, Aman; Pelosi, Frank; Latchamsetty, Rakesh; Oral, Hakan; Morady, Fred; Bogun, Frank
2012-06-01
Postinfarction ventricular tachycardia (VT) typically involves the left ventricular endocardium. Right ventricular involvement in the arrhythmogenic substrate of postinfarction VT is considered unusual. To assess the role of right ventricular mapping and ablation in patients with prior septal myocardial infarction. From among 37 consecutive patients with recurrent postinfarction VT, 18 patients with evidence of left ventricular septal involvement of myocardial infarction were identified; these patients were the subjects of this report. In these 18 patients, 166 VTs (cycle length 372 ± 117 ms) were induced. Right ventricular voltage mapping was performed in all 18 patients with left ventricular septal myocardial infarction. Right ventricular voltage mapping showed areas of low voltage in 11 patients; pace mapping from these areas revealed matching pace maps for 17 VTs, and radiofrequency ablation from the right ventricular endocardium but not the left ventricular endocardium eliminated 14 of 17 VTs. VTs with critical components in the right ventricle had a left bundle branch block morphology that had similar characteristics as left bundle branch block VTs with critical areas involving the left ventricular septum. Patients with right ventricular VT breakthrough sites had a lower ejection fraction than did patients without VT breaking out on the right ventricular septum (18% ± 5% vs 33% ± 15%; P = .01). Right ventricular mapping and ablation may be necessary in order to eliminate all inducible VTs in patients with postinfarction VT. More than half the patients with septal myocardial infarction have right ventricular septal areas that are critical for postinfarction VT and that cannot be eliminated by left ventricular ablation alone. Copyright © 2012 Heart Rhythm Society. All rights reserved.
Long-term in vivo left ventricular assist device study with a titanium centrifugal pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Mueller, J; Takano, T; Yamane, S; Gronau, N; Glueck, J; Takami, Y; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1998-01-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart, 2 week screening tests for antithrombogenicity, and 1 month system feasibility. Based on these results, a metallic prototype, Gyro PI 702, was subjected to in vivo left ventricular assist device (LVAD) studies. The pump system employed the Gyro PI 702, which has the same inner dimensions and the same characteristics as the Gyro PI 601, including an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI 702 is driven with the Vienna DC brushless motor actuator. For the in vivo LVAD study, the pump actuator package was implanted in the preperitoneal space in two calves, from the left ventricular apex to the descending aorta. Case 1 achieved greater than 9 month survival without any complications, at an average flow rate of 6.6 L/min with 10.2 W input power. Case 2 was killed early due to the excessive growth of the calf, which caused functional obstruction of the inlet port. There was no blood clot inside the pump. During these periods, neither case exhibited any physiologic abnormalities. The PI 702 pump gives excellent results as a long-term implantable LVAD.
2001-12-01
instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to...isoflurane in 100% oxy- gen) prior to insertion of the high -fidelity pressure micromanome- ters during cardiac fluoroscopy. Once the micromanometer trans...and allowed to fully recover from the isoflurane seda- tion for a period of 60 min, during which blood pressure and aortic flow were monitored to ensure
Topilsky, Yan; Maltais, Simon; Oh, Jae K; Atchison, Fawn W; Perrault, Louis P; Carrier, Michel; Park, Soon J
2011-02-08
Left ventricular assist devices (LVADs) are systems for mechanical support for patients with end-stage heart failure. Preoperative, postoperative and comprehensive followup with transthoracic echocardiography has a major role in LVAD patient management. In this paper, we will present briefly the hemodynamics of axial-flow LVAD, the rationale, and available data for a complete and organized echocardiographic assessment in these patients including preoperative assessment, postoperative and long-term evaluation.
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1972-01-01
An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.
Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin
2015-10-01
Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.
Hamela-Olkowska, Anita; Szymkiewicz-Dangel, Joanna; Własienko, Paweł; Majewska, Urszula; Bokiniec, Renata
2012-02-01
The use of fenoterol in the treatment of preterm labor is associated with the risk of many complications in the mother and the fetus. We present a case of a multipara treated with oral fenoterol due to threatening preterm labor 14 weeks. At 35 weeks of gestation the fetus was diagnosed with hypertrophic cardiomyopathy with severe impairment of the right ventricle. The only factor that might have caused such a state of the fetal circulatory system was fenoterol, used from 21 weeks of gestation. After the withdrawal of the fenoterol the fetal right ventricular function improved gradually. However fetal cardiac hypertrophy persisted until the birth at 39 weeks of gestation. Concentric hypertrophy of the right ventricular wall and interventricular septum were confirmed in the newborn.
Hrabcová, Dana; Pásek, Michal; Šimurda, Jiří; Christé, Georges
2013-12-13
We have developed a computer model of human cardiac ventricular myocyte (CVM), including t-tubular and cleft spaces with the aim of evaluating the impact of accumulation-depletion of ions in restricted extracellular spaces on transmembrane ion transport and ionic homeostasis in human CVM. The model was based on available data from human CVMs. Under steady state, the effect of ion concentration changes in extracellular spaces on [Ca2+]i-transient was explored as a function of critical fractions of ion transporters in t-tubular membrane (not documented for human CVM). Depletion of Ca2+ and accumulation of K+ occurring in extracellular spaces slightly affected the transmembrane Ca2+ flux, but not the action potential duration (APD90). The [Ca2+]i-transient was reduced (by 2%-9%), depending on the stimulation frequency, the rate of ion exchange between t-tubules and clefts and fractions of ion-transfer proteins in the t-tubular membrane. Under non-steady state, the responses of the model to changes of stimulation frequency were analyzed. A sudden increase of frequency (1-2.5 Hz) caused a temporal decrease of [Ca2+] in both extracellular spaces, a reduction of [Ca2+]i-transient (by 15%) and APD90 (by 13 ms). The results reveal different effects of activity-related ion concentration changes in human cardiac t-tubules (steady-state effects) and intercellular clefts (transient effects) in the modulation of membrane ion transport and Ca2+ turnover.
Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.
Yang, Xiulan; Pabon, Lil; Murry, Charles E
2014-01-31
The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.
Straznitskas, Andrew D; Wong, Sylvia; Kupchik, Nicole; Carlbom, David
2015-05-01
Development of ventricular fibrillation or pulseless ventricular tachycardia after an initial rhythm of pulseless electrical activity or asystole is associated with significantly increased cardiac arrest mortality. To examine differences in epinephrine administration during cardiac arrest between patients who had a secondary ventricular fibrillation or ventricular tachycardia develop and patients who did not. Data were collected for 2 groups of patients with in-hospital cardiac arrest and an initial rhythm of pulseless electrical activity or asystole: those who had a secondary ventricular fibrillation or ventricular tachycardia develop (cases) and those who did not (controls). Dosing of epinephrine during cardiac arrest and other variables were compared between cases and controls. Of the 215 patients identified with an initial rhythm of pulseless electrical activity or asystole, 51 (23.7%) had a secondary ventricular fibrillation or ventricular tachycardia develop. Throughout the total duration of arrest, including periods of return of spontaneous circulation, the dosing interval for epinephrine in patients who had a secondary ventricular fibrillation or ventricular tachycardia develop was 1 mg every 3.4 minutes compared with 1 mg every 5 minutes in controls (P= .001). For the total duration of pulselessness, excluding periods of return of spontaneous circulation during the arrest, the dosing interval for epinephrine in patients who had a secondary ventricular fibrillation or ventricular tachycardia develop was 1 mg every 3.1 minutes versus 1 mg every 4.3 minutes in controls (P= .001). More frequent administration of epinephrine during cardiac arrest is associated with development of secondary ventricular fibrillation or ventricular tachycardia. ©2015 American Association of Critical-Care Nurses.
Faber, Thomas S; Gradinger, Robert; Treusch, Sven; Morkel, Carsten; Brachmann, Johannes; Bode, Christoph; Zehender, Manfred
2007-09-01
Current studies found an incidence of 12-31% ventricular tachyarrhythmias and sudden cardiac death during cardiac pacing months or even years after pacemaker insertion. MADIT(12) and MUSTT(13) demonstrated that patients with poor LV function after Myocardial infarction (MI) showing non-sustained ventricular tachycardia (nsVT) and inducibility during electrophysiologic testing benefit from an ICD. The present study was dedicated to assess the global incidence of non-sustained ventricular arrhythmias in a general population of pacemaker patients. Special regard was on patients with a potential ICD indication, e.g. those matching the MADIT/MUSTT criteria. Two hundred and thirty-one patients (72 +/- 11 years; 134 men) with an indication for dual chamber pacing entered the study. In all patients pacemaker systems capable of automatic storing of intracardiac electrocardiograms were implanted (Pulsar, Discovery, Guidant). Follow-up time was 15 months after inclusion. In 54 (25.7%) of 210 patients with at least one follow-up, episodes of nsVT were documented by stored electrocardiograms (up to >30 beats, >200 b.p.m.). Multiple-up to nine-episodes of ventricular tachycardia were retrieved in 31 of these patients. Three out of 14 patients with an LVEF <40% after MI presented nsVT during the follow-up. One of these patients received an ICD. A significant number of pacemaker patients present with ventricular tachycardia. Intracardiac electrocardiograms and alert functions from pacemakers may enhance physicians' awareness of the patient's intrinsic arrhythmic profile and help uncover underlying mechanisms of arrhythmias by storing the initiation of the arrhythmia.
Law, Yuk Ming; Ettedgui, Jose; Beerman, Lee; Maisel, Alan; Tofovic, Stevan
2006-08-15
The measurement of plasma B-type natriuretic peptide (BNP) has emerged as a useful biomarker of heart failure in patients with cardiomyopathy. The pathophysiology of heart failure in single ventricle (SV) circulation may be distinct from that of cardiomyopathies. A distinct pattern of BNP elevation in heart failure in the SV population was hypothesized: it is elevated in heart failure secondary to ventricular dysfunction but not in isolated cavopulmonary failure. BNP was measured prospectively in SV patients at catheterization (n = 22) and when assessing for heart failure (n = 11) (7 normal controls). Of 33 SV subjects (median age 62 months), 13 had aortopulmonary connections and 20 had cavopulmonary connections. Median and mean +/- SD BNP levels by shunt type were 184 and 754 +/- 1,086 pg/ml in the patients with aortopulmonary connections, 38 and 169 +/- 251 pg/ml in the patients with cavopulmonary connections, and 10 and 11 +/- 5 pg/ml in normal controls, respectively (p = 0.004). Median systemic ventricular end-diastolic pressure (8mm Hg, R = 0.45), mean pulmonary artery pressure (14.5 mm Hg, R = 0.62), and mean right atrial pressure (6.5 mm Hg, R = 0.54) were correlated with plasma BNP. SV subjects with symptomatic heart failure from dysfunctional systemic ventricles had median and mean +/- SD BNP levels of 378 and 714 +/- 912 pg/ml (n = 18) compared with patients with isolated failed Glenn or Fontan connections (19 and 23 +/- 16 pg/ml [n = 7, p = 0.001]) and those with no heart failure (22 and 22 +/- 12 pg/ml [n = 8, p = 0.001]). Excluding the group with cavopulmonary failure, the severity of heart failure from systemic ventricular dysfunction was associated with plasma BNP. In conclusion, plasma BNP is elevated in SV patients with systemic ventricular or left-sided cardiac failure. BNP is not elevated in patients missing a pulmonary ventricle with isolated cavopulmonary failure.
Surgical approach to left ventricular inflow obstruction due to dilated coronary sinus.
Vargas, Florentino J; Rozenbaum, Jorge; Lopez, Ricardo; Granja, Miguel; De Dios, Ana; Zarlenga, Beatriz; Flores, Enrique; Fischman, Enrique; Kreutzer, Eduardo
2006-07-01
Left superior vena cava draining to a dilated coronary sinus can cause left ventricular inflow obstruction. Our purpose is to report 4 severely ill patients with this malformation who were operated upon and in whom repair was accomplished using an original surgical approach. An operative procedure was designed, which included complete resection of the wall of the coronary sinus along its entire extension in the left atrium; division of the left superior vena cava; and establishment of the left superior vena cava-right atrial continuity by a wide left superior vena cava-right atrial appendage anastomosis. The series included 1 patient with interrupted inferior vena cava-hemiazygous continuation to left superior vena cava. There were no deaths. Absence of residual left ventricular inflow obstruction was demonstrated at follow-up in all cases, together with an unobstructed left superior vena cava-right atrial appendage-right atrial connection. A predictable relief of the left ventricular inflow obstruction, together with preservation of an adequate drainage for the systemic venous return, were both achieved with this repair.
Fibrosis-Related Gene Expression in Single Ventricle Heart Disease.
Nakano, Stephanie J; Siomos, Austine K; Garcia, Anastacia M; Nguyen, Hieu; SooHoo, Megan; Galambos, Csaba; Nunley, Karin; Stauffer, Brian L; Sucharov, Carmen C; Miyamoto, Shelley D
2017-12-01
To evaluate fibrosis and fibrosis-related gene expression in the myocardium of pediatric subjects with single ventricle with right ventricular failure. Real-time quantitative polymerase chain reaction was performed on explanted right ventricular myocardium of pediatric subjects with single ventricle disease and controls with nonfailing heart disease. Subjects were divided into 3 groups: single ventricle failing (right ventricular failure before or after stage I palliation), single ventricle nonfailing (infants listed for primary transplantation with normal right ventricular function), and stage III (Fontan or right ventricular failure after stage III). To evaluate subjects of similar age and right ventricular volume loading, single ventricle disease with failure was compared with single ventricle without failure and stage III was compared with nonfailing right ventricular disease. Histologic fibrosis was assessed in all hearts. Mann-Whitney tests were performed to identify differences in gene expression. Collagen (Col1α, Col3) expression is decreased in single ventricle congenital heart disease with failure compared with nonfailing single ventricle congenital heart disease (P = .019 and P = .035, respectively), and is equivalent in stage III compared with nonfailing right ventricular heart disease. Tissue inhibitors of metalloproteinase (TIMP-1, TIMP-3, and TIMP-4) are downregulated in stage III compared with nonfailing right ventricular heart disease (P = .0047, P = .013 and P = .013, respectively). Matrix metalloproteinases (MMP-2, MMP-9) are similar between nonfailing single ventricular heart disease and failing single ventricular heart disease, and between stage III heart disease and nonfailing right ventricular heart disease. There is no difference in the prevalence of right ventricular fibrosis by histology in subjects with single ventricular failure heart disease with right ventricular failure (18%) compared with those with normal right ventricular function (38%). Fibrosis is not a primary contributor to right ventricular failure in infants and young children with single ventricular heart disease. Additional studies are required to understand whether antifibrotic therapies are beneficial in this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Human exposures to near road ambient particulate matter and its major component, diesel exhaust (DE), have been associated with cardiovascular impairments however the mechanisms and the role of hypertension are not well understood. We have shown that DE exposure reduces blood pre...
LIU, SHU-PING; LI, LI; YAO, KE-CHUN; WANG, NA; WANG, JIAN-CHANG
2013-01-01
This study aimed to explore the mechanism of membranous ventricular septal defect complicated with tricuspid regurgitation and the significance of ventricular septal defect occlusion by echocardiography. A total of 43 patients with membranous ventricular septal defect complicated with tricuspid regurgitation were observed by echocardiography and the changes in length, area and volume of tricuspid regurgitation prior to and following ventricular septal defect occlusion were measured. There were four different mechanisms of membranous ventricular septal defect complicated with tricuspid regurgitation. The various indices of tricuspid regurgitation volume were significantly reduced following occlusion. Ventricular septal defect occlusion significantly reduces tricuspid regurgitation volume complicated with membranous ventricular septal defect and echocardiography is an ideal method to detect these changes. PMID:23404058
Al-Shafei, Ahmad I M; Wise, R G; Gresham, G A; Carpenter, T A; Hall, L D; Huang, Christopher L-H
2002-01-01
Non-invasive magnetic resonance imaging (MRI) was used to characterize changes in left and right ventricular cardiac cycles following induction of experimental, streptozotocin (STZ)-induced, diabetes in male Wistar rats at different ages. The effects of the angiotensin-converting enzyme (ACE) inhibitor captopril upon such chronic physiological changes were then evaluated, also for the first time. Diabetes was induced at the age of 7 weeks in two experimental groups, of which one group was subsequently maintained on captopril (2 g l−1)-containing drinking water, and at 10 and 13 weeks in two further groups. The fifth group provided age-matched controls. All groups (each n = 4 animals) were scanned consistently at 16 weeks, in parallel with timings used in earlier studies that employed this experimental model. Cine magnetic resonance (MR) image acquisition provided transverse sections through both ventricles at twelve time points covering systole and most of diastole. These yielded reconstructions of cardiac anatomy used to derive critical functional indices and their dependence upon time following the triggering electrocardiographic R waves. The left and right ventricular end-diastolic (EDV), end-systolic (ESV) and stroke volumes (SV), and ejection fractions (EF) calculated from each, control and experimental, group showed matching values. This confirmed a necessary condition requiring balanced right and left ventricular outputs and further suggested that STZ-induced diabetes produced physiological changes in both ventricles. Absolute left and right ventricular SVs were significantly altered in all diabetic animals; EDVs and EFs significantly altered in animals diabetic from 7 and 10 but not 13 weeks. When normalized to body weight, left and right ventricular SVs had significantly altered in animals diabetic from 7 and 10 weeks but not 13 weeks. Normalized left ventricular EDVs were also significantly altered in animals diabetic from 7 and 10 weeks. However, normalized right ventricular EDVs were significantly altered only in animals made diabetic from 7 weeks. Diabetic hearts showed major kinetic changes in left and right ventricular contraction (ejection) and relaxation (filling). Both the initial rates of volume change (dV/dt) in both ventricles and the plots of dV/dt values through the cardiac cycle demonstrated more gradual developments of tension during systole and relaxation during diastole. Estimates of the derived left ventricular performance parameters of cardiac output, cardiac power output and stroke work in control animals were comparable with human values when normalized to both body (or cardiac) weight and heart rate. All deteriorated with diabetes. Comparisons of experimental groups diabetic from 7 weeks demonstrated that captopril treatment relieved the alterations in critical volumes, dependence of SV upon EDV, kinetics of systolic contraction and diastolic relaxation and in the derived indicators of ventricular performance. This study represents the first demonstration using non-invasive MRI of early, chronic changes in diastolic filling and systolic ejection in both the left and the right ventricles and of their amelioration by ACE inhibition following STZ-induction of diabetes in intact experimental animals. PMID:11790819
Nanthakumar, Kumaraswamy; Jalife, José; Massé, Stéphane; Downar, Eugene; Pop, Mihaela; Asta, John; Ross, Heather; Rao, Vivek; Mironov, Sergey; Sevaptsidis, Elias; Rogers, Jack; Wright, Graham; Dhopeshwarkar, Rajesh
2007-07-01
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
Colibaba, Alexandru S; Calma, Aicee Dawn B; Webb, Alexandra L; Valter, Krisztina
2017-10-22
Anatomy students are typically provided with two-dimensional (2D) sections and images when studying cerebral ventricular anatomy and students find this challenging. Because the ventricles are negative spaces located deep within the brain, the only way to understand their anatomy is by appreciating their boundaries formed by related structures. Looking at a 2D representation of these spaces, in any of the cardinal planes, will not enable visualisation of all of the structures that form the boundaries of the ventricles. Thus, using 2D sections alone requires students to compute their own mental image of the 3D ventricular spaces. The aim of this study was to develop a reproducible method for dissecting the human brain to create an educational resource to enhance student understanding of the intricate relationships between the ventricles and periventricular structures. To achieve this, we created a video resource that features a step-by-step guide using a fiber dissection method to reveal the lateral and third ventricles together with the closely related limbic system and basal ganglia structures. One of the advantages of this method is that it enables delineation of the white matter tracts that are difficult to distinguish using other dissection techniques. This video is accompanied by a written protocol that provides a systematic description of the process to aid in the reproduction of the brain dissection. This package offers a valuable anatomy teaching resource for educators and students alike. By following these instructions educators can create teaching resources and students can be guided to produce their own brain dissection as a hands-on practical activity. We recommend that this video guide be incorporated into neuroanatomy teaching to enhance student understanding of the morphology and clinical relevance of the ventricles.
Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy
Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre
2009-01-01
Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional KATP channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. PMID:18669912
Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.
Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre
2008-10-01
Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is found at the end of this article.
Catheter Ablation of Focal Atrial Tachycardia Using Remote Magnetic Navigation.
Webster, Mark; Pasupati, Sanjeevan; Lever, Nigel; Stiles, Martin
2018-05-01
This first-in-human study evaluated the safety and technical feasibility of the Tempo temporary cardiac pacing lead (BioTrace Medical), which includes a novel fixation mechanism and soft tip. Complications of temporary pacing leads include dislodgment, arrhythmias, and ventricular perforation. Temporary pacing applications have increased with transcatheter aortic valve replacement (TAVR) growth, for rapid pacing during balloon valvuloplasty (BAV) and valve deployment, and for periprocedural bradyarrhythmia support. Eligible patients required temporary pacing for TAVR, BAV, or electrophysiology (EP) procedures. Transthoracic echocardiograms were obtained at baseline and 24 hours after lead removal. Safety was defined as freedom from pericardial effusion requiring intervention or evidence of tamponade. Technical feasibility involved successful intracardiac delivery and pace capture. Additional evaluations included pacing threshold (PCT), rapid pacing, dislodgment, or sustained ventricular arrhythmias. Follow-up was to 30 days. Twenty-five patients (60% female; mean age, 64 ± 19 years) underwent 13 TAVRs (7 Sapien 3 valves [Edwards Lifesciences], 4 CoreValves [Medtronic], and 2 Lotus valves [Boston Scientific]), 11 EP procedures, and 1 BAV at two New Zealand centers from January 2016 to June 2016. Safety was met in all patients, with no device-related adverse events. Technical feasibility was achieved in 23 cases (92%); 2 patients had unsuitable anatomy. No patient had lead dislodgment or sustained ventricular arrhythmias, and the final procedural PCT was 0.7 ± 0.5 mA. Rapid pacing was successful in all cases. Five patients had successful postprocedural use up to 5 days. This first-in-human study demonstrates the safety and technical feasibility of the Tempo lead, providing stable periprocedural temporary pacing support.
Almeida-Morais, Luís; Pereira-da-Silva, Tiago; Branco, Luísa; Timóteo, Ana T; Agapito, Ana; de Sousa, Lídia; Oliveira, José A; Thomas, Boban; Jalles-Tavares, Nuno; Soares, Rui; Galrinho, Ana; Cruz-Ferreira, Rui
2017-04-01
The role of right ventricular longitudinal strain for assessing patients with repaired tetralogy of Fallot is not fully understood. In this study, we aimed to evaluate its relation with other structural and functional parameters in these patients. Patients followed-up in a grown-up CHD unit, assessed by transthoracic echocardiography, cardiac MRI, and treadmill exercise testing, were retrospectively evaluated. Right ventricular size and function and pulmonary regurgitation severity were assessed by echocardiography and MRI. Right ventricular longitudinal strain was evaluated in the four-chamber view using the standard semiautomatic method. In total, 42 patients were included (61% male, 32±8 years). The mean right ventricular longitudinal strain was -16.2±3.7%, and the right ventricular ejection fraction, measured by MRI, was 42.9±7.2%. Longitudinal strain showed linear correlation with tricuspid annular systolic excursion (r=-0.40) and right ventricular ejection fraction (r=-0.45) (all p<0.05), which in turn showed linear correlation with right ventricular fractional area change (r=0.50), pulmonary regurgitation colour length (r=0.35), right ventricular end-systolic volume (r=-0.60), and left ventricular ejection fraction (r=0.36) (all p<0.05). Longitudinal strain (β=-0.72, 95% confidence interval -1.41, -0.15) and left ventricular ejection fraction (β=0.39, 95% confidence interval 0.11, 0.67) were independently associated with right ventricular ejection fraction. The best threshold of longitudinal strain for predicting a right ventricular ejection fraction of <40% was -17.0%. Right ventricular longitudinal strain is a powerful method for evaluating patients with tetralogy of Fallot. It correlated with echocardiographic right ventricular function parameters and was independently associated with right ventricular ejection fraction derived by MRI.
Jijeh, Abdulraouf; Ismail, Muna; Alhabshan, Fahad
2017-09-01
Ventricular septal defect and aortic arch obstruction are usually associated with a narrow left ventricular outflow tract. The aim of the present study was to analyse the growth and predictors of future obstruction of the left ventricular outflow tract after surgical repair. We carried out a retrospective review of patients who underwent repair for ventricular septal defect and aortic arch obstruction - coarctation or interrupted aortic arch - between July, 2002 and June, 2013. Echocardiographic data were reviewed, and the need for re-intervention was evaluated. A total of 89 patients were included in this study. A significant left ventricular outflow tract growth was noticed after surgical repair. Preoperatively, the mean left ventricular outflow tract Z-score was -1.46±1 (range -5.5 to 1.1) and increased to a mean value of -0.7±1.3 (range -2.7 to 3.2) at last follow-up (p=0.0001), demonstrating relevant growth of the left ventricular outflow tract after repair for ventricular septal defect and aortic arch obstruction. After primary repair, 11 patients (12.3%) required re-intervention with surgical repair for left ventricular outflow tract obstruction after a mean period of 36±21 months. There were no significant differences in age, weight, and indexed aortic valve and left ventricular outflow tract measurements between those who developed obstruction and those who did not. Significant left ventricular outflow tract growth is expected after repair of ventricular septal defect and aortic arch obstruction. Small aortic valve and left ventricular outflow tract at diagnosis are not risk factors to predict the need for surgical re-intervention for left ventricular outflow tract obstruction in future.
Abouelnour, Amr Ei; Doyle, Mark; Thompson, Diane V; Yamrozik, June; Williams, Ronald B; Shah, Moneal B; Soma, Siva Kr; Murali, Srinivas; Benza, Raymond L; Biederman, Robert Ww
2017-01-01
Investigate the impact of Right Ventricular (RV) Internal Work (IW), ratio of arterial to ventricular end-systolic elastance (E a /E max ), and RV Insertion Point (IP) Late Gadolinium Enhancement (LGE) on outcome in Pulmonary Hypertension (PH) patients. LGE is well known to be present within the RVIPs and Inter Ventricular Septum (IVS) in PH patients, but its prognostic role remains complex and potentially overestimated via 2D qualitative relative to the 3D quantitative measures now available. However, E a /E max , a measure of ventricular-arterial coupling and IW, when added to external cardiac work i.e. the P-V loop area as correlates to the heart's energy demands, might fundamentally improve measures of prognosis as they interrogate physiology beyond just the RV. Cardiac Magnetic Resonance Imaging (CMR) of 124 PH patients (age = 60±13, 85F) referred to a large tertiary PH center, was retrospectively examined for RV volumetric and functional indices and RVIP LGE%. Right Heart Catheterizations (RHC) performed within 1±2 months of the CMR were reviewed. E a /E max was derived as RV End-Systolic Volume (ESV/RVSV). IW was estimated as RVESV ×(RV end-systolic pressure-RV diastolic pressure). Patients were followed from date of CMR for up to 5 years for MACE (death, hospitalized RV failure, initiation of parenteral prostacyclin, sustained ventricular arrhythmia or referral for lung transplantation). MACE was high; 48/124 (39%) patients had MACE by 1.6±1.3 years. Neither RVIP nor IVS LGE using visual assessment or even 3D quantization predicted MACE. The strongest predictor of MACE was RVIW (OR=1.00013, p<0.002), vs. mPAP, RV mass, RV EF and IP LGE. Surprisingly, neither a single time-point RVIP nor whole IVS LGE% can predict outcome in the largest cohort of PH patients studied to date when compared with conventional or contemporary metrics of disease progression. CMR-LGE appears to lose its' prognostic value in PH patients in stark contradistinction to all other left and right-sided human myocardial pathologies.
Chen, Peter C; Spinner, Joseph A; Heinle, Jeffrey S
2018-07-01
We report a 1-month-old infant diagnosed with an aorta-left ventricular tunnel, ventricular septal defect, and right coronary atresia with right ventricular sinusoids. The patient's anatomy and physiology did not indicate right-ventricular-dependent coronary circulation, and therefore right ventricular decompression could be performed without compromising coronary perfusion during surgical correction. A detailed understanding of the coronary anatomy is critical in managing this defect when coronary anomalies are present.
1992-06-01
exhibited by humans, ostium secundum (15) and, like humans with PFO, are generally a3ymptomatic. Yucatan Miniature Swine exhibited an incidence of 8...W. Corin; A. Fazel; W.W.R. Biederman; F.G. Spinale and P.C. Gillette. Heritable Ventricular Septal Defect In Yucatan Miniature Swine. Laboratory...of sleep, poor nutrition , and recent illness; exercising prior to flight (two separate cases of bends); dehydration. 448 Immediately following are 7
Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex
Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.
2016-01-01
The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711
Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter
2017-01-01
We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.
Human G109E-inhibitor-1 impairs cardiac function and promotes arrhythmias.
Haghighi, Kobra; Pritchard, Tracy J; Liu, Guan-Sheng; Singh, Vivek P; Bidwell, Philip; Lam, Chi Keung; Vafiadaki, Elizabeth; Das, Parthib; Ma, Jianyong; Kunduri, Swati; Sanoudou, Despina; Florea, Stela; Vanderbilt, Erica; Wang, Hong-Shang; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G
2015-12-01
A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2Hz +/- Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to arrhythmias. These findings suggest that the human G109E inhibitor-1 variant impairs SR Ca-cycling and promotes arrhythmogenesis under stress conditions, which may present an additional insult in the compromised function of heart failure carriers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Human G109E-Inhibitor-1 Impairs Cardiac Function and Promotes Arrhythmias
Haghighi, Kobra; Pritchard, Tracy J.; Liu, Guan-Sheng; Singh, Vivek P.; Bidwell, Philip; Lam, Chi Keung; Vafiadaki, Elizabeth; Das, Parthib; Ma, Jianyong; Kunduri, Swati; Sanoudou, Despina; Florea, Stela; Vanderbilt, Erica; Wang, Hong-Shang; Rubinstein, Jack; Hajjar, Roger J.; Kranias, Evangelia G.
2015-01-01
A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2 Hz +/− Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to arrhythmias. These findings suggest that the human G109E inhibitor-1 variant impairs SR Ca-cycling and promotes arrhythmogenesis under stress conditions, which may present an additional insult in the compromised function of heart failure carriers. PMID:26455482
Buxton, B. F.; Jones, C. R.; Molenaar, P.; Summers, R. J.
1987-01-01
1 Receptor autoradiography using (-)-[125I]-cyanopindolol (CYP) was used to study the distribution of beta-adrenoceptor subtypes in human right atrial appendage, left atrial free wall, left ventricular papillary muscle and pericardium. 2 The binding of (-)-[125I]-CYP to slide-mounted tissue sections of human right atrial appendage was time-dependent (K1 = 4.11 +/- 1.01 X 10(8) M-1 min-1, K-1 = 1.47 +/- 0.25 X 10(-3) min-1, n = 3), saturable (42.02 +/- 2.96 pM, n = 4) and stereoselective with respect to the optical isomers of propranolol (pKD (-):8.97 +/- 0.02, (+):6.88 +/- 0.06, n = 3). 3 The proportions of beta-adrenoceptor subtypes were determined in slide-mounted tissue sections using the antagonists CGP 20712A (beta 1-selective) and ICI 118,551 (beta 2-selective). In right atrial appendage and left ventricular papillary muscle 40% (34-45%) of the beta-adrenoceptors were of the beta 2-subtype. 4 Images from X-ray film and nuclear emulsion coated coverslips exposed to (-)-[125I]-CYP-labelled sections showed an even distribution of beta-adrenoceptor subtypes over the myocardium of the right atrial appendage, left ventricular papillary muscle and left atrial free wall. Sections of pericardium exhibited predominantly beta 2-adrenoceptors. beta 2-Adrenoceptors were localized to the intimal surface of coronary arteries. 5 The selective beta 1-adrenoceptor agonist RO363 and beta 2-selective agonist procaterol produced concentration-dependent inotropic responses in right atrial appendage strips. Responses to RO363 were antagonized by CGP 20712A (pKB = 9.29) suggesting an interaction with beta 1-adrenoceptors. Responses to procaterol were antagonized by ICI 118,551 (pKB = 9.06) suggesting an interaction at beta 2-adrenoceptors. 6 The finding that a significant proportion of human myocardial adrenoceptors are of the beta 2-subtype has important clinical implications for the involvement of these receptors in the control of heart rate and force, and the autoradiographic evidence suggests other roles in the coronary vasculature and pericardium. Images Figure 5 Figure 6 PMID:2823947
Machines versus medication for biventricular heart failure: focus on the total artificial heart.
Arabia, Francisco A; Moriguchi, Jaime D
2014-09-01
The medical/surgical management of advanced heart failure has evolved rapidly over the last few decades. With better understanding of heart failure pathophysiology, new pharmacological agents have been introduced that have resulted in improvements in survival. For those patients that fail to improve, mechanical circulatory support with left ventricular assist devices and total artificial hearts (TAHs) have served as a beneficial bridge to transplantation. The TAH has continued to play a significant role as a bridge to transplantation in patients with biventricular failure and more selected indications that could not be completely helped with left ventricular assist devices. Improved survival with the TAH has resulted in more patients benefiting from this technology. Improvements will eventually lead to a totally implantable device that will permanently replace the failing human heart.
Watanabe, K; Miyajima, S; Kusano, Y; Tanabe, N; Hirokawa, Y
1997-07-01
A 57 years old male consulted our hospital in complaining chest oppression and short of breath. Familial and dilated phase hypertrophic cardiomyopathy (HCM) was detected by ECG, echocardiography, left ventriculography and left ventricular endomyocardial biopsy. 201T1 SPECT showed regional increased accumulation in the ventricular septum, however, no myocardial accumulation of 123I-beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) was observed. We analyzed CD36 in this patient, and found he had type 1 CD36 deficiency. Myocardial uptake of long-chain fatty acids occurs via a specific transporter, which is homologous with human CD36. We hypothesize that CD36 deficiency, especially type 1 CD36 deficiency, might be one factor of no myocardial 123I-BMIPP uptake.
McGovern, Eimear; Morgan, Conall T; Oslizlok, Paul; Kenny, Damien; Walsh, Kevin P; McMahon, Colin J
2016-10-01
We retrospectively reviewed all the children with right ventricular outflow tract obstruction, hypoplastic pulmonary annulus, and pulmonary arteries who underwent stenting of the right ventricular outflow tract for hypercyanotic spells at our institution between January, 2008 and December, 2013; nine patients who underwent cardiac catheterisation at a median age of 39 days (range 12-60 days) and weight of 3.6 kg (range 2.6-4.3 kg) were identified. The median number of stents placed was one stent (range 1-4). The median oxygen saturation increased from 60% to 96%. The median right pulmonary artery size increased from 3.3 to 5.5 mm (-2.68 to -0.92 Z-score), and the median left pulmonary artery size increased from 3.4 to 5.5 mm (-1.93 to 0 Z-scores). Among all, one patient developed transient pulmonary haemorrhage, and one patient had pericardial tamponade requiring drainage. Complete repair of tetralogy of Fallot +/- atrioventricular septal defect or double-outlet right ventricle was achieved in all nine patients. Transcatheter stent alleviation of the right ventricular outflow tract obstruction resolves hypercyanotic spells and allows reasonable growth of the pulmonary arteries to facilitate successful surgical repair. This represents a viable alternative to placement of a systemic-to-pulmonary artery shunt, particularly in small neonates.
Yang, Xuejun; Zhou, Hua; Qu, Huiyan; Liu, Weifang; Huang, Xiaojin; Shun, Yating; He, Liqun
2014-01-01
To observe the efficacy of Shenxinning Decoction (SXND) in ventricular remodeling in AT1 receptor-knockout (AT1-KO) mice with chronic renal insufficiency (CRI). AT1-KO mice modeled with subtotal (5/6) nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN), serum creatinine (SCr), brain natriuretic peptide (BNP), echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF), collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1) of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice's BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. SXND may antagonize the renin-angiotensin system (RAS) and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.
Moreira, Henrique T; Volpe, Gustavo J; Marin-Neto, José A; Ambale-Venkatesh, Bharath; Nwabuo, Chike C; Trad, Henrique S; Romano, Minna M D; Pazin-Filho, Antonio; Maciel, Benedito C; Lima, João A C; Schmidt, André
2017-03-01
Right ventricular (RV) impairment is postulated to be responsible for prominent systemic congestion in Chagas disease. However, occurrence of primary RV dysfunction in Chagas disease remains controversial. We aimed to study RV systolic function in patients with Chagas disease using cardiac magnetic resonance. This cross-sectional study included 158 individuals with chronic Chagas disease who underwent cardiac magnetic resonance. RV systolic dysfunction was defined as reduced RV ejection fraction based on predefined cutoffs accounting for age and sex. Multivariable logistic regression was used to verify the relationship of RV systolic dysfunction with age, sex, functional class, use of medications for heart failure, atrial fibrillation, and left ventricular systolic dysfunction. Mean age was 54±13 years, 51.2% men. RV systolic dysfunction was identified in 58 (37%) individuals. Although usually associated with reduced left ventricular ejection fraction, isolated RV systolic dysfunction was found in 7 (4.4%) patients, 2 of them in early stages of Chagas disease. Presence of RV dysfunction was not significantly different in patients with indeterminate/digestive form of Chagas disease (35.7%) compared with those with Chagas cardiomyopathy (36.8%) ( P =1.000). In chronic Chagas disease, RV systolic dysfunction is more commonly associated with left ventricular systolic dysfunction, although isolated and early RV dysfunction can also be identified. © 2017 American Heart Association, Inc.
Elshrif, Mohamed M.; Cherry, Elizabeth M.
2014-01-01
Numerical integration of mathematical models of heart cell electrophysiology provides an important computational tool for studying cardiac arrhythmias, but the abundance of available models complicates selecting an appropriate model. We study the behavior of two recently published models of human ventricular action potentials, the Grandi-Pasqualini-Bers (GPB) and the O'Hara-Virág-Varró-Rudy (OVVR) models, and compare the results with four previously published models and with available experimental and clinical data. We find the shapes and durations of action potentials and calcium transients differ between the GPB and OVVR models, as do the magnitudes and rate-dependent properties of transmembrane currents and the calcium transient. Differences also occur in the steady-state and S1–S2 action potential duration and conduction velocity restitution curves, including a maximum conduction velocity for the OVVR model roughly half that of the GPB model and well below clinical values. Between single cells and tissue, both models exhibit differences in properties, including maximum upstroke velocity, action potential amplitude, and minimum diastolic interval. Compared to experimental data, action potential durations for the GPB and OVVR models agree fairly well (although OVVR epicardial action potentials are shorter), but maximum slopes of steady-state restitution curves are smaller. Although studies show alternans in normal hearts, it occurs only in the OVVR model, and only for a narrow range of cycle lengths. We find initiated spiral waves do not progress to sustained breakup for either model. The dominant spiral wave period of the GPB model falls within clinically relevant values for ventricular tachycardia (VT), but for the OVVR model, the dominant period is longer than periods associated with VT. Our results should facilitate choosing a model to match properties of interest in human cardiac tissue and to replicate arrhythmia behavior more closely. Furthermore, by indicating areas where existing models disagree, our findings suggest avenues for further experimental work. PMID:24416228
Proliferation zones in the axolotl brain and regeneration of the telencephalon
2013-01-01
Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal. PMID:23327114
Proliferation zones in the axolotl brain and regeneration of the telencephalon.
Maden, Malcolm; Manwell, Laurie A; Ormerod, Brandi K
2013-01-17
Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal.
Tulevski, Igor I; Zijta, Frank M; Smeijers, Anika S; Dodge-Khatami, Ali; van der Wall, Ernst E; Mulder, Barbara J M
2004-04-01
Patients with congenitally corrected transposition are at risk of right ventricular dysfunction and failure. With this in mind, we examined 13 patients with congenitally corrected transposition, 7 not having undergone surgery, and 6 after physiological repair, comparing them with 6 healthy subjects matched for age and sex, using cardiac magnetic resonance imaging, at rest and during dobutamine stress, in order to determine regional and global right ventricular response to stress. At rest, the patients had significantly decreased overall wall motion compared to their healthy peers (7.2 +/- 0.5, versus 9.8 +/- 0.4 mm). During infusion of dobutamine, overall wall motion increased to 12.8 +/- 0.4 mm in the healthy subjects, versus 8.8 +/- 1.0 mm in patients. At the regional level, significant differences in mural motion were found between patients and controls in the anterior (9.5 +/- 1.1, versus 13.2 +/- 0.6 mm), posterior (10.2 +/- 1.6, versus 13.2 +/- 0.8 mm), and septal segments (5.0 +/- 0.8, versus 11.2 +/- 0.6 mm). At rest, overall mural thickening in patients was similar to that of controls, but significantly less in patients during stress. During dobutamine stress, patients showed significantly less regional wall thickening than controls, particularly in the septal (2.7 +/- 0.6, versus 6.0 +/- 0.4 mm, respectively) and in the anterior segments (4.2 +/- 0.6, versus 7.8 +/- 0.6 mm, respectively). Right ventricular ejection fraction strongly correlated with mural motion and thickening, both at rest and during stress. Abnormal regional function in the systemic morphologically right ventricle may occur in patients with congenitally corrected transposition, which strongly correlates with right ventricular ejection fraction. Our findings support the hypothesis that, in patients with congenitally corrected transposition, ischemia of the right ventricular myocardium contributes to the development of right ventricular dysfunction.
Reptilian heart development and the molecular basis of cardiac chamber evolution.
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G
2009-09-03
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.
Reptilian heart development and the molecular basis of cardiac chamber evolution
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.
2009-01-01
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199
Eicken, Andreas; Michel, Julia; Hager, Alfred; Tanase, Daniel; Kaemmerer, Harald; Cleuziou, Julie; Hess, John; Ewert, Peter
2017-02-01
The atrial baffle repair (ABR) significantly improved the fate of patients with transposition of the great arteries (TGA). However, these patients show impaired exercise tolerance and some present severe decline of systemic ventricular function. Intrinsic myocardial weakness, low heart rate response to exercise and diastolic filling impairment are discussed to be causative. Forty-nine long-term survivors with TGA (median age 23.7 year) after ABR were catheterized with measured oxygen consumption in four conditions (baseline, volume, atrial pacing, dobutamine) and the results were compared to 10 normal controls. Median cardiac output was significantly lower in the ABR group (2.2 vs. 2.6 l/min/m 2 ; p = 0.015), and systemic resistance was significantly elevated (28.9 vs. 22.2 U m 2 ; p = 0.04) in comparison with normals. While stroke volume rose by 27% in the control group, it dropped by 7% in patients after ABR at atrial pacing (80/min). Stroke volume increase after dobutamine was significantly lower after ABR in comparison with normal controls (34 vs. 106%; p = 0.001). Higher NYHA class (p = 0.043), degree of tricuspid regurgitation (p = 0.009) and ventricular function (p = 0.028) were associated with lower stroke volume increase. Limited exercise capability of patients after ABR for TGA is primarily due to limited diastolic filling of the ventricles due to stiff non-compliant atrial pathways. Elevated systemic resistance may lead to severe myocardial hypertrophy with possible ischemia and contribute to the multifactorial decline of ventricular function in some patients.
Remme, W J; van Hoogenhuyze, D C; Kruyssen, D A; Krauss, X H; Storm, C J
1985-03-01
The haemodynamic changes during intravenous amiodarone administration in laboratory animals and human studies are reviewed and compared with the results from our investigations. While the results of previous human studies have been rather variable, our investigations suggest that the cardiovascular changes following intravenous amiodarone include an early and usually short reduction of systemic and coronary vascular resistance, which may be partially due to the vasodilating properties of the solvent, polysorbate 80. As a result, a decrease in afterload and cardiac work and increases in cardiac output and coronary blood flow occur. Contrary to the observations in the animal experiments, heart rate increases in man, presumably as a result of the relatively greater fall in afterload which occurs. However, in spite of this increase in heart rate, contractility is reduced at the end of amiodarone administration and remains depressed after the infusion, resulting in a significant increase in left ventricular filling pressure. Neither myocardial oxygen demand nor consumption change during amiodarone administration. Although the intrinsic negative inotropic effects of amiodarone warrant a cautious approach in patients with left ventricular dysfunction, worsening of heart failure or the occurrence of myocardial ischaemia has been reported in only very few cases so far. In contrast, the drug was demonstrated to protect against pacing-induced myocardial ischaemia, in patients with both normal and depressed left ventricular function. These anti-ischaemic properties of amiodarone were investigated in a second study using a double pacing stress test protocol. Overall myocardial oxygen consumption did not change during pacing after amiodarone, but it clearly reduced (regional) myocardial ischaemia, as demonstrated by a reduction of ST-segment changes and anginal pain, and in particular by the absence of myocardial lactate production during pacing after amiodarone. These anti-ischaemic properties are mainly based on a reduction of myocardial oxygen demand, rather than on an improvement in coronary flow. It is concluded then, that amiodarone has significant haemodynamic effects as manifested by an early reduction in vascular resistance and a late negative inotropic effect. Although vasodilatation of short duration caused by its solvent, polysorbate 80, also occurs, the overall cardiovascular changes are caused by the direct, intrinsic haemodynamic effects of amiodarone alone. The important anti-ischaemic properties of amiodarone appear to result primarily from these cardiovascular actions and the inherent reduction in myocardial oxygen demand.
[Spongy cardiomyopathy in an elderly woman. Echocardiographic description].
Canale, Jesús; Cortés Lawrenz, Jorge; Moreno Valenzuela, Francisco Germán
2005-01-01
Isolated left ventricular noncompaction, also known as spongy myocardium or spongy cardiomyopathy, is a recently described congenital disease caused by an arrest in the left ventricular myocardial embriogenesis that makes the ventricular wall to persist thickened with multiple trabecular formations and deep sinusoidal recesses. It is clinically characterized by heart failure, cardiac arrhythmia and systemic embolic events. Most of the affected subjects are detected during childhood or adolescence, others in the adult life but very few elderly patients have been reported in the worldwide medical literature. We here report the case of a 75-year-old woman that is one of the oldest patients ever reported, whose clinical picture and echocardiographic findings are typical of this modality of cardiomyopathy. We do comments on this case in regard to the most relevant facts that appear in the limited medical literature about this interesting disease.
Bigini, Paolo; Diana, Valentina; Barbera, Sara; Fumagalli, Elena; Micotti, Edoardo; Sitia, Leopoldo; Paladini, Alessandra; Bisighini, Cinzia; De Grada, Laura; Coloca, Laura; Colombo, Laura; Manca, Pina; Bossolasco, Patrizia; Malvestiti, Francesca; Fiordaliso, Fabio; Forloni, Gianluigi; Morbidelli, Massimo; Salmona, Mario; Giardino, Daniela; Mennini, Tiziana; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia
2012-01-01
Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival. PMID:22384217
Computational Approach for Developing Blood Pump
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2002-01-01
This viewgraph presentation provides an overview of the computational approach to developing a ventricular assist device (VAD) which utilizes NASA aerospace technology. The VAD is used as a temporary support to sick ventricles for those who suffer from late stage congestive heart failure (CHF). The need for donor hearts is much greater than their availability, and the VAD is seen as a bridge-to-transplant. The computational issues confronting the design of a more advanced, reliable VAD include the modelling of viscous incompressible flow. A computational approach provides the possibility of quantifying the flow characteristics, which is especially valuable for analyzing compact design with highly sensitive operating conditions. Computational fluid dynamics (CFD) and rocket engine technology has been applied to modify the design of a VAD which enabled human transplantation. The computing requirement for this project is still large, however, and the unsteady analysis of the entire system from natural heart to aorta involves several hundred revolutions of the impeller. Further study is needed to assess the impact of mechanical VADs on the human body
Cardiac fibroblast GSK-3β regulates ventricular remodeling and dysfunction in ischemic heart
Lal, Hind; Ahmad, Firdos; Zhou, Jibin; Yu, Justine E.; Vagnozzi, Ronald J.; Guo, Yuanjun; Yu, Daohai; Tsai, Emily J.; Woodgett, James; Gao, Erhe; Force, Thomas
2014-01-01
Background Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. Methods and Results Herein we report that GSK-3β is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using two fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in CFs leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a pro-fibrotic myofibroblast phenotype in isolated CFs, in post-MI hearts, and in MEFs deleted for GSK-3β. Mechanistically, GSK-3β inhibits pro-fibrotic TGF-β1-SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the suppression of SMAD-3 transcriptional activity. This pathway is central to the pathology since a small molecule inhibitor of SMAD-3 largely prevented fibrosis and limited LV remodeling. Conclusion These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of CFs in remodeling and ventricular dysfunction. PMID:24899689
Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay
2012-01-01
Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770
Steven, D; Pott, C; Bittner, A; Sultan, A; Wasmer, K; Hoffmann, B A; Köbe, J; Drewitz, I; Milberg, P; Lueker, J; Mönnig, G; Servatius, H; Willems, S; Eckardt, L
2013-11-20
Catheter ablation for idiopathic ventricular arrhythmia is well established but epicardial origin, proximity to coronary arteries, and limited accessibility may complicate ablation from the venous system in particular from the great cardiac vein (GCV). Between April 2009 and October 2010 14 patients (56 ± 15 years; 9 male) out of a total group of 117 patients with idiopathic outflow tract tachycardias were included undergoing ablation for idiopathic VT or premature ventricular contractions (PVC) originating from GCV. All patients in whom the PVC arose from the GCV were subject to the study. In these patients angiography of the left coronary system was performed with the ablation catheter at the site of earliest activation. Successful ablation was performed in 6/14 (43%) and long-term success was achieved in 5/14 (36%) patients. In 4/14 patients (28.6%) ablation was not performed. In another 4 patients (26.7%), ablation did not abolish the PVC/VT. In the majority, the anatomical proximity to the left coronary system prohibited effective RF application. In 3 patients RF application resulted in a coronary spasm with complete regression as revealed in repeat coronary angiography. A relevant proportion idiopathic VT/PVC can safely be ablated from the GCV without significant permanent coronary artery stenosis after RF application. Our data furthermore demonstrate that damage to the coronary artery system is likely to be transient. © 2013.
Pang, Kun-Jing; Meng, Hong; Hu, Sheng-Shou; Wang, Hao; Hsi, David; Hua, Zhong-Dong; Pan, Xiang-Bin; Li, Shou-Jun
2017-08-01
Selecting an appropriate surgical approach for double-outlet right ventricle (DORV), a complex congenital cardiac malformation with many anatomic variations, is difficult. Therefore, we determined the feasibility of using an echocardiographic classification system, which describes the anatomic variations in more precise terms than the current system does, to determine whether it could help direct surgical plans. Our system includes 8 DORV subtypes, categorized according to 3 factors: the relative positions of the great arteries (normal or abnormal), the relationship between the great arteries and the ventricular septal defect (committed or noncommitted), and the presence or absence of right ventricular outflow tract obstruction (RVOTO). Surgical approaches in 407 patients were based on their DORV subtype, as determined by echocardiography. We found that the optimal surgical management of patients classified as normal/committed/no RVOTO, normal/committed/RVOTO, and abnormal/committed/no RVOTO was, respectively, like that for patients with large ventricular septal defects, tetralogy of Fallot, and transposition of the great arteries without RVOTO. Patients with abnormal/committed/RVOTO anatomy and those with abnormal/noncommitted/RVOTO anatomy underwent intraventricular repair and double-root translocation. For patients with other types of DORV, choosing the appropriate surgical approach and biventricular repair techniques was more complex. We think that our classification system accurately groups DORV patients and enables surgeons to select the best approach for each patient's cardiac anatomy.
Mishra, Abhi; Kumar, Bhupesh; Dutta, Vikas; Arya, V K; Mishra, Anand Kumar
2016-06-01
To compare the effects of levosimendan with milrinone in cardiac surgical patients with pulmonary hypertension and left ventricular dysfunction. A prospective, randomized study. Tertiary care teaching hospital. The study included patients with valvular heart disease and pulmonary artery hypertension undergoing valve surgery. Forty patients were allocated randomly to receive either milrinone, 50 µg/kg bolus followed by infusion at a rate of 0.5 µg/kg/min (group 1), or levosimendan, 10 µg/kg bolus followed by infusion at a rate of 0.1 µg/kg/min (group 2) for 24 hours after surgery. Hemodynamic parameters were measured using a pulmonary artery catheter, and biventricular functions were assessed using echocardiography. Mean pulmonary artery pressures and the pulmonary vascular resistance index were comparable between the 2 groups at several time points in the intensive care unit. Biventricular function was comparable between both groups. Postcardiopulmonary bypass right ventricular systolic and diastolic functions decreased in both groups compared with baseline, whereas 6 hours postbypass left ventricular ejection fraction improved in patients with stenotic valvular lesions. Levosimendan use was associated with higher heart rate, increased cardiac index, decreased systemic vascular resistance index, and increased requirement of norepinephrine infusion compared with milrinone. The results of this study demonstrated that levosimendan was not clinically better than milrinone. Levosimendan therapy resulted in a greater increase in heart rate, decrease in systemic vascular resistance, and a greater need for norepinephrine than in patients who received milrinone. Copyright © 2016 Elsevier Inc. All rights reserved.
SHERLOCK 3CG™ Diamond Tip Confirmation System
2018-05-15
Indication for Peripheral Intravenous Catheterization; Atrial Flutter; Premature Atrial Contraction; Premature Ventricular Contraction; Premature Junctional Contraction; Tachycardia; Atrioventricular Block; Bundle-Branch Block
A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology
Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D.; Kim, Yun-Soung; Blanco, Justin A.; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J.; Rogers, John A.; Litt, Brian
2011-01-01
The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices. [Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.] PMID:20375008
Surgical ablation of ventricular tachycardia secondary to congenital ventricular septal aneurysm.
Graffigna, A; Minzioni, G; Ressia, L; Vigano, M
1994-04-01
Three patients underwent surgical ablation for ventricular tachycardia resulting from an aneurysm of the membranous portion of the ventricular septum. Two patients had a definite history of cardiac murmur during infancy, and one of them was found at the time of operation to have a left-to-right shunt through the apex of the aneurysm. The earliest ventricular activation sites were located around the neck of the aneurysm and were ablated in 1 patient by encircling the endocardial ventriculotomy and by cryoablation in the remaining 2. After focus resection had been completed, aneurysm resection and ventricular septal reconstruction were performed. All patients were alive and free of ventricular tachycardia and did not need medication as of 61, 66, and 88 months postoperatively. Spontaneous closure of a ventricular septal defect may lead to the formation of an aneurysm in the ventricular septum that may sustain ventricular tachycardias. Such arrhythmias can be effectively treated using electrically guided surgical techniques.
[Determination of ventricular volumes by a non-geometric method using gamma-cineangiography].
Faivre, R; Cardot, J C; Baud, M; Verdenet, J; Berthout, P; Bidet, A C; Bassand, J P; Maurat, J P
1985-08-01
The authors suggest a new way of determining ventricular volume by a non-geometric method using gamma-cineangiography. The results obtained by this method were compared with those obtained by a geometric methods and contrast ventriculography in 94 patients. The new non-geometric method supposes that the radioactive tracer is evenly distributed in the cardiovascular system so that blood radioactivity levels can be measured. The ventricular volume is then equal to the ratio of radioactivity in the LV zone to that of 1 ml of blood. Comparison of the radionuclide and angiographic data in the first 60 patients showed systematic values--despite a satisfactory statistical correlation (r = 0.87, y = 0.30 X + 6.3). This underestimation is due to the phenomenon of attenuation related to the depth of the heart in the thoracic cage and to autoabsorption at source, the degree of which depends on the ventricular volume. An empirical method of calculation allows correction for these factors by taking into account absorption in the tissues by relating to body surface area and autoabsorption at source by correcting for the surface of isotopic ventricular projection expressed in pixels. Using the data of this empirical method, the correction formula for radionuclide ventricular volume is obtained by a multiple linear regression: corrected radionuclide volume = K X measured radionuclide volume (Formula: see text). This formula was applied in the following 34 patients. The correlation between the uncorrected and corrected radionuclide volumes and the angiographic volumes was improved (r = 0.65 vs r = 0.94) and the values were more accurate (y = 0.18 X + 26 vs y = 0.96 X + 1.5).(ABSTRACT TRUNCATED AT 250 WORDS)
Licker, Marc; Ellenberger, Christoph; Sierra, Jorge; Christenson, Jan; Diaper, John; Morel, Denis
2005-03-01
Preoperative acute normovolemic hemodilution induces an increase in circulatory output that is thought to be limited in patients with cardiac diseases. Using multiple-plane transesophageal echocardiography, we investigated the mechanisms of cardiovascular adaptation during acute normovolemic hemodilution in patients with severe coronary artery disease. Prospective case-control study. Operating theater in a university hospital. Consecutive patients treated with beta-blockers, scheduled to undergo coronary artery bypass (n = 50). After anesthesia induction, blood withdrawal and isovolemic exchange with iso-oncotic starch (1:1.15 ratio) to achieve a hematocrit value of 28%. In addition to heart rate and intravascular pressures, echocardiographic recordings were obtained before and after acute normovolemic hemodilution to assess cardiac preload, afterload, and contractility. In a control group, not subjected to acute normovolemic hemodilution, hemodynamic variables remained stable during a 20-min anesthesia period. Following acute normovolemic hemodilution, increases in cardiac stroke volume (+28 +/- 4%; mean +/- sd) were correlated with increases in central venous pressure (+2.0 +/- 1.3 mm Hg; R = .56) and in left ventricular end-diastolic area (+18 +/- 5%, R = .39). The unchanged left ventricular end-systolic wall stress and preload-adjusted maximal power indicated that neither left ventricular afterload nor contractility was affected by acute normovolemic hemodilution. Diastolic left ventricular filling abnormalities (15 of 22 cases) improved in 11 patients and were stable in the remaining four patients. Despite reduction in systemic oxygen delivery (-20.5 +/- 7%, p < .05), there was no evidence for myocardial ischemia (electrocardiogram, left ventricular wall motion abnormalities). In anesthetized patients with coronary artery disease, moderate acute normovolemic hemodilution did not compromise left ventricular systolic and diastolic function. Lowering blood viscosity resulted in increased stroke volume that was mainly related to increased venous return and higher cardiac preload.
Vogt, Stefan; Koenig, Daniel; Prettin, Stephan; Pottgiesser, Torben; Allgeier, Juergen; Dickhuth, Hans-Hermann; Hirschmueller, Anja
2008-04-23
The diseases responsible for sudden deaths in athletes differ considerably with regard to age. In young athletes, congenital malformations of the heart and/or vascular system cause the majority of deaths and can only be detected noninvasively by complex diagnostics. In contrast, in older athletes who die suddenly, atherosclerotic disease of the coronary arteries is mostly found. Reports of congenital coronary anomalies as a cause of sudden death in older athletes are rare. A 48-year-old man who was a well-trained, long-distance runner collapsed at the finish of a half marathon because of a myocardial infarction with ventricular fibrillation. Coronary angiography showed an anomalous origin of the right coronary artery from the left sinus of Valsalva with minimal wall alterations. Multislice computed tomography of the coronary arteries confirmed these findings. Cardiomagnetic resonance imaging demonstrated a mild hypokinesia of the basal right- and left-ventricular posterior wall. An electrophysiological study showed an inducible temporary polymorphic ventricular tachycardia and an inducible ventricular fibrillation. The athlete was subsequently treated by acetylsalicylic acid 100 mg (0-1-0), bisoprolol 2.5 mg (1-0-0) and atorvastatin 10 mg (0-0-1) and was instructed to keep his training intensity under the 'individual anaerobic threshold'. Intense and long-lasting exercise under extreme environmental conditions, particularly heat, should also be avoided. This case report presents a coronary anomaly as the most likely reason for an exercise-induced myocardial infarction with ventricular fibrillation in a well-trained 48-year-old endurance athlete. Therefore, coronary anomalies have also to be considered as a possible cause of cardiac problems in older athletes.
Stein, D G; Laks, H; Drinkwater, D C; Permut, L C; Louie, H W; Pearl, J M; George, B L; Williams, R G
1991-08-01
Total cavopulmonary connection was proposed as a modification of the Fontan procedure that might have greater benefits than previous methods. To assess this procedure we reviewed case histories of 38 patients (aged 17 months to 30 years) who underwent Fontan procedures with cavopulmonary anastomoses between January 1987 and December 1989. The group included 32 patients with univentricular heart, 2 with pulmonary atresia and intact ventricular septum, 3 with tricuspid atresia, and 1 with hypoplastic left heart syndrome. One or more previous palliative procedures were performed in 34 patients, including 19 systemic-pulmonary shunts, 16 pulmonary artery bandings, 7 atrial septectomies/septostomies, 7 Glenn shunts, and 1 patent ductus arteriosus ligation. Preoperative hemodynamics showed a pulmonary artery pressure of 12 mm Hg (range 6 to 22 mm Hg), pulmonary-systemic flow ratio of 1.6 (range 0.37 to 3.0), left ventricular end-diastolic pressure 9 mm Hg (range 3 to 15 mm Hg), and systemic arterial oxygen saturation of 82% (range 67% to 94%). Concomitant with cavopulmonary connection, 13 patients underwent additional procedures, including 9 atrioventricular valve annuloplasties, 4 Damus-Stansel-Kaye procedures, and 2 resections of subaortic membranes. Modifying the Fontan procedure in this fashion was particularly useful in the management of 2 patients with pulmonary atresia and intact ventricular septum who had right ventricular-dependent coronary blood flow. Cavopulmonary anastomosis and atrial septectomy were performed in both patients, with resultant inflow of oxygenated blood to the right ventricle and coronary arteries. Excellent postoperative results were noted in each. Postextubation hemodynamics for the entire group included a mean right atrial pressure of 13 mm Hg (range 11 to 17 mm Hg), a mean left atrial pressure of 6 mm Hg (range 3 to 12 mm Hg), and a room air oxygen saturation of 96% (range 92% to 98%). Seven patients had pleural effusions, 3 required postoperative pacemaker placement, and 2 required reoperation for tamponade. A venous assist device was required in one patient on the second postoperative day, but the patient was weaned successfully within 24 hours. One early death (2.6%) occurred in a patient who had intractable ventricular fibrillation 2 days after operation. There was one late cardiac death (2.7%) caused by ventricular failure and one late noncardiac death. These results demonstrate that total cavopulmonary connection provides excellent early definitive treatment, with low morbidity and mortality, for a variety of complex congenital heart lesions.
Distribution of the microelastic properties within the human anterior mitral leaflet.
Jensen, Anne Skakkebaek; Baandrup, Ulrik; Hasenkam, J Michael; Kundu, Tribikram; Jørgensen, Claus Schiøtt
2006-12-01
Knowledge of the biomechanical properties of the mitral valve leaflets and their relation to histologic structure is of importance for understanding the leaflet movement characteristics under normal and pathologic conditions, but such knowledge is not yet available. The aim of this study was to determine biomechanical properties of the human anterior mitral leaflet on a microscopic scale. We used scanning acoustic microscopy (SAM) to examine the human anterior mitral leaflet. Sections of fixed human anterior mitral leaflet tissue were obtained from postmortem human anterior mitral leaflets (n = 5). We measured the speed of sound (nu(L)) in each histologic layer in three regions-of-interest (ROIs): these were at the annular edge, at the valve midpoint and close to the free edge. nu(L) varied in the three histologic layers (p < 0.01). It was higher in the fibrous layer (1.76 km/s) compared with the atrial layer (1.75 km/s) and ventricular layer (1.73 km/s). Also, nu(L) differed between positions along the length of the annulus-free edge line (p < 0.01), showing a decline from the annular edge (1.76 km/s) to the free edge (1.73 km/s), both as a whole and also within the atrial and the fibrous layer. These results demonstrate that the fibrous layer is stiffer than the atrial and ventricular layer and that the leaflet as a whole and within the atrial and the fibrous layer is stiffer at the annulus part in comparison with those near the free edge. (E-mail: ).
Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo
Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu
2012-01-01
Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735
Martini, Bortolo; Trevisi, Nicola; Martini, Nicolò; Zhang, Li
2015-01-01
A 43-year-old woman presented to the emergency room with a sustained ventricular tachycardia (VT). ECG showed a QRS in left bundle branch block morphology with inferior axis. Echocardiography, ventricular angiography, and cardiac magnetic resonance imaging (CMRI) revealed a normal right ventricle and a left ventricular diverticulum. Electrophysiology studies with epicardial voltage mapping identified a large fibrotic area in the inferolateral layer of the right ventricular wall and a small area of fibrotic tissue at the anterior right ventricular outflow tract. VT ablation was successfully performed with combined epicardial and endocardial approaches.
Martini, Bortolo; Trevisi, Nicola; Martini, Nicolò; Zhang, Li
2015-01-01
A 43-year-old woman presented to the emergency room with a sustained ventricular tachycardia (VT). ECG showed a QRS in left bundle branch block morphology with inferior axis. Echocardiography, ventricular angiography, and cardiac magnetic resonance imaging (CMRI) revealed a normal right ventricle and a left ventricular diverticulum. Electrophysiology studies with epicardial voltage mapping identified a large fibrotic area in the inferolateral layer of the right ventricular wall and a small area of fibrotic tissue at the anterior right ventricular outflow tract. VT ablation was successfully performed with combined epicardial and endocardial approaches. PMID:26509086
Kumar, Saurabh; Stevenson, William G; John, Roy M
2014-09-01
Ventricular arrhythmias (VA) are a significant contributor to morbidity and mortality in patients with heart failure (HF). Implantable cardioverter defibrillators are effective in reducing mortality, but do not prevent arrhythmia recurrence. There is increasing recognition that frequent premature ventricular contractions or repetitive ventricular tachycardia may also lead to new onset ventricular dysfunction or deterioration of ventricular function in patients with pre-existing HF. Suppression of the arrhythmia may lead to recovery of ventricular function. Catheter ablation has emerged as a safe and effective treatment option for reducing arrhythmia recurrence and for suppression of PVCs but its efficacy is governed by the nature of the arrhythmias, the underlying HF substrate and the accessibility of the arrhythmia substrates to ablation.
Huang, Bao-Tao; Peng, Yong; Liu, Wei; Zhang, Chen; Huang, Fang-Yang; Wang, Peng-Ju; Zuo, Zhi-Liang; Liao, Yan-Biao; Chai, Hua; Li, Qiao; Zhao, Zhen-Gang; Luo, Xiao-Lin; Ren, Xin; Huang, Kai-Sen; Meng, Qing-Tao; Chen, Chi; Huang, De-Jia; Chen, Mao
2015-03-01
Although inappropriate left ventricular mass has been associated with clustered cardiac geometric and functional abnormalities, its predictive value in patients with coronary artery disease is still unknown. This study examined the association of inappropriate left ventricular mass with clinical outcomes in patients with angina pectoris and normal ejection fraction. Consecutive patients diagnosed with angina pectoris whose ejection fraction was normal were recruited from 2008 to 2012. Inappropriate left ventricular mass was determined when the ratio of actual left ventricular mass to the predicted one exceeded 150%. The primary endpoint was a composite of all-cause death, nonfatal myocardial infarction, and nonfatal stroke. Clinical outcomes between the inappropriate and appropriate left ventricular mass group were compared before and after propensity matching. Of the total of 1515 participants, 18.3% had inappropriate left ventricular mass. Patients with inappropriate left ventricular mass had a higher composite event rate compared with those with appropriate left ventricular mass (11.2 vs. 6.6%, P=0.010). Multivariate Cox regression analyses showed that inappropriate left ventricular mass was an independent risk factor for adverse events (adjusted hazard ratio, 1.59; 95% confidence interval, 1.03-2.45; P=0.035). The worse outcome in patients with inappropriate left ventricular mass was further validated in a propensity matching cohort and patients with the traditional definition of left ventricular hypertrophy. Inappropriate left ventricular mass was associated with an increased risk of adverse events in patients with angina pectoris and normal ejection fraction.
Forsha, Daniel; Risum, Niels; Smith, P Brian; Kanter, Ronald J; Samad, Zainab; Barker, Piers; Kisslo, Joseph
2016-11-01
Patients with systemic right ventricles frequently experience progressive heart failure and conduction abnormalities leading to abnormal ventricular activation. Activation delay-induced mechanical dyssynchrony can contribute to ventricular failure and is identified by a classic strain pattern of paradoxical opposing wall motion that is an excellent predictor of response to cardiac resynchronization therapy in adults with left bundle branch block. The specific aims of this study were to compare right ventricular (RV) mechanics in an adult systemic right ventricle population versus control subjects, evaluate the feasibility of this RV strain pattern analysis, and determine the frequency of the classic pattern. Young adults (n = 25) with d-transposition of the great arteries, status post Mustard or Senning palliation (TGA-MS), were ambispectively enrolled and compared with healthy young adults (n = 30) who were prospectively enrolled. All subjects were imaged using novel three-apical view (18-segment) RV longitudinal speckle-tracking strain analysis (EchoPAC) and electrocardiographic data. Patients with TGA-MS had diminished RV global peak systolic strain compared with control subjects (-12.0 ± 4.0% vs -23.3 ± 2.3%, P < .001). Most patients with TGA-MS had intrinsic or left ventricular paced right bundle branch block. A classic pattern was present in 11 of 25 subjects (44%), but this pattern would have been missed in four of 11 based only on the RV four-chamber (six-segment) model. Only three subjects underwent cardiac resynchronization therapy. Both subjects who had the classic pattern responded to cardiac resynchronization therapy, whereas the one nonresponder did not have the classic pattern. Systemic right ventricles demonstrated decreased function and increased mechanical dyssynchrony. The classic pattern of activation delay-induced mechanical dyssynchrony was frequently seen in this TGA-MS population and associated with activation delays. This comprehensive RV approach demonstrated incremental value. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter
2005-01-01
The calcineurin (CaN) enzyme–transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 μM, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKCɛ compared to samples incubated without PKCɛ. Endogenous cardiostimulants which activate Gαq-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate. PMID:15821752
Dutta, Sara; Mincholé, Ana; Zacur, Ernesto; Quinn, T. Alexander; Taggart, Peter; Rodriguez, Blanca
2016-01-01
Aims Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. Methods and results A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. Conclusions Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve. PMID:26850675