Science.gov

Sample records for human-machine interface evaluation

  1. An integrated approach for the design and evaluation of human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt F.

    1987-01-01

    An integrated environment for the design and evaluation (from a human factors point-of-view) of human-machine interfaces is proposed. Four major components of an experimental environment currently under study are identified and discussed. A scenario highlighting the relationships of these four components in an integrated operational environment is presented. Current status, issues to be addressed and future plans for this activity are discussed.

  2. Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation

    SciTech Connect

    Draper, J.V.; Jansen, J.F.; Pin, F.G.; Rowe, J.C.

    1999-04-25

    The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator arm from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.

  3. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Olowin, Aaron (Inventor); Hannaford, Blake (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  4. Human Machine Interface Programming and Testing

    NASA Technical Reports Server (NTRS)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  5. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  6. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  7. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  8. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  9. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.

    PubMed

    Giraudet, L; Imbert, J-P; Bérenger, M; Tremblay, S; Causse, M

    2015-11-01

    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs--the operational alarm that involves blinking colored "ALRT" displayed around the label of the notified plane ("Color-Blink"), and the more salient alarm involving the same blinking text plus four moving yellow chevrons ("Box-Animation"). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally.

  10. Human Reliability Analysis for Digital Human-Machine Interfaces

    SciTech Connect

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  11. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Human-Machine Interface (HMI) Design E Appendix E.... E Appendix E to Part 236—Human-Machine Interface (HMI) Design (a) This appendix provides human... minimize negative safety effects by causing designers to consider human factors in the development of...

  12. Triboelectrification based motion sensor for human-machine interfacing.

    PubMed

    Yang, Weiqing; Chen, Jun; Wen, Xiaonan; Jing, Qingshen; Yang, Jin; Su, Yuanjie; Zhu, Guang; Wu, Wenzuo; Wang, Zhong Lin

    2014-05-28

    We present triboelectrification based, flexible, reusable, and skin-friendly dry biopotential electrode arrays as motion sensors for tracking muscle motion and human-machine interfacing (HMI). The independently addressable, self-powered sensor arrays have been utilized to record the electric output signals as a mapping figure to accurately identify the degrees of freedom as well as directions and magnitude of muscle motions. A fast Fourier transform (FFT) technique was employed to analyse the frequency spectra of the obtained electric signals and thus to determine the motion angular velocities. Moreover, the motion sensor arrays produced a short-circuit current density up to 10.71 mA/m(2), and an open-circuit voltage as high as 42.6 V with a remarkable signal-to-noise ratio up to 1000, which enables the devices as sensors to accurately record and transform the motions of the human joints, such as elbow, knee, heel, and even fingers, and thus renders it a superior and unique invention in the field of HMI.

  13. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  14. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  15. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  16. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    to enhance the immersive quality of an environment. Walt Disney World uses the sense of smell during their virtual reality ride “Soaring” to...application. It is the interface that allows the man to become immersed in an artificially created world . It is the interface that allows him to interact... natural and realistic interactions. These revolutionary interfaces should be able to overcome the limitations of the current generation of virtual

  17. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    PubMed

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface.

  18. Considerations for human-machine interfaces in tele-operations

    NASA Technical Reports Server (NTRS)

    Newport, Curt

    1991-01-01

    Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.

  19. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  20. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  1. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  2. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  3. A Cognitive Systems Engineering Approach to Developing Human Machine Interface Requirements for New Technologies

    NASA Astrophysics Data System (ADS)

    Fern, Lisa Carolynn

    This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order

  4. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    PubMed

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  5. Multimodal human-machine interface based on a brain-computer interface and an electrooculography interface.

    PubMed

    Iáñez, Eduardo; Ùbeda, Andrés; Azorín, José M

    2011-01-01

    This paper describes a multimodal interface that combines a Brain-Computer Interface (BCI) with an electrooculography (EOG) interface. The non-invasive spontaneous BCI registers the electrical brain activity through surface electrodes. The EOG interface detects the eye movements through electrodes placed on the face around the eyes. Both kind of signals are registered together and processed to obtain the mental task that the user is thinking and the eye movement performed by the user. Both commands (mental task and eye movement) are combined in order to move a dot in a graphic user interface (GUI). Several experimental tests have been made where the users perform a trajectory to get closer to some targets. To perform the trajectory the user moves the dot in a plane with the EOG interface and using the BCI the dot changes its height.

  6. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  7. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  8. Functional requirements analysis and human machine interface specifications for handheld metal detector wands

    SciTech Connect

    Hoang, V.; Hartney, C.; Banks, W.

    1994-11-01

    Functional Requirements Analysis (FRA) and Human-Machine-Interface Design Specifications (HMIDs) are critical elements in the development of effective security systems. Handheld metal detector wands are currently used by security personnel to detect metal weapons and munitions that might be smuggled onboard an aircraft by terrorists or individuals who intend to do harm to passengers, aircraft, or other air carrier-related targets. The FAA has requested that Lawrence Livermore National Laboratory (LLNL) assist in developing functional requirements for handheld metal detector devices (wands) used at airports. This effort is focused on both defining and assuring adequate functional and human interface designs that are an integral part of airport security operations. In addition to developing functional requirements, LLNL was also requested to examine and review wanding procedures currently used by the airports and air carriers and provide comments, recommendations, and suggestions for enhanced security based upon this review. The phrase ``Human-Machine-Interface`` (HMI) is frequently used to describe the characteristics of a system that allows the human to interact and control the machine or system. Equipment used by checkpoint security Pre-Board Screeners (PBS`s) during rapid search of passengers must be designed to fit a broad range of anthropometric differences in height, hand size, grip strength, upper body strength, visual. acuity, auditory acuity, and other related human variables. In essence, if there is a high degree of compatibility between the end-user and the equipment, there will be a direct enhancement of total system performance and system operability. Thus, this document may also be used as, a guideline to enhance ergonomic compatibility between the PBS`s and the equipment they use.

  9. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    SciTech Connect

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

  10. A vibro-haptic human-machine interface for structural health monitoring

    DOE PAGES

    Mascarenas, David; Plont, Crystal; Brown, Christina; ...

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less

  11. A vibro-haptic human-machine interface for structural health monitoring

    SciTech Connect

    Mascarenas, David; Plont, Crystal; Brown, Christina; Cowell, Martin; Jameson, N. Jordan; Block, Jessica; Djidjev, Stephanie; Hahn, Heidi A.; Farrar, Charles

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systems found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.

  12. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    SciTech Connect

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-07-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, the human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous

  13. Development of a shear measurement sensor for measuring forces at human-machine interfaces.

    PubMed

    Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung

    2014-12-01

    Measuring shear force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial shear transducer based on strain gauges as a new shear sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two strain gauges were placed orthogonal to one another. The shear sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The shear force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 shear sensors. Shear forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed shear sensor may be reliable and useful for measuring the shear force on human-machine interfaces.

  14. Personalized keystroke dynamics for self-powered human--machine interfacing.

    PubMed

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  15. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    SciTech Connect

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  16. A comparative analysis of three non-invasive human-machine interfaces for the disabled.

    PubMed

    Ravindra, Vikram; Castellini, Claudio

    2014-01-01

    In the framework of rehabilitation robotics, a major role is played by the human-machine interface (HMI) used to gather the patient's intent from biological signals, and convert them into control signals for the robotic artifact. Surprisingly, decades of research have not yet declared what the optimal HMI is in this context; in particular, the traditional approach based upon surface electromyography (sEMG) still yields unreliable results due to the inherent variability of the signal. To overcome this problem, the scientific community has recently been advocating the discovery, analysis, and usage of novel HMIs to supersede or augment sEMG; a comparative analysis of such HMIs is therefore a very desirable investigation. In this paper, we compare three such HMIs employed in the detection of finger forces, namely sEMG, ultrasound imaging, and pressure sensing. The comparison is performed along four main lines: the accuracy in the prediction, the stability over time, the wearability, and the cost. A psychophysical experiment involving ten intact subjects engaged in a simple finger-flexion task was set up. Our results show that, at least in this experiment, pressure sensing and sEMG yield comparably good prediction accuracies as opposed to ultrasound imaging; and that pressure sensing enjoys a much better stability than sEMG. Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claim that this HMI could represent a valid alternative/augmentation to sEMG to control a multi-fingered hand prosthesis.

  17. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces.

    PubMed

    Liu, Yuhao; Norton, James J S; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R; Liu, Hank; Yan, Lingqing; Tran, Phat L; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A

    2016-11-01

    Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics.

  18. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    NASA Astrophysics Data System (ADS)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  19. Understanding customers' holistic perception of switches in automotive human-machine interfaces.

    PubMed

    Wellings, Tom; Williams, Mark; Tennant, Charles

    2010-01-01

    For successful new product development, it is necessary to understand the customers' holistic experience of the product beyond traditional task completion, and acceptance measures. This paper describes research in which ninety-eight UK owners of luxury saloons assessed the feel of push-switches in five luxury saloon cars both in context (in-car) and out of context (on a bench). A combination of hedonic data (i.e. a measure of 'liking'), qualitative data and semantic differential data was collected. It was found that customers are clearly able to differentiate between switches based on the degree of liking for the samples' perceived haptic qualities, and that the assessment environment had a statistically significant effect, but that it was not universal. A factor analysis has shown that perceived characteristics of switch haptics can be explained by three independent factors defined as 'Image', 'Build Quality', and 'Clickiness'. Preliminary steps have also been taken towards identifying whether existing theoretical frameworks for user experience may be applicable to automotive human-machine interfaces.

  20. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  1. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces

    PubMed Central

    Liu, Yuhao; Norton, James J. S.; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R.; Liu, Hank; Yan, Lingqing; Tran, Phat L.; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A.; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J.; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A.

    2016-01-01

    Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics. PMID:28138529

  2. Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study

    SciTech Connect

    Truitt, R.W.

    1997-10-22

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

  3. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  4. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  5. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    SciTech Connect

    2006-07-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks. 'Systems

  6. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    PubMed

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  7. On the Applicability of Brain Reading for Predictive Human-Machine Interfaces in Robotics

    PubMed Central

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors. PMID:24358125

  8. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  9. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    environment) Monitoring • OMI Design Guidelines • Automation-design Principles • OMI Design Guidelines • HCI Principles Adapt OMI Automate / Aid...technical systems, there is still a lack of well-established design guidelines for these human-machine systems, especially for advanced operator...Additionally, a lack of integration between the Human Factors (HF) and Human Computer Interaction ( HCI ) domains has increased the tendency for terminology

  10. Robust human machine interface based on head movements applied to assistive robotics.

    PubMed

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  11. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    PubMed

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  12. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    PubMed Central

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented. PMID:22346574

  13. Driver-passenger collaboration as a basis for human-machine interface design for vehicle navigation systems.

    PubMed

    Antrobus, Vicki; Burnett, Gary; Krehl, Claudia

    2017-03-01

    Human Factors concerns exist with vehicle navigation systems, particularly relating to the effects of current Human-Machine Interfaces (HMIs) on driver disengagement from the environment. A road study was conducted aiming to provide initial input for the development of intelligent HMIs for in-vehicle systems, using the traditional collaborative navigation relationship between the driver and passenger to inform future design. Sixteen drivers navigated a predefined route in the city of Coventry, UK with the assistance of an existing vehicle navigation system (SatNav), whereas a further 16 followed the navigational prompts of a passenger who had been trained along the same route. Results found that there were no significant differences in the number of navigational errors made on route for the two different methods. However, drivers utilising a collaborative navigation approach had significantly better landmark and route knowledge than their SatNav counterparts. Analysis of individual collaborative transcripts revealed the large individual differences in descriptor use by passengers and reference to environmental landmarks, illustrating the potential for the replacement of distance descriptors in vehicle navigation systems. Results are discussed in the context of future HMIs modelled on a collaborative navigation relationship. Practitioner Summary: Current navigation systems have been associated with driver environmental disengagement, this study uses an on-road approach to look at how the driver-passenger collaborative relationship and dialogue can inform future navigation HMI design. Drivers navigating with passenger assistance demonstrated enhanced landmark and route knowledge over drivers navigating with a SatNav.

  14. Usability testing of the human-machine interface for the Light Duty Utility Arm System

    SciTech Connect

    Kiebel, G.R.; Ellis, J.E.; Masliah, M.R.

    1994-09-20

    This report describes the usability testing that has been done for the control and data acquisition system for the Light Duty Utility Arm (LDUA) System. A program of usability testing has been established as a part of a process for making the LDUA as easy to use as possible. The LDUA System is being designed to deploy a family of tools, called End Effectors, into underground storage tanks by means of a robotic arm on the end of a telescoping mast, and to collect and manage the data that they generate. The LDUA System uses a vertical positioning mast, to lower the arm into a tank through an existing 30.5 cm access riser. A Mobile Deployment Subsystem is used to position the mast and arm over a tank riser for deployment, and to transport them from tank to tank. The LDUA System has many ancillary subsystems including the Operations Control Trailer, the Tank Riser Interface and Confinement Subsystem, the Decontamination Subsystem, and the End Effector Exchange Subsystem. This work resulted in the identification of several important improvements to the LDUA control and data acquisition system before the design was frozen. The most important of these were color coding of joints in motion, simultaneous operator control of multiple joints, and changes to the field-of-views of the camera lenses for the robot and other camera systems.

  15. A Comparative Analysis of Three Non-Invasive Human-Machine Interfaces for the Disabled

    PubMed Central

    Ravindra, Vikram; Castellini, Claudio

    2014-01-01

    In the framework of rehabilitation robotics, a major role is played by the human–machine interface (HMI) used to gather the patient’s intent from biological signals, and convert them into control signals for the robotic artifact. Surprisingly, decades of research have not yet declared what the optimal HMI is in this context; in particular, the traditional approach based upon surface electromyography (sEMG) still yields unreliable results due to the inherent variability of the signal. To overcome this problem, the scientific community has recently been advocating the discovery, analysis, and usage of novel HMIs to supersede or augment sEMG; a comparative analysis of such HMIs is therefore a very desirable investigation. In this paper, we compare three such HMIs employed in the detection of finger forces, namely sEMG, ultrasound imaging, and pressure sensing. The comparison is performed along four main lines: the accuracy in the prediction, the stability over time, the wearability, and the cost. A psychophysical experiment involving ten intact subjects engaged in a simple finger-flexion task was set up. Our results show that, at least in this experiment, pressure sensing and sEMG yield comparably good prediction accuracies as opposed to ultrasound imaging; and that pressure sensing enjoys a much better stability than sEMG. Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claim that this HMI could represent a valid alternative/augmentation to sEMG to control a multi-fingered hand prosthesis. PMID:25386135

  16. A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees

    PubMed Central

    Sierra González, David; Castellini, Claudio

    2013-01-01

    In the past years, especially with the advent of multi-fingered hand prostheses, the rehabilitation robotics community has tried to improve the use of human-machine interfaces to reliably control mechanical artifacts with many degrees of freedom. Ideally, the control schema should be intuitive and reliable, and the calibration (training) short and flexible. This work focuses on medical ultrasound imaging as such an interface. Medical ultrasound imaging is rich in information, fast, widespread, relatively cheap and provides high temporal/spatial resolution; moreover, it is harmless. We already showed that a linear relationship exists between ultrasound image features of the human forearm and the hand kinematic configuration; here we demonstrate that such a relationship also exists between similar features and fingertip forces. An experiment with 10 participants shows that a very fast data collection, namely of zero and maximum forces only and using no force sensors, suffices to train a system that predicts intermediate force values spanning a range of about 20 N per finger with average errors in the range 10–15%. This training approach, in which the ground truth is limited to an “on-off” visual stimulus, constitutes a realistic scenario and we claim that it could be equally used by intact subjects and amputees. The linearity of the relationship between images and forces is furthermore exploited to build an incremental learning system that works online and can be retrained on demand by the human subject. We expect this system to be able in principle to reconstruct an amputee's imaginary limb, and act as a sensible improvement of, e.g., mirror therapy, in the treatment of phantom-limb pain. PMID:24155719

  17. Toward best practice in Human Machine Interface design for older drivers: A review of current design guidelines.

    PubMed

    Young, K L; Koppel, S; Charlton, J L

    2016-06-30

    Older adults are the fastest growing segment of the driving population. While there is a strong emphasis for older people to maintain their mobility, the safety of older drivers is a serious community concern. Frailty and declines in a range of age-related sensory, cognitive, and physical impairments can place older drivers at an increased risk of crash-related injuries and death. A number of studies have indicated that in-vehicle technologies such as Advanced Driver Assistance Systems (ADAS) and In-Vehicle Information Systems (IVIS) may provide assistance to older drivers. However, these technologies will only benefit older drivers if their design is congruent with the complex needs and diverse abilities of this driving cohort. The design of ADAS and IVIS is largely informed by automotive Human Machine Interface (HMI) guidelines. However, it is unclear to what extent the declining sensory, cognitive and physical capabilities of older drivers are addressed in the current guidelines. This paper provides a review of key current design guidelines for IVIS and ADAS with respect to the extent they address age-related changes in functional capacities. The review revealed that most of the HMI guidelines do not address design issues related to older driver impairments. In fact, in many guidelines driver age and sensory cognitive and physical impairments are not mentioned at all and where reference is made, it is typically very broad. Prescriptive advice on how to actually design a system so that it addresses the needs and limitations of older drivers is not provided. In order for older drivers to reap the full benefits that in-vehicle technology can afford, it is critical that further work establish how older driver limitations and capabilities can be supported by the system design process, including their inclusion into HMI design guidelines.

  18. Human-Machine Interfaces

    DTIC Science & Technology

    1993-07-31

    smaller than those found in other runs. In all bias results, there was an edge effect due to the experimental paradigm: since responses were limited to...aforementioned edge effect (subjects heard sources farther off-center than they were except for the leftmost and ri ’ihtmost positions). Results from Run 5a...results for Experiment F, shown in Fig. 14, show the expected pattern of results. While the edge effect for Experiment F reduces the size of the

  19. Human-machine interfaces for teleoperators: an overview of research and development at the Oak Ridge National Laboratory. Consolidated Fuel Reprocessing Program

    SciTech Connect

    Draper, J.V.; Feldman, M.J.

    1985-01-01

    This paper surveys the contributions of human factors to the mission of the Remote Control Engineering (RCE) task over the last six years. These contributions can be divided into two areas, research efforts and design efforts. Some of the topics covered in human factors research are manipulator comparisons, investigation of viewing system characteristics, research into the effects of force reflection, and studies of crew size and task allocation. In the area of component design the human factors group was primarily responsible for the conceptual design of the Advanced Integrated Maintenance System (AIMS) control room, including all operator work stations and overall control room architecture. The human factors group also contributed to the design of the AIMS master controller handle. Recent research at the RCE task has centered on comparison of manipulator systems. This research was planned and conducted by the human factors group and other ORNL personnel. The research is aimed at evaluating three important characteristics of manipulator systems: system dynamics, force feedback, and human-machine interface.

  20. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general

    NASA Astrophysics Data System (ADS)

    Zander, Thorsten O.; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  1. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    PubMed

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk).

  2. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  3. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    NASA Astrophysics Data System (ADS)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  4. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    NASA Astrophysics Data System (ADS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  5. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands

    PubMed Central

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID

  6. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    PubMed

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  7. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    PubMed

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-04-12

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers.

  8. Biosleeve Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  9. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  10. HUMAN MACHINE COOPERATIVE TELEROBOTICS

    SciTech Connect

    William R. Hamel; Spivey Douglass; Sewoong Kim; Pamela Murray; Yang Shou; Sriram Sridharan; Ge Zhang; Scott Thayer; Rajiv V. Dubey

    2003-06-30

    described as Human Machine Cooperative Telerobotics (HMCTR). The HMCTR combines the telerobot with robotic control techniques to improve the system efficiency and reliability in teleoperation mode. In this topical report, the control strategy, configuration and experimental results of Human Machines Cooperative Telerobotics (HMCTR), which modifies and limits the commands of human operator to follow the predefined constraints in the teleoperation mode, is described. The current implementation is a laboratory-scale system that will be incorporated into an engineering-scale system at the Oak Ridge National Laboratory in the future.

  11. Infrared stereo camera for human machine interface

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Chenault, David

    2012-06-01

    Improved situational awareness results not only from improved performance of imaging hardware, but also when the operator and human factors are considered. Situational awareness for IR imaging systems frequently depends on the contrast available. A significant improvement in effective contrast for the operator can result when depth perception is added to the display of IR scenes. Depth perception through flat panel 3D displays are now possible due to the number of 3D displays entering the consumer market. Such displays require appropriate and human friendly stereo IR video input in order to be effective in the dynamic military environment. We report on a stereo IR camera that has been developed for integration on to an unmanned ground vehicle (UGV). The camera has auto-convergence capability that significantly reduces ill effects due to image doubling, minimizes focus-convergence mismatch, and eliminates the need for the operator to manually adjust camera properties. Discussion of the size, weight, and power requirements as well as integration onto the robot platform will be given along with description of the stand alone operation.

  12. Designing dynamic distributed cooperative Human-Machine Systems.

    PubMed

    Lüdtke, A; Javaux, D; Tango, F; Heers, R; Bengler, K; Ronfle-Nadaud, C

    2012-01-01

    The paper presents a new approach to the development of cooperative human-machine systems in the Transportation domain which is currently researched in the European project D3CoS. A necessary precondition for the acceptance of cooperative human-machine systems with shared control is the confidence and trust of the user into the system. D3CoS tackles this important issue by addressing the cooperative system as the object and the target of the system development process. This new perspective, along with corresponding innovative methods, techniques and tools, shall allow the identification of optimal task and authority sharing approaches supported by intuitive human-machine interaction and user interfaces at an early stage of system development. This will support powerful teamwork between humans and machines or between machines and machines that is transparent, intuitive and easy to understand. The paper describes the research dimensions for the development of the methods, techniques and tools as well as first results.

  13. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  14. Knowledge-based load leveling and task allocation in human-machine systems

    NASA Technical Reports Server (NTRS)

    Chignell, M. H.; Hancock, P. A.

    1986-01-01

    Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.

  15. Five Papers on Human-Machine Interaction.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other…

  16. Visual human+machine learning.

    PubMed

    Fuchs, Raphael; Waser, Jürgen; Gröller, Meister Eduard

    2009-01-01

    In this paper we describe a novel method to integrate interactive visual analysis and machine learning to support the insight generation of the user. The suggested approach combines the vast search and processing power of the computer with the superior reasoning and pattern recognition capabilities of the human user. An evolutionary search algorithm has been adapted to assist in the fuzzy logic formalization of hypotheses that aim at explaining features inside multivariate, volumetric data. Up to now, users solely rely on their knowledge and expertise when looking for explanatory theories. However, it often remains unclear whether the selected attribute ranges represent the real explanation for the feature of interest. Other selections hidden in the large number of data variables could potentially lead to similar features. Moreover, as simulation complexity grows, users are confronted with huge multidimensional data sets making it almost impossible to find meaningful hypotheses at all. We propose an interactive cycle of knowledge-based analysis and automatic hypothesis generation. Starting from initial hypotheses, created with linking and brushing, the user steers a heuristic search algorithm to look for alternative or related hypotheses. The results are analyzed in information visualization views that are linked to the volume rendering. Individual properties as well as global aggregates are visually presented to provide insight into the most relevant aspects of the generated hypotheses. This novel approach becomes computationally feasible due to a GPU implementation of the time-critical parts in the algorithm. A thorough evaluation of search times and noise sensitivity as well as a case study on data from the automotive domain substantiate the usefulness of the suggested approach.

  17. 1988 workshop on human-machine symbiotic systems

    SciTech Connect

    Parker, L.E.; Weisbin, C.R.

    1988-01-01

    This report presents the proceedings of the 1988 Workshop on Human-Machine Symbiotic Systems. Held December 5-6, 1988 in Oak Ridge, Tennessee, the workshop served as a forum for the discussion of several critical issues in human-machine symbiosis: human-machine communication, autonomous task planning and execution monitoring for heterogeneous agents, dynamic task allocation, human-machine system architecture, and machine learning via experience and human observation.

  18. Human-Machine Teams: The Social Frontier

    DTIC Science & Technology

    2015-12-01

    Charlene Stokes, Ph.D. Air Force Research Laboratory Human-Machine Teams: The Social Frontier American Psychological Association (APA...studies fusing social psychology and team research and theory in an HMT context – lab and applied studies. Impact: The largely unconscious, social...of social psychological processes/theory and team research/understanding for optimization of autonomy/HMT. • Traditional focus is on the

  19. "Do That Again": Evaluating Spoken Dialogue Interfaces

    NASA Technical Reports Server (NTRS)

    James, Frankie; Rayner, Manny; Hockey, Beth Ann

    2000-01-01

    We present a new technique for evaluating spoken dialogue interfaces that allows us to separate the dialogue behavior from the rest of the speech system. By using a dialogue simulator that we have developed, we can gather usability data on the system s dialogue interaction and behaviors that can guide improvements to the speech interface. Preliminary testing has shown promising results, suggesting that it is possible to test properties of dialogue separately from other factors such as recognition quality.

  20. Five Papers on Human-Machine Interaction.

    DTIC Science & Technology

    1982-05-01

    AD-AI6 031 CALIFORNIA UNIV SAN DIEGO LA JOLLA CENTER FOR HUMAN -- ETC FIG 5/ B FIVE PAPERS ON HUMAN-MACHINE INTERACTION.(U) MAY 82 0 A NORMAN N0001...model in order - -et the_ necessary results. Mental models will be constrained by such things as the user’s technical background, previous experiences ...especially apt to be the case when a person has experience with a number of different systems, all very similar, but each with some slightly different set of

  1. Interface Evaluation for Open System Architectures

    DTIC Science & Technology

    2014-03-01

    Weight Value Hierarchy ...................................................................................70 Global Weights...69 Figure 19: Interface Evaluation Framework Value Hierarchy Including Global Weights 73 Figure 20...strategy (e.g., the extent of market acceptance and availability of products that comply with a selected standard)” (OSJTF, 2004, p. 16) 4

  2. Deployment of human-machine dialogue systems.

    PubMed Central

    Roe, D B

    1995-01-01

    The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems. Images Fig. 1 PMID:7479719

  3. Interface evaluation for soft robotic manipulators

    NASA Astrophysics Data System (ADS)

    Moore, Kristin S.; Rodes, William M.; Csencsits, Matthew A.; Kwoka, Martha J.; Gomer, Joshua A.; Pagano, Christopher C.

    2006-05-01

    The results of two usability experiments evaluating an interface for the operation of OctArm, a biologically inspired robotic arm modeled after an octopus tentacle, are reported. Due to the many degrees-of-freedom (DOF) for the operator to control, such 'continuum' robotic limbs provide unique challenges for human operators because they do not map intuitively. Two modes have been developed to control the arm and reduce the DOF under the explicit direction of the operator. In coupled velocity (CV) mode, a joystick controls changes in arm curvature. In end-effector (EE) mode, a joystick controls the arm by moving the position of an endpoint along a straight line. In Experiment 1, participants used the two modes to grasp objects placed at different locations in a virtual reality modeling language (VRML). Objective measures of performance and subjective preferences were recorded. Results revealed lower grasp times and a subjective preference for the CV mode. Recommendations for improving the interface included providing additional feedback and implementation of an error recovery function. In Experiment 2, only the CV mode was tested with improved training of participants and several changes to the interface. The error recovery function was implemented, allowing participants to reverse through previously attained positions. The mean time to complete the trials in the second usability test was reduced by more than 4 minutes compared with the first usability test, confirming the interface changes improved performance. The results of these tests will be incorporated into future versions of the arm and improve future usability tests.

  4. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    SciTech Connect

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-07-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  5. Physiological cognitive state assessment: applications for designing effective human-machine systems.

    PubMed

    Estepp, Justin R; Christensen, James C

    2011-01-01

    Significant growth in the field of neuroscience has occurred over the last decade such that new application areas for basic research techniques are opening up to practitioners in many other areas. Of particular interest to many is the principle of neuroergonomics, by which the traditional work in neuroscience and its related topics can be applied to non-traditional areas such as human-machine system design. While work in neuroergonomics certainly predates the use of the term in the literature (previously identified by others as applied neuroscience, operational neuroscience, etc.), there is great promise in the larger framework that is represented by the general context of the terminology. Here, we focus on the very specific concept that principles in brain-computer interfaces, neural prosthetics and the larger realm of machine learning using physiological inputs can be applied directly to the design and implementation of augmented human-machine systems. Indeed, work in this area has been ongoing for more than 25 years with very little cross-talk and collaboration between clinical and applied researchers. We propose that, given increased interest in augmented human-machine systems based on cognitive state, further progress will require research in the same vein as that being done in the aforementioned communities, and that all researchers with a vested interest in physiologically-based machine learning techniques can benefit from increased collaboration. We thereby seek to describe the current state of cognitive state assessment in human-machine systems, the problems and challenges faced, and the tightly-coupled relationship with other research areas. This supports the larger work of the Cognitive State Assessment 2011 Competition by setting the stage for the purpose of the session by showing the need to increase research in the machine learning techniques used by practitioners of augmented human-machine system design.

  6. A human-machine interface for multireactor operation

    SciTech Connect

    Zizzo, D.; Dayal, Y.; Carroll, D. ); Hashimoto, S.; Ishida, T. )

    1993-01-01

    This paper describes interim results of an ongoing joint effort between G.E. Nuclear Energy and Hitachi, Ltd., to develop functional, performance, and anthropometric requirements for a unique nuclear reactor operating console that facilitates operation of three reactors and a steam turbine by a single licensed reactor operator. The human factors engineering (HFE) challenges associated with the operator console are discussed, a conceptual [open quotes]visualization[close quotes] of the console and control room is presented, and operator support concepts (e.g., alarm handling) are briefly described. The Advanced Reactor Programs group with G.E. Nuclear Energy is designing a modular, pool-type, sodium-cooled reactor with unique safety characteristics whereby no mitigative operator action is required in order to meet the plant's safety limits (radiation release criteria). A full-sized, 1440-MW(electric) plant includes nine such reactors configured as three physically separate, independently operated power blocks. One power block consists of three reactors, each with their individual steam generators headered to jointly deliver superheated steam to a turbine generator. All power blocks are operated from one control room. Furthermore, due to greatly reduced reliance on manual safety actions by the operator, control systems are automated to the extent that one power block is operated by one licensed reactor operator. The control room houses three operator consoles (one per power block) and a supervisor's workstation. This is the primary equipment used by the normal control room shift staffing of three licensed reactor operators, a shift supervisor, and an assistant shift supervisor. The operator and the automated control systems will, in principle, perform together as a single entity. However, one operator operating more than one nuclear reactor has no precedent.

  7. Human machine interface by using stereo-based depth extraction

    NASA Astrophysics Data System (ADS)

    Liao, Chao-Kang; Wu, Chi-Hao; Lin, Hsueh-Yi; Chang, Ting-Ting; Lin, Tung-Yang; Huang, Po-Kuan

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  8. Design of the Eurofighter human-machine interface

    NASA Astrophysics Data System (ADS)

    Smith, Chris J.

    1998-09-01

    Every new generation of fighter aircraft presents new challenges for the various design disciplines that are involved in their development; the current generation of fighters -- Eurofighter, Rafale, and F22 -- are no different in this respect. We look to using new structural materials advanced flight control systems, and even better and more comprehensive sensors to extend the system's overall performance and capability. This paper looks at the area of cockpit design -- the 'how do we keep the pilot in real control of his tasks' part of the total package of the aircraft and weapons system design. I will look at the design requirements for the cockpit, and discuss some potential solutions to the inevitable resulting design problems.

  9. Advanced human-machine interface for collaborative building control

    SciTech Connect

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  10. Modifications to Optimize the AH-1Z Human Machine Interface

    DTIC Science & Technology

    2013-04-18

    communicate, navigate, process and present data, manage crew station systems, detect and counter threats, acquire and track targets , employ guided and...maintain situational awareness during targeting , aid the non-flying pilot in target or object detection , recognition, and identification, and...Air Ground Task Force (MAGTF) Commander with a capable attack helicopter to utilize in the joint warfighting environment. Increasing its capability

  11. Imagistic evaluation of matrix bone interface

    NASA Astrophysics Data System (ADS)

    NegruÅ£iu, Meda L.; Sinescu, Cosmin; Manescu, Adrian; Topalǎ, Florin I.; Hoinoiu, Bogdan; MǎrcǎuÅ£eanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.

    2014-01-01

    The problematic elements of bone regenerative materials are represented by their quality control methods. The defects repaired by bone grafting material were evaluated by en face optical coherence tomography and by synchrotron radiation micro-CT. The images obtained by efOCT show defects in some of the investigated samples, at the bone interface with different osteoconductive bone substitutes and we were able to detect gaps as small as 50 μm. After the common synchrotron radiation micro-CT investigations, the slides were reconstructed and the 3D model was obtained. Along with the possibility of navigating inside the structure, one big advantage of this technique was pointed out: the remaining regenerative materials can be separated from the normal bone and the new bone can be visualized. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.

  12. CDROM User Interface Evaluation: The Appropriateness of GUIs.

    ERIC Educational Resources Information Center

    Bosch, Victoria Manglano; Hancock-Beaulieu, Micheline

    1995-01-01

    Assesses the appropriateness of GUIs (graphical user interfaces), more specifically Windows-based interfaces for CD-ROM. An evaluation model is described that was developed to carry out an expert evaluation of the interfaces of seven CD-ROM products. Results are discussed in light of HCI (human-computer interaction) usability criteria and design…

  13. Kinematic design to improve ergonomics in human machine interaction.

    PubMed

    Schiele, André; van der Helm, Frans C T

    2006-12-01

    This paper introduces a novel kinematic design paradigm for ergonomic human machine interaction. Goals for optimal design are formulated generically and applied to the mechanical design of an upper-arm exoskeleton. A nine degree-of-freedom (DOF) model of the human arm kinematics is presented and used to develop, test, and optimize the kinematic structure of an human arm interfacing exoskeleton. The resulting device can interact with an unprecedented portion of the natural limb workspace, including motions in the shoulder-girdle, shoulder, elbow, and the wrist. The exoskeleton does not require alignment to the human joint axes, yet is able to actuate each DOF of our redundant limb unambiguously and without reaching into singularities. The device is comfortable to wear and does not create residual forces if misalignments exist. Implemented in a rehabilitation robot, the design features of the exoskeleton could enable longer lasting training sessions, training of fully natural tasks such as activities of daily living and shorter dress-on and dress-off times. Results from inter-subject experiments with a prototype are presented, that verify usability over the entire workspace of the human arm, including shoulder and shoulder girdle.

  14. Evaluation of navigation interfaces in virtual environments

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  15. Scientific Bases of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Schafer, Ronald W.

    1995-10-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines.

  16. Drusen Analysis in a Human-Machine Synergistic Framework

    PubMed Central

    Smith, R. Theodore; Sohrab, Mahsa A.; Pumariega, Nicole M.; Mathur, Kanika; Haans, Raymond; Blonska, Anna; Uy, Karl; Despriet, Dominiek; Klaver, Caroline

    2011-01-01

    Objectives To demonstrate how human-machine intelligence can be integrated for efficient image analysis of drusen in age-related macular degeneration and to validate the method in 2 large, independently graded, population-based data sets. Methods We studied 358 manually graded color slides from the Netherlands Genetic Isolate Study. All slides were digitized and analyzed with a user-interactive drusen detection algorithm for the presence and quantity of small, intermediate, and large drusen. A graphic user interface was used to preprocess the images, choose a region of interest, select appropriate corrective filters for images with photographic artifacts or prominent choroidal pattern, and perform drusen segmentation. Weighted κ statistics were used to analyze the initial concordance between human graders and the drusen detection algorithm; discordant grades from 177 left-eye slides were subjected to exhaustive analysis of causes of disagreement and adjudication. To validate our method further, we analyzed a second data set from our Columbia Macular Genetics Study. Results The graphical user interface decreased the time required to process images in commercial software by 60.0%. After eliminating borderline size disagreements and applying corrective filters for photographic artifacts and choroidal pattern, the weighted κ values were 0.61, 0.62, and 0.76 for small, intermediate, and large drusen, respectively. Our second data set demonstrated a similarly high concordance. Conclusions Drusen identification performed by our user-interactive method presented fair to good agreement with human graders after filters for common sources of error were applied. This approach exploits a synergistic relationship between the intelligent user and machine computational power, enabling fast and accurate quantitative retinal image analysis. PMID:21220627

  17. 1988 workshop on human-machine symbiotic systems proceedings

    SciTech Connect

    Parker, L.E.; Weisbin, C.R.

    1989-01-01

    This report presents the proceedings of the 1988 Workshop on Human-Machine Symbiotic Systems. Held December 5--6, 1988, in Oak Ridge, Tennessee, the workshop served as a forum for the discussion of several critical issues in human-machine symbiosis: human-machine communication, autonomous task planning and execution monitoring for heterogeneous agents, dynamic task allocation, human-machine system architecture, and machine learning via experience and human observation. The presentation of overview papers by invited keynote speakers provided a background for the breakout session discussions in these five areas. The full powers furnished by the speakers are included in the proceedings, along with written summaries of the group discussions that report session conclusions and recommendations for future work.

  18. Supporting operator problem solving through ecological interface design

    SciTech Connect

    Vicente, K.J.; Christoffersen, K.; Pereklita, A.

    1995-04-01

    Two experiments are described evaluating ecological interface design (EID), a novel theoretical framework for the design of interfaces for complex human-machine systems. The findings of experiment one are consistent with the claim that an interface based on an abstraction hierarchy representation can provide more support for problem solving than an interface based on physical variable alone, thereby providing some initial support for the EID framework. The findings of experiment two indicate that subjects that exhibited effective diagnosis performance using the P + F interface tended to start their search at a high level of abstraction and gradually work their way down to more detailed levels, as predicted. 28 refs.

  19. Advanced human machine interaction for an image interpretation workstation

    NASA Astrophysics Data System (ADS)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  20. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  1. Cooperative Human-Machine Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Remington, Roger; Palmer, Everett

    1987-02-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  2. A system for medical consultation and education using multimodal human/machine communication.

    PubMed

    Akay, M; Marsic, I; Medl, A; Bu, G

    1998-12-01

    Recent developments in networking and computing have enabled collaborative biomedical engineering research by geographically separated participants. One of the most promising goals is to use these technologies to extend human intellectual capabilities in medical decision making. These emerging technologies are poised to drastically reduce healthcare cost by providing service at remote locations. This also increases diagnosis capacity since information is made available to experts at any location. In this paper, we propose a novel application of a recently developed interactive and distributed system in medical consultation and education. Our approach builds on the notion that interactive and distributive capabilities of the system are crucial for medical consultation and education. The presented application uses a multiuser, collaborative environment with multimodal human/machine communication in the dimensions of sight, sound, and touch. The experimental setup, consisting of two user stations, and the multimodal interfaces, including sight (eye-tracking), sound (automatic speech), and touch (microbeam pen), were tested and evaluated. The system uses a collaborative workspace as a common visualization space. Users communicate with the application through a fusion agent by eye-tracking, speech, and microbeam pen. The audio/video teleconferencing is also included to help the radiologists to communicate with each other simultaneously while they are working on the mammograms. The system used in this study has three software agents: a fusion agent, a conversational agent, and an analytic agent. The fusion agent interprets multimodal commands by integrating the multimodal inputs. The conversational agent answers the user's questions and detects human-related or semantic errors and notifies the user about the results of the image analysis. The analytic agent enhances the digitized images using the wavelet denoising algorithm if requested by the user. To show how well the

  3. A User-Centred Design and Evaluation of IR Interfaces

    ERIC Educational Resources Information Center

    Ahmed, S. M. Zabed; McKnight, Cliff; Oppenheim, Charles

    2006-01-01

    This paper presents a user-centred design and evaluation methodology for ensuring the usability of IR interfaces. The methodology is based on sequentially performing: a competitive analysis, user task analysis, heuristic evaluation, formative evaluation and a summative comparative evaluation. These techniques are described, and their application…

  4. Context in Models of Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    All human-machine systems models represent context. This paper proposes a theory of context through which models may be usefully related and integrated for design. The paper presents examples of context representation in various models, describes an application to developing models for the Crew Activity Tracking System (CATS), and advances context as a foundation for integrated design of complex dynamic systems.

  5. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  6. [Cybersurgery: human-machine integration for surgery of the future].

    PubMed

    Marescaux, Jacques; Diana, Michele

    2013-10-01

    The concept whereby human-machine collaboration can enhance surgical performance is briefly reviewed in this editorial. Implementation of computer and robotic technologies in the operating room may enhance the safety, efficacy and precision of the surgical procedure and facilitate minimally invasive approaches. The coming cybernetic revolution in surgery is no longer science fiction: a surgical robot equipped with image recognition, specific algorithms and artificial intelligence has the potential replace surgeons and to perform complex procedures autonomously.

  7. A simple ERP method for quantitative analysis of cognitive workload in myoelectric prosthesis control and human-machine interaction.

    PubMed

    Deeny, Sean; Chicoine, Caitlin; Hargrove, Levi; Parrish, Todd; Jayaraman, Arun

    2014-01-01

    Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new technologies for more intuitive HMI control.

  8. A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction

    PubMed Central

    Deeny, Sean; Chicoine, Caitlin; Hargrove, Levi; Parrish, Todd; Jayaraman, Arun

    2014-01-01

    Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new technologies for more intuitive HMI control. PMID:25402345

  9. Evaluation of a generic RIS-PACS interface

    NASA Astrophysics Data System (ADS)

    Soehlke, Karen; Fisher, Paul D.

    1992-07-01

    An interface between a Radiology Information System (RIS) and a Picture Archiving and Communication System (PACS) has been designed in Victoria. A prototype has been developed for a Health Care Systems Inc. RIS and a Siemens PACS. The main design objective for this prototype was to create a generic RIS-PACS interface. The portability of the interface is ensured by its modularity, the utilization of a standardized language and communication protocols and the face that no changes were required to either RIS or PACS. In the case of the prototype the communication of data is unidirectional, i.e. 36 data elements are exported from RIS to PACS. Although full integration of these two information systems in the Medical Imaging department appears more desirable than interfacing, an efficient, slim RIS-PACS interface is usually the more feasibly option. Current PACS projects have to cope with the restrictions of today''s RIS and PACS, which are often not transaction-oriented, rarely use modern database models and have been designed neglecting interfacing considerations. The paper summarizes interconnection experiences of four other international projects, outlines the design of the Generic RIMS-PACS Interface and evaluates the experience with the Victoria prototype.

  10. The use of thermal manikin to evaluate interface pressure distribution.

    PubMed

    Ciaccia, Flavia Renata Dantas Alves Silva; Gonçalves, Clenilson Jordão; Sznelwar, Laerte Idal

    2012-01-01

    The use of a thermal buttocks manikin was explored as a tool to standardize the evaluation of seat comfort. Thermal manikin buttocks were developed and calibrated thermally and anatomically to simulate the sensible heat transfer of a seated person and used to evaluate interface pressure distribution. In essence, the pressure maps of manikin buttocks with and without heating were compared to those of a seated person. The results of average pressure demonstrated that the thermal manikins have a better response in interface pressure measurement than manikins without heating.

  11. A Framework for Modeling Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  12. Applications of Computed Tomography to Evaluate Cellular Solid Interfaces

    NASA Technical Reports Server (NTRS)

    Maisano, Josephine; Marse, Daryl J.; Schilling, Paul J.

    2008-01-01

    The major morphological features - foam cells, voids, knit lines, and the bondline interface were evaluated. The features identified by micro-CT correlate well to those observed by SEM. 3D reconstructions yielded volumetric dimensions for large voids (max 30 mm). Internal voids and groupings of smaller cells at the bondline are concluded to be the cause of the indications noted during the NDE prescreening process.

  13. Review of the 1988 workshop on human-machine symbiotic systems

    SciTech Connect

    Parker, L.E.; Weisbin, C.R.

    1989-01-01

    This report presents a review of the 1988 Workshop on Human-Machine Symbiotic Systems. Held December 5--6, 1988 in Oak Ridge, Tennessee, the workshop served as a forum for the discussion of several critical issues in human-machine symbiosis: human-machine communication, autonomous task planning and execution monitoring for heterogeneous agents, dynamic task allocation, human-machine system architecture, and machine learning via experience and human observation. The presentation of overview papers by invited keynote speakers provided a background for the breakout session discussions in these five areas. A summary of the conclusions and recommendations for future work resulting from the workshop is reported. 6 refs.

  14. Integrated human-machine intelligence in space systems

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1992-01-01

    The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.

  15. Social Intelligence in a Human-Machine Collaboration System

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu

    In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.

  16. Collaborative human-machine nuclear non-proliferation analysis

    SciTech Connect

    Greitzer, F.L.; Badalamente, R.V.; Stewart, T.S.

    1993-10-01

    The purpose of this paper is to report on the results of a project investigating support concepts for the information treatment needs of the International Atomic Energy Agency (IAEA, also referred to as the Agency) and its attempts to strengthen international safeguards. The aim of the research was to define user/computer interface concepts and intelligent support features that will enhance the analyst`s access to voluminous and diverse information, the ability to recognize and evaluate uncertain data, and the capability to make decisions and recommendations. The objective was to explore techniques for enhancing safeguards analysis through application of (1) more effective user-computer interface designs and (2) advanced concepts involving human/system collaboration. The approach was to identify opportunities for human/system collaboration that would capitalize on human strengths and still accommodate human limitations. This paper documents the findings and describes a concept prototype, Proliferation Analysis Support System (PASS), developed for demonstration purposes. The research complements current and future efforts to enhance the information systems used by the IAEA, but has application elsewhere, as well.

  17. Evaluation plan for space station network interface units

    NASA Technical Reports Server (NTRS)

    Weaver, Alfred C.

    1990-01-01

    Outlined here is a procedure for evaluating network interface units (NIUs) produced for the Space Station program. The procedures should be equally applicable to the data management system (DMS) testbed NIUs produced by Honeywell and IBM. The evaluation procedures are divided into four areas. Performance measurement tools are hardware and software that must be developed in order to evaluate NIU performance. Performance tests are a series of tests, each of which documents some specific characteristic of NIU and/or network performance. In general, these performance tests quantify the speed, capacity, latency, and reliability of message transmission under a wide variety of conditions. Functionality tests are a series of tests and code inspections that demonstrate the functionality of the particular subset of ISO protocols which have been implemented in a given NIU. Conformance tests are a series of tests which would expose whether or not selected features within the ISO protocols are present and interoperable.

  18. Heuristic Evaluation on Mobile Interfaces: A New Checklist

    PubMed Central

    Yáñez Gómez, Rosa; Cascado Caballero, Daniel; Sevillano, José-Luis

    2014-01-01

    The rapid evolution and adoption of mobile devices raise new usability challenges, given their limitations (in screen size, battery life, etc.) as well as the specific requirements of this new interaction. Traditional evaluation techniques need to be adapted in order for these requirements to be met. Heuristic evaluation (HE), an Inspection Method based on evaluation conducted by experts over a real system or prototype, is based on checklists which are desktop-centred and do not adequately detect mobile-specific usability issues. In this paper, we propose a compilation of heuristic evaluation checklists taken from the existing bibliography but readapted to new mobile interfaces. Selecting and rearranging these heuristic guidelines offer a tool which works well not just for evaluation but also as a best-practices checklist. The result is a comprehensive checklist which is experimentally evaluated as a design tool. This experimental evaluation involved two software engineers without any specific knowledge about usability, a group of ten users who compared the usability of a first prototype designed without our heuristics, and a second one after applying the proposed checklist. The results of this experiment show the usefulness of the proposed checklist for avoiding usability gaps even with nontrained developers. PMID:25295300

  19. Heuristic evaluation on mobile interfaces: a new checklist.

    PubMed

    Yáñez Gómez, Rosa; Cascado Caballero, Daniel; Sevillano, José-Luis

    2014-01-01

    The rapid evolution and adoption of mobile devices raise new usability challenges, given their limitations (in screen size, battery life, etc.) as well as the specific requirements of this new interaction. Traditional evaluation techniques need to be adapted in order for these requirements to be met. Heuristic evaluation (HE), an Inspection Method based on evaluation conducted by experts over a real system or prototype, is based on checklists which are desktop-centred and do not adequately detect mobile-specific usability issues. In this paper, we propose a compilation of heuristic evaluation checklists taken from the existing bibliography but readapted to new mobile interfaces. Selecting and rearranging these heuristic guidelines offer a tool which works well not just for evaluation but also as a best-practices checklist. The result is a comprehensive checklist which is experimentally evaluated as a design tool. This experimental evaluation involved two software engineers without any specific knowledge about usability, a group of ten users who compared the usability of a first prototype designed without our heuristics, and a second one after applying the proposed checklist. The results of this experiment show the usefulness of the proposed checklist for avoiding usability gaps even with nontrained developers.

  20. Visualizing failure effects in complex human-machine systems

    NASA Astrophysics Data System (ADS)

    Price, Jana M.; Mathur, Amit; Morley, Rebecca M.; Scalzo, Richard C.

    2001-07-01

    The ability to understand a system's behavior in both normal and failed conditions is fundamental to the design of error-tolerant systems as well as to the development of diagnostics. The System Analysis for Failure and Error Reduction (SAFER) Project seeks to provide designers with tools to visualize potential sources of error and their effects early in the design of human-machine systems. The project is based on an existing technology that provides a failure-space modeling environment, analysis capabilities for troubleshooting, and error diagnostics using design data of machine systems. The SAFER Project extends the functionality of the existing technology in two significant ways. First, by adding a model of human error probability within the tool, designers are able to estimate the probabilities of human errors and the effects that these errors may have on system components and on the entire system. Second, the visual presentation of failure-related measures and metrics has been improved through a process of user-centered design. This paper will describe the process that was used to develop the human error probability model and will present novel metrics for assessing failure within complex systems.

  1. Collaborative human-machine analysis using a controlled natural language

    NASA Astrophysics Data System (ADS)

    Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave

    2015-05-01

    A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".

  2. Safe asleep? Human-machine relations in medical practice.

    PubMed

    Mort, Maggie; Goodwin, Dawn; Smith, Andrew F; Pope, Catherine

    2005-11-01

    In the process of anaesthesia the patient must surrender vital functions to the care of clinicians and machines who will act for, and advocate for the patient during the surgical procedure. In this paper, we discuss the practices and knowledge sources that underpin safety in a risky field in which many boundaries are crossed and dissolved. Anaesthetic practice is at the frontier not only of conscious/unconsciousness but is also at the human/machine frontier, where a range of technologies acts as both delegates and intermediaries between patient and practitioner. We are concerned with how practitioners accommodate and manage these shifting boundaries and what kinds of knowledge sources the 'expert' must employ to make decisions. Such sources include clinical, social and electronic which in their various forms demonstrate the hybrid and collective nature of anaesthetised patients. In managing this collective, the expert is one who is able to judge where the boundary lies between what is routine and what is critical in practice, while the junior must judge the personal limits of expertise in practice. In exploring the working of anaesthetic hybrids, we argue that recognising the changing distribution of agency between humans and machines itself illustrates important features of human authorship and expertise.

  3. Human-machine teaming for effective estimation and path planning

    NASA Astrophysics Data System (ADS)

    McCourt, Michael J.; Mehta, Siddhartha S.; Doucette, Emily A.; Curtis, J. Willard

    2016-05-01

    While traditional sensors provide accurate measurements of quantifiable information, humans provide better qualitative information and holistic assessments. Sensor fusion approaches that team humans and machines can take advantage of the benefits provided by each while mitigating the shortcomings. These two sensor sources can be fused together using Bayesian fusion, which assumes that there is a method of generating a probabilistic representation of the sensor measurement. This general framework of fusing estimates can also be applied to joint human-machine decision making. In the simple case, binary decisions can be fused by using a probability of taking an action versus inaction from each decision-making source. These are fused together to arrive at a final probability of taking an action, which would be taken if above a specified threshold. In the case of path planning, rather than binary decisions being fused, complex decisions can be fused by allowing the human and machine to interact with each other. For example, the human can draw a suggested path while the machine planning algorithm can refine it to avoid obstacles and remain dynamically feasible. Similarly, the human can revise a suggested path to achieve secondary goals not encoded in the algorithm such as avoiding dangerous areas in the environment.

  4. Evaluating insect-microbiomes at the plant-insect interface.

    PubMed

    Casteel, Clare L; Hansen, Allison K

    2014-07-01

    Plants recognize biotic challengers and respond with the appropriate defense by utilizing phytohormone signaling and crosstalk. Despite this, microbes and insects have evolved mechanisms that compromise the plant surveillance system and specific defenses, thus ensuring successful colonization. In nature, plants do not experience insect herbivores and microbes in isolation, but in combination. Over time, relationships have developed between insects and microbes, varying on a continuum from no-relationship to obligate relationships that are required for both organisms to survive. While many reviews have examined plant-insect and plant-microbe interactions and the mechanisms of plant defense, few have considered the interface where microbes and insects may overlap, and synergies may develop. In this review, we critically evaluate the requirements for insect-associated microbes to develop synergistic relationships with their hosts, and we mechanistically discuss how some of these insect-associated microbes can target or modify host plant defenses. Finally, by using bioinformatics and the recent literature, we review evidence for synergies in insect-microbe relationships at the interface of plant-insect defenses. Insect-associated microbes can influence host-plant detection and/or signaling through phytohormone synthesis, conserved microbial patterns, and effectors, however, microbes associated with insects must be maintained in the environment and located in opportunistic positions.

  5. Three-dimensional sensing, graphics, and interactive control in a human-machine system for decontamination and decommissioning applications

    NASA Astrophysics Data System (ADS)

    Thayer, Scott M.; Gourley, Christopher S.; Butler, Philip L.; Costello, Hugh; Trivedi, Mohan M.; Chen, ChuXin; Marapane, Suresh B.

    1992-11-01

    Decontamination and Decommissioning (D important requirement of the U.S. Department of Energy''s Environmental Restoration and Waste Management (ERWM) program. Means need to be devised to minimize radiation exposure to humans involved in the D research presented in this paper describes a human-machine system which can be employed for performing radiation scan and pipe cutting operations in a typical D Advanced Servomanipulator (ASM) from the Oak Ridge National Laboratory (ORNL), we have designed a hybrid telerobotic pipe-cutting module. The module, when fully integrated, will allow users of the ASM to exploit the original functionality of the telerobot when our pipe cutting system is not in use. Comprising the pipe-cutting system are interactive three- dimensional object localization, graphical task modeler, arm control, human-machine interface, radiation sensor, and cut-tool sub-systems. Only the task modeler and interactive object localization modules are discussed in this paper. The goal of these modules is to interactively localize an object, usually a pipe, and display it in a three-dimensional rendering of the work space. Through interaction with these modules, the supervisor coordinates a task- specific sequence of actions that the lower-level sub-systems will perform.

  6. Orbiter multiplexer-demultiplexer (MDM)/Space Lab Bus Interface Unit (SL/BIU) serial data interface evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Tobey, G. L.

    1978-01-01

    Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).

  7. Evaluating the Effectiveness of Immersive Interfaces for Combat Training

    DTIC Science & Technology

    2015-07-10

    SECURITY CLASSIFICATION OF: This project focuses directly on immersive science . It answers basic questions about interfaces and their...Training Report Title This project focuses directly on immersive science . It answers basic questions about interfaces and their characteristics with...for further studies in science , mathematics, engineering or technology fields: Student Metrics This section only applies to graduating undergraduates

  8. Evaluation of a sensor for low interface pressure applications.

    PubMed

    Ferguson-Pell, M; Hagisawa, S; Bain, D

    2000-11-01

    An ultra-thin, small sensor has recently been developed, "FlexiForce" (Tekscan, Boston, MA, USA), which may be effective for the measurement of low interface pressure between the skin, support surfaces and pressure garments. To evaluate the suitability of the sensor for these applications, drift, repeatability, linearity, hysteresis and curvature effects were tested under laboratory conditions. The drift was 1.7-2.5%/logarithmic time, the repeatability was 2.3-6.6% and the linearity was 1.9-9.9% in the range of forces of 10-50 g applied. The hysteresis was 5.4% on average. The output offset of the sensor increased with decreasing radius of curvature for radii less than 32 mm compared with a flat surface when no pressure was applied. The sensitivity to pressure decreased with curvature for radii less than 32 mm. It was found that the sensor had acceptable drift, repeatability, linearity and hysteresis. However, a significant curvature effect was observed indicating that the sensor is suitable for direct measurement on surfaces with the radii greater than 32 mm under static conditions.

  9. Case study for the evaluation and selection of man-machine interface (MMI) software

    SciTech Connect

    Nekimken, H.; Pope, N.; Macdonald, J.; Bibeau, R.; Gomez, B.; Sellon, D.

    1996-06-01

    The authors evaluated three of the top man-machine interface (MMI) software systems. The main categories upon which they based their evaluation on were the following: operator interface; network and data distribution; input/output (I/O) interface; application development; alarms; real-time and historical trending; support, documentation, and training; processing tools (batch, recipe, logic); reports; custom interfacing; start-up/recovery; external database; and multimedia. They also present their MMI requirements and guidelines for the selection and evaluation of these MMI systems.

  10. Adhesive joint evaluation by ultrasonic interface and lamb waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1986-01-01

    Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.

  11. Evaluation on thermal explosion induced by slightly exothermic interface reaction.

    PubMed

    Yu, Ma-Hong; Li, Yong-Fu; Sun, Jin-Hua; Hasegawa, Kazutoshi

    2004-09-10

    An asphalt-salt mixture (ASM), which once caused a fire and explosion in a reprocessing plant, was prepared by imitating the real bituminization process of waste on a lab scale to evaluate its actual thermal hazards. Heat flux reaction calorimeters were used to measure the release of heat for the simulated ASM at a constant heating rate and at a constant temperature, respectively. Experimental results show that the reaction in the ASM below about 250 degrees C is a slightly exothermic interface reaction between the asphalt and the salt particles contained in the asphalt, and that the heat release rate increases sharply above about 250 degrees C due to melting of the salt particles. The reaction rates were formulated on the basis of an assumed reaction model, and the kinetic parameters were determined. Using the model with the kinetic parameters, temperature changes with time and drum-radius axes for the ASM-filled drum were numerically simulated assuming a one-dimensional infinite cylinder system, where the drum was being cooled at an ambient temperature of 50 degrees C. The minimum filling temperature, at which the runaway reaction (MFTRR) can occur for the simulated ASM in the drum is about 194 degrees C. Furthermore, a very good linear correlation exists between this MFTRR and the initial radius of salt particles formed in the bituminization product. The critical filling temperature to the runaway reaction is about 162 degrees C for the asphalt-salt mixture, containing zero-size salt particles, filled in the same drum at an ambient temperature of 50 degrees C. Thus, the runaway reaction will never occur in the drum filled with the asphalt-salt mixture under the conditions of the filling temperature below 162 degrees C and a constant ambient temperature of 50 degrees C. As a consequence, the ASM explosion occurred in the reprocessing plant likely was due to a slightly exothermically reaction and self heating.

  12. The human/robot interface.

    PubMed

    Wiker, S F

    1993-10-01

    The use of telerobotic technology in space exploration is examined. Early aspirations for anthropomorphic designs and advances in the field are reviewed. The application of human factors engineering to robotics design and the human-machine interface are examined. New strategies in design and automation are presented.

  13. Evaluation of EMG, force and joystick as control interfaces for active arm supports

    PubMed Central

    2014-01-01

    Background The performance capabilities and limitations of control interfaces for the operation of active movement-assistive devices remain unclear. Selecting an optimal interface for an application requires a thorough understanding of the performance of multiple control interfaces. Methods In this study the performance of EMG-, force- and joystick-based control interfaces were assessed in healthy volunteers with a screen-based one-dimensional position-tracking task. The participants had to track a target that was moving according to a multisine signal with a bandwidth of 3 Hz. The velocity of the cursor was proportional to the interface signal. The performance of the control interfaces were evaluated in terms of tracking error, gain margin crossover frequency, information transmission rate and effort. Results None of the evaluated interfaces was superior in all four performance descriptors. The EMG-based interface was superior in tracking error and gain margin crossover frequency compared to the force- and the joystick-based interfaces. The force-based interface provided higher information transmission rate and lower effort than the EMG-based interface. The joystick-based interface did not present any significant difference with the force-based interface for any of the four performance descriptors. We found that significant differences in terms of tracking error and information transmission rate were present beyond 0.9 and 1.4 Hz respectively. Conclusions Despite the fact that the EMG-based interface is far from the natural way of interacting with the environment, while the force-based interface is closer, the EMG-based interface presented very similar and for some descriptors even a better performance than the force-based interface for frequencies below 1.4 Hz. The classical joystick presented a similar performance to the force-based interface and holds the advantage of being a well established interface for the control of many assistive devices. From these

  14. Towards an Educational SuperInterface.

    ERIC Educational Resources Information Center

    De Diana, Italo P. F.; White, T. N.

    1994-01-01

    Describes an educational computer network, SuperInterface, that could be used for telestudy for university education. Topics discussed include computer-supported collaborative work; computer-based learning; multimedia databases, or electronic books; human-machine interfaces; hardware, software, and groupware; learners; teachers; organizations and…

  15. Design and Development of Functionally Effective Human-Machine Interfaces for Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Cho, Henry

    2013-01-01

    This project involves creating software for support equipment used on the Space l aunch System (SLS). The goal is to create applications and displays that will be used to remotely operate equipment from the firing room and will continue to support the SLS launch vehicle to the extent of its program. These displays include design practices that help to convey information effectively, such as minimizing distractions at normal operating state and displaying intentional distractions during a warning or alarm state. The general practice for creating an operator display is to reduce the detail of unimportant aspects of the display and promote focus on data and dynamic information. These practices include using minimalist design, using muted tones for background colors, using a standard font at a readable text size, displaying alarms visible for Immediate attention, grouping data logically, and displaying data appropriately varying on the type of data. Users of these displays are more likely to stay focused on operating for longer periods by using design practices that reduce eye strain and fatigue. Effective operator displays will improve safety by reducing human errors during operation, which will help prevent catastrophic accidents. This report entails the details of my work on developing remote displays for the Hypergolics ground system. Before developing a prototype display, the design and requirements of the system are outlined and compiled into a document. Then each subsystem has schematic representations drawn tha.t meet the specifications detailed in the document. The schematics are then used as the outline to create display representations of each subsystem. Each display is first tested individually. Then the displays are integrated with a prototype of the master system, and they are tested in a simulated environment then retested in the real environment. Extensive testing is important to ensure the displays function reliably as intended.

  16. Developing Human-Machine Interfaces to Support Monitoring of UAV Automation

    DTIC Science & Technology

    2006-03-31

    opérateurs humains sont mal adaptés pour ce rôle. Une masse croissante de documentation témoigne du rôle crucial que joue la confiance dans l’automatisation...pour déterminer l’efficacité du contrôle humain sur des systèmes automatisés. D’après une récente compilation de la recherche menée sur la...vers des systèmes plus hautement automatisés et que les opérateurs humains sont relégués au rôle de contrôleurs- superviseurs. Les humains ont

  17. PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces

    NASA Astrophysics Data System (ADS)

    Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.

    2013-09-01

    Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.

  18. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... scheduling; and (3) HMI design must support contingency planning. (h) Ensure that electronics equipment radio... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics...) Understanding The FCC Regulations for Computers and other Digital Devices. This document has been prepared...

  19. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... scheduling; and (3) HMI design must support contingency planning. (h) Ensure that electronics equipment radio... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics...) Understanding The FCC Regulations for Computers and other Digital Devices. This document has been prepared...

  20. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... scheduling; and (3) HMI design must support contingency planning. (h) Ensure that electronics equipment radio... rules and regulations are codified in Title 47 of the Code of Federal Regulations (CFR). (1) Electronics...) Understanding The FCC Regulations for Computers and other Digital Devices. This document has been prepared...

  1. Comparison of two human-machine-interfaces for cooperative maneuver-based driving.

    PubMed

    Franz, Benjamin; Kauer, Michaela; Blanke, Anton; Schreiber, Michael; Bruder, Ralph; Geyer, Sebastian

    2012-01-01

    In the project "Conduct-by-Wire" which is founded by the German Research Foundation (DFG) cooperative maneuver based driving is examined. In this paper two different input devices (gesture recognition and tactile touch display) are compared in a simulator study with 29 participants. It shows that the major advantage of the gesture recognition is that there is no need for the driver to take his gaze off the road. In contrast, the number of gazes at the tactile touch display is significantly higher. The major advantage of the tactile touch display is that no input errors occurred during the test drives. Conversely, the gesture recognition was significantly worse. Nevertheless, further work is needed to decide which input device is the best.

  2. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the complexity of the product; the gender, educational, mental, and physical capabilities of the....” Designers must consider at a minimum the following methods of maintaining an active role for human operators... operator to change position; (4) Arrange controls according to their expected order of use; (5)...

  3. Further Research on Super Auditory Localization for Improved Human-Machine Interfaces.

    DTIC Science & Technology

    2007-11-02

    localization cues. We had initially intended to conduct this work using a virtual-environment ( VE ) system for visual as well as auditory stimulation...and to include examination of a wide variety of transformations (rotations, scalings , filterings, asymmetries, exponentiations). As will be seen in...the following discussion, we have made substantial progress towards our general objectives. However, our work was conducted using a hybrid VE in which

  4. Developing Human-Machine Interfaces to Support Appropriate Trust and Reliance on Automated Combat Identification Systems

    DTIC Science & Technology

    2007-09-17

    Signal Detection Theory (SDT) (Macmillan & Creelman , 1991; Wickens & Hollands, 2000). In SDT, the participants’ performance is characterized by two...probability, whereas their sensitivity will stay constant (Macmillan & Creelman , 1991; Wickens & Hollands, 2000). If this hypothesis holds, it will...Macmillan & Creelman , 1991, p273), and it was also the measure used in Dzindolet et al.’s study (2001a). Thus, C was used in the analysis HMIs for Trust and

  5. Evaluation of Telerobotic Interface Components for Teaching Robot Operation

    ERIC Educational Resources Information Center

    Goldstain, Ofir H.; Ben-Gal, Irad; Bukchin, Yossi

    2011-01-01

    Remote learning has been an increasingly growing field in the last two decades. The Internet development, as well as the increase in PC's capabilities and bandwidth capacity, has made remote learning through the internet a convenient learning preference, leading to a variety of new interfaces and methods. In this work, we consider a remote…

  6. Ultrasonic guided wave nondestructive evaluation using generalized anisotropic interface waves

    NASA Astrophysics Data System (ADS)

    Gardner, Michael D.

    The motivation for this work is a goal to inspect interfaces between thick layers of materials that can be anisotropic. The specific application is a thick composite bonded to a metal substrate. The interface is inspected for disbonds between the metal and composite. The large thickness allows the problem to be modeled as a half space. The theory behind guided waves in plates is presented. This theory includes the calculation and analysis of dispersion curves and the resulting wave structure. It is noted that for high frequency-thickness values, certain modes will converge to the half-space waves, e.g. the Rayleigh wave and the Stoneley wave. Points of high energy, especially shear energy, at the interface are desirable for interfacial inspection. Therefore, the wave structure for all modes and frequencies is searched for ideal inspection points. Interface waves are inherently good modes to use for interface inspection. Results from the dispersion curves and wave structures are verified in the finite element model software package called Abaqus. It is confirmed that the group speeds and wave structures of the modes match the predicted values. A theoretical development of interface waves is given wherein Rayleigh, Stoneley, and generalized interface waves are discussed. This is applied to both isotropic and anisotropic materials. It is shown that the Stoneley wave only exists for a certain range of material parameters. Because the Stoneley wave is the interface wave between two solid half spaces, it might appear that only certain pairs of solids would allow for inspection via interface wave. However, it is shown that for perturbations of the Stoneley-wave-valid material properties, interface waves which leak energy away from the interface can still propagate. They can also be used for inspection. Certain choices of materials will leak less energy and will therefore allow for longer inspection distances. The solutions to the isotropic leaky wave problem exist on

  7. The role of voice input for human-machine communication.

    PubMed

    Cohen, P R; Oviatt, S L

    1995-10-24

    Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology.

  8. [Human machines--mechanical humans? The industrial arrangement of the relation between human being and machine on the basis of psychotechnik and Georg Schlesingers work with disabled soldiers].

    PubMed

    Patzel-Mattern, Katja

    2005-01-01

    The 20th Century is the century of of technical artefacts. With their existance and use they create an artificial reality, within which humans have to position themselves. Psychotechnik is an attempt to enable humans for this positioning. It gained importance in Germany after World War I and had its heyday between 1919 and 1926. On the basis of the activity of the engineer and supporter of Psychotechnik Georg Schlesinger, whose particular interest were disabled soldiers, the essay on hand will investigate the understanding of the body and the human being of Psychotechnik as an applied science. It turned out, that the biggest achievement of Psychotechnik was to establish a new view of the relation between human being and machine. Thus it helped to show that the human-machine-interface is a shapable unit. Psychotechnik sees the human body and its physique as the last instance for the design of machines. Its main concern is to optimize the relation between human being and machine rather than to standardize human beings according to the construction of machines. After her splendid rise during the Weimar Republic and her rapid decline since the late 1920s Psychotechnik nowadays gains scientifical attention as a historical phenomenon. The main attention in the current discourse lies on the aspects conserning philosophy of science: the unity of body and soul, the understanding of the human-machine-interface as a shapable unit and the human being as a last instance of this unit.

  9. Manipulator system man-machine interface evaluation program. [technology assessment

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  10. Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective.

    PubMed

    Poplawski, Alicia; Marini, Federico; Hess, Moritz; Zeller, Tanja; Mazur, Johanna; Binder, Harald

    2016-03-01

    RNA-sequencing (RNA-seq) has become an established way for measuring gene expression in model organisms and humans. While methods development for refining the corresponding data processing and analysis pipeline is ongoing, protocols for typical steps have been proposed and are widely used. Several user interfaces have been developed for making such analysis steps accessible to life scientists without extensive knowledge of command line tools. We performed a systematic search and evaluation of such interfaces to investigate to what extent these can indeed facilitate RNA-seq data analysis. We found a total of 29 open source interfaces, and six of the more widely used interfaces were evaluated in detail. Central criteria for evaluation were ease of configuration, documentation, usability, computational demand and reporting. No interface scored best in all of these criteria, indicating that the final choice will depend on the specific perspective of users and the corresponding weighting of criteria. Considerable technical hurdles had to be overcome in our evaluation. For many users, this will diminish potential benefits compared with command line tools, leaving room for future improvement of interfaces.

  11. Cognitive evaluation of the user interface and vocabulary of an outpatient information system.

    PubMed Central

    Kushniruk, A.; Patel, V.; Cimino, J. J.; Barrows, R. A.

    1996-01-01

    This paper describes an innovative approach to the evaluation of the user interface and vocabulary of a medical information system. The use of video recording for collecting usability data is detailed. The technique employed involves the collection of data consisting of transcripts of physicians as they "think aloud" while interacting with the system, along with a video record of the complete user-computer interaction. Using methods of analysis from cognitive science, the study was able to distinguish the source of physician problems in using the system's interface and in interacting with its controlled medical vocabulary. Analysis of the protocols indicated that all subjects encountered several generic problems, the most common ones indicative of a need for greater consistency in the interface design. Based on this evaluation, parts of the user interface have been re-implemented in an ongoing process of iterative system development. PMID:8947620

  12. Human perceptual deficits as factors in computer interface test and evaluation

    SciTech Connect

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The test and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.

  13. Evaluation of a Compact Hybrid Brain-Computer Interface System

    PubMed Central

    Müller, Klaus-Robert; Schmitz, Christoph H.

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984

  14. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  15. Evaluating a Web-Based Interface for Internet Telemedicine

    NASA Technical Reports Server (NTRS)

    Lathan, Corinna E.; Newman, Dava J.; Sebrechts, Marc M.; Doarn, Charles R.

    1997-01-01

    The objective is to introduce the usability engineering methodology, heuristic evaluation, to the design and development of a web-based telemedicine system. Using a set of usability criteria, or heuristics, one evaluator examined the Spacebridge to Russia web-site for usability problems. Thirty-four usability problems were found in this preliminary study and all were assigned a severity rating. The value of heuristic analysis in the iterative design of a system is shown because the problems can be fixed before deployment of a system and the problems are of a different nature than those found by actual users of the system. It was therefore determined that there is potential value of heuristic evaluation paired with user testing as a strategy for optimal system performance design.

  16. Evaluation of a Handheld Data Collection Interface for Science Learning

    ERIC Educational Resources Information Center

    Parr, Cynthia Sims; Jones, Tricia; Songer, Nancy Butler

    2004-01-01

    Despite a rise in the use of handheld computers in classrooms, meaningful learning with personal digital assistant (PDA) technology remains poorly studied. This article reports results from an evaluation of customized handheld data collection software, the BioKIDS Sequence, which was used during an 8-week biodiversity curriculum unit by 5th and…

  17. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  18. Flight System Testbed for Low Cost Spacecraft Interface Evaluation

    NASA Technical Reports Server (NTRS)

    Casani, E.; Thomas, N.

    1994-01-01

    A world leader in space technology, JPL has over 30 years experience in developing spacecraft systems and managing deep space missions for NASA. Future scientific missions will require the rapid development of small, lightweight, high-technology, low-cost spacecraft. JPL is developing a method of meeting these requirements: a test facility specifically for supporting a rapid prototyping development environment that creates a virtual (simulated) spacecraft in which system-level evaluations of components can be carried out very early in the development cycle, long before an actual spacecraft is built.

  19. Thermal Performance Evaluation of Friction Stir Welded and Bolted Cold Plates with Al/Cu Interface

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Suresh, M.; Sibi Varshan, M.

    2015-05-01

    An attempt is made to design and fabricate a cold plate with aluminum-copper dissimilar interface joined by friction stir welding. Optimum welding conditions for obtaining sound-quality corner and T joints with an aluminum-copper interface were established. Welded cross sections of the friction stir welded cold plate were analyzed to understand the bonding characteristics. Computational fluid dynamics (CFD) was used to evaluate the fluid-flow characteristics and thermal resistance of friction stir welded cold plate and the resulted are compared with the conventional bolted cold plate configuration. For CFD modeling of a cold plate with a dissimilar interface, a new methodology is proposed. From the CFD analysis and experimental results, it is observed that friction stir welded cold plate offered better thermal performance compared to the bolted cold plate and it is due to the metallurgical bonding at the aluminum-copper interface with the dispersion of copper particles.

  20. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  1. Formative evaluation of a mobile liquid portion size estimation interface for people with varying literacy skills

    PubMed Central

    Connelly, Kay; Siek, Katie A.; Welch, Janet L.

    2012-01-01

    Chronically ill people, especially those with low literacy skills, often have difficulty estimating portion sizes of liquids to help them stay within their recommended fluid limits. There is a plethora of mobile applications that can help people monitor their nutritional intake but unfortunately these applications require the user to have high literacy and numeracy skills for portion size recording. In this paper, we present two studies in which the low- and the high-fidelity versions of a portion size estimation interface, designed using the cognitive strategies adults employ for portion size estimation during diet recall studies, was evaluated by a chronically ill population with varying literacy skills. The low fidelity interface was evaluated by ten patients who were all able to accurately estimate portion sizes of various liquids with the interface. Eighteen participants did an in situ evaluation of the high-fidelity version incorporated in a diet and fluid monitoring mobile application for 6 weeks. Although the accuracy of the estimation cannot be confirmed in the second study but the participants who actively interacted with the interface showed better health outcomes by the end of the study. Based on these findings, we provide recommendations for designing the next iteration of an accurate and low literacy-accessible liquid portion size estimation mobile interface. PMID:24443659

  2. An empirical evaluation of graphical interfaces to support flight planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom

    1995-01-01

    Whether optimization techniques or expert systems technologies are used, the underlying inference processes and the model or knowledge base for a computerized problem-solving system are likely to be incomplete for any given complex, real-world task. To deal with the resultant brittleness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of people and the computer system when working in partnership to solve problems. This study evaluates the impact of alternative design concepts on the performance of airline pilots interacting with such a cooperative system designed to support enroute flight planning. Thirty pilots were studied using three different versions of the system. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes of users. Indeed, one of the designs studied caused four times as many pilots to accept a poor flight amendment. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision-making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  3. J-integral evaluation for an interface crack under thermal load using digital image correlation

    NASA Astrophysics Data System (ADS)

    Yamane, Hiroto; Arikawa, Shuichi; Yoneyama, Satoru; Watanabe, Yasuaki; Asai, Tatsuhiko; Shiokawa, Kunio

    2015-03-01

    In this study, a method for evaluating a fracture parameter, J-integral, for an interface crack from the displacement fields under thermal deformation is developed for studying the fracture behavior of an interface crack in an actual electronic component. First, the displacement fields around an interface crack tip are measured using digital image correlation (DIC). Second, the displacement gradient and strain are determined from the displacement fields using a finite element smoothing technique on the domain of integration. Then, the stress components are determined from the strains using the elastic-plastic relations with the incremental strain theory and the each material property. Finally, the J-integral value is determined by the numerical integration on the domain of integration. The effectiveness of this evaluation method is demonstrated by applying this method to the displacement fields obtained from the elastic-plastic finite element analysis.

  4. Development and validation of methods for man-made machine interface evaluation. [for shuttles and shuttle payloads

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A.

    1975-01-01

    The alternate methods of conducting a man-machine interface evaluation are classified as static and dynamic, and are evaluated. A dynamic evaluation tool is presented to provide for a determination of the effectiveness of the man-machine interface in terms of the sequence of operations (task and task sequences) and in terms of the physical characteristics of the interface. This dynamic checklist approach is recommended for shuttle and shuttle payload man-machine interface evaluations based on reduced preparation time, reduced data, and increased sensitivity of critical problems.

  5. The Design and Evaluation of a Front-End User Interface for Energy Researchers.

    ERIC Educational Resources Information Center

    Borgman, Christine L.; And Others

    1989-01-01

    Reports on the Online Access to Knowledge (OAK) Project, which developed software to support end user access to a Department of Energy database based on the skill levels and needs of energy researchers. The discussion covers issues in development, evaluation, and the study of user behavior in designing an interface tailored to a special…

  6. Evaluating curvature for the volume of fluid method via interface reconstruction

    NASA Astrophysics Data System (ADS)

    Evrard, Fabien; Denner, Fabian; van Wachem, Berend

    2016-11-01

    The volume of fluid method (VOF) is widely adopted for the simulation of interfacial flows. A critical step in VOF modelling is to evaluate the local mean curvature of the fluid interface for the computation of surface tension. Most existing curvature evaluation techniques exhibit errors due to the discrete nature of the field they are dealing with, and potentially to the smoothing of this field that the method might require. This leads to the production of inaccurate or unphysical results. We present a curvature evaluation method which aims at greatly reducing these errors. The interface is reconstructed from the volume fraction field and the curvature is evaluated by fitting local quadric patches onto the resulting triangulation. The patch that best fits the triangulated interface can be found by solving a local minimisation problem. Combined with a partition of unity strategy with compactly supported radial basis functions, the method provides a semi-global implicit expression for the interface from which curvature can be exactly derived. The local mean curvature is then integrated back on the Eulerian mesh. We show a detailed analysis of the associated errors and comparisons with existing methods. The method can be extended to unstructured meshes. Financial support from Petrobras is gratefully acknowledged.

  7. Novice Use of a Dimensional Scale for the Evaluation of the Hypermedia User Interface: Caveat Emptor.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.

    1995-01-01

    Discusses a dimensional scale for the evaluation of the multimedia user interface. Reports on a study of the use of the scale by novice graduate students at the University of Houston Clear Lake. Discusses hypermedia as a subset of multimedia, and investigates dependent measures including navigation. (LRW)

  8. A human engineering and ergonomic evaluation of the security access panel interface

    SciTech Connect

    Hartney, C.; Banks, W.W.

    1995-02-01

    The purpose of this study was to empirically determine which of several security hardware interface designs produced the highest levels of end-user performance and acceptance. The FESSP Security Alarms and Monitoring Systems program area commissioned the authors study as decision support for upgrading the Argus security system`s primary user interface so that Argus equipment will support the new DOE and DoD security access badges. Twenty-two test subjects were repeatedly tested using six remote access panel (RAP) designs. Lawrence Livermore National Laboratory (LLNL) uses one of these interface designs in its security access booths. Along with the RAP B insert-style reader, the authors tested five prototype RAP variants, each with a different style of swipe badge reader, through which a badge is moved or swiped. The authors asked the untrained test subjects to use each RAP while they described how they thought they should respond so that the system would operate correctly in reading the magnetic strip on a security badge. With each RAP variant, subjects were required to make four successful card reads (swipes) in which the card reader correctly read and logged the transaction. After each trial, a subject completed a 10-item interface acceptance evaluation before approaching the next RAP. After interacting with the RAP interfaces (for a total of the six RAP trials), each subject completed a 7-item overview evaluation that compared and ranked the five experimental RAPs, using the original (RAP B) insert style as a standard.

  9. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  10. Design and Development of an Affective Interface for Supporting Energy-saving Activities and its Evaluation

    NASA Astrophysics Data System (ADS)

    Ito, Kyoko; Tomita, Daisuke; Imaki, Tomotaka; Hongo, Taishiro; Yoshikawa, Hidekazu

    Toward a sustainable society, energy and environmental issues are very important and controversial problems, and it is expected to support various human activities for the measures by using Information Technology. The purpose of this study is to develop an affective interface for supporting people's energy-saving activities. First, a model for supporting people's energy-saving activities involving affective elements has been constructed for supporting people's energy-saving activities, based on social psychological approaches. Based on the proposed model, the requirements on an affective interface for people's energy-saving activities have been considered. In this study, the affective interface presents suitable energy-saving activities and current electric energy consumption by a character agent with a graphical shape and synthesized voice. The character agent recommends people's energy-saving activities, tells the method of energy-saving activities and the effectiveness, and so on. The affective interface for supporting energy-saving activities has been designed in detail and developed. Then, the evaluation experiment of the developed interface has been conducted, and the results of the experiments were analyzed.

  11. Evaluation of joint interface of friction stir welding between dissimilar metals using HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Hatsukade, Y.; Yasui, T.; Takenaka, H.; Todaka, Y.; Fukumoto, M.; Tanaka, S.

    2010-11-01

    In this study, we investigated conductive properties of joint interfaces of friction stir welding (FSW) between dissimilar metals, stainless steel SUS304 and aluminum A6063, using a SQUID nondestructive evaluation (NDE) system. With current injection method, the current maps above the FSW specimens jointed under various conditions were measured by a HTS-SQUID gradiometer. The conductivities of the joint interfaces, which were estimated from the current maps, differed between the joint conditions. By destructive tests using optical microscope, large voids were observed on the joint interfaces with low welding speed that generated excess heating. In case of one specimen, which was welded with welding speed of 500 and 200 mm/min, the conductivity of the former was higher than that of the latter, although the inside voids in the respective regions were not much different. From these results, it is suggested that the current maps were influenced not only by the conductivity of the joint interface but also by inside voids. By hardness test on the SUS boards near the interfaces, only the SUS jointed with 200 mm/min was about half softer than its matrix.

  12. The Design and Evaluation of a Large-Scale Real-Walking Locomotion Interface

    PubMed Central

    Peck, Tabitha C.; Fuchs, Henry; Whitton, Mary C.

    2014-01-01

    Redirected Free Exploration with Distractors (RFED) is a large-scale real-walking locomotion interface developed to enable people to walk freely in virtual environments that are larger than the tracked space in their facility. This paper describes the RFED system in detail and reports on a user study that evaluated RFED by comparing it to walking-in-place and joystick interfaces. The RFED system is composed of two major components, redirection and distractors. This paper discusses design challenges, implementation details, and lessons learned during the development of two working RFED systems. The evaluation study examined the effect of the locomotion interface on users’ cognitive performance on navigation and wayfinding measures. The results suggest that participants using RFED were significantly better at navigating and wayfinding through virtual mazes than participants using walking-in-place and joystick interfaces. Participants traveled shorter distances, made fewer wrong turns, pointed to hidden targets more accurately and more quickly, and were able to place and label targets on maps more accurately, and more accurately estimate the virtual environment size. PMID:22184262

  13. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth

    PubMed Central

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Summary Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change. PMID:27486504

  14. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth.

    PubMed

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change.

  15. A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces.

    PubMed

    Sajda, Paul; Gerson, Adam; Müller, Klaus-Robert; Blankertz, Benjamin; Parra, Lucas

    2003-06-01

    We present three datasets that were used to conduct an open competition for evaluating the performance of various machine-learning algorithms used in brain-computer interfaces. The datasets were collected for tasks that included: 1) detecting explicit left/right (L/R) button press; 2) predicting imagined L/R button press; and 3) vertical cursor control. A total of ten entries were submitted to the competition, with winning results reported for two of the three datasets.

  16. Scanning Electron Microscopic Evaluation of the Sealer-Dentine Interface of Three Sealers

    PubMed Central

    Mohammadian, Fatemeh; Farahanimastary, Farzad; Dibaji, Fatemeh; Kharazifard, Mohammad Javad

    2017-01-01

    Introduction: This study aimed to evaluate the dentine-sealer interface in three different sealers using scanning electron microscopy (SEM). Methods and Materials: Thirty extracted human single-rooted teeth were prepared using ProTaper rotary files and were randomly divided into three groups (n=10) including BC Sealer, AH-Plus and Dorifill. The root canals were filled with cold lateral condensation technique and stored for 7 days in 100% humidity at 37°C. Cross sections were prepared from the coronal, middle, and apical sections of the roots. Then SEM images were taken and the width of gaps was measured by software. Sectional images were evaluated by two endodontists. Data were analyzed using two- and one-way ANOVA and Kruskal-Wallis tests. Results: The mean gap width was significantly lower in coronal area in BC Sealer group compared to Dorifill (P=0.043) and likewise in AH-Plus group compared to Dorifill (P=0.018). There was no significant difference between BC Sealer and AH-Plus group in this area (P=0.923). No significant difference was detected in apical and middle zones among three sealers (P=0.367 and 0.643, respectively). Dentine-sealer interface showed no significant difference in three sealers in the apical area (P=0.051), but dentine-BC Sealer interface was better than AH-Plus in middle and coronal areas, and both outperformed Dorifill (P=0.001). Conclusion: BC Sealer and AH-Plus had less gaps than Dorifill in coronal area. In addition, BC Sealer had better dentine interface in middle and coronal area compared to AH-Plus, and both performed better than Dorifill. Reverse relationship was observed between the mean gap width and dentine-sealer interface quality. PMID:28179922

  17. Application of color image processing and low-coherent optical computer tomography in evaluation of adhesive interfaces of dental restorations

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Genina, Elina A.; Sadovnikov, Alexandr V.

    2015-03-01

    Durability of bonded interfaces between dentin and a polymer material in resin-based composite restorations remains a clinical dentistry challenge. In the present study the evolution of bonded interfaces in biological active environment is estimated in vivo. A novel in vivo method of visual diagnostics that involves digital processing of color images of composite restorations and allows the evaluation of adhesive interface quality over time, has been developed and tested on a group of volunteers. However, the application of the method is limited to the analysis of superficial adhesive interfaces. Low-coherent optical computer tomography (OCT) has been tested as a powerful non-invasive tool for in vivo, in situ clinical diagnostics of adhesive interfaces over time. In the long-term perspective adhesive interface monitoring using standard methods of clinical diagnostics along with colour image analysis and OCT could make it possible to objectivise and prognosticate the clinical longevity of composite resin-based restorations with adhesive interfaces.

  18. Evaluation and use of regenerative multi electrode interfaces in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Desai, Vidhi

    Peripheral nerves offer unique accessibility to the innate motor and sensory pathways that can be interfaced with high degree of selectivity for intuitive and bidirectional control of advanced upper extremity prosthetic limbs. Several peripheral nerve interfaces have been proposed and investigated over the last few decades with significant progress made in the area of sensory feedback. However, clinical translation still remains a formidable challenge due to the lack of long term recordings. Prominent causes include signal degradation, eventual interface failures, and lack of specificity in the low amplitude nerve signals. This dissertation evaluates the capabilities of the newly developed Regenerative Multi-electrode Interface (REMI) by the characterization of signal quality progression, the identification of interfaced axon types, and the demonstration of "functional linkage" between acquired signals and target organs. Chapter 2 details the chronic recording of high quality signals from REMI in sciatic nerve which remained stable over a 120 day implantation period indicative of minimal ongoing tissue response with no detrimental effects on the recording ability. The dominant cause of failures was attributable to abiotic factors pertaining to the connector/wire breakage, observed in 76% of REMI implants. Also, the REMI implants had 20% higher success rate and significantly larger Signal to Noise Ratio (SNR) in comparison to the Utah Slanted Electrode Array (USEA). Chapter 3 describes the successful feasibility of interfacing with motor and sensory axons by REMI implantation in the tibial and sural fascicles of the sciatic nerve. A characteristic sampling bias towards recording signals from medium-to-large diameter axons that are primarily involved in mechanoception and proprioception sensory functions was uncovered. Specific bursting units (Inter Spike Interval of 30-70ms) were observed most frequently from the tibial fascicle during bipedal locomotion. Chapter 4

  19. Interfacing theories of program with theories of evaluation for advancing evaluation practice: Reductionism, systems thinking, and pragmatic synthesis.

    PubMed

    Chen, Huey T

    2016-12-01

    Theories of program and theories of evaluation form the foundation of program evaluation theories. Theories of program reflect assumptions on how to conceptualize an intervention program for evaluation purposes, while theories of evaluation reflect assumptions on how to design useful evaluation. These two types of theories are related, but often discussed separately. This paper attempts to use three theoretical perspectives (reductionism, systems thinking, and pragmatic synthesis) to interface them and discuss the implications for evaluation practice. Reductionism proposes that an intervention program can be broken into crucial components for rigorous analyses; systems thinking view an intervention program as dynamic and complex, requiring a holistic examination. In spite of their contributions, reductionism and systems thinking represent the extreme ends of a theoretical spectrum; many real-world programs, however, may fall in the middle. Pragmatic synthesis is being developed to serve these moderate- complexity programs. These three theoretical perspectives have their own strengths and challenges. Knowledge on these three perspectives and their evaluation implications can provide a better guide for designing fruitful evaluations, improving the quality of evaluation practice, informing potential areas for developing cutting-edge evaluation approaches, and contributing to advancing program evaluation toward a mature applied science.

  20. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    SciTech Connect

    Kaye, R.D.; Henriksen, K.; Jones, R.; Morisseau, D.S.; Serig, D.I.

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable.

  1. Automating a human factors evaluation of graphical user interfaces for NASA applications: An update on CHIMES

    NASA Technical Reports Server (NTRS)

    Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.

    1993-01-01

    Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.

  2. Improvement of S-factor method for evaluation of MOS interface state density

    NASA Astrophysics Data System (ADS)

    Cai, Weili; Takenaka, Mitsuru; Takagi, Shinichi

    2015-04-01

    In this paper, the accuracy of the S-factor method for evaluating the energy distribution of density of interface states (Dit) at MOS interfaces is examined by device simulation. Based on the analysis, we propose an improved S-factor method including the accurate depletion layer capacitance (Cd) values as a function of gate voltage, determined by gate-substrate capacitance (Cgb) and gate-channel capacitance (Cgc), and a new term, proportion to S/φs, in the analytical formulation of the relationship between Dit and the S-factor. The accuracy of Dit in this improved method is also quantitatively studied through the simulation. The above modifications for the S-factor method allow us to accurately provide the energy distribution of Dit. It has been found that the accuracy of lower half of 1010 cm-2 eV-1 order can be obtained for Dit extracted by using the improved S-factor method.

  3. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  4. An Evaluation of Navigational Ability Comparing Redirected Free Exploration with Distractors to Walking-in-Place and Joystick Locomotion Interfaces.

    PubMed

    Peck, Tabitha C; Fuchs, Henry; Whitton, Mary C

    2011-03-19

    We report on a user study evaluating Redirected Free Exploration with Distractors (RFED), a large-scale, real-walking, locomotion interface, by comparing it to Walking-in-Place (WIP) and Joystick (JS), two common locomotion interfaces. The between-subjects study compared navigation ability in RFED, WIP, and JS interfaces in VEs that are more than two times the dimensions of the tracked space. The interfaces were evaluated based on navigation and wayfinding metrics and results suggest that participants using RFED were significantly better at navigating and wayfinding through virtual mazes than participants using walking-in-place and joystick interfaces. Participants traveled shorter distances, made fewer wrong turns, pointed to hidden targets more accurately and more quickly, and were able to place and label targets on maps more accurately. Moreover, RFED participants were able to more accurately estimate VE size.

  5. Human factors issues for resolving adverse effects of human work underload and workload transitions in complex human-machine systems

    SciTech Connect

    Ryan, T.G.

    1995-10-01

    A workshop was conducted whose specific purpose was to build on earlier work of the United States National Research Council, United States Federal government agencies, and the larger human factors community to: (1) clarify human factors issues pertaining to degraded performance in advanced human-machine systems (e.g., nuclear production, transportation, aerospace) due to human work underload and workload transition, and (2) develop strategies for resolving these issues. Recent history demonstrates that: (1) humans often react adversely to their diminishing roles in advanced human-machine systems, and therefore (2) new allocation models and strategies are required if humans are to be willing and able to assume diminishing and shifting roles assigned to them in these systems, and are to accept new technologies making up these systems. Problems associated with theses diminishing and shifting human roles are characterized as work underload and workload transitions. The workshop affirmed that: (1) work underload and workload transition are issues that will have to be addressed by designers of advanced human-machine systems, especially those relying on automation, if cost, performance, safety, and operator acceptability are to be optimized, (2) human machine allocation models, standards, and guidelines which go beyond simple capability approaches will be needed to preclude or seriously diminish the work underload and workload transition problems, and (3) the 16 workload definition, measurement, situational awareness, and trust issues identified during the workshop, need resolution if these models, standards, and guidelines are to be achieved.

  6. Ontological modelling of knowledge management for human-machine integrated design of ultra-precision grinding machine

    NASA Astrophysics Data System (ADS)

    Hong, Haibo; Yin, Yuehong; Chen, Xing

    2016-11-01

    Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.

  7. Evaluation of dose calculation accuracy of treatment planning systems at hip prosthesis interfaces.

    PubMed

    Paulu, David; Alaei, Parham

    2017-03-20

    There are an increasing number of radiation therapy patients with hip prosthesis. The common method of minimizing treatment planning inaccuracies is to avoid radiation beams to transit through the prosthesis. However, the beams often exit through them, especially when the patient has a double-prosthesis. Modern treatment planning systems employ algorithms with improved dose calculation accuracies but even these algorithms may not predict the dose accurately at high atomic number interfaces. The current study evaluates the dose calculation accuracy of three common dose calculation algorithms employed in two commercial treatment planning systems. A hip prosthesis was molded inside a cylindrical phantom and the dose at several points within the phantom at the interface with prosthesis was measured using thermoluminescent dosimeters. The measured doses were then compared to the predicted ones by the planning systems. The results of the study indicate all three algorithms underestimate the dose at the prosthesis interface, albeit to varying degrees, and for both low- and high-energy x rays. The measured doses are higher than calculated ones by 5-22% for Pinnacle Collapsed Cone Convolution algorithm, 2-23% for Eclipse Acuros XB, and 6-25% for Eclipse Analytical Anisotropic Algorithm. There are generally better agreements for AXB algorithm and the worst results are for the AAA.

  8. Evaluation of User Interface and Workflow Design of a Bedside Nursing Clinical Decision Support System

    PubMed Central

    Yuan, Michael Juntao; Finley, George Mike; Mills, Christy; Johnson, Ron Kim

    2013-01-01

    Background Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations. Objective Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS. Methods Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration

  9. Similarities and differences of emotions in human-machine and human-human interactions: what kind of emotions are relevant for future companion systems?

    PubMed

    Walter, Steffen; Wendt, Cornelia; Böhnke, Jan; Crawcour, Stephen; Tan, Jun-Wen; Chan, Andre; Limbrecht, Kerstin; Gruss, Sascha; Traue, Harald C

    2014-01-01

    Cognitive-technical intelligence is envisioned to be constantly available and capable of adapting to the user's emotions. However, the question is: what specific emotions should be reliably recognised by intelligent systems? Hence, in this study, we have attempted to identify similarities and differences of emotions between human-human (HHI) and human-machine interactions (HMI). We focused on what emotions in the experienced scenarios of HMI are retroactively reflected as compared with HHI. The sample consisted of N = 145 participants, who were divided into two groups. Positive and negative scenario descriptions of HMI and HHI were given by the first and second groups, respectively. Subsequently, the participants evaluated their respective scenarios with the help of 94 adjectives relating to emotions. The correlations between the occurrences of emotions in the HMI versus HHI were very high. The results do not support the statement that only a few emotions in HMI are relevant.

  10. The Interface of Opinion, Understanding and Evaluation While Learning About a Socioscientific Issue

    NASA Astrophysics Data System (ADS)

    Witzig, Stephen B.; Halverson, Kristy L.; Siegel, Marcelle A.; Freyermuth, Sharyn K.

    2013-10-01

    Scientific literacy is an important goal for science education, especially within controversial socioscientific issues. In this study, we analysed 143 students' research reports about stem cell research (SCR) for how they addressed specific source evaluation criteria provided within the assignment. We investigated students' opinions about SCR, how they used the evaluation criteria to evaluate online sources and whether the evaluation criteria and/or the specific sources influenced their opinion and/or understanding of SCR. We found that most of the students supported some form of SCR and reported that their sources were credible and contained more factual information than opinions. Students critiqued the language of the authors, as well as status in their respective fields, along with the content within each source. Additionally, students reported that their sources influenced their content knowledge, but had little influence regarding their SCR opinions. Through this work, we present a new working model and suggest the need for additional research about the understudied interface of opinion, understanding and evaluation within the context of important socioscientific issues. Students' opinions and content knowledge, located at the model's centre, influence and are influenced by the research topic, the sources used, the evaluation criteria and the evaluation of the sources that students use to provide evidence for claims.

  11. Human Machine Interfaces for Teleoperators and Virtual Environments: Conference Held in Santa Barbara, California on 4-9 March 1990.

    DTIC Science & Technology

    1990-03-01

    Institute for Rehabilitation Research in the Netherlands, Hok Kwee (previously with the French Spartacus project (Kwee, 1983) and his colleagues have...the 10th Annual RESNA Conference, San Jose, CA, 1987 Kwee, H. H., First Experimentation with the Spartacus Telethesis in a Clinical Environment, Para

  12. Human-machine interface issues in the use of helmet-mounted displays in short conjugate simulators

    NASA Astrophysics Data System (ADS)

    Melzer, James E.

    2011-06-01

    With the introduction of helmet-mounted displays (HMD) into modern aircraft, there is a desire on the part of pilot trainees to achieve a "look and feel" for the simulation environment similar to the real flight hardware. Given this requirement for high fidelity, it may be necessary to configure - or to perhaps re-configure - the HMD for a short conjugate viewing distance and to do so without causing eye strain or other adverse physiological effects. This paper will survey the human factors literature and provide an analysis on the visual construct issues of focus and vergence which - if not properly configured for the short conjugate simulator - could cause adverse effects, which can negatively affect training.

  13. Expanding the human-machine interface model to address the effect of leadership and management on performance

    SciTech Connect

    Briant, V.S.; Childress, J.R.; Hannaman, G.W.

    1988-01-01

    The US nuclear industry now focuses on improving plant performance in measurable areas such as availability, safety, and operations. Risk assessment and pioneering work in human reliability analysis (HRA) have provided methods to identify and prioritize numerous design improvements. Improvements such as control room design, training, and procedures have contributed positively to plant performance. Human performance is increasingly recognized as a fundamental contributor to safe, economic, and reliable operation. Industry leaders suggest that improved leadership and management are keys to enhanced plant performance. This paper identifies several critical aspects of individual and group behavior that, if managed, could significantly contribute to improved performance. Some existing tools for measuring performance are cited.

  14. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    NASA Astrophysics Data System (ADS)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  15. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  16. Evaluation of pavement layers` interface bonding conditions using a falling weight deflectometer

    SciTech Connect

    Al-Nageim, H.; Al-Hakim, B.; Lesley, L.

    1997-07-01

    The paper describes advanced analysis procedures to evaluate pavement layers` interface bonding conditions using non-destructive techniques and Falling Weight Deflectometer surveys. The pavement mechanical properties in terms of the layers` moduli were evaluated under the impact of a dynamic loading by using the Falling Weight Deflectometer (FWD) surveys. The results revealed that the use of the advanced analysis procedures allows for more accurate calculation of the pavement mechanical properties and thus more accurate analysis of the pavement`s structure life. This is one of the advantages of the advanced analysis procedure since the restriction imposed on the conventional back calculation methods that full bonding between the individual layers exist, has been relaxed.

  17. Development and Evaluation of Disaster Information Management System Using Digital Pens and Tabletop User Interfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Hidemi; Kobayashi, Kazue; Satou, Kenji; Kawana, Hideyuki; Masuda, Tomohiro

    Most traditional disaster information systems are necessary to post expert staff with high computer literacy to operate the system quickly and correctly in the tense situation when a disaster occurs. However, in the current disaster response system of local governments, it is not easy for local governments to post such expert staff because they are struggling with staff cuts due to administrative and fiscal reform. In this research, we propose a disaster information management system that can be easily operated, even under the disorderly conditions of a disaster, by municipal personnel in charge of disaster management. This system achieves usability enabling easy input of damage information, even by local government staff with no expertise, by using a digital pen and tabletop user interface. Evaluation was conducted by prospective users using a prototype, and the evaluation results are satisfactory with regard to the function and operationality of the proposed system.

  18. Military and Government Applications of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Weinstein, Clifford J.

    1995-10-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.

  19. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  20. Analysis of human-machine cooperation when driving with different degrees of haptic shared control.

    PubMed

    Mars, Franck; Deroo, Mathieu; Hoc, Jean-Michel

    2014-01-01

    This study investigated human-machine cooperation when driving with different degrees of a shared control system. By means of a direct intervention on the steering wheel, shared control systems partially correct the vehicle's trajectory and, at the same time, provide continuous haptic guidance to the driver. A crucial point is to determine the optimal level of steering assistance for effective cooperation between the two agents. Five system settings were compared with a condition in which no assistance was present. In addition, road visibility was manipulated by means of additional fog or self-controlled visual occlusions. Several performance indicators and subjective assessments were analyzed. The results show that the best repartition of control in terms of cooperation between human and machine can be identified through an analysis of the steering wheel reversal rate, the steering effort and the mean lateral position of the vehicle. The best cooperation was achieved with systems of relatively low-level haptic authority, although more intervention may be preferable in poor visibility conditions. Increasing haptic authority did not yield higher benefits in terms of steering behavior, visual demand or subjective feeling.

  1. Implementation of Human-Machine Synchronization Control for Active Rehabilitation Using an Inertia Sensor

    PubMed Central

    Song, Zhibin; Guo, Shuxiang; Xiao, Nan; Gao, Baofeng; Shi, Liwei

    2012-01-01

    According to neuro-rehabilitation practice, active training is effective for mild stroke patients, which means these patients are able to recovery effective when they perform the training to overcome certain resistance by themselves. Therefore, for rehabilitation devices without backdrivability, implementation of human-machine synchronization is important and a precondition to perform active training. In this paper, a method to implement this precondition is proposed and applied in a user’s performance of elbow flexions and extensions when he wore an upper limb exoskeleton rehabilitation device (ULERD), which is portable, wearable and non-backdrivable. In this method, an inertia sensor is adapted to detect the motion of the user’s forearm. In order to get a smooth value of the velocity of the user’s forearm, an adaptive weighted average filtering is applied. On the other hand, to obtain accurate tracking performance, a double close-loop control is proposed to realize real-time and stable tracking. Experiments have been conducted to prove that these methods are effective and feasible for active rehabilitation. PMID:23443366

  2. Unsupervised learning framework for large-scale flight data analysis of cockpit human machine interaction issues

    NASA Astrophysics Data System (ADS)

    Vaidya, Abhishek B.

    As the level of automation within an aircraft increases, the interactions between the pilot and autopilot play a crucial role in its proper operation. Issues with human machine interactions (HMI) have been cited as one of the main causes behind many aviation accidents. Due to the complexity of such interactions, it is challenging to identify all possible situations and develop the necessary contingencies. In this thesis, we propose a data-driven analysis tool to identify potential HMI issues in large-scale Flight Operational Quality Assurance (FOQA) dataset. The proposed tool is developed using a multi-level clustering framework, where a set of basic clustering techniques are combined with a consensus-based approach to group HMI events and create a data-driven model from the FOQA data. The proposed framework is able to effectively compress a large dataset into a small set of representative clusters within a data-driven model, enabling subject matter experts to effectively investigate identified potential HMI issues.

  3. State Event Models for the Formal Analysis of Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Combefis, Sebastien; Giannakopoulou, Dimitra; Pecheur, Charles

    2014-01-01

    The work described in this paper was motivated by our experience with applying a framework for formal analysis of human-machine interactions (HMI) to a realistic model of an autopilot. The framework is built around a formally defined conformance relation called "fullcontrol" between an actual system and the mental model according to which the system is operated. Systems are well-designed if they can be described by relatively simple, full-control, mental models for their human operators. For this reason, our framework supports automated generation of minimal full-control mental models for HMI systems, where both the system and the mental models are described as labelled transition systems (LTS). The autopilot that we analysed has been developed in the NASA Ames HMI prototyping tool ADEPT. In this paper, we describe how we extended the models that our HMI analysis framework handles to allow adequate representation of ADEPT models. We then provide a property-preserving reduction from these extended models to LTSs, to enable application of our LTS-based formal analysis algorithms. Finally, we briefly discuss the analyses we were able to perform on the autopilot model with our extended framework.

  4. Effect of Restorative System and Thermal Cycling on the Tooth-Restoration Interface - OCT Evaluation.

    PubMed

    Sampaio, C S; Rodrigues, R V; Souza-Junior, E J; Freitas, A Z; Ambrosano, G M B; Pascon, F M; Puppin-Rontani, R M

    2016-01-01

    The present study evaluated the tooth/noncarious cervical lesion restoration interface when using different adhesive systems and resin composites, submitted to thermal cycling (TC), using optical coherence tomography (OCT). Noncarious cervical lesion (NCCL) preparations (0.7 mm depth × 2 mm diameter) were performed on 60 human third molars and randomly divided into six groups, according to the adhesive system and resin composite used: group 1 = Adper Single Bond 2 (SB2) + Aelite LS Posterior (AP); group 2 = SB2 + Venus Diamond (VD); group = SB2 + Filtek Z250XT (Z250); group 4 = Clearfil SE Bond (CSE) + AP; group 5 = CSE + VD; group 6 = CSE + Z250. Selective enamel etching was performed for 30 seconds on groups 4, 5, and 6, while groups 1, 2, and 3 were etched for 30 seconds in enamel and 15 seconds in dentin. All groups were evaluated using OCT before and after TC (n=10). Images were analyzed using Image J software; enamel and dentin margins were separately evaluated. Data from OCT were submitted to PROC MIXED for repeated measurements and Tukey Kramer test (α = 0.05). No marginal gaps were observed in etched enamel, either before or after TC, for all adhesive and resin composite systems. A significant interaction was found between adhesive system and TC for the dentin groups; after TC, restorations with CSE showed smaller gaps at the dentin/restoration interface compared with SB2 for all resin composites. Increased gap percentages were noticed after TC compared with the gaps before TC for all groups. In conclusion, TC affected marginal integrity only in dentin margins, whereas etched enamel margins remained stable even after TC. Dentin margins restored with CSE adhesive system showed better marginal adaptation than those restored with SB2. Resin composites did not influence marginal integrity of NCCL restorations.

  5. An overview of the evaluation plan for PC/MISI: PC-based Multiple Information System Interface

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Lim, Bee Lee; Hall, Philip P.

    1985-01-01

    An initial evaluation plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intend to be used as a blueprint for the evaluation of this system. Each objective of the design project is discussed along with the evaluation parameters and methodology to be used in the evaluation of the implementation's achievement of those objectives. The potential of the system for research activities related to more general aspects of information retrieval is also discussed.

  6. Technological evaluation of gesture and speech interfaces for enabling dismounted soldier-robot dialogue

    NASA Astrophysics Data System (ADS)

    Kattoju, Ravi Kiran; Barber, Daniel J.; Abich, Julian; Harris, Jonathan

    2016-05-01

    With increasing necessity for intuitive Soldier-robot communication in military operations and advancements in interactive technologies, autonomous robots have transitioned from assistance tools to functional and operational teammates able to service an array of military operations. Despite improvements in gesture and speech recognition technologies, their effectiveness in supporting Soldier-robot communication is still uncertain. The purpose of the present study was to evaluate the performance of gesture and speech interface technologies to facilitate Soldier-robot communication during a spatial-navigation task with an autonomous robot. Gesture and speech semantically based spatial-navigation commands leveraged existing lexicons for visual and verbal communication from the U.S Army field manual for visual signaling and a previously established Squad Level Vocabulary (SLV). Speech commands were recorded by a Lapel microphone and Microsoft Kinect, and classified by commercial off-the-shelf automatic speech recognition (ASR) software. Visual signals were captured and classified using a custom wireless gesture glove and software. Participants in the experiment commanded a robot to complete a simulated ISR mission in a scaled down urban scenario by delivering a sequence of gesture and speech commands, both individually and simultaneously, to the robot. Performance and reliability of gesture and speech hardware interfaces and recognition tools were analyzed and reported. Analysis of experimental results demonstrated the employed gesture technology has significant potential for enabling bidirectional Soldier-robot team dialogue based on the high classification accuracy and minimal training required to perform gesture commands.

  7. Charging of silver bromide aqueous interface: evaluation of interfacial equilibrium constants from surface potential data.

    PubMed

    Preočanin, Tajana; Supljika, Filip; Kallay, Nikola

    2010-06-01

    A single crystal silver bromide electrode (SCr-AgBr) was used to measure the inner surface potential (Ψ(0)) at the silver bromide aqueous electrolyte interface as a function of the activities of Br(-) and Ag(+). Absolute values of the surface potential were calculated from electrode potentials of SCr-AgBr using the value of point of zero charge (pBr(pzc)=6.9 [H.A. Hoyen, R.M. Cole, J. Colloid Interface Sci. 41 (1972) 93.]) as the value of point of zero potential. Measurements were performed in potassium nitrate aqueous solutions. The Ψ(0)(pBr) function was linear and slightly dependent on the ionic strength. The reduction values of the slope with respect to the Nernst equation, expressed by the α coefficient, were 0.880,0.935, and 0.950 at ionic strengths of 10(-4), 10(-3), and 10(-2) mol dm(-3), respectively. The results were successfully interpreted by employing the surface complexation model, developed originally for metal oxides and adapted for silver halides. The thermodynamic ("intrinsic") equilibrium constants for binding of bromide (K(n)(∘)) and silver (K(p)(∘)) ions on the corresponding sites at the silver bromide surface were evaluated as lgK(n)(∘)=3.98; lgK(p)(∘)=2.48. Symmetrical counterion surface association was assumed and equilibrium constants were obtained as lgK(NO(3)(-))(∘)=lgK(K(+))(∘)=4.30.

  8. Morphological evaluation of new total etching and self etching adhesive system interfaces with dentin

    PubMed Central

    Hegde, Mithra N; Hegde, Priyadarshini; Chandra, C Ravi

    2012-01-01

    Aim: The purpose of this study is to evaluate the resin-dentin interface, quality of the hybrid layer of total-etching and self-etching adhesive systems under scanning electron microscopy (SEM). Materials and Methods: Class V cavities were prepared in 40 extracted human molars. In Group I XP bond (Dentsply), in Group II Adper Single Bond II (3M ESPE), in Group III Adper Easy One (3M ESPE), and in Group IV Xeno V (Dentsply) were applied. Teeth were restored with resin composite, subjected to thermocycling, and sectioned in Buccolingual plane. The samples were demineralized using 6N HCl, for 30 sec, and deproteinized with 2.5% NaOCl for 10 min, gold sputtered, and viewed using a scanning electron microscope. Results: Among the total-etch systems used, the XP Bond showed a clear, thick hybrid layer, with long resin tags and few voids. Among the self-etch adhesive systems, the Xeno V did not show a clearly recognizable hybrid layer, but there were no voids and continuous adaptation was seen with the dentin. Conclusion: The adaptation of self-etch adhesives to the resin-dentin interface was good without voids or separation of phases; showing a thin, continuous hybrid layer. PMID:22557814

  9. Technical communication: An initial evaluation of a novel anesthetic scavenging interface.

    PubMed

    Barwise, John A; Lancaster, Leland J; Michaels, Damon; Pope, Jason E; Berry, James M

    2011-11-01

    Waste anesthetic gas scavenging technology has not changed appreciably in the past 30 years. Open reservoir systems entrain high volumes of room air and dilute waste gases before emission into the atmosphere. This process requires a large vacuum pump, which is both costly to install and, although efficient, operates continuously and at near-full capacity. In an era of increasing energy costs and environmental awareness, carbon footprint reduction is a priority and a more efficient system of safely scavenging waste anesthetic gases is desirable. We tested a low-flow scavenger interface to evaluate the potential for cost and energy savings. The use of this interface in a suite of 4 operating rooms reduced scavenging flow from a constant 37 L/min to a value equal to the fresh gas flow (usually 2 L/min) for each anesthesia machine. Using the ventilator increased this flow by approximately 6 L/min because of the exhaust of ventilator drive gas into the scavenging circuit. Daytime workload of the central vacuum pump decreased from 92% to 12% (expressed as duty cycle). The new system produces energy savings and may increase vacuum pump lifespan.

  10. Evaluation of Different Speech and Touch Interfaces to In-Vehicle Music Retrieval Systems

    PubMed Central

    Garay-Vega, L.; Pradhan, A. K.; Weinberg, G.; Schmidt-Nielsen, B.; Harsham, B.; Shen, Y.; Divekar, G.; Romoser, M.; Knodler, M.; Fisher, D. L.

    2010-01-01

    In-vehicle music retrieval systems are becoming more and more popular. Previous studies have shown that they pose a real hazard to drivers when the interface is a tactile one which requires multiple entries and a combination of manual control and visual feedback. Voice interfaces exist as an alternative. Such interfaces can require either multiple or single conversational turns. In this study, each of 17 participants between the ages of 18 and 30 years old was asked to use three different music-retrieval systems (one with a multiple entry touch interface, the iPod™, one with a multiple turn voice interface, interface B, and one with a single turn voice interface, interface C) while driving through a virtual world. Measures of secondary task performance, eye behavior, vehicle control, and workload were recorded. When compared with the touch interface, the voice interfaces reduced the total time drivers spent with their eyes off the forward roadway, especially in prolonged glances, as well as both the total number of glances away from the forward roadway and the perceived workload. Furthermore, when compared with driving without a secondary task, both voice interfaces did not significantly impact hazard anticipation, the frequency of long glances away from the forward roadway, or vehicle control. The multiple turn voice interface (B) significantly increased both the time it took drivers to complete the task and the workload. The implications for interface design and safety are discussed. PMID:20380920

  11. Evaluation of different speech and touch interfaces to in-vehicle music retrieval systems.

    PubMed

    Garay-Vega, L; Pradhan, A K; Weinberg, G; Schmidt-Nielsen, B; Harsham, B; Shen, Y; Divekar, G; Romoser, M; Knodler, M; Fisher, D L

    2010-05-01

    In-vehicle music retrieval systems are becoming more and more popular. Previous studies have shown that they pose a real hazard to drivers when the interface is a tactile one which requires multiple entries and a combination of manual control and visual feedback. Voice interfaces exist as an alternative. Such interfaces can require either multiple or single conversational turns. In this study, each of 17 participants between the ages of 18 and 30 years old was asked to use three different music retrieval systems (one with a multiple entry touch interface, the iPod, one with a multiple turn voice interface, interface B, and one with a single turn voice interface, interface C) while driving through a virtual world. Measures of secondary task performance, eye behavior, vehicle control, and workload were recorded. When compared with the touch interface, the voice interfaces reduced the total time drivers spent with their eyes off the forward roadway, especially in prolonged glances, as well as both the total number of glances away from the forward roadway and the perceived workload. Furthermore, when compared with driving without a secondary task, both voice interfaces did not significantly impact hazard anticipation, the frequency of long glances away from the forward roadway, or vehicle control. The multiple turn voice interface (B) significantly increased both the time it took drivers to complete the task and the workload. The implications for interface design and safety are discussed.

  12. Investigation of human-robot interface performance in household environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  13. Autostereoscopic three-dimensional viewer evaluation through comparison with conventional interfaces in laparoscopic surgery.

    PubMed

    Silvestri, Michele; Simi, Massimiliano; Cavallotti, Carmela; Vatteroni, Monica; Ferrari, Vincenzo; Freschi, Cinzia; Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2011-09-01

    In the near future, it is likely that 3-dimensional (3D) surgical endoscopes will replace current 2D imaging systems given the rapid spreading of stereoscopy in the consumer market. In this evaluation study, an emerging technology, the autostereoscopic monitor, is compared with the visualization systems mainly used in laparoscopic surgery: a binocular visor, technically equivalent from the viewer's point of view to the da Vinci 3D console, and a standard 2D monitor. A total of 16 physicians with no experience in 3D interfaces performed 5 different tasks, and the execution time and accuracy of the tasks were evaluated. Moreover, subjective preferences were recorded to qualitatively evaluate the different technologies at the end of each trial. This study demonstrated that the autostereoscopic display is equally effective as the binocular visor for both low- and high-complexity tasks and that it guarantees better performance in terms of execution time than the standard 2D monitor. Moreover, an unconventional task, included to provide the same conditions to the surgeons regardless of their experience, was performed 22% faster when using the autostereoscopic monitor than the binocular visor. However, the final questionnaires demonstrated that 60% of participants preferred the user-friendliness of the binocular visor. These results are greatly heartening because autostereoscopic technology is still in its early stages and offers potential improvement. As a consequence, the authors expect that the increasing interest in autostereoscopy could improve its friendliness in the future and allow the technology to be widely accepted in surgery.

  14. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  15. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  16. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load

    PubMed Central

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed. PMID:28367110

  17. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    NASA Astrophysics Data System (ADS)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  18. Usability evaluation of an experimental text summarization system and three search engines: implications for the reengineering of health care interfaces.

    PubMed

    Kushniruk, Andre W; Kan, Min-Yem; McKeown, Kathleen; Klavans, Judith; Jordan, Desmond; LaFlamme, Mark; Patel, Vimia L

    2002-01-01

    This paper describes the comparative evaluation of an experimental automated text summarization system, Centrifuser and three conventional search engines - Google, Yahoo and About.com. Centrifuser provides information to patients and families relevant to their questions about specific health conditions. It then produces a multidocument summary of articles retrieved by a standard search engine, tailored to the user's question. Subjects, consisting of friends or family of hospitalized patients, were asked to "think aloud" as they interacted with the four systems. The evaluation involved audio- and video recording of subject interactions with the interfaces in situ at a hospital. Results of the evaluation show that subjects found Centrifuser's summarization capability useful and easy to understand. In comparing Centrifuser to the three search engines, subjects' ratings varied; however, specific interface features were deemed useful across interfaces. We conclude with a discussion of the implications for engineering Web-based retrieval systems.

  19. Usability evaluation of an experimental text summarization system and three search engines: implications for the reengineering of health care interfaces.

    PubMed Central

    Kushniruk, Andre W.; Kan, Min-Yem; McKeown, Kathleen; Klavans, Judith; Jordan, Desmond; LaFlamme, Mark; Patel, Vimia L.

    2002-01-01

    This paper describes the comparative evaluation of an experimental automated text summarization system, Centrifuser and three conventional search engines - Google, Yahoo and About.com. Centrifuser provides information to patients and families relevant to their questions about specific health conditions. It then produces a multidocument summary of articles retrieved by a standard search engine, tailored to the user's question. Subjects, consisting of friends or family of hospitalized patients, were asked to "think aloud" as they interacted with the four systems. The evaluation involved audio- and video recording of subject interactions with the interfaces in situ at a hospital. Results of the evaluation show that subjects found Centrifuser's summarization capability useful and easy to understand. In comparing Centrifuser to the three search engines, subjects' ratings varied; however, specific interface features were deemed useful across interfaces. We conclude with a discussion of the implications for engineering Web-based retrieval systems. PMID:12463858

  20. Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector

    NASA Astrophysics Data System (ADS)

    Yousif, Ahmed S.

    conduction heat transfer path. Having started as a student design competition named RevCon Challenge, work was performed to evaluate the use of new field-reversible thermal connectors. The new design proposed by the University of Missouri utilized oil based iron nanoparticles, commonly known as a ferrofluid, as a thermal interface material. By using a liquid type of interface material the channel gap can be reduced to a few micrometers, within machining tolerances, and heat can be dissipated off both sides of the card. The addition of nanoparticles improves the effective thermal conductivity of base fluid. The use of iron nanoparticles allows magnets to be used to hold the fluid in place, so the electronic cards may be easily inserted and removed while keeping the ferrofluid in the cold block channel. The ferrofluid-based design which was investigated has shown lower thermal resistance than the current wedgelock design. These results open the door for further development of electronic cards by using higher heat emitting components without compromising the simplicity of attaching/detaching cards from cooling plates.

  1. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  2. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    PubMed Central

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals. PMID:22163515

  3. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    PubMed

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  4. An implementation and evaluation of the MPI 3.0 one-sided communication interface

    DOE PAGES

    Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.; ...

    2016-01-09

    The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface providesmore » significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.« less

  5. An implementation and evaluation of the MPI 3.0 one-sided communication interface

    SciTech Connect

    Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.; Goodell, David J.; Gropp, William D.; Thakur, Rajeev

    2016-01-09

    The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface provides significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.

  6. Evaluation of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Seok; Lee, Sangmok; Lee, Jong-Sup; Kim, Yong-Bae; Lee, Geun-An; Lee, Sang-Pill; Bae, Dong-Su

    2016-09-01

    The aim of the present study is to identify the properties of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials by transmission electron microscopy and nano-indentation analyses. Cu/Al clad materials were fabricated by hot pressing under 200 MPa at 250 °C for 1 h and then heat treated at 400 °C for 1 h. Nano-indentation measurement was conducted to evaluate the nanohardness and modulus of the intermediate phases formed between the Cu/Al interfaces. A 3-tier diffusion layer was observed at the Cu/Al interfaces. Knoop microhardness values at the bonding interface were 7 to 11 times that of the Cu and Al matrix metals. The intermediate phases formed at the bonding interface were Al4Cu9, AlCu, and Al2Cu. A mapping analysis confirmed that the Al and Cu particles moved via mutual diffusion toward the intermediate phases formed at the bonding interface. The nanohardness values of η2-AlCu and γ1-Al4Cu9 were 4 to 7 times that of the Cu and Al matrix metals. Nanohardness and Knoop microhardness measurement curves exhibited similar tendencies. The rigidity values of the respective intermediate phases can be arranged in descending order as follows: γ1-Al4Cu9 > η2-AlCu > θ-Al2Cu.

  7. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    NASA Astrophysics Data System (ADS)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  8. Applying Spatial Audio to Human Interfaces: 25 Years of NASA Experience

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.; Godfrey, Martine; Miller, Joel D.; Anderson, Mark R.

    2010-01-01

    From the perspective of human factors engineering, the inclusion of spatial audio within a human-machine interface is advantageous from several perspectives. Demonstrated benefits include the ability to monitor multiple streams of speech and non-speech warning tones using a cocktail party advantage, and for aurally-guided visual search. Other potential benefits include the spatial coordination and interaction of multimodal events, and evaluation of new communication technologies and alerting systems using virtual simulation. Many of these technologies were developed at NASA Ames Research Center, beginning in 1985. This paper reviews examples and describes the advantages of spatial sound in NASA-related technologies, including space operations, aeronautics, and search and rescue. The work has involved hardware and software development as well as basic and applied research.

  9. Fatigue of the Resin-Dentin Interface: A New Approach for Evaluating the Durability of Dentin Bonds

    PubMed Central

    Mutluay, Mustafa Murat; Yahyazadefar, Mobin; Ryou, Heonjune; Majd, Hessam; Do, Dominic; Arola, Dwayne

    2013-01-01

    There are concerns regarding the longevity of resin composite restorations and the clinical relevance of in vitro bond strength testing to the durability of dentin bonds in vivo. Objective The objectives of this investigation were to: 1) develop a new method of experimental evaluation for quantifying the durability of dentin bonds, 2) apply this method to characterize the interfacial strength of a selected commercial system under both monotonic and cyclic loading, and 3) distinguish mechanisms contributing to the interface degradation and failure. Methods A new method for fatigue testing the resin-dentin interface was developed based on a four-point flexure arrangement that includes two identical bonded interfaces. Cyclic loading of specimens comprised of coronal dentin bonded to a commercial resin composite and controls of resin composite was performed to failure within a hydrated environment. Scanning electron microscopy and nanoscopic dynamic mechanical analysis were used to evaluate failure mechanisms. Results The fatigue strength of the resin-dentin interface was significantly lower (p≤0.0001) than that of the resin composite and reported for dentin over the entire finite life regime. Defined at 1×107 cycles, the apparent endurance limit of the resin-dentin interface was 13 MPa, in comparison to 48 MPa and 44 MPa for the resin composite and dentin, respectively. The ratio of fully reversed endurance limit to ultimate strength of the interface (0.26) was the lowest of the three materials. Significance The proposed approach for characterizing the fatigue strength of resin-dentin bonds may offer new insights concerning durability of the bonded interface. PMID:23434232

  10. The evaluation and extension of TAE in the development of a user interface management system

    NASA Technical Reports Server (NTRS)

    Burkhart, Brenda; Sugar, Ross

    1986-01-01

    The development of a user interface management system (UIMS) for an information gathering and display system is discussed. The system interface requirements are outlined along with the UIMS functional characteristics. Those systems requirements which are supported by the current Transportable Applications Executive (TAE) are listed and necessary modifications to the TAE are described.

  11. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.

    PubMed

    McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M

    2014-06-01

    Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.

  12. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface.

    PubMed

    Choudhary, Kamal; Congo, Faical Yannick P; Liang, Tao; Becker, Chandler; Hennig, Richard G; Tavazza, Francesca

    2017-01-31

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

  13. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    PubMed Central

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery. PMID:28140407

  14. Evaluation of computer-aided instruction techniques for the crew interface coordination position

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    1993-01-01

    The Crew Interface Coordinator (CIC) is responsible for real-time voice and procedural communication between the payload crew on the orbiter and the payload operations team on the ground. This function is dedicated to science activities and operations, and may also include some responsibilities for crew training. CIC training at Marshall Space Flight Center (MSFC) consists of mission-independent training, mission simulations, and line-organization training. As identified by Schneider, the program provides very good generic training; however position-specific training may be obtained in a very unstructured way. A computer-based training system, identified as Mac CIC, is currently under development to address this issue. Mac CIC is intended to provide an intermediate level of training in order to prepare the CIC for the more intensive mission simulations. Although originally intended as an intelligent tutoring system, Mac CIC currently exists as a hypertext-based application. The objectives of this research is to evaluate the current system and to provide both recommendations and a detailed plan for Mac CIC's evolution into an intelligent tutoring system.

  15. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

  16. Usability testing in medical informatics: cognitive approaches to evaluation of information systems and user interfaces.

    PubMed Central

    Kushniruk, A. W.; Patel, V. L.; Cimino, J. J.

    1997-01-01

    This paper describes an approach to the evaluation of health care information technologies based on usability engineering and a methodological framework from the study of medical cognition. The approach involves collection of a rich set of data including video recording of health care workers as they interact with systems, such as computerized patient records and decision support tools. The methodology can be applied in the laboratory setting, typically involving subjects "thinking aloud" as they interact with a system. A similar approach to data collection and analysis can also be extended to study of computer systems in the "live" environment of hospital clinics. Our approach is also influenced from work in the area of cognitive task analysis, which aims to characterize the decision making and reasoning of subjects of varied levels of expertise as they interact with information technology in carrying out representative tasks. The stages involved in conducting cognitively-based usability analyses are detailed and the application of such analysis in the iterative process of system and interface development is discussed. PMID:9357620

  17. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  18. Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia Ann

    Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided

  19. Human, Machine, Nature and Safety Factors in the Design and Architecture of Spaceflight Terminal at Spaceport Malaysia

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, Norul; Abd Aziz, Noor Azizee; Mohd Ariffin, Ati Rosemary

    2013-09-01

    Spaceport Malaysia has been approved by the local authorities in Malaysia and now is at the final stage of its planning. The most significant and iconic facility at the proposed Spaceport Malaysia will be the spaceflight terminal which will serve suborbital flights for carrying experiments, passengers and satellites.As such, the design of the spaceport signifies a place that welcomes visitors, user friendly, supports, services and integrates vehicles, blends with natures and uses green technology and also ensure safe both for people and machines. This paper describes how human, machine, nature and safety factors were incorporated in the design approach of the spaceflight terminal.

  20. Cognition-based development and evaluation of ergonomic user interfaces for medical image processing and archiving systems.

    PubMed

    Demiris, A M; Meinzer, H P

    1997-01-01

    Whether or not a computerized system enhances the conditions of work in the application domain, very much demands on the user interface. Graphical user interfaces seem to attract the interest of the users but mostly ignore some basic rules of visual information processing thus leading to systems which are difficult to use, lowering productivity and increasing working stress (cognitive and work load). In this work we present some fundamental ergonomic considerations and their application to the medical image processing and archiving domain. We introduce the extensions to an existing concept needed to control and guide the development of GUIs with respect to domain specific ergonomics. The suggested concept, called Model-View-Controller Constraints (MVCC), can be used to programmatically implement ergonomic constraints, and thus has some advantages over written style guides. We conclude with the presentation of existing norms and methods to evaluate user interfaces.

  1. A method for evaluating aerosol leakage through the interface between protective suits and full-face respirators.

    PubMed

    Arnoldsson, Kristina; Danielsson, Signar; Thunéll, Marianne

    2016-01-01

    Military personnel and first responders use a range of personal equipment including protective suits, gloves, boots, and respirators to prevent exposure of their skin and airways to hazardous chemical, biological, radiological, and/or nuclear substances. Although each individual item of personal protective equipment is well tested against existing standards, it is also necessary to consider the performance of the interfaces between items in terms of prevention from exposure, and the protection system as a whole. This article presents an aerosol challenge method for assessing the performance of the interface between a respirator and the hood of a protective suit. The interface is formed between the sealing strip of the hood and the surface of the respirator's outer sealing area and is affected by how well the sealing strip can cover and adapt to the sealing area. The method evaluates the leakage of particles of different sizes into the hood via the interface by particle counting at sampling points around the respirator's perimeter. Three different respirators were tested together with a single hood having a tight-fitting seal. The method variation between measurements was low but increased appreciably when the protective ensemble was re-dressed between measurements. This demonstrates the difficulty of achieving a reliable and reproducible seal between respirator and hood under normal conditions. Different leakage patterns were observed for the three respirators and were linked to some specific design features, namely the respirator's sealing area at the chin and its width at cheek level. Induced leak experiments showed that to detect substantial particle leakage, channels at the hood-respirator interface must be quite large. The method outlined herein provides a straightforward way of evaluating hood-respirator interfaces and could be useful in the further development of personal protective equipment.

  2. Development and Evaluation of Nursing User Interface Screens Using Multiple Methods

    PubMed Central

    Hyun, Sookyung; Johnson, Stephen B.; Stetson, Peter D.; Bakken, Suzanne

    2009-01-01

    Building upon the foundation of the Structured Narrative electronic health record (EHR) model, we applied theory-based (combined Technology Acceptance Model and Task-Technology Fit Model) and user-centered methods to explore nurses’ perceptions of functional requirements for an electronic nursing documentation system, design user interface screens reflective of the nurses’ perspectives, and assess nurses’ perceptions of the usability of the prototype user interface screens. The methods resulted in user interface screens that were perceived to be easy to use, potentially useful, and well-matched to nursing documentation tasks associated with Nursing Admission Assessment, Blood Administration, and Nursing Discharge Summary. The methods applied in this research may serve as a guide for others wishing to implement user-centered processes to develop or extend EHR systems. In addition, some of the insights obtained in this study may be informative to the development of safe and efficient user interface screens for nursing document templates in EHRs. PMID:19460464

  3. Battery electric vehicles - implications for the driver interface.

    PubMed

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  4. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    SciTech Connect

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  5. Evaluation of interfacial equilibrium constants from surface potential data: silver chloride aqueous interface.

    PubMed

    Preocanin, Tajana; Supljika, Filip; Kallay, Nikola

    2009-09-15

    A single crystal silver chloride electrode (SCr-AgCl) was used to measure the inner surface potential (Psi(0)) at the silver chloride aqueous electrolyte interface as a function of activity of Cl(-) ions as determined by the Ag/AgCl electrode. Absolute values of the surface potential were calculated from electrode potentials of SCr-AgCl using the value of point of zero charge (pCl(pzc)=5.2) as the value of point of zero potential. Measurements were performed in potassium nitrate aqueous solutions, as well as in the presence of Li, Na, Cs, Mg, and La nitrates. The Psi(0) (pCl) function was found to be linear within the experimental error and practically the same for all the examined electrolytes and almost independent of ionic strength. The reduction of the slope with respect to the Nernst equation, expressed by the alpha coefficient, was (0.88+/-0.01) at I(c)=10(-1) mol dm(-3), (0.87+/-0.01) at I(c)=10(-2) mol dm(-3), and (0.84+/-0.01) at I(c)=10(-3) mol dm(-3). The results were successfully interpreted by employing the surface complexation model developed originally for metal oxides and adapted for silver chloride. The standard ("intrinsic") equilibrium constants for the binding of chloride (K(o)(n)) and silver ions (K(o)(p)) on the corresponding sites at the silver chloride surface were evaluated as lg K(o)(n)=2.67+/-0.05; lg K(o)(p)=2.07+/-0.05. Counterion surface association equilibrium constants were also obtained as lg K(o)(NO3(-))=lg K(o)(K+)=274+/-0.05.

  6. Evaluation of fracture strength of metal/epoxy joint by interface mechanics

    SciTech Connect

    Nakai, Yoshikazu

    1995-11-01

    Tension tests of metal/epoxy joints with or without interface cracks were conducted and fracture criteria of the joints were discussed based on interface mechanics. The variation of the fracture strength of each specimen was large, and the strength showed Gaussian distribution. The fracture strength of smooth specimens was lower for wider specimens, but the cumulative probability of fracture of smooth specimens was not controlled by the stress singularity parameter. In interface cracked specimens, the cracks were propagated either along the interface or in epoxy resin, depending on crack length. When cracks propagated along the interface, the cumulative probability of the fracture of the specimen was controlled by the real part of the complex stress intensity factor along the interface, K{sub 1}. When cracks kinked to epoxy resin, the angle was almost identical to that of the maximum tangential stress, {sigma}{sub {theta}max}. In this case, the cumulative probability of fracture was controlled by the value of K{sub {theta}max}.

  7. An Evaluation of OpenSHMEM Interfaces for the Variable-length Alltoallv() Collective Operation

    SciTech Connect

    Lopez, Matthew Graham; Shamis, Pavel; Gorentla Venkata, Manjunath

    2015-01-01

    Alltoallv() is a collective operation which allows all pro- cesses to exchange variable amounts of data with all other processes in the communication group. This means that Alltoallv() requires not only O(N2) communications, but typically also additional exchanges of the data lengths that will be transmitted in the eventual Alltoallv() call. This pre-exchange is used to calculate the proper offsets for the re- ceiving buffers on the target processes. However, we propose two new can- didate interfaces for Alltoallv() that would mitigate the need for the user to set up this extra exchange of information at the possible cost of memory efficiency. We explain the new interface variants and show how a single call can be used in place of the traditional Alltoall()/Alltoallv() pair. We then discuss the performance tradeoffs for overall communica- tion and memory costs, as well as both software and hardware-based optimizations and their applicability to the various proposed interfaces.

  8. Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William

    2017-01-01

    NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.

  9. Laboratory evaluation of frozen soil target materials with a fused interface.

    SciTech Connect

    Bronowski, David R.; Lee, Moo Yul

    2004-10-01

    To investigate the performance of artificial frozen soil materials with a fused interface, split tension (or 'Brazilian') tests and unconfined uniaxial compression tests were carried out in a low temperature environmental chamber. Intact and fused specimens were fabricated from four different soil mixtures (962: clay-rich soil with bentonite; DNA1: clay-poor soil; DNA2: clay-poor soil with vermiculite; and DNA3: clay-poor soil with perlite). Based on the 'Brazilian' test results and density measurements, the DNA3 mixture was selected to closely represent the mechanical properties of the Alaskan frozen soil. The healed-interface by the same soil layer sandwiched between two blocks of the same material yielded the highest 'Brazilian' tensile strength of the interface. Based on unconfined uniaxial compression tests, the frictional strength of the fused DNA3 specimens with the same soil appears to exceed the shear strength of the intact specimen.

  10. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control

    PubMed Central

    Vigaru, Bogdan; Sulzer, James; Gassert, Roger

    2016-01-01

    Our hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control. The interface, located at the scanner bore, is controlled remotely through a shielded electromagnetic actuation system positioned at the end of the scanner bed and then through a high stiffness, low inertia cable transmission. We present the system design, taking into account requirements defined by the biomechanics and dynamics of the human hand, as well as the fMRI environment. Performance evaluation revealed a structural stiffness of 3.3 N/mm, renderable forces up to 94 N, and a position control bandwidth of at least 19 Hz. MRI-compatibility tests showed no degradation in the operation of the haptic interface or the image quality. A preliminary fMRI experiment during a pilot study validated the usability of the haptic interface, illustrating the possibilities offered by this device. PMID:26441454

  11. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  12. Design and Evaluation of a User Interface Supporting Multiple Image Query Models.

    ERIC Educational Resources Information Center

    Mostafa, Javed; Dillon, Andrew

    1996-01-01

    Describes the ViewFinder interface, designed at Indiana University as a client to a database server; it supports querying based on both visual and verbal clues. Presents results of usability analysis performed on ViewFinder with 18 users. High search success rates were achieved through both types of querying means; verbal clues were used more than…

  13. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation

    PubMed Central

    Wang, Xing; Chaudhry, Sharjeel A.; Hou, Wensheng; Jia, Xiaofeng

    2017-01-01

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats’ unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5–20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation. PMID:28165427

  14. Evaluating Gaze-Based Interface Tools to Facilitate Point-and-Select Tasks with Small Targets

    ERIC Educational Resources Information Center

    Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin

    2011-01-01

    Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. less than 12 x 12 pixels) point-and-select tasks. We conducted two…

  15. A robust and flexible Geospatial Modeling Interface (GMI) for environmental model deployment and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...

  16. Self-Regulated Mobile Learning and Assessment: An Evaluation of Assessment Interfaces

    ERIC Educational Resources Information Center

    Koorsse, Melisa; Olivier, Werner; Greyling, Jean

    2014-01-01

    Assessment for learning has an important role to play in self-regulated learning but the assessment interface can impact learner motivation and performance. Learners are able to assess their knowledge of learning content and, through repeated assessment and high-quality feedback, close the gap between their current performance and the performance…

  17. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  18. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  19. Evaluation of air-liquid interface exposure systems for in vitro assessment of airborne pollutants

    EPA Science Inventory

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared fi...

  20. Evaluation of a Smartphone Platform as a Wireless Interface Between Tongue Drive System and Electric-Powered Wheelchairs

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam

    2013-01-01

    Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS–iPhone–PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ~9% per session over the following three sessions. PMID:22531737

  1. Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs.

    PubMed

    Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam

    2012-06-01

    Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS-iPhone-PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ∼9% per session over the following three sessions.

  2. Interface trap density evaluation on bare silicon-on-insulator wafers using the quasi-static capacitance technique

    NASA Astrophysics Data System (ADS)

    Pirro, L.; Ionica, I.; Ghibaudo, G.; Mescot, X.; Faraone, L.; Cristoloveanu, S.

    2016-05-01

    This paper presents a detailed investigation of the quasi-static capacitance-voltage (QSCV) technique in pseudo-metal-oxide-semiconductor field effect transistor (pseudo-MOSFET) configuration for evaluating the interface quality of bare silicon-on-insulator (SOI) wafers, without processing dedicated metal-oxide-semiconductor (MOS) test devices. A physical model is developed that is capable of explaining the experimental results. In addition, frequency effects are used to validate the equations by a systematic comparison between experimental and calculated characteristics, as well as by a direct comparison with the standard high-low frequency approach. An extraction procedure for interface trap density based solely on QSCV experimental results is proposed, and limits of the procedure are discussed. The proposed experimental and analytical procedure is demonstrated by characterizing SOI structures with different geometries and with different qualities of surface passivation of the top silicon film.

  3. Evaluating long-term annual sediment yield estimating potential of GIS interfaced MUSLE model on two micro-watersheds.

    PubMed

    Arekhi, Saleh

    2008-01-15

    Use of an event scale MUSLE model for obtaining accurate long-term annual sediment yield estimates from micro-watersheds was evaluated. Such estimates are extremely important for designing appropriate soil/water conserving measures. For easy extraction and inputting of model input parameters, the proposed model was interfaced to an Arc-View/Spatial Analyst geographic information system. Application of this GIS interfaced MUSLE model on two gauged (pine and oak forest) hilly micro-watersheds viz., Salla Rautella (0.47 km2) and Naula (0.42 km2), in Almora district of Uttaranchal, India showed that it could estimate annual sediment yields with absolute mean relative errors ranging between 12-14%. Even long-term average sediment yields for Salla Rautella (observed: 9.58 tons and estimated: 10.92 tons) and Naula: (Observed: 23.89 tons and estimated: 26.61 tons) micro-watersheds could be quite realistically simulated by the proposed model.

  4. Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant

    PubMed Central

    Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon

    2016-01-01

    PURPOSE The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. MATERIALS AND METHODS Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 106 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. RESULTS Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups (P>.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. CONCLUSION Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment. PMID:28018564

  5. Methodological issues in the validation of complex human-machine systems

    SciTech Connect

    O`Hara, J.; Stubler, W.; Wachtel, J.

    1995-05-01

    Integrated system validation is one aspect of the US Nuclear Regulatory Commission`s design review process for human-system interfaces. This paper will consider three methodological issues that must be addressed in validation and their implications for drawing conclusions about the acceptability of the integrated system. They are: representing the integrated system, representing the operational events it must handle, and representing system performance. A logical basis for generalizability from validation tests to predicted performance of the integrated system emerges from the comparability of the psychological and physical processes of the test and actual situations. Generalizability of results is supported when the integrated system, operating conditions and performance are representative of their real-world counterparts. The methodological considerations for establishing representativeness are discussed.

  6. Evaluating the Effects of Interface Disruption Using fNIR Spectroscopy

    DTIC Science & Technology

    2011-02-28

    Error Potentials in Brain- Computer Interfaces. ADVANCES IN COGNITIVE NEURODYNAMICS , 2008: p. 777-782. 21. Nieuwenhuis S, et al., Psychophysiology...introduced until the 1990‟s and holds great potential for extremely non-invasive cognitive state measurement. It is significantly easier and faster to...As a reminder, the general protocol is as follows: 1) Researchers gather benchmark tasks from cognitive psychology that elicit high and low

  7. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  8. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  9. Evaluation of a wireless wearable tongue-computer interface by individuals with high-level spinal cord injuries

    NASA Astrophysics Data System (ADS)

    Huo, Xueliang; Ghovanloo, Maysam

    2010-04-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue-computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2-C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course.

  10. Microscopic evaluation of dentin interface obtained with 10 contemporary self-etching systems: correlation with their pH.

    PubMed

    Grégoire, Geneviéve; Millas, Arlette

    2005-01-01

    This study investigated micromorphological differences in the hybridized complex formed using 10 commercially available self-etch bonding systems. In addition, the influence of the pH of the primer of these adhesives was evaluated. The self-etching systems tested were AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, Etch&Prime 3.0 (Degussa, Germany), Prime & Bond NT Non Rinse Conditioner (Dentsply, Konstanz, Germany), One-Up Bond F, OptiBond Solo Plus Self Etch, Prompt L-Pop and Xeno III. One hundred non-carious human third molars were used. The teeth were divided into two groups of 50 and prepared for evaluation by optical microscopy or scanning electron microscopy. The specimens in each group were further divided into 10 subgroups of five specimens each to evaluate the 10 bonding systems. The pH of the primers of the bonding systems was measured. The results demonstrated morphological differences at the interface, depending on adhesive composition. The differences mainly concerned thickness of the hybrid layer, the absence or presence of microscopic voids at the adhesive-composite interface and whether the dentinal tubuli were completely sealed. The pH was not the determining factor conditioning the action of the self-etching adhesives.

  11. Remote Evaluation of the Coherence of Indirect Manipulation Interface Systems For Agent-Mediated Legacy Data

    DTIC Science & Technology

    2007-11-02

    tree or drill -down-table metaphor as described in Goldstein and Roth [GOL94]. A common example of this metaphor is the file manager or explorer...6FKDIHU 𔃿$)7 -+6’LV𔄁,&GRF SULQWHG 30 to drill -down into or disaggregate all necessary data paths while shielding users from the...class encodes the query tree. Each query can map to zero, or more sub-queries. As users select to drill -down, the client interface maps data from the

  12. An Evaluation and Redesign of the Conflict Prediction and Trial Planning Planview Graphical User Interface

    NASA Technical Reports Server (NTRS)

    Laudeman, Irene V.; Brasil, Connie L.; Stassart, Philippe

    1998-01-01

    The Planview Graphical User Interface (PGUI) is the primary display of air traffic for the Conflict Prediction and Trial Planning, function of the Center TRACON Automation System. The PGUI displays air traffic information that assists the user in making decisions related to conflict detection, conflict resolution, and traffic flow management. The intent of this document is to outline the human factors issues related to the design of the conflict prediction and trial planning portions of the PGUI, document all human factors related design changes made to the PGUI from December 1996 to September 1997, and outline future plans for the ongoing PGUI design.

  13. Scanning electron microscopy evaluation of the interface of three adhesive systems.

    PubMed

    Macari, Soraia; Gonçalves, Mariane; Nonaka, Tomio; Santos, Jaime Maia dos

    2002-01-01

    The objective of this research was to investigate the resin-dentin interface of three adhesive systems, Scotchbond Multi-Purpose, Optibond and Denthesive Bond II by scanning electron microscopy. The adhesives and their respective composite resins were applied inside the cervical root canal of human incisors and canines according to manufacturer recommendations. The teeth were embedded in acrylic resin and sliced transversally to the root canal and perpendicularly to the resin-dentin interface. The adhesive systems Scotchbond Multi-Purpose and Optibond had a homogenous hybrid layer and similar characteristics, involving resin penetration of peritubular and intertubular dentin matrix. Morphological differences of resin tags were seen; Scotchbond Multi-Purpose had more and longer tags than Optibond. Denthesive Bond II did not have the same consistency of bonding. Tubular orifices were not opened and the smear layer was not removed. This was due to the absence of previous acid conditioning of dentin that damages hybrid layer formation. Analysis of the hybrid layer revealed different patterns, suggesting that the attachment was influenced by many factors and a standardization of dentinal substrate was impossible.

  14. Evaluation of tangible user interfaces for command and control in virtual environments

    NASA Astrophysics Data System (ADS)

    Havig, Paul; McIntire, John; Compton, Andrew; Heft, Eric

    2008-04-01

    One of the difficulties that arise in trying to navigate through or interact with a 3D virtual environment is the fact that the standard 2D mouse with only two degrees of freedom does not lend itself to being used effectively where six degrees of motion are possible. Through the use of both a mouse and keyboard, one is able to interact in three degrees but never in all six at the same time, thus making interaction cumbersome at best. We test out a series of both commercial-off-the-shelf and in-house prototype tangible user interfaces (TUIs) to characterize multiple interaction methods within a virtual environment for command and control applications. Various aspects of navigation, including moving through the virtual world, as well as directly manipulating the world itself, are compared. We attempt to determine which interfaces are most appropriate for specific types of command and control tasks. We conclude with recommendations for the use of TUIs as well as ideas for future research.

  15. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.

    PubMed

    Kaber, David; Tupler, Larry A; Clamann, Michael; Gil, Guk-Ho; Zhu, Biwen; Swangnetr, Manida; Jeon, Wooram; Zhang, Yu; Qin, Xiaofeng; Ma, Wenqi; Lee, Yuan-Shin

    2014-01-01

    This study investigated the design of a virtual reality (VR) simulation integrating a haptic control interface for motor skill training. Twenty-four healthy participants were tested and trained in standardized psychomotor control tasks using native and VR forms with their nondominant hands in order to identify VR design features that might serve to accelerate motor learning. The study was also intended to make preliminary observations on the degree of specific motor skill development that can be achieved with a VR-based haptic simulation. Results revealed significant improvements in test performance following training for the VR with augmented haptic features with insignificant findings for the native task and VR with basic haptic features. Although performance during training was consistently better with the native task, a correspondence between the VR training and test task interfaces led to greater improvement in test performance as reported by a difference between baseline and post-test scores. These findings support use of VR-based haptic simulations of standardized psychomotor tests for motor skill training, including visual and haptic enhancements for effective pattern recognition and discrete movement of objects. The results may serve as an applicable guide for design of future haptic VR features.

  16. Design and Evaluation of Shape-Changing Haptic Interfaces for Pedestrian Navigation Assistance.

    PubMed

    Spiers, Adam J; Dollar, Aaron M

    2017-01-01

    Shape-changing interfaces are a category of device capable of altering their form in order to facilitate communication of information. In this work, we present a shape-changing device that has been designed for navigation assistance. 'The Animotus' (previously, 'The Haptic Sandwich' ), resembles a cube with an articulated upper half that is able to rotate and extend (translate) relative to the bottom half, which is fixed in the user's grasp. This rotation and extension, generally felt via the user's fingers, is used to represent heading and proximity to navigational targets. The device is intended to provide an alternative to screen or audio based interfaces for visually impaired, hearing impaired, deafblind, and sighted pedestrians. The motivation and design of the haptic device is presented, followed by the results of a navigation experiment that aimed to determine the role of each device DOF, in terms of facilitating guidance. An additional device, 'The Haptic Taco', which modulated its volume in response to target proximity (negating directional feedback), was also compared. Results indicate that while the heading (rotational) DOF benefited motion efficiency, the proximity (translational) DOF benefited velocity. Combination of the two DOF improved overall performance. The volumetric Taco performed comparably to the Animotus' extension DOF.

  17. Code System for Evaluating Routine Radioactive Effluents from Nuclear Power Plants with Windows Interface.

    SciTech Connect

    MALAFEEW, VAL

    2012-12-12

    Version 14 NRCDose is a user-friendly 32-bit PC-based software interface for the LADTAP II, GASPAR II, and XOQDOQ programs which operates under all Microsoft WindowsTM platforms. LADTAP II, GASPAR II, and XOQDOQ are industry standards, originally created for mainframe computers and written using the Fortran programming language. While still utilizing the proven Fortran code modules, NRCDose allows the user to enter and retrieve data through a series of windows dialogs, making the use of the program much more user-friendly and efficient than its original design. This graphical interface also allows the user to create sets of data that can be named and retrieved at a later date for review or modification. The NRCDose program is equipped to perform calculations with up to 169 radionuclides, seven organs (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) and four age ranges (infant, child, teenager, and adult). The source of the DCFs (dose conversion factors) in NRCDose is Regulatory Guide 1.109, supplemented with additional dose factors from NUREG-0172. See Abstract for recent modifications.

  18. Nondestructive evaluation of bone cement and bone cement/metal interface failure.

    PubMed

    Browne, M; Jeffers, J R T; Saffari, N

    2010-02-01

    To quantify the failure mechanisms related to the loosening of cemented hip joint replacements, novel techniques, capable of monitoring, nondestructively, the initiation and progression of failure during in vitro fatigue tests, were employed. Fatigue testing of model cement and cement-stem test pieces was monitored using acoustic emission (AE) sensors. Once damage was detected, an ultrasonic imaging system was used to obtain an image of the damage site and to measure the stiffness of the affected region. This method of examination provided a detailed insight into the internal crack propagation and delamination patterns. Initial work was conducted on bulk cement specimens subjected to bending and tension. The second stage of the work examined a model stem-cement interface under tensile opening loading conditions. A novel ultrasonic technique was used to measure the bond quality at the cement-metal interface. Progressive delamination was identified over time, and the AE technique was able to identify critical areas of delamination before they could be identified conclusively by ultrasonic imaging. The work has demonstrated the potential of the AE technique as a tool for the preclinical assessment of total hip replacements.

  19. An extremely lightweight fingernail worn prosthetic interface device

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Ahluwalia, Simranjit; Silva, Dinithi; Kasi-Okonye, Isioma; Volker, Rachael; Baptist, Joshua R.; Popa, Dan O.

    2016-05-01

    Upper limb prosthetics are currently operated using several electromyography sensors mounted on an amputee's residual limb. In order for any prosthetic driving interface to be widely adopted, it needs to be responsive, lightweight, and out of the way when not being used. In this paper we discuss the possibility of replacing such electrodes with fingernail optical sensor systems mounted on the sound limb. We present a prototype device that can detect pinch gestures and communicate with the prosthetic system. The device detects the relative position of fingers to each other by measuring light transmitted via tissue. Applications are not limited to prosthetic control, but can be extended to other human-machine interfaces.

  20. Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Schwarz, Kathleen

    2017-02-01

    Ab initio modeling of electrochemical systems is becoming a key tool for understanding and predicting electrochemical behavior. Development and careful benchmarking of computational electrochemical methods are essential to ensure their accuracy. Here, using charging curves for an electrode in the presence of an inert aqueous electrolyte, we demonstrate that most continuum models, which are parameterized and benchmarked for molecules, anions, and cations in solution, undersolvate metal surfaces, and underestimate the surface charge as a function of applied potential. We examine features of the electrolyte and interface that are captured by these models and identify improvements necessary for realistic electrochemical calculations of metal surfaces. Finally, we reparameterize popular solvation models using the surface charge of Ag(100) as a function of voltage to find improved accuracy for metal surfaces without significant change in utility for molecular and ionic solvation.

  1. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  2. User Interface Problems of a Nationwide Inpatient Information System: A Heuristic Evaluation

    PubMed Central

    Atashi, Alireza; Azizi, Amirabbas; Dadashi, Ali

    2016-01-01

    Summary Introduction While studies have shown that usability evaluation could uncover many design problems of health information systems, the usability of health information systems in developing countries using their native language is poorly studied. The objective of this study was to evaluate the usability of a nationwide inpatient information system used in many academic hospitals in Iran. Material and Methods Three trained usability evaluators independently evaluated the system using Nielsen’s 10 usability heuristics. The evaluators combined identified problems in a single list and independently rated the severity of the problems. We statistically compared the number and severity of problems identified by HIS experienced and non-experienced evaluators. Results A total of 158 usability problems were identified. After removing duplications 99 unique problems were left. The highest mismatch with usability principles was related to “Consistency and standards” heuristic (25%) and the lowest related to “Flexibility and efficiency of use” (4%). The average severity of problems ranged from 2.4 (Major problem) to 3.3 (Catastrophe problem). The experienced evaluator with HIS identified significantly more problems and gave higher severities to problems (p<0.02). Discussion Heuristic Evaluation identified a high number of usability problems in a widely used inpatient information system in many academic hospitals. These problems, if remain unsolved, may waste users’ and patients’ time, increase errors and finally threaten patient’s safety. Many of them can be fixed with simple redesign solutions such as using clear labels and better layouts. This study suggests conducting further studies to confirm the findings concerning effect of evaluator experience on the results of Heuristic Evaluation. PMID:27081409

  3. Improving Human-Machine Cooperative Classification Via Cognitive Theories of Similarity.

    PubMed

    Roads, Brett D; Mozer, Michael C

    2016-07-22

    Acquiring perceptual expertise is slow and effortful. However, untrained novices can accurately make difficult classification decisions (e.g., skin-lesion diagnosis) by reformulating the task as similarity judgment. Given a query image and a set of reference images, individuals are asked to select the best matching reference. When references are suitably chosen, the procedure yields an implicit classification of the query image. To optimize reference selection, we develop and evaluate a predictive model of similarity-based choice. The model builds on existing psychological literature and accommodates stochastic, dynamic shifts of attention among visual feature dimensions. We perform a series of human experiments with two stimulus types (rectangles, faces) and nine classification tasks to validate the model and to demonstrate the model's potential to boost performance. Our system achieves high accuracy for participants who are naive as to the classification task, even when the classification task switches from trial to trial.

  4. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy.

    PubMed

    Park, Young-Shin; Bae, Wan Ki; Padilha, Lazaro A; Pietryga, Jeffrey M; Klimov, Victor I

    2014-02-12

    Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variation in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here, we directly evaluate the effect of the composition of the core-shell interface on single- and multiexciton dynamics via side-by-side measurements of individual core-shell CdSe/CdS nanocrystals with a sharp versus smooth (graded) interface. To realize the latter type of structures we incorporate a CdSexS1-x alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes, which correlates with the increase in the biexciton emission efficiency, as inferred from two-photon correlation measurements. These observations provide direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of "Auger-recombination-free" colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells.

  5. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  6. Evaluation of the Rotational Throttle Interface for Converting Aircraft Utilizing the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Rozovski, David; Theodore, Colin R.

    2011-01-01

    An experiment was conducted to compare a conventional helicopter Thrust Control Lever (TCL) to the Rotational Throttle Interface (RTI) for tiltrotor aircraft. The RTI is designed to adjust its orientation to match the angle of the tiltrotor s nacelles. The underlying principle behind the design is to increase pilot awareness of the vehicle s configuration state (i.e. nacelle angle). Four test pilots flew multiple runs on seven different experimental courses. Three predominant effects were discovered in the testing of the RTI: 1. Unintentional binding along the control axis resulted in difficulties with precision power setting, 2. Confusion in which way to move the throttle grip was present during RTI transition modes, and 3. Pilots were not able to distinguish small angle differences during RTI transition. In this experiment the pilots were able to successfully perform all of the required tasks with both inceptors although the handling qualities ratings were slightly worse for the RTI partly due to unforeseen deficiencies in the design. Pilots did however report improved understanding of nacelle movement during transitions with the RTI.

  7. Evaluation of direct push probes: Sensor interface analysis of DC resistivity probes

    NASA Astrophysics Data System (ADS)

    Demuth, Daniel; Bumberger, Jan; Paasche, Hendrik

    2015-11-01

    In near surface sedimentary exploration direct push technology has become popular for geophysical logging. The method is thought to have great potential to offer accurate information about the variability of physical parameters since the region of disturbed sedimentary formation due to probe injection is considered to be smaller compared to disturbances by classical borehole measurements. Technical and experimental design of direct push probes follow often those of established borehole probes. A systematic appraisal of the suitability of such tools for direct push logging procedure exposing the probes to a very high mechanical stress and rapid aging process has been missing in the past. Following a recently developed general framework for direct push system decomposition we analyze two different DC resistivity direct push probes with regard to their sensor interface. Simple laboratory experiments validate the setup of a numerical simulation of both probes revealing significant differences on the suitability of the chosen electrode arrangement. Differences in robustness with regard to surface abrasion result in changing probe responses which could, depending on the experimental design of the probe, cause resistivity value changes of almost 25% within approximately 15 operational hours, which leaves severe doubts about the suitability of established direct push logging probes for quantitative geophysical probing.

  8. Clinical evaluation of wireless inductive tongue computer interface for control of computers and assistive devices.

    PubMed

    Lontis, Eugen R; Lund, Morten E; Christensen, Henrik V; Bentsen, Bo; Gaihede, Michael; Caltenco, Hector A; Andreasen Struijk, Lotte N S

    2010-01-01

    Typing performance of a full alphabet keyboard and a joystick type of mouse (with on-screen keyboard) provided by a wireless integrated tongue control system (TCS) has been investigated. The speed and accuracy have been measured in a form of a throughput defining the true correct words per minute [cwpm]. Training character sequences were typed in a dedicated interface that provided visual feedback of activated sensors, a map of the alphabet associated, and the task character. Testing sentences were typed in Word, with limited visual feedback, using non-predictive typing (map of characters in alphabetic order associated to sensors) and predictive typing (LetterWise) for TCS keyboard, and non-predictive typing for TCS mouse. Two subjects participated for four and three consecutive days, respectively, two sessions per day. Maximal throughput of 2.94, 2.46, and 2.06, 1.68 [cwpm] were obtained with TCS keyboard by subject 1 and 2 with predictive and non-predictive typing respectively. Maximal throughput of 2.09 and 1.71 [cwpm] was obtained with TCS mouse by subject 1 and 2, respectively. Same experimental protocol has been planned for a larger number of subjects.

  9. Code System for Evaluating Routine Radioactive Effluents from Nuclear Power Plants with Windows Interface.

    SciTech Connect

    MALAFEEW, VAL

    2012-12-13

    Version 03 NRCDose72 is a software program developed by Chesapeake Nuclear Services that integrates the NRC’s Fortran programs LADTAP II, GASPAR II, and XOQDOQ and provides a user-friendly interface for running the codes on a PC. These codes provide an accepted regulatory basis for assessing doses to the public as required for the licensing assessments for both license renewal and new build nuclear plants. Chesapeake Nuclear Services undertook an effort to update the dose conversion factors (DCFs) used in NRCDose72 to the factors reported in ICRP-72, naming the new program NRCDose72. The original NRCDose72 program is equipped to perform calculations with up to 169 radionuclides, seven organs (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) and four age ranges (infant, child, teenager, and adult). The ICRP-72 methodology contains additional parameters, including dose factors for 25 discrete organs, plus a remainder organ and effective DCF. Also, there are a total of six different age ranges (newborn, 1‑yr. old, 5-yr. old, 10-yr. old, 15-yr. old, and adult). Finally, ICRP-72 contains DCFs for a variety of chemical forms (H-3 as vapor or Organically Bound Tritium, for example) or inhalation classes (F, M or S for nearly all radionuclides). See Abstract for recent modifications.

  10. Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation

    SciTech Connect

    Pokrovsky, O.S.; Mielczarski, J.A.; Barres, O.; Schott, J.

    2000-03-21

    The composition and density of surface hydroxyl and carbonate groups on calcite and dolomite after contact at 25 C with solutions of different pH (3 to 12) and carbonate concentration (10{sup {minus}4} {le}{Sigma}CO{sub 2}{le} 0.1 M) were monitored by means of diffuse reflectance infrared (DRIFT) spectroscopy. Both for calcite and dolomite, broad high-intensity absorbance bands at about 3,400 and 1,600 cm{sup {minus}1} were observed at pH below 6 and carbonate concentration below 10{sub {minus}3} M. These bands are assigned to hydroxyl groups present at the mineral surfaces. At higher pH and {Sigma}CO{sub 2}, the intensity of these bands significantly decreases. On the contrary the intensity of the broad double band at about 1,400 cm{sup {minus}1} due to carbonate species (surface and bulk) for both minerals was found to increase significantly with increasing solution pH and carbonate concentration, being the lowest at pH {le} 5 and {Sigma}CO{sub 2} {le} 10{sup {minus}3} M. These observations correlate well with the surface speciation for calcite or dolomite/aqueous solution interface predicted based on surface complexation models (SCM).

  11. The biological seal of the implant–soft tissue interface evaluated in a tissue-engineered oral mucosal model

    PubMed Central

    Chai, Wen L.; Brook, Ian M.; Palmquist, Anders; van Noort, Richard; Moharamzadeh, Keyvan

    2012-01-01

    For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant–soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant–soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different. PMID:22915635

  12. Computational evaluation of the theoretical image fitting analysis—axisymmetric interfaces (TIFA-AI) method of measuring interfacial tension

    NASA Astrophysics Data System (ADS)

    Cabezas, M. G.; Montanero, J. M.; Ferrera, C.

    2007-05-01

    A new method, theoretical image fitting analysis for axisymmetric interfaces (TIFA-AI), has recently been presented for measuring the interfacial properties of liquids, such as the interfacial tension and contact angles, by analysing the shape of an axisymmetric liquid-fluid interface without the use of apex coordinates. The versatility and accuracy of TIFA-AI have been shown by conducting experiments with various configurations: liquid bridges, sessile and pendant drops, and liquid lenses. In this paper, the performance of TIFA-AI is evaluated in detail by using 'synthetic' images of pendant drops and liquid bridges, which allows one to study separately the influence of different factors in the experiment. A simple method for generating such synthetic images of pendant drops and liquid bridges is described. The synthetic images are processed by TIFA-AI and the resulting interfacial tensions are compared with the (known) true values. The influence of errors associated with the calibration process and the effects of reducing the quality of the image on the results provided by TIFA-AI is analysed. As a general conclusion, one can assert that TIFA-AI provides accurate values of the interfacial tension for pendant drops and liquid bridges for a wide range of experimental conditions.

  13. “Methods to promote Notch signaling at the biomaterial interface and evaluation in a rafted organ culture model”

    PubMed Central

    Beckstead, Benjamin L.; Tung, Jason C.; Liang, Katharine J.; Tavakkol, Zarry; Usui, Marcia L.; Olerud, John E.; Giachelli, Cecilia M.

    2013-01-01

    The Notch signaling pathway is a promising target for controlling cell fate choices at the biomaterial-tissue interface. Building on our previous work in developing Notch-signaling biomaterials, we evaluated various immobilization schemes for Notch ligands and their effect on human foreskin keratinocytes. A peptide sequence derived from the Jagged-1 DSL-region and immobilized to poly (2-hydroxyethyl methacrylate) (polyHEMA) showed no bioactivity in relation to the Notch-CSL pathway. The full-length Jagged-1 protein immobilized directly to the polyHEMA surface showed activity in signaling the Notch-CSL pathway. However, an indirect affinity immobilization approach yielded a stronger signal. Human keratinocytes plated on bound Jagged-1 showed upregulated involucrin, keratin 10, and loricrin protein expression, with this expression being cell density-dependent. Utilizing a human foreskin rafted organ culture model as a bridge between in vitro and in vivo studies, Jagged-1-modified or control polyHEMA rods were implanted in human foreskin and cultured at the air-medium interface. Keratinocyte proliferation was suppressed and intermediate-stage differentiation promoted in Jagged-1-modified rods compared to control rods. Thus, Notch-signaling biomaterials provide a robust approach to control keratinocyte differentiation and may find application to other progenitor and stem cells. PMID:18985776

  14. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    PubMed

    Jakubov, Tim S; Mainwaring, David E

    2007-03-15

    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  15. Pilot Study and Evaluation of Postgraduate Course on "The Interface Between Spirituality, Religion and Psychiatry"

    ERIC Educational Resources Information Center

    Grabovac, Andrea; Clark, Nancy; McKenna, Mario

    2008-01-01

    Objectives: Understanding the role of religion and spirituality is significant for psychiatric practice. Implementation of formal education and training on religious and spiritual issues, however, is lacking. Few psychiatric residencies offer mandatory courses or evaluation of course utility. The authors present findings from a pilot study of a…

  16. The Interface of Opinion, Understanding and Evaluation While Learning about a Socioscientific Issue

    ERIC Educational Resources Information Center

    Witzig, Stephen B.; Halverson, Kristy L.; Siegel, Marcelle A.; Freyermuth, Sharyn K.

    2013-01-01

    Scientific literacy is an important goal for science education, especially within controversial socioscientific issues. In this study, we analysed 143 students' research reports about stem cell research (SCR) for how they addressed specific source evaluation criteria provided within the assignment. We investigated students' opinions about SCR, how…

  17. Identifying Engineering, Clinical and Patient's Metrics for Evaluating and Quantifying Performance of Brain-Machine Interface (BMI) Systems.

    PubMed

    Contreras-Vidal, Jose L

    2014-10-05

    Brain-machine interface (BMI) devices have unparalleled potential to restore functional movement capabilities to stroke, paralyzed and amputee patients. Although BMI systems have achieved success in a handful of investigative studies, translation of closed-loop neuroprosthetic devices from the laboratory to the market is challenged by gaps in the scientific data regarding long-term device reliability and safety, uncertainty in the regulatory, market and reimbursement pathways, lack of metrics for evaluating and quantifying performance in BMI systems, as well as patient-acceptance challenges that impede their fast and effective translation to the end user. This review focuses on the identification of engineering, clinical and user's BMI metrics for new and existing BMI applications.

  18. Design Specification for Test and Evaluation of the NATO Common Ada Programming Support Environment (APSE) Interface Set (CAIS) Implementation

    DTIC Science & Technology

    1989-02-23

    testing (i.e., testing of individual interfaces) for a critical subset of the SWG CAIS interfaces. The second category of testing activities includes...for correctness in the functionality of critical interfaces. These critical interfaces are defined in Section 2.2. The second category, usability...QUEUE-MANAGEMENT CAM-.STANDARD None CAM- DEFENITIONS CAMSJO..DEINITJONS CAI IST-MANAGEMENT CAIS.ACCESS-.CONTROL- MANAGEMENT CAIS-SCROLL-TERMNAL-10 CA1S

  19. A comparative evaluation plan for the Maintenance, Inventory, and Logistics Planning (MILP) System Human-Computer Interface (HCI)

    NASA Technical Reports Server (NTRS)

    Overmyer, Scott P.

    1993-01-01

    The primary goal of this project was to develop a tailored and effective approach to the design and evaluation of the human-computer interface (HCI) to the Maintenance, Inventory and Logistics Planning (MILP) System in support of the Mission Operations Directorate (MOD). An additional task that was undertaken was to assist in the review of Ground Displays for Space Station Freedom (SSF) by attending the Ground Displays Interface Group (GDIG), and commenting on the preliminary design for these displays. Based upon data gathered over the 10 week period, this project has hypothesized that the proper HCI concept for navigating through maintenance databases for large space vehicles is one based upon a spatial, direct manipulation approach. This dialogue style can be then coupled with a traditional text-based DBMS, after the user has determined the general nature and location of the information needed. This conclusion is in contrast with the currently planned HCI for MILP which uses a traditional form-fill-in dialogue style for all data access and retrieval. In order to resolve this difference in HCI and dialogue styles, it is recommended that comparative evaluation be performed which combines the use of both subjective and objective metrics to determine the optimal (performance-wise) and preferred approach for end users. The proposed plan has been outlined in the previous paragraphs and is available in its entirety in the Technical Report associated with this project. Further, it is suggested that several of the more useful features of the Maintenance Operations Management System (MOMS), especially those developed by the end-users, be incorporated into MILP to save development time and money.

  20. Monitoring and evaluation of plant and hydrological controls on arsenic transport across the water sediment interface

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; MacDonald, L. H.; Paull, J.

    2009-12-01

    Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in

  1. Evaluation of an Airborne Spacing Concept, On-Board Spacing Tool, and Pilot Interface

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt; Murdoch, Jennifer L.; Baxley, Brian; Hubbs, Clay

    2011-01-01

    The number of commercial aircraft operations is predicted to increase in the next ten years, creating a need for improved operational efficiency. Two areas believed to offer significant increases in efficiency are optimized profile descents and dependent parallel runway operations. It is envisioned that during both of these types of operations, flight crews will precisely space their aircraft behind preceding aircraft at air traffic control assigned intervals to increase runway throughput and maximize the use of existing infrastructure. This paper describes a human-in-the-loop experiment designed to study the performance of an onboard spacing algorithm and pilots ratings of the usability and acceptability of an airborne spacing concept that supports dependent parallel arrivals. Pilot participants flew arrivals into the Dallas Fort-Worth terminal environment using one of three different simulators located at the National Aeronautics and Space Administration s (NASA) Langley Research Center. Scenarios were flown using Interval Management with Spacing (IM-S) and Required Time of Arrival (RTA) control methods during conditions of no error, error in the forecast wind, and offset (disturbance) to the arrival flow. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned arrival time and reported that both the IM-S and RTA procedures were associated with low workload levels. In general, pilots found the IM-S concept, procedures, speeds, and interface acceptable; with 92% of pilots rating the procedures as complete and logical, 218 out of 240 responses agreeing that the IM-S speeds were acceptable, and 63% of pilots reporting that the displays were easy to understand and displayed in appropriate locations. The 22 (out of 240) responses, indicating that the commanded speeds were not acceptable and appropriate occurred during scenarios containing wind error and offset error. Concerns cited included the occurrence

  2. Developing the VirtualwindoW into a General Purpose Telepresence Interface

    SciTech Connect

    McKay, M D; Anderson, M O; Kinoshita, R A; Willis, W D

    1999-04-01

    An important need while using robots or remotely operated equipment is the ability for the operator or an observer to easily and accurately perceive the operating environment. A classic problem in providing a complete representation of a work area is sensory overload or excessive complexity in the human-machine interface. In addition, remote operations often benefit from depth perception capability while viewing or manipulating objects. Thus, there is an on going effort within the robotic field to develop simplified telepresence interfaces. The Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) has been researching methods to generalize a human-machine interface for telepresence applications. Initial telepresence research conducted at the INEEL developed and implemented a concept called the VirtualwindoW. This system minimized the complexity of remote stereo viewing controls and provided the operator the "feel" of viewing the environment, including depth perception, in a natural setting. The VirtualwindoW has shown that the human-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW to provide a generalized, reconfigurable system that easily utilizes commercially available components. The original system has now been expanded to include support for zoom lenses, camera blocks, wireless links, and even vehicle control.

  3. Nondestructive evaluation of the interface between ceramic coating and stainless steel by electromagnetic method

    NASA Astrophysics Data System (ADS)

    Savin, A.; Steigmann, R.; Iftimie, N.; Novy, F.; Vizureanu, P.; Craus, M. L.; Fintova, S.

    2016-08-01

    Protecting coatings as thermal barrier coating (TBC) are used for yield improvement of equipment working at high temperature. Zirconia doped with yttria ceramics are considered a good TBC material due of its low thermal conductivity, refractory, chemical inertness and compatible thermal expansion coefficient with metallic support. The paper proposes the use of an electromagnetic method for evaluation of coatings on stainless steel using a sensor with metamaterial lens and comparison of the results with those obtained by complementary methods.

  4. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  5. Development and Evaluation of the Method with an Affective Interface for Promoting Employees' Morale

    NASA Astrophysics Data System (ADS)

    Fujino, Hidenori; Ishii, Hirotake; Shimoda, Hiroshi; Yoshikawa, Hidekazu

    For the sustainable society, organization management not based on the mass production and mass consumption but having the flexibility to meet to various social needs precisely is required. For realizing such management, the emploees' work morale is required. Recently, however, the emploees' work morale is tend to decrease. Therefore, in this study, the authors developed the model of the method for promoting and keeping employees' work morale effectively and efficiently. Especially the authors thought “work morale” of “attitude to the work”. Based on this idea, it could be considered that the theory of the persuasion psychology and various persuasion techniques. Therefore, the model of the method applying the character agent was developed based on the forced compliance which is one of persuasion techniques based on the theory of the cognitive dissonance. By the evaluation experiment using human subjects, it was confirmed that developed method could improve workers' work morle effectively.

  6. CBP for Field Workers – Results and Insights from Three Usability and Interface Design Evaluations

    SciTech Connect

    Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Bly, Aaron Douglas; Medema, Heather Dawne; Hill, Wyatt Orcutt

    2015-09-01

    Nearly all activities that involve human interaction with the systems in a nuclear power plant are guided by procedures. Even though the paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety, improving procedure use could yield significant savings in increased efficiency as well as improved nuclear safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use and adherence, researchers in the Light-Water Reactor Sustainability (LWRS) Program, together with the nuclear industry, have been investigating the possibility and feasibility of replacing the current paper-based procedure process with a computer-based procedure (CBP) system. This report describes a field evaluation of new design concepts of a prototype computer-based procedure system.

  7. Evaluation of sulfate reduction at experimentally induced mixing interfaces using small-scale push-pull tests in an aquifer-wetland system

    USGS Publications Warehouse

    Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.

    2007-01-01

    This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain-Computer Interface: Case Studies.

    PubMed

    Pinegger, Andreas; Wriessnegger, Selina C; Faller, Josef; Müller-Putz, Gernot R

    2016-01-01

    One important aspect in non-invasive brain-computer interface (BCI) research is to acquire the electroencephalogram (EEG) in a proper way. From an end-user perspective, it means with maximum comfort and without any extra inconveniences (e.g., washing the hair), whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently. In this work, we evaluated three different commercially available EEG acquisition systems that differ in the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control), and user satisfaction (comfort). We found that water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode-based system caused the least inconveniences. Therefore, building a reliable BCI is possible with all the evaluated systems, and it is on the user to decide which system meets the given requirements best.

  9. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving

    PubMed Central

    Zander, Thorsten O.; Andreessen, Lena M.; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R.; Gramann, Klaus

    2017-01-01

    We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort. PMID:28293184

  10. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain–Computer Interface: Case Studies

    PubMed Central

    Pinegger, Andreas; Wriessnegger, Selina C.; Faller, Josef; Müller-Putz, Gernot R.

    2016-01-01

    One important aspect in non-invasive brain–computer interface (BCI) research is to acquire the electroencephalogram (EEG) in a proper way. From an end-user perspective, it means with maximum comfort and without any extra inconveniences (e.g., washing the hair), whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently. In this work, we evaluated three different commercially available EEG acquisition systems that differ in the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control), and user satisfaction (comfort). We found that water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode-based system caused the least inconveniences. Therefore, building a reliable BCI is possible with all the evaluated systems, and it is on the user to decide which system meets the given requirements best. PMID:27746714

  11. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  12. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving.

    PubMed

    Zander, Thorsten O; Andreessen, Lena M; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R; Gramann, Klaus

    2017-01-01

    We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort.

  13. Evaluation of Incoherent Interface Strength of Solid-State-Bonded Ti64/Stainless Steel Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Singh, Jogender; Varma, Amit H.; Tomar, Vikas

    2015-08-01

    Ti/steel interfaces are produced using field-assisted sintering technology, a technique known to bring about full consolidation of materials using much lower sintering temperatures and durations. The interface thickness is verified using the energy-dispersive x-ray analysis exhibiting the extent of diffusion in interface regions. The interface mechanical strength is characterized using dynamic indentation experiments at strain rates approaching 400 s-1. The experiments were conducted on the interfaces within the spatial error tolerance of less than 3 µm. The measurements of dynamic hardness values, strain rates, and plastic-residual depths were correlated to show the relation of interface mechanical strength with the bulk-phase mechanical strength properties of Ti and steel. The Johnson-Cook model is fitted to the obtained interface normal stress-normal strain data based on the nanoimpact experiments. The coefficient of restitution in the mechanical loading and its dependence on the interface dynamic hardness and interface impact velocity validate the experimental results. The results show that interfacial properties are affected by the rate of loading and are largely dependent upon the interface structural inhomogeneity.

  14. Interface Between MTA and Dental Bonding Agents: Scanning Electron Microscope Evaluation

    PubMed Central

    Cervino, Gabriele; Fiorillo, Luca; Spagnuolo, Gianrico; Bramanti, Ennio; Laino, Luigi; Lauritano, Floriana; Cicciù, Marco

    2017-01-01

    Aims and Objectives: Nowadays, the material that offers the best sealing characteristic in the field of endodontic treatment is the mineral trioxide aggregate (MTA), nevertheless, this material necessities an adhesive bonding agent to perfectly join to the dental surface. The aim of this study was to analyze using a scanning electron microscope (SEM) the possible microgap between the adhesive, MTA, and the dental surface. Material and Methods: Fourteen extracted molars were divided into two groups – group A was prepared with MTA-component adhesive and group B was prepared with MTA and composite dual etching. The observations were carried out with a SEM Phenom G2 Pro mode S.E.I. JMP® software was used for statistical analysis, and a t-test was used for evaluating the difference between the two groups. Results: The gap of the areas at higher magnification (1000×) with a size greater than 5 microns in width and 20 microns in length were considered significant, and only group A recorded significant data. Conclusions: The SEM analysis performed in the group A with interposition of adhesive and flow between the dental pulp chamber and MTA demonstrates the presence of a marginal gap of considerable amplitude in the all of the samples investigated. PMID:28316952

  15. Evaluation of the micro-mechanical strength of resin bonded-dentin interfaces submitted to short-term degradation strategies.

    PubMed

    Feitosa, Victor P; Sauro, Salvatore; Watson, Timothy F; Correr, Américo B; Osorio, Raquel; Toledano, Manuel; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre C

    2012-11-01

    The aim of this study was to evaluate the microtensile bond strength (μTBS) and confocal micropermeability of resin bonded-dentin specimens created using two representative two-step/self-etch adhesives submitted to short-term period degradation strategies such as simulated pulpal pressure, thermo- or mechanical-cycling challenges. Clearfil SE Bond (CSE) and Silorane adhesive (SIL) were bonded to flat deep dentin from seventy extracted human molars and light-cured for 10 s. Composite build-ups were constructed using with Filtek Z350 XT and Filtek P90 respectively. The specimens of each adhesive group were subjected to three different accelerated aging methods: (1) thermo-cycling challenge (5000 cycles); (2) mechanical-cycling load (200,000 cycles); (3) experiment and (4) conventional method for simulated pulpal pressure (20 cm H₂O). Control resin-bonded specimens were stored in distilled water for 24 h. μTBS and confocal microscopy (CLSM) micropermeability evaluation were performed and the results were analyzed using Two-way ANOVA and Tukey's tests (α=0.05). The CLSM evaluation revealed micro-cracks within the Silorane-bonded dentin subsequent to mechanical-cycling load, whereas, the simulated pulpal pressure induced evident micropermeability in both bonding agents. Mechanical loading provides discernible bonding degradation in a short-term period in resin-bonded dentin created using two-step/self-etch adhesives. However, simulated pulpal pressure may reduce the sealing ability of self-etch adhesives causing greater water uptake within the resin-dentin interface.

  16. The Development of the CONDUIT Advanced Control System Design and Evaluation Interface with a Case Study Application to an Advanced Fly by Wire Helicopter Design

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason

    1999-01-01

    This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.

  17. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces.

    PubMed

    Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan

    2014-01-01

    A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promisingneuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focusedon enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated theperformances of a variety of mental task combinations in order to determine the mental task pairs that are bestsuited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses whileseven participants performed eight different mental tasks. Classification accuracies were then estimated for allpossible pairs of the eight mental tasks (8C2 = 28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: “mental multiplication,” “mental rotation,” and “right-hand motor imagery.” Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.

  18. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.

    PubMed

    Rojas, Mario; Ponce, Pedro; Molina, Arturo

    2016-08-01

    This paper presents the evaluation, under standardized metrics, of alternative input methods to steer and maneuver a semi-autonomous electric wheelchair. The Human-Machine Interface (HMI), which includes a virtual joystick, head movements and speech recognition controls, was designed to facilitate mobility skills for severely disabled people. Thirteen tasks, which are common to all the wheelchair users, were attempted five times by controlling it with the virtual joystick and the hands-free interfaces in different areas for disabled and non-disabled people. Even though the prototype has an intelligent navigation control, based on fuzzy logic and ultrasonic sensors, the evaluation was done without assistance. The scored values showed that both controls, the head movements and the virtual joystick have similar capabilities, 92.3% and 100%, respectively. However, the 54.6% capacity score obtained for the speech control interface indicates the needs of the navigation assistance to accomplish some of the goals. Furthermore, the evaluation time indicates those skills which require more user's training with the interface and specifications to improve the total performance of the wheelchair.

  19. Soft, conformal bioelectronics for a wireless human-wheelchair interface.

    PubMed

    Mishra, Saswat; Norton, James J S; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-05-15

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms.

  20. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    SciTech Connect

    O`Hara, J.M.; Brown, W.S.; Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  1. Separate Evaluation of the Kinetics of Carbide Precipitation Occurring at the Interface of Preexisting Particles and Within the Austenitic Matrix in a Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Gil; Shin, Eunjoo; Lee, Young-Kook

    2017-01-01

    The isothermal kinetics of carbide precipitation occurring at the interface of preexisting (Ti,Nb)(N,C) particles and within the deformed γ-austenite matrix were separately evaluated using a Nb-Ti-V microalloyed steel through small-angle neutron scattering and transmission electron microscopy. While the specimen was isothermally held after deformation at 1223 K (950 °C), (Nb,Ti)(C,N) particles were precipitated at the interface of coarse (Ti,Nb)(N,C) particles preexisting in the recrystallized γ matrix. This resulted in a single size distribution curve, which was converted from the measured magnetic scattering cross section. However, during isothermal holding after deformation at 1123 K (850 °C), fine (Nb,Ti,V)(C,N) particles formed mainly within the deformed γ matrix, although some of them were precipitated at the interface of preexisting coarse (Ti,Nb)(N,C) particles. Accordingly, the specimens held at 1123 K (850 °C) exhibited double size distribution curves. The separate evaluation between matrix and interface precipitation kinetics was successfully performed using the size distribution curves due to the difference in particle size according to the nucleation site. The reliability of carbide precipitation kinetics was confirmed by comparing the measured ratio between magnetic and nuclear scattering cross sections with the ratio calculated based on the measured chemical composition of precipitates.

  2. Minimizing Modes for Smart Selection in Sketching/Drawing Interfaces

    NASA Astrophysics Data System (ADS)

    Saund, Eric; Lank, Edward

    User interface modes are ubiquitous in both mouse-keyboard and pen-based user interfaces, but the requirement for prior setting of a user interface mode before performing an action imposes a persistent drag on system usability. This chapter reviews our research in approaches to avoiding prior deliberate mode setting while still allowing overloading of fundamental tap and gesture operations. We analyze the human-machine dynamics of UI protocols through a graphical notation called the Interaction Flow Diagram. Our framework offers a pyramid of methods ranging from simple UI design techniques, through recognition of gestures and canvas content, to modeling of user knowledge and goals. These are represented in four methods: Overloaded Loop Selection to infer rectangle versus lasso selection mode; the Inferred Mode Protocol for Inferring Draw/Select Mode; the Sloppy Selection method for inferring intended content of an ambiguous selection; and the Cycle Tap Selection Method for exploiting structure recognition.

  3. A study of a steering system algorithm for pleasure boats based on stability analysis of a human-machine system model

    NASA Astrophysics Data System (ADS)

    Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki

    2016-09-01

    Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.

  4. JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability - An Application Programming Interface (API) for Model Analysis

    USGS Publications Warehouse

    Banta, Edward R.; Poeter, Eileen P.; Doherty, John E.; Hill, Mary C.

    2006-01-01

    The Joint Universal Parameter IdenTification and Evaluation of Reliability Application Programming Interface (JUPITER API) improves the computer programming resources available to those developing applications (computer programs) for model analysis. The JUPITER API consists of eleven Fortran-90 modules that provide for encapsulation of data and operations on that data. Each module contains one or more entities: data, data types, subroutines, functions, and generic interfaces. The modules do not constitute computer programs themselves; instead, they are used to construct computer programs. Such computer programs are called applications of the API. The API provides common modeling operations for use by a variety of computer applications. The models being analyzed are referred to here as process models, and may, for example, represent the physics, chemistry, and(or) biology of a field or laboratory system. Process models commonly are constructed using published models such as MODFLOW (Harbaugh et al., 2000; Harbaugh, 2005), MT3DMS (Zheng and Wang, 1996), HSPF (Bicknell et al., 1997), PRMS (Leavesley and Stannard, 1995), and many others. The process model may be accessed by a JUPITER API application as an external program, or it may be implemented as a subroutine within a JUPITER API application . In either case, execution of the model takes place in a framework designed by the application programmer. This framework can be designed to take advantage of any parallel processing capabilities possessed by the process model, as well as the parallel-processing capabilities of the JUPITER API. Model analyses for which the JUPITER API could be useful include, for example: * Compare model results to observed values to determine how well the model reproduces system processes and characteristics. * Use sensitivity analysis to determine the information provided by observations to parameters and predictions of interest. * Determine the additional data needed to improve selected

  5. Standardizing Interfaces for External Access to Data and Processing for the NASA Ozone Product Evaluation and Test Element (PEATE)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.; Fleig, Albert J.

    2008-01-01

    NASA's traditional science data processing systems have focused on specific missions, and providing data access, processing and services to the funded science teams of those specific missions. Recently NASA has been modifying this stance, changing the focus from Missions to Measurements. Where a specific Mission has a discrete beginning and end, the Measurement considers long term data continuity across multiple missions. Total Column Ozone, a critical measurement of atmospheric composition, has been monitored for'decades on a series of Total Ozone Mapping Spectrometer (TOMS) instruments. Some important European missions also monitor ozone, including the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY. With the U.S.IEuropean cooperative launch of the Dutch Ozone Monitoring Instrument (OMI) on NASA Aura satellite, and the GOME-2 instrumental on MetOp, the ozone monitoring record has been further extended. In conjunction with the U.S. Department of Defense (DoD) and the National Oceanic and Atmospheric Administration (NOAA), NASA is now preparing to evaluate data and algorithms for the next generation Ozone Mapping and Profiler Suite (OMPS) which will launch on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) in 2010. NASA is constructing the Science Data Segment (SDS) which is comprised of several elements to evaluate the various NPP data products and algorithms. The NPP SDS Ozone Product Evaluation and Test Element (PEATE) will build on the heritage of the TOMS and OM1 mission based processing systems. The overall measurement based system that will encompass these efforts is the Atmospheric Composition Processing System (ACPS). We have extended the system to include access to publically available data sets from other instruments where feasible, including non-NASA missions as appropriate. The heritage system was largely monolithic providing a very controlled processing flow from data.ingest of

  6. Evaluation of a new approach for modelling the screw-bone interface in a locking plate fixation: a corroboration study.

    PubMed

    Moazen, Mehran; Mak, Jonathan H; Jones, Alison C; Jin, Zhongmin; Wilcox, Ruth K; Tsiridis, Eleftherios

    2013-07-01

    Computational modelling of the screw-bone interface in fracture fixation constructs is challenging. While incorporating screw threads would be a more realistic representation of the physics, this approach can be computationally expensive. Several studies have instead suppressed the threads and modelled the screw shaft with fixed conditions assumed at the screw-bone interface. This study assessed the sensitivity of the computational results to modelling approaches at the screw-bone interface. A new approach for modelling this interface was proposed, and it was tested on two locking screw designs in a diaphyseal bridge plating configuration. Computational models of locked plating and far cortical locking constructs were generated and compared to in vitro models described in prior literature to corroborate the outcomes. The new approach led to closer agreement between the computational and the experimental stiffness data, while the fixed approach led to overestimation of the stiffness predictions. Using the new approach, the pattern of load distribution and the magnitude of the axial forces, experienced by each screw, were compared between the locked plating and far cortical locking constructs. The computational models suggested that under more severe loading conditions, far cortical locking screws might be under higher risk of screw pull-out than the locking screws. The proposed approach for modelling the screw-bone interface can be applied to any fixation involved application of screws.

  7. Collection and analysis of wind data for the evaluation of Wildland-Urban Interface Fire Dynamics Simulator

    NASA Astrophysics Data System (ADS)

    Espina, Chad Edward Obedoza

    The Wildland Urban-Interface Fire Dynamics Simulator (WFDS) is a computer code that is currently being developed by the National Institute of Standards and Technology (NIST). WFDS has the capability of simulating wildland fire behavior with prescribed elements such vegetative and structural fuel, topography, and weather conditions. In this initial stage of the research, support for the development of WFDS focuses on the evaluation of a wind flow simulation on a very complex, outdoor terrain. This effort is preceded by the fabrication, installation and testing of wind-sensing equipment. Foremost, wind data gathered from different sites using various instruments are compared and evaluated. The data gathered in the Trails community of Rancho Bernardo is then presented and compared to select WFDS simulations. Systems consisting of a wind vane and anemometer are currently installed in the Trails community of Rancho Bernardo. They were installed by Professor Fletcher J. Miller and me using a lift that is attached to a telescoping crane. These instruments will gather the wind data needed to show the behavioral patterns of winds influenced by the topography and obstructions such as trees and houses. They are currently installed on top of light posts. These light posts were picked based on the path of the fire influenced by the Santa Ana winds that ravaged the community in 2007. The data from these instruments were graphically represented using a Matlab code that was developed specifically for the data sets. The Matlab graphing utility plots wind speed and wind direction along with matching polar plots. Other main features also include the ability to set a time range and compare two sites in one plot. There are other wind instruments currently being tested and being analyzed to ensure correct data is being recorded. These instruments will also expand to a wider range the wind data-gathering capabilities vertically. A Sound Detecting and Ranging (SoDAR) unit gathers wind

  8. Biomechanical design considerations for transradial prosthetic interface: A review.

    PubMed

    Sang, Yuanjun; Li, Xiang; Luo, Yun

    2016-03-01

    Traditional function and comfort assessment of transradial prostheses pay scant attention to prosthetic interface. With better understanding of the biomechanics of prosthetic interface comes better efficiency and safety for interface design; in this way, amputees are more likely to accept prosthetic usage. This review attempts to provide design and selection criteria of transradial interface for prosthetists and clinicians. Various transradial socket types in the literature were chronologically reviewed. Biomechanical discussion of transradial prosthetic interface design from an engineering point of view was also done. Suspension control, range of motion, stability, as well as comfort and safety of socket designs have been considered in varying degrees in the literature. The human-machine interface design should change from traditional "socket design" to new "interface design." From anatomy and physiology to biomechanics of the transradial residual limb, the force and motion transfer, together with comfort and safety, are the two main aspects in prosthetic interface design. Load distribution and transmission should mainly rely on achieving additional skeletal control through targeted soft tissue relief. Biomechanics of the residual limb soft tissues should be studied to find the relationship between mechanical properties and the comfort and safety of soft tissues.

  9. Evaluating Land-Atmosphere-Ocean-Sea Ice Interface Processes in the Regional Arctic System Model (RASM1.0)

    NASA Astrophysics Data System (ADS)

    Brunke, M.; Zeng, X.

    2015-12-01

    Earth System Models (ESMs) have problems simulating climate in the Arctic region. For instance, there continues to be a wide spread in the simulations of the interannual variability and long-term trends of sea ice in the 20th century in the Coupled Model Intercomparison Project (CMIP5) models. Thus, there is also a wide spread in the trends in sea ice decline projected for the 21st century in the CMIP5 models. Recently, the Regional Arctic System Model version 1.0 (RASM1.0) has been developed to provide improved high-resolution simulations of the Arctic atmosphere-ocean-sea ice-land system. A major baseline for the performance of RASM is its comparison with reanalysis (that provides the lateral boundary condition to drive RASM) and with the coarser-resolution ESMs. In this presentation, we will provide such a baseline with respect to the land-atmosphere-ocean-sea ice interface processes by comparing RASM with the Community Earth System Model (CESM) and three reanalysis products. First, 2-m air temperature, surface radiative and turbulent fluxes, and precipitation are compared to global datasets to assess the representation of these quantities in the models and reanalyses regionally. It is found that these quantities are generally better represented over land than over the oceans and sea ice. Then, we will further compare RASM, CESM, and reanalysis products with surface observations made at land flux towers, during northern high-latitude ship cruises over the oceans, and during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment over sea ice. In these comparisons, we will focus on both the annual and diurnal cycles. For instance, the snow versus snow-free period over land will be emphasized, because the land-atmosphere coupling mechanism differs between the two periods. The impact of radiative fluxes on the diurnal temperature errors will also be emphasized. Furthermore, our newly-developed snow depth and snow water equivalent data over several 2deg X 2

  10. Easy-to-use interface

    SciTech Connect

    Blattner, M M; Blattner, D O; Tong, Y

    1999-04-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future.

  11. Graphic Interfaces and Online Information.

    ERIC Educational Resources Information Center

    Percival, J. Mark

    1990-01-01

    Discusses the growing importance of the use of Graphic User Interfaces (GUIs) with microcomputers and online services. Highlights include the development of graphics interfacing with microcomputers; CD-ROM databases; an evaluation of HyperCard as a potential interface to electronic mail and online commercial databases; and future possibilities.…

  12. Thesaurus-Enhanced Search Interfaces.

    ERIC Educational Resources Information Center

    Shiri, Ali Asghar; Revie, Crawford; Chowdhury, Gobinda

    2002-01-01

    Discussion of user interfaces to information retrieval systems focuses on interfaces that incorporate thesauri as part of their searching and browsing facilities. Discusses research literature related to information searching behavior, information retrieval interface evaluation, search term selection, and query expansion; and compares thesaurus…

  13. A Steady-State Visual Evoked Potential Brain-Computer Interface System Evaluation as an In-Vehicle Warning Device

    NASA Astrophysics Data System (ADS)

    Riyahi, Pouria

    This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results

  14. Eye-voice-controlled interface

    NASA Technical Reports Server (NTRS)

    Glenn, Floyd A., III; Iavecchia, Helene P.; Ross, Lorna V.; Stokes, James M.; Weiland, William J.

    1986-01-01

    The Ocular Attention-Sensing Interface System (OASIS) is an innovative human-computer interface which utilizes eye movement and voice commands to communicate messages between the operator and the system. This report initially describes some technical issues relevant to the development of such an interface. The results of preliminary experiments which evaluate alternative eye processing algorithms and feedback techniques are presented. Candidate interface applications are also discussed.

  15. Evaluation and use of a diffusion-controlled sampler for determining chemical and dissolved oxygen gradients at the sediment-water interface

    USGS Publications Warehouse

    Simon, N.S.; Kennedy, M.M.; Massoni, C.S.

    1985-01-01

    Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.

  16. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  17. Evaluation Tools for Image Information Mining System

    NASA Astrophysics Data System (ADS)

    Daschiel, H.; Datcu, M.

    2004-09-01

    In this article, we present tools for the evaluation of a knowledge-drivencontent-based image information mining system. In order to provide users fast access to the content of large remote sensing image archives, the system is composed of two main modules. The first includes computationally intensive algorithms for off-line data ingestion in the database, feature extraction and indexing. The second module consists of a graphical human-machine interface that manages the interactive learning and image information mining functions. According to the system architecture, the implemented evaluation tools determine the objective technical quality of the system and include subjective human factors, too. Since the query performance of the mining system mainly depends on the data sets stored in the archive, we first analyze the complexityof image data. Based on the stochastic nature of user-defined semantic cover-type labels, the system retrieves the most relevant images using probabilistic measurements. We evaluate the man-machine communication dialogue and system operation in order to determine the quality of semantic labels. Finally, we verify the man-machine interfaceby using measurements like time for loading the learning applet, time for computing the probabilistic search results and time for label training.

  18. A study on nondestructive evaluation technique by the use of interface guided waves on shrink fit structure

    SciTech Connect

    Lee, Jaesun; Cho, Younho; Park, Jun-Pil; Rose, Joseph L.; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok

    2014-02-18

    Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.

  19. Developing the VirtualwindoW into a General Purpose Telepresence Interface

    SciTech Connect

    Kinoshita, Robert Arthur; Anderson, Matthew Oley; Mckay, Mark D; Willis, Walter David

    1999-04-01

    An important need while using robots or remotely operated equipment is the ability for the operator or an observer to easily and accurately perceive the operating environment. A classic problem in providing a complete representation of a work area is sensory overload or excessive complexity in the human–machine interface. In addition, remote operations often benefit from depth perception capability while viewing or manipulating objects. Thus, there is an on going effort within the robotic field to develop simplified telepresence interfaces. The Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) has been researching methods to generalize a human-machine interface for telepresence applications. Initial telepresence research conducted at the INEEL developed and implemented a concept called the VirtualwindoW. This system minimized the complexity of remote stereo viewing controls and provided the operator the “feel” of viewing the environment, including depth perception, in a natural setting. The VirtualwindoW has shown that the human-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW to provide a generalized, reconfigurable system that easily utilizes commercially available components. The original system has now been expanded to include support for zoom lenses, camera blocks, wireless links, and even vehicle control.

  20. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration.

  1. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    SciTech Connect

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  2. Developing Human-Machine Interfaces to Support Appropriate Trust and Reliance on Automated Combat Identification Systems (Developpement d’Interfaces Homme-Machine Pour Appuyer la Confiance dans les Systemes Automatises d’Identification au Combat)

    DTIC Science & Technology

    2008-03-31

    on automation; the ‘response bias’ approach. This new approach is based on Signal Detection Theory (SDT) (Macmillan & Creelman , 1991; Wickens...SDT), response bias will vary with the expectation of the target probability, whereas their sensitivity will stay constant (Macmillan & Creelman ...measures, C has the simplest statistical properties (Macmillan & Creelman , 1991, p273), and it was also the measure used in Dzindolet et al.’s study

  3. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine

    PubMed Central

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-01-01

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184

  4. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary

    PubMed Central

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716

  5. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom.

    PubMed

    Li, Jie; Ji, Hongfei; Cao, Lei; Zang, Di; Gu, Rong; Xia, Bin; Wu, Qiang

    2014-06-01

    There have been many attempts to design brain-computer interfaces (BCIs) for wheelchair control based on steady state visual evoked potential (SSVEP), event-related desynchronization/synchronization (ERD/ERS) during motor imagery (MI) tasks, P300 evoked potential, and some hybrid signals. However, those BCI systems cannot implement the wheelchair navigation flexibly and effectively. In this paper, we propose a hybrid BCI scheme based on two-class MI and four-class SSVEP tasks. It cannot only provide multi-degree control for its user, but also allow the user implement the different types of commands in parallel. In order for the subject to learn the hybrid mental strategies effectively, we design a visual and auditory cues and feedback-based training paradigm. Furthermore, an algorithm based on entropy of classification probabilities is proposed to detect intentional control (IC) state for hybrid tasks, and ensure that multi-degree control commands are accurately and quickly generated. The experiment results attest to the efficiency and flexibility of the hybrid BCI for wheelchair control in the real-world.

  6. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    NASA Technical Reports Server (NTRS)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  7. Tuneable autonomy and human interfaces for free-flying servicing vehicles

    NASA Astrophysics Data System (ADS)

    Roger, Alexander; Welsh, Teri; McInnes, Colin R.

    2001-02-01

    Future mission applications for on-orbit servicing vehicles include inspection and maintenance of the International Space Station (ISS) and future crewed deep space missions. The use of robotic servicing vehicles is seen as a key requirement to significantly reduce total human EVA hours for such applications. A necessary technology for these vehicles is the provision of automated mission and trajectory planning tools and suitable human-machine interfaces. This paper will explore new methods for such automation along with approaches to blend autonomy and human control in a seamless manner. These methods have been applied to a range of vehicles including the Daimler-Chrysler ISS Inspector. .

  8. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  9. An evaluation of the ATM man/machine interface. Phase 3: Analysis of SL-3 and SL-4 data

    NASA Technical Reports Server (NTRS)

    Bathurst, J. R., Jr.; Pain, R. F.; Ludewig, D. B.

    1974-01-01

    The functional adequacy of human factored crew operated systems under operational zero-gravity conditions is considered. Skylab ATM experiment operations generated sufficient telemetry and voice transcript data to support such an assessment effort. Discussions are presented pertaining to the methodology and procedures used to evaluate the hardware, training and directive aspects of Skylab 3 and Skylab 4 manned ATM experiment operations.

  10. A basic study on application of voice recognition input to an electronic nursing record system -evaluation of the function as an input interface-.

    PubMed

    Marukami, Terutaka; Tani, Shoko; Matsuda, Atsuko; Takemoto, Keiko; Shindo, Akiko; Inada, Hiroshi

    2012-06-01

    As computerization in the nursing field has been recently progressing, an electronic nursing record system is gradually introduced in the medical institution in Japan. Although it is expected for the electronic nursing record system to reduce the load of nursing work, the conventional keyboard operation is used for information input of the present electronic nursing record system and it has some problems concerning the input time and the operationability for common nurses who are unfamiliar with the computer operation. In the present study, we conducted a basic study on application of voice recognition input to an electronic nursing record system. The voice input is recently introduced to an electronic medical record system in a few clinics. However, so far the entered information cannot be processed because the information of the medical record must be entered as a free sentence. Therefore, we contrived a template for an electronic nursing record system and introduced it to the system for simple information entry and easy processing of the entered information in this study. Furthermore, an input experiment for evaluation of the voice input with the template was carried out by voluntary subjects for evaluation of the function as an input interface of an electronic nursing record system. The results of the experiment revealed that the input time by the voice input is obviously fast compared with that by the keyboard input and operationability of the voice input was superior to the keyboard input although all subjects had inexperience of the voice input. As a result, it was suggested our method, the voice input using the template made by us, might be useful for an input interface of an electronic nursing record system.

  11. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods

    NASA Astrophysics Data System (ADS)

    Schreuder, Martijn; Höhne, Johannes; Blankertz, Benjamin; Haufe, Stefan; Dickhaus, Thorsten; Tangermann, Michael

    2013-06-01

    Objective. In brain-computer interface (BCI) research, systems based on event-related potentials (ERP) are considered particularly successful and robust. This stems in part from the repeated stimulation which counteracts the low signal-to-noise ratio in electroencephalograms. Repeated stimulation leads to an optimization problem, as more repetitions also cost more time. The optimal number of repetitions thus represents a data-dependent trade-off between the stimulation time and the obtained accuracy. Several methods for dealing with this have been proposed as ‘early stopping’, ‘dynamic stopping’ or ‘adaptive stimulation’. Despite their high potential for BCI systems at the patient's bedside, those methods are typically ignored in current BCI literature. The goal of the current study is to assess the benefit of these methods. Approach. This study assesses for the first time the existing methods on a common benchmark of both artificially generated data and real BCI data of 83 BCI sessions, allowing for a direct comparison between these methods in the context of text entry. Main results. The results clearly show the beneficial effect on the online performance of a BCI system, if the trade-off between the number of stimulus repetitions and accuracy is optimized. All assessed methods work very well for data of good subjects, and worse for data of low-performing subjects. Most methods, however, are robust in the sense that they do not reduce the performance below the baseline of a simple no stopping strategy. Significance. Since all methods can be realized as a module between the BCI and an application, minimal changes are needed to include these methods into existing BCI software architectures. Furthermore, the hyperparameters of most methods depend to a large extend on only a single variable—the discriminability of the training data. For the convenience of BCI practitioners, the present study proposes linear regression coefficients for directly estimating

  12. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  13. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics.

    PubMed

    Meenach, Samantha A; Tsoras, Alexandra N; McGarry, Ronald C; Mansour, Heidi M; Hilt, J Zach; Anderson, Kimberly W

    2016-04-01

    Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the prevalence of cell-to-cell interactions. LCC MCS were exposed to paclitaxel (PTX) in media whereas AIC MCS were exposed to dry powder PEGylated phospholipid aerosol microparticles containing paclitaxel. The difference in viability for 2D versus 3D culture for both LCC and AIC was evaluated along with the effects of the particles on lung epithelium via transepithelial electrical resistance (TEER) measurements. For LCC and AIC conditions, the 3D spheroids were more resistant to treatment with higher IC50 values for A549 and H358 cell lines. TEER results initially indicated a decrease in resistance upon drug or particle exposure, however, these values increased over the course of several days indicating the ability of the cells to recover. Overall, these studies offer a comprehensive in vitro evaluation of aerosol particles used in the treatment of lung cancer while introducing a new method for culturing lung cancer MCS in both LCC and AIC conditions.

  14. When paradigms collide at the road rail interface: evaluation of a sociotechnical systems theory design toolkit for cognitive work analysis.

    PubMed

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2016-09-01

    The Cognitive Work Analysis Design Toolkit (CWA-DT) is a recently developed approach that provides guidance and tools to assist in applying the outputs of CWA to design processes to incorporate the values and principles of sociotechnical systems theory. In this paper, the CWA-DT is evaluated based on an application to improve safety at rail level crossings. The evaluation considered the extent to which the CWA-DT met pre-defined methodological criteria and aligned with sociotechnical values and principles. Both process and outcome measures were taken based on the ratings of workshop participants and human factors experts. Overall, workshop participants were positive about the process and indicated that it met the methodological criteria and sociotechnical values. However, expert ratings suggested that the CWA-DT achieved only limited success in producing RLX designs that fully aligned with the sociotechnical approach. Discussion about the appropriateness of the sociotechnical approach in a public safety context is provided. Practitioner Summary: Human factors and ergonomics practitioners need evidence of the effectiveness of methods. A design toolkit for cognitive work analysis, incorporating values and principles from sociotechnical systems theory, was applied to create innovative designs for rail level crossings. Evaluation results based on the application are provided and discussed.

  15. The use of affective interaction design in car user interfaces.

    PubMed

    Gkouskos, Dimitrios; Chen, Fang

    2012-01-01

    Recent developments in the car industry have put Human Machine Interfaces under the spotlight. Developing gratifying human-car interactions has become one of the more prominent areas that car manufacturers want to invest in. However, concepts like emotional design remain foreign to the industry. In this study 12 experts on the field of automobile HMI design were interviewed in order to investigate their needs and opinions of emotional design. Results show that emotional design has yet to be introduced for this context of use. Designers need a tool customized for the intricacies of the car HMI field that can provide them with support and guidance so that they can create emotionally attractive experiences for drivers and passengers alike.

  16. Evaluation of Traditional Security Solutions in the SCADA Environment

    DTIC Science & Technology

    2012-03-01

    3-4 3.2.3 RTU and FMD Server Communication Architectures 3-5 3.3 System Boundaries . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.4...Terminal Unit (MTU), Human Machine Interface (HMI), Data Historian, Remote Terminal Unit ( RTU ), Programmable Logic Controller (PLC), and Intelligent...Electronic Device (IED). SCADA field devices include RTUs , PLCs, and IEDs which collect data from end-point devices like actua- tors, pumps, or other

  17. In vitro evaluation of leakage at implant-abutment connection of three implant systems having the same prosthetic interface using rhodamine B.

    PubMed

    Berberi, Antoine; Tehini, Georges; Rifai, Khaldoun; Bou Nasser Eddine, Farah; El Zein, Nabil; Badran, Bassam; Akl, Haidar

    2014-01-01

    Objectives. Hollow space between implant and abutment may act as reservoir for commensal and/or pathogenic bacteria representing a potential source of tissue inflammation. Microbial colonization of the interfacial gap may ultimately lead to infection and bone resorption. Using Rhodamine B, a sensitive fluorescent tracer dye, we aim in this study to investigate leakage at implant-abutment connection of three implant systems having the same prosthetic interface. Materials and Methods. Twenty-one implants (seven Astra Tech, seven Euroteknika, and seven Dentium) with the same prosthetic interface were connected to their original abutments, according to the manufacturers' recommendation. After determination of the inner volume of each implant systems, the kinetic quantification of leakage was evaluated for each group using Rhodamine B (10(-2) M). For each group, spectrophotometric analysis was performed to detect leakage with a fluorescence spectrophotometer at 1 h (T0) and 48 h (T1) of incubation time at room temperature. Results. Astra Tech had the highest inner volume (6.8  μ L), compared to Dentium (4  μ L) and Euroteknika (2.9  μ L). At T0 and T1, respectively, the leakage volume and percentage of each system were as follows: Astra Tech 0.043  μ L or 1.48% (SD 0.0022), 0.08  μ L or 5.56% (SD 0.0074), Euroteknika 0.09  μ L or 6.93% (SD 0.0913), 0.21  μ L or 20.55% (SD 0.0035), and Dentium 0.07  μ L or 4.6% (SD 0.0029), 0.12  μ L or 10.47% (SD 0.0072). Conclusion. The tested internal conical implant-abutment connections appear to be unable to prevent leakage. In average, Astra Tech implants showed the highest inner volume and the least leakage.

  18. Human-machine cooperative telerobotics

    SciTech Connect

    Dubey, R.V.; Everett, S.E.

    1997-12-01

    Due to the increasing number of work sites that are hazardous or merely inaccessible, remote manipulation has become more and more important. Nuclear, underwater, and space applications, exemplify a few of the dangerous environments in which work may be desired, while micromanipulation, which has become of more interest lately, is an example of an inherently inaccessible environment. The past 50 yr have seen great advances in remote manipulation technology, from the pioneering work of Ray Goertz in the 1950s to the ongoing development at Oak Ridge National Laboratory (ORNL) of the modular light-duty utility arm (MLDUA), which is a long-reach manipulator for use in the cleanup of the waste storage tanks. Mainly, research has either focused on the improvement of manually operated remote manipulators or teleoperators, in which a human is an integral part of the control loop, or autonomous robots, which have the required decision-making capability and sensors. However, in the past few years, it has become increasingly evident that there are limitations in each of these modalities, which make them individually unsuited for certain tasks. While a human operator may be required to make high-level decisions, fatigue and tedium can result from repetitive tasks. On the other hand, computers can provide fast and efficient operation but are limited by their currently inadequate decision-making abilities as well as inaccuracies in the utilized sensors. An ideal teleoperator would be one in which the human is involved in the operation only to the extent that high-level decisions must be made and corrections must be made to account for inaccuracies in the sensors. Responsibilities such as gross alignment and repetitive motions would be delegated to computer control.

  19. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  20. Comparative Evaluation of Bond Strength and Microleakage of Standard and Expired Composite at Resin-Dentin Interface: An in vitro Study

    PubMed Central

    Singla, Shilpy; Shashikiran, ND

    2017-01-01

    Background Evaluation of bond strength and microleakage caused by polymerization shrinkage provides a screening mechanism and an indication of the potential for the clinical success of composite restorations. Aim The aim of this study was to determine the effect on shear bond strength and microleakage of standard and expired composites. Materials and methods Selected specimens were etched using 37% phosphoric acid for 15 seconds and were randomly divided into four groups. Group I: Standard composite and bonding agent; group II: Expired composite and bonding agents; group III: Standard composite and expired bonding agent; and group IV: Expired composite and standard bonding agent. Specimens were further subdivided into two subgroups. In subgroup A, specimens were sheared with a universal testing machine, and the results were calculated in MPa; in subgroup B, specimens was sectioned longitudinally and analyzed for leakage (dye penetration) using a stereomicroscope. Results The results of the present study showed that acceptable values for bond strength and microleakage were obtained even if one of the components of the dental resin composite is expired. Conclusion In Indian scenario, the expired composite material may provide some assistance in compromised clinical situations. It can be used as an interim restoration and compensate for the high material cost. How to cite this article Talreja N, Singla S, Shashikiran ND. Comparative Evaluation of Bond Strength and Microleakage of Standard and Expired Composite at Resin-Dentin Interface: An in vitro Study. Int J Clin Pediatr Dent 2017;10(1):1-4. PMID:28377645

  1. Interface resistance

    NASA Astrophysics Data System (ADS)

    Sinkkonen, Juha

    1983-11-01

    Interface resistance is studied by using the Landauer formula which relates the resistance to the quantum mechanical transmission coefficient. A simple rederivation of the Landauer formula is given. Using a step-like potential barrier as a model for the metal-semiconductor contact an analytical expression for the effective Richardson constant is derived. As an other application the grain boundary resistance in polycrystalline semiconductors is studied. The short-range potential fluctuation associated with the grain boundary is described by a rectangular potential barrier. The results for the grain boundary limited mobility cover both the strong and weak scattering regimes.

  2. Evaluation of Trichloroethylene vapour fluxes using measurements at the soil-air interface and in the atmosphere close to the soil surface

    NASA Astrophysics Data System (ADS)

    Cotel, Solenn; Nagel, Vincent; Schäfer, Gerhard; Marzougui, Salsabil; Razakarisoa, Olivier; Millet, Maurice

    2013-04-01

    Industrialization during the 19th and 20th century led to the use of chemical products such as chlorinated solvents, e.g., trichloroethylene (TCE). At locations where volatile organic compounds were accidentally spilled on the soil during transport or leaked from their storage places, they could have migrated vertically through the unsaturated zone towards the underlying groundwater. As a result of their high volatility a large vapour plume is consequently formed. Understanding when, at which concentrations and how long, these pollutants will be present in soil, groundwater, atmosphere or indoor air, still remains a challenge up to date. This study was conducted as part of a broader experiment of TCE multiphase mass transfer in a large (25m×12m×3m) well-instrumented artificial basin. TCE was injected as liquid phase in the vadose zone and experiments were conducted during several months. Firstly, TCE vapour fluxes were experimentally determined in two different ways: (a) direct measurements at the soil-air interface using a flux chamber and (b) evaluations based on measurements of TCE concentrations in the air above the soil surface using a modular experimental flume (5m×1m×1m) with a fixed air flow. Secondly, numerical simulations were conducted to analyse the differences between these two types of fluxes. Several positions of the flume on the soil surface were tested. Based on the TCE concentrations measured in the air, vapour fluxes were determined with the aerodynamic method using the modified Thornthwaite-Holzmann equation. It assumes that the concentrations and velocities are temporally and spatially constant in horizontal planes and requires data on the gradients of concentration, horizontal wind velocity and temperature. TCE vapour fluxes measured at the soil-air interface decrease with distance from the source zone. However, this decrease was either high, at the first stage of experiment (120μg/(m2s) near the source zone compared to 1,1μg/(m2s) 2m

  3. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment.

    PubMed

    Shafiei, Fereshteh; Saadat, Maryam

    2016-05-01

    This study evaluated the effect of dentin surface treatment on the micromorphology and shear bond strength (SBS) of a self-adhering flowable composite, Vertis Flow (VF). Flat dentin surfaces obtained from sixty extracted human molars were divided into six groups (n = 10) according to the following surface treatments: (G1) control, no treatment; (G2) self-etching adhesive, Optibond All-in-One; (G3) phosphoric acid etching for 15 s; (G4) polyacrylic acid for 10 s; (G5) EDTA for 60 s; and G6) sodium hypochlorite (NaOCl) for 15 s. After restoration using VF, SBS was measured in MPa. Data were analyzed using one-way ANOVA and Tamhane test (α = 0.05). Six additional specimens were prepared for scanning electron microscopy analysis. SBS was significantly affected by surface treatment (P < 0.001). SBS of six groups from the highest to the lowest were as follows: (G3) 13.5(A); (G5) 8.98(AB); (G2) 8.85(AB); (G4) 8.21(AB); (G1) 7.53(BC); and (G6) 4.49(C) (groups with the same superscript letter were statistically similar). Morphological analysis revealed numerous long resin tags at the adhesive interface for acid-etched group, with a few short resin tags for the control group and small gap formation for NaOCl-treated group. In conclusion, dentin surface treatments tested differently affected bonding performance of VF; only acid-etching effectively improved this.

  4. Interface standardization

    NASA Technical Reports Server (NTRS)

    Spencer, R.; Wong, V.

    1983-01-01

    Central-station applications create a large and attractive market for photovoltaics in the near future. However, some significant barriers lie between the industry of today and realization of that market. Manufacturing capacity and price are two principal impediments. The Utilities, which are the future system owners, are gaining experience with central-station PV power through the Sacramento Municipal Utility District, Hesperia and similar small central-station installations. SMUD has recognized that competition must be maintained to help reduce prices. So little standardization exists that the cost is driven upward to redefine mechanical and electrical interfaces for each vendor. New structues are required for each vendor and nonoptimum field geometries result from attempts to include more than one vendor in an array field. Standards at some hardware level are required.

  5. Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©)

    PubMed Central

    Rawlings, Renata A.; Shi, Hang; Yuan, Lo-Hua; Brehm, William; Pop-Busui, Rodica

    2011-01-01

    Abstract Background Several metrics of glucose variability have been proposed to date, but an integrated approach that provides a complete and consistent assessment of glycemic variation is missing. As a consequence, and because of the tedious coding necessary during quantification, most investigators and clinicians have not yet adopted the use of multiple glucose variability metrics to evaluate glycemic variation. Methods We compiled the most extensively used statistical techniques and glucose variability metrics, with adjustable hyper- and hypoglycemic limits and metric parameters, to create a user-friendly Continuous Glucose Monitoring Graphical User Interface for Diabetes Evaluation (CGM-GUIDE©). In addition, we introduce and demonstrate a novel transition density profile that emphasizes the dynamics of transitions between defined glucose states. Results Our combined dashboard of numerical statistics and graphical plots support the task of providing an integrated approach to describing glycemic variability. We integrated existing metrics, such as SD, area under the curve, and mean amplitude of glycemic excursion, with novel metrics such as the slopes across critical transitions and the transition density profile to assess the severity and frequency of glucose transitions per day as they move between critical glycemic zones. Conclusions By presenting the above-mentioned metrics and graphics in a concise aggregate format, CGM-GUIDE provides an easy to use tool to compare quantitative measures of glucose variability. This tool can be used by researchers and clinicians to develop new algorithms of insulin delivery for patients with diabetes and to better explore the link between glucose variability and chronic diabetes complications. PMID:21932986

  6. Development of simulation interfaces for evaluation task with the use of physiological data and virtual reality applied to a vehicle simulator

    NASA Astrophysics Data System (ADS)

    Miranda, Mateus R.; Costa, Henrik; Oliveira, Luiz; Bernardes, Thiago; Aguiar, Carla; Miosso, Cristiano; Oliveira, Alessandro B. S.; Diniz, Alberto C. G. C.; Domingues, Diana Maria G.

    2015-03-01

    This paper aims at describing an experimental platform used to evaluate the performance of individuals at training immersive physiological games. The platform proposed is embedded in an immersive environment in a CAVE of Virtual Reality and consists on a base frame with actuators with three degrees of freedom, sensor array interface and physiological sensors. Physiological data of breathing, galvanic skin resistance (GSR) and pressure on the hand of the user and a subjective questionnaire were collected during the experiments. The theoretical background used in a project focused on Software Engineering, Biomedical Engineering in the field of Ergonomics and Creative Technologies in order to presents this case study, related of an evaluation of a vehicular simulator located inside the CAVE. The analysis of the simulator uses physiological data of the drivers obtained in a period of rest and after the experience, with and without movements at the simulator. Also images from the screen are captured through time at the embedded experience and data collected through physiological data visualization (average frequency and RMS graphics). They are empowered by the subjective questionnaire as strong lived experience provided by the technological apparatus. The performed immersion experience inside the CAVE allows to replicate behaviors from physical spaces inside data space enhanced by physiological properties. In this context, the biocybrid condition is expanded beyond art and entertainment, as it is applied to automotive engineering and biomedical engineering. In fact, the kinesthetic sensations amplified by synesthesia replicates the sensation of displacement in the interior of an automobile, as well as the sensations of vibration and vertical movements typical of a vehicle, different speeds, collisions, etc. The contribution of this work is the possibility to tracing a stress analysis protocol for drivers while operating a vehicle getting affective behaviors coming from

  7. Spoken Dialogue Interfaces: Integrating Usability

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, Dimitris; Stavropoulou, Pepi; Kouroupetroglou, Georgios

    Usability is a fundamental requirement for natural language interfaces. Usability evaluation reflects the impact of the interface and the acceptance from the users. This work examines the potential of usability evaluation in terms of issues and methodologies for spoken dialogue interfaces along with the appropriate designer-needs analysis. It unfolds the perspective to the usability integration in the spoken language interface design lifecycle and provides a framework description for creating and testing usable content and applications for conversational interfaces. Main concerns include the problem identification of design issues for usability design and evaluation, the use of customer experience for the design of voice interfaces and dialogue, and the problems that arise from real-life deployment. Moreover it presents a real-life paradigm of a hands-on approach for applying usability methodologies in a spoken dialogue application environment to compare against a DTMF approach. Finally, the scope and interpretation of results from both the designer and the user standpoint of usability evaluation are discussed.

  8. Analysis of Resin-Dentin Interface Morphology and Bond Strength Evaluation of Core Materials for One Stage Post-Endodontic Restorations

    PubMed Central

    Bitter, Kerstin; Gläser, Christin; Neumann, Konrad; Blunck, Uwe; Frankenberger, Roland

    2014-01-01

    Purpose Restoration of endodontically treated teeth using fiber posts in a one-stage procedure gains more popularity and aims to create a secondary monoblock. Data of detailed analyses of so called “post-and-core-systems” with respect to morphological characteristics of the resin-dentin interface in combination with bond strength measurements of fiber posts luted with these materials are scarce. The present study aimed to analyze four different post-and-core-systems with two different adhesive approaches (self-etch and etch-and-rinse). Materials and Methods Human anterior teeth (n = 80) were endodontically treated and post space preparations and post placement were performed using the following systems: Rebilda Post/Rebilda DC/Futurabond DC (Voco) (RB), Luxapost/Luxacore Z/Luxabond Prebond and Luxabond A+B (DMG) (LC), X Post/Core X Flow/XP Bond and Self Cure Activator (Dentsply DeTrey) (CX), FRC Postec/MultiCore Flow/AdheSE DC (Ivoclar Vivadent) (MC). Adhesive systems and core materials of 10 specimens per group were labeled using fluorescent dyes and resin-dentin interfaces were analyzed using Confocal Laser Scanning Microscopy (CLSM). Bond strengths were evaluated using a push-out test. Data were analyzed using repeated measurement ANOVA and following post-hoc test. Results CLSM analyses revealed significant differences between groups with respect to the factors hybrid layer thickness (p<0.0005) and number of resin tags (p = 0.02; ANOVA). Bond strength was significantly affected by core material (p = 0.001), location inside the root canal (p<0.0005) and incorporation of fluorescent dyes (p = 0.036; ANOVA). CX [7.7 (4.4) MPa] demonstrated significantly lower bond strength compared to LC [14.2 (8.7) MPa] and RB [13.3 (3.7) MPa] (p<0.05; Tukey HSD) but did not differ significantly from MC [11.5 (3.5) MPa]. Conclusion It can be concluded that bond strengths inside the root canal were not affected by the adhesive approach of the post

  9. Discrete Kalman Filter based Sensor Fusion for Robust Accessibility Interfaces

    NASA Astrophysics Data System (ADS)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    Human-machine interfaces have evolved, benefiting from the growing access to devices with superior, embedded signal-processing capabilities, as well as through new sensors that allow the estimation of movements and gestures, resulting in increasingly intuitive interfaces. In this context, sensor fusion for the estimation of the spatial orientation of body segments allows to achieve more robust solutions, overcoming specific disadvantages derived from the use of isolated sensors, such as the sensitivity of magnetic-field sensors to external influences, when used in uncontrolled environments. In this work, a method for the combination of image-processing data and angular-velocity registers from a 3D MEMS gyroscope, through a Discrete-time Kalman Filter, is proposed and deployed as an alternate user interface for mobile devices, in which an on-screen pointer is controlled with head movements. Results concerning general performance of the method are presented, as well as a comparative analysis, under a dedicated test application, with results from a previous version of this system, in which the relative-orientation information was acquired directly from MEMS sensors (3D magnetometer-accelerometer). These results show an improved response for this new version of the pointer, both in terms of precision and response time, while keeping many of the benefits that were highlighted for its predecessor, giving place to a complementary method for signal acquisition that can be used as an alternative-input device, as well as for accessibility solutions.

  10. Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text.

    PubMed

    South, Brett R; Mowery, Danielle; Suo, Ying; Leng, Jianwei; Ferrández, Óscar; Meystre, Stephane M; Chapman, Wendy W

    2014-08-01

    The Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor method requires removal of 18 types of protected health information (PHI) from clinical documents to be considered "de-identified" prior to use for research purposes. Human review of PHI elements from a large corpus of clinical documents can be tedious and error-prone. Indeed, multiple annotators may be required to consistently redact information that represents each PHI class. Automated de-identification has the potential to improve annotation quality and reduce annotation time. For instance, using machine-assisted annotation by combining de-identification system outputs used as pre-annotations and an interactive annotation interface to provide annotators with PHI annotations for "curation" rather than manual annotation from "scratch" on raw clinical documents. In order to assess whether machine-assisted annotation improves the reliability and accuracy of the reference standard quality and reduces annotation effort, we conducted an annotation experiment. In this annotation study, we assessed the generalizability of the VA Consortium for Healthcare Informatics Research (CHIR) annotation schema and guidelines applied to a corpus of publicly available clinical documents called MTSamples. Specifically, our goals were to (1) characterize a heterogeneous corpus of clinical documents manually annotated for risk-ranked PHI and other annotation types (clinical eponyms and person relations), (2) evaluate how well annotators apply the CHIR schema to the heterogeneous corpus, (3) compare whether machine-assisted annotation (experiment) improves annotation quality and reduces annotation time compared to manual annotation (control), and (4) assess the change in quality of reference standard coverage with each added annotator's annotations.

  11. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  12. Pathologic Evaluation of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Infection at the Maternal-Fetal Interface of Late Gestation Pregnant Gilts

    PubMed Central

    Novakovic, Predrag; Harding, John C. S.; Al-Dissi, Ahmad N.; Ladinig, Andrea; Detmer, Susan E.

    2016-01-01

    The pathogenesis of fetal death caused by porcine reproductive and respiratory syndrome virus (PRRSV) remains unclear. The objective of this study was to improve our understanding of the pathogenesis by assessing potential relationships between specific histopathological lesions and PRRSV RNA concentration in the fetuses and the maternal-fetal interface. Pregnant gilts were inoculated with PRRSV (n = 114) or sham inoculated (n = 19) at 85±1 days of gestation. Dams and their litters were humanely euthanized and necropsied 21 days later. PRRSV RNA concentration was measured by qRT-PCR in the maternal-fetal interface and fetal thymus (n = 1391). Presence of fetal lesions was positively related to PRRSV RNA concentration in the maternal-fetal interface and fetal thymus (P<0.05 for both), but not to the distribution or severity of vasculitis, or the severity of endometrial inflammation. The presence of fetal and umbilical lesions was associated with greater odds of meconium staining (P<0.05 for both). The distribution and severity of vasculitis in endometrium were not significantly related to PRRSV RNA concentration in maternal-fetal interface or fetal thymus. Endometrial inflammation severity was positively related to distribution and severity of vasculitis in endometrium (P<0.001 for both). Conclusions from this study suggest that type 2 PRRSV infection in pregnant gilts induces significant histopathological lesions at maternal-fetal interface, but they are not associated with presence of PRRSV in the maternal-fetal interface at 21 days post infection. Conversely, fetal pathological lesions are associated with presence of PRRSV in the maternal-fetal interface and fetal thymus, and meconium staining is significantly associated with the presence of both fetal and umbilical lesions observed 21 days post infection. PMID:26963101

  13. Pathologic Evaluation of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Infection at the Maternal-Fetal Interface of Late Gestation Pregnant Gilts.

    PubMed

    Novakovic, Predrag; Harding, John C S; Al-Dissi, Ahmad N; Ladinig, Andrea; Detmer, Susan E

    2016-01-01

    The pathogenesis of fetal death caused by porcine reproductive and respiratory syndrome virus (PRRSV) remains unclear. The objective of this study was to improve our understanding of the pathogenesis by assessing potential relationships between specific histopathological lesions and PRRSV RNA concentration in the fetuses and the maternal-fetal interface. Pregnant gilts were inoculated with PRRSV (n = 114) or sham inoculated (n = 19) at 85±1 days of gestation. Dams and their litters were humanely euthanized and necropsied 21 days later. PRRSV RNA concentration was measured by qRT-PCR in the maternal-fetal interface and fetal thymus (n = 1391). Presence of fetal lesions was positively related to PRRSV RNA concentration in the maternal-fetal interface and fetal thymus (P<0.05 for both), but not to the distribution or severity of vasculitis, or the severity of endometrial inflammation. The presence of fetal and umbilical lesions was associated with greater odds of meconium staining (P<0.05 for both). The distribution and severity of vasculitis in endometrium were not significantly related to PRRSV RNA concentration in maternal-fetal interface or fetal thymus. Endometrial inflammation severity was positively related to distribution and severity of vasculitis in endometrium (P<0.001 for both). Conclusions from this study suggest that type 2 PRRSV infection in pregnant gilts induces significant histopathological lesions at maternal-fetal interface, but they are not associated with presence of PRRSV in the maternal-fetal interface at 21 days post infection. Conversely, fetal pathological lesions are associated with presence of PRRSV in the maternal-fetal interface and fetal thymus, and meconium staining is significantly associated with the presence of both fetal and umbilical lesions observed 21 days post infection.

  14. Evaluation of the interface of thin GaN layers on c- and m-plane ZnO substrates by Rutherford backscattering

    SciTech Connect

    Izawa, Y.; Oga, T.; Ida, T.; Kuriyama, K.; Hashimoto, A.; Kotake, H.; Kamijoh, T.

    2011-07-11

    Lattice distortion at the interfaces between thin GaN layers with {approx}400 nm in thickness and ZnO substrates with non-polar m-plane (10-10) and polar c-plane (0001) is studied using Rutherford backscattering/ion channeling techniques. The interface between GaN/m-plane ZnO is aligned clearly to m-axis, indicating no lattice distortion, while between GaN/c-plane ZnO causes the lattice distortion in the GaN layer due to the piezoelectric field. The range of distortion exceeds {approx}90 nm from the interface of GaN/c-plane ZnO. These results are confirmed by x-ray diffraction and reflection high energy electron diffraction studies.

  15. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system.

    PubMed

    Peuchen, Elizabeth H; Zhu, Guije; Sun, Liangliang; Dovichi, Norman J

    2017-03-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.

  16. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  17. The Identification, Implementation, and Evaluation of Critical User Interface Design Features of Computer-Assisted Instruction Programs in Mathematics for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Seo, You-Jin; Woo, Honguk

    2010-01-01

    Critical user interface design features of computer-assisted instruction programs in mathematics for students with learning disabilities and corresponding implementation guidelines were identified in this study. Based on the identified features and guidelines, a multimedia computer-assisted instruction program, "Math Explorer", which delivers…

  18. Evaluating the capability of time-of-flight cameras for accurately imaging a cyclically loaded beam

    NASA Astrophysics Data System (ADS)

    Lahamy, Hervé; Lichti, Derek; El-Badry, Mamdouh; Qi, Xiaojuan; Detchev, Ivan; Steward, Jeremy; Moravvej, Mohammad

    2015-05-01

    Time-of-flight cameras are used for diverse applications ranging from human-machine interfaces and gaming to robotics and earth topography. This paper aims at evaluating the capability of the Mesa Imaging SR4000 and the Microsoft Kinect 2.0 time-of-flight cameras for accurately imaging the top surface of a concrete beam subjected to fatigue loading in laboratory conditions. Whereas previous work has demonstrated the success of such sensors for measuring the response at point locations, the aim here is to measure the entire beam surface in support of the overall objective of evaluating the effectiveness of concrete beam reinforcement with steel fibre reinforced polymer sheets. After applying corrections for lens distortions to the data and differencing images over time to remove systematic errors due to internal scattering, the periodic deflections experienced by the beam have been estimated for the entire top surface of the beam and at witness plates attached. The results have been assessed by comparison with measurements from highly-accurate laser displacement transducers. This study concludes that both the Microsoft Kinect 2.0 and the Mesa Imaging SR4000s are capable of sensing a moving surface with sub-millimeter accuracy once the image distortions have been modeled and removed.

  19. Flight test evaluation and analysis of the l-39c albartros for the light attack mission

    NASA Astrophysics Data System (ADS)

    Hays, Mitchell J.

    Aircraft test and evaluation is a key component of aircraft development and design verification. Developmental flight test, an early look into aircraft functionality and mission suitability, is conducted early in the aircraft lifecycle to mitigate cost, schedule, and performance risks. This thesis details the ground and flight test of the L-39C "Albatros" for the light attack mission. The L-39C was evaluated as a light attack aircraft to determine aircraft performance, handling qualities, and human-machine interface to support specification validation and document mission utility. The specifications and scenario were generated by instructors at the United States Naval Test Pilot School (USNTPS) as part of the Engineering Test Pilot curriculum. Classical flight test techniques were used to elicit open loop aircraft response and performance characterization. Additionally, various mission representative maneuvers were executed to aid in identification of deficiencies in aircraft handling qualities. This work is adapted from the author's work at the USNTPS and presents data associated with the capstone exercise of the USNTPS Experimental Test Pilot syllabus. The results of this thesis clearly illustrate the suitability of the L-39C for the light attack mission.

  20. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard

  1. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  2. Media independent interface. Interface control document

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A Media Independent Interface (MII) is specified, using current standards in the industry. The MII is described in hierarchical fashion. At the base are IEEE/International Standards Organization (ISO) documents (standards) which describe the functionality of the software modules or layers and their interconnection. These documents describe primitives which are to transcent the MII. The intent of the MII is to provide a universal interface to one or more Media Access Contols (MACs) for the Logical Link Controller and Station Manager. This interface includes both a standardized electrical and mechanical interface and a standardized functional specification which defines the services expected from the MAC.

  3. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  4. The evaluation of interfaces between MTA and two types of GIC (conventional and resin modified) under an SEM: An in vitro study

    PubMed Central

    Patil, Anuradha; Aggarwal, Shalini; Kumar, Tanaya; Bhargava, Karan; Rai, Vinay

    2016-01-01

    Context: Mineral trioxide aggregate (MTA) is a biocompatible repair material that is often used along with glass ionomer cement (GIC) in many clinical situations. Aims: In this study, the interface of GIC and MTA was examined, and the effect of time on this interface was tested. Materials and Methods: Forty 9-mm hollow cylindrical glass molds were filled with MTA and then according to the group either conventional GIC or resin-modified GIC (RMGIC) is filled immediately or after 45 min. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope (SEM) and the elemental analysis was done. Statistical Analysis: Observational study, no statistical analysis done. Results: The SEM showed that both the groups underwent adhesive separation and gap formation at the interface. The specimens in which GIC was condensed over freshly mixed MTA (group IIA and group IIB) also showed cohesive separation in MTA; however, it was more in the GIC condensed after 45 min over MTA groups (group IA and group IB). The results were better for conventional GIC than RMGIC. Conclusions: GIC can be applied over freshly mixed MTA with minimal effects on the MTA, but this effect decreases with time. PMID:27217640

  5. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  6. Media independent interface

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The work done on the Media Independent Interface (MII) Interface Control Document (ICD) program is described and recommendations based on it were made. Explanations and rationale for the content of the ICD itself are presented.

  7. Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near high-Z media exposed to kilovolt and 60Co photons.

    PubMed

    Verhaegen, Frank

    2002-05-21

    High atomic number (Z) heterogeneities in tissue exposed to photons with energies of up to about 1 MeV can cause significant dose perturbations in their immediate vicinity. The recently released Monte Carlo (MC) code EGSnrc (Kawrakow 2000a Med. Phys. 27 485-98) was used to investigate the dose perturbation of high-Z heterogeneities in tissue in kilovolt (kV) and 60Co photon beams. Simulations were performed of measurements with a dedicated thin-window parallel-plate ion chamber near a high-Z interface in a 60Co photon beam (Nilsson et al 1992 Med. Phys. 19 1413-21). Good agreement was obtained between simulations and measurements for a detailed set of experiments in which the thickness of the ion chamber window, the thickness of the air gap between ion chamber and heterogeneity, the depth of the ion chamber in polystyrene and the material of the interface was varied. The EGSnrc code offers several improvements in the electron and photon production and transport algorithms over the older EGS4/PRESTA code (Nelson et al 1985 Stanford Linear Accelerator Center Report SLAC-265. Bielajew and Rogers 1987 Nucl. Instrum. Methods Phys. Res. B 18 165-81). The influence of the new EGSnrc features was investigated for simulations of a planar slab of a high-Z medium embedded in water and exposed to kV or 60Co photons. It was found that using the new electron transport algorithm in EGSnrc, including relativistic spin effects in elastic scattering, significantly affects the calculation of dose distribution near high-Z interfaces. The simulations were found to be independent of the maximum fractional electron energy loss per step (ESTEPE), which was often a cause for concern in older EGS4 simulations. Concerning the new features of the photon transport algorithm sampling of the photoelectron angular distribution was found to have a significant effect, whereas the effect of binding energies in Compton scatter was found to be negligible. A slight dose artefact very close to high

  8. Evaluation of Interface Property and DC Characteristics Enhancement in Nanoscale n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor Using Stress Memorization Technique

    NASA Astrophysics Data System (ADS)

    Huang, Po Chin; Lein Wu, San; Jinn Chang, Shoou; Huang, Yao Tsung; Kuo, Cheng Wen; Chang, Ching Yao; Cheng, Yao Chin; Cheng, Osbert

    2010-09-01

    In this letter, the advanced 40 nm technology n-channel metal-oxide-semiconductor field-effect transistor devices using the stress memorization technique (SMT) are presented. We demonstrate that SMT process would not affect the electrical characteristics of devices and can introduce higher tensile stress on channels, which enhances drive current. Through charge pumping measurement, it can be verified that SMT does not affect Si/SiO2 interface quality. Moreover, SMT-induced higher tensile stress decreases not only scattering coefficient but also tunneling attenuation length, resulting in smaller input-referred noise, which represents an intrinsic advantage of low-frequency noise performance.

  9. Human factors evaluation of teletherapy: Function and task analysis. Volume 2

    SciTech Connect

    Kaye, R.D.; Henriksen, K.; Jones, R.; Morisseau, D.S.; Serig, D.I.

    1995-07-01

    As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatment requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.

  10. Gestures in an Intelligent User Interface

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; van der Vet, Paul; Nijholt, Anton

    In this chapter we investigated which hand gestures are intuitive to control a large display multimedia interface from a user's perspective. Over the course of two sequential user evaluations, we defined a simple gesture set that allows users to fully control a large display multimedia interface, intuitively. First, we evaluated numerous gesture possibilities for a set of commands that can be issued to the interface. These gestures were selected from literature, science fiction movies, and a previous exploratory study. Second, we implemented a working prototype with which the users could interact with both hands and the preferred hand gestures with 2D and 3D visualizations of biochemical structures. We found that the gestures are influenced to significant extent by the fast paced developments in multimedia interfaces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by decades of experience with the more traditional WIMP-based interfaces.

  11. Quantization of interface currents

    SciTech Connect

    Kotani, Motoko; Schulz-Baldes, Hermann; Villegas-Blas, Carlos

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  12. Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.

    ERIC Educational Resources Information Center

    Steinberg, Linda S.; Gitomer, Drew H.

    A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…

  13. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  14. Microconical interface fitting and interface grasping tool

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L. (Inventor); Wightman, William D. (Inventor); Johnston, Alistair P. (Inventor)

    1994-01-01

    A small and light weight microconical interface fitting may be attached to the surface of a space vehicle or equipment to provide an attachment device for an astronaut or robot to capture the space vehicle or equipment. The microconical interface fitting of the present invention has an axisymmetrical conical body having a base portion with a torque reaction surface for preventing rotation of the interface grasping tool; a cavitated, sunken or hollowed out intermediate locking portion which has a cavity shaped for receiving the latches of the grasping tool and an upper guiding portion for guiding the grasping tool into axial alignment with the microconical interface fitting. The capture is accomplished with an interface grasping tool. The grasping tool comprises an outer sleeve with a handle attached, an inner sleeve which may be raised and lowered within the outer sleeve with a plurality of latches supported at the lower end and a cam to raise and lower the inner sleeve. When the inner sleeve is at its lowest position, the latches form the largest diameter opening for surrounding the microconical fitting and the latches form the smallest diameter or a locking, grasping position when raised to the highest position within the outer sleeve. The inner sleeve may be at an intermediate, capture position which permits the latches to be biased outwardly when contacting the microconical fitting under very low forces to grasp the fitting and permits capture (soft docking) without exact alignment of the fitting and the tool.

  15. User interface support

    NASA Technical Reports Server (NTRS)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  16. Spray algorithm without interface construction

    NASA Astrophysics Data System (ADS)

    Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.

    2012-05-01

    This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.

  17. Gluing Soft Interfaces by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Dobrynin, Andrey

    Using a combination of the molecular dynamics simulations and scaling analysis we studied reinforcement of interface between two soft gel-like materials by spherical nanoparticles. Analysis of the simulations shows that the depth of penetration of a nanoparticle into a gel is determined by a balance of the elastic energy of the gel and nanoparticle deformations and the surface energy of nanoparticle/gel interface. In order to evaluate work of adhesion of the reinforced interface, the potential of mean force for separation of two gels was calculated. These simulations showed that the gel separation proceeds through formation of necks connecting nanoparticle with two gels. The shapes of the necks are controlled by a fine interplay between nanoparticle/gel surface energies and elastic energy of the neck deformation. Our simulations showed that by introducing nanoparticles at soft interfaces, the work required for separation of two gels could be 10-100 times larger than the work of adhesion between two gels without nanoparticle reinforcement. These results provide insight in understanding the mechanism of gluing soft gels and biological tissues by nano- and micro-sized particles. NSF DMR-1409710.

  18. Multimodal neuroelectric interface development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Rosipal, Roman; Clanton, Sam T.; Matthews, Bryan; Hibbs, Andrew D.; Matthews, Robert; Krupka, Michael

    2003-01-01

    We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies for computer interfaces using electroencephalogram (EEG) signals; 3) a flexible computation framework for neuroelectric interface research; and d) noncontact sensors, which measure electromyogram or EEG signals without resistive contact to the body.

  19. Turbomachine Interface Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.

    2005-01-01

    Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.

  20. Persistent interface fluid syndrome.

    PubMed

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2008-08-01

    We present an unusual case of persistent interface fluid that would not resolve despite normal intraocular pressure and corneal endothelial replacement with Descemet-stripping endothelial keratoplasty. Dissection, elevation, and repositioning of the laser in situ keratomileusis flap were required to resolve the interface fluid. Circumferential corneal graft-host margin scar formation acting as a mechanical strut may have been the cause of the intractable interface fluid.

  1. Evaluation of an air-liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols.

    PubMed

    Azzopardi, David; Haswell, Linsey E; Foss-Smith, Geoff; Hewitt, Katherine; Asquith, Nathan; Corke, Sarah; Phillips, Gary

    2015-10-01

    In vitro toxicological studies for tobacco product assessment have traditionally been undertaken using the particulate phase of tobacco smoke. However, this does not truly reflect exposure conditions that occur in smokers. Thus in vitro cell culture systems are required in which cells are exposed to tobacco whole smoke (WS) at the air-liquid interface (ALI). In this study bronchial epithelial cells were cultured on semi-permeable membranes, transitioned to the ALI and the robustness and sensitivity of the cells to tobacco WS and vapour phase (VP) assessed. Although no effect of air exposure was observed on cell viability, IL-6 and IL-8 release was increased. Exposure to WS resulted in a significant dose dependent decrease in cell viability and a significant non-dose dependent increase in inflammatory mediator secretion. The VP was found to contribute approximately 90% of the total cytotoxicity derived from WS. The cell culture system was also able to differentiate between two smoking regimens and was sensitive to passage number with increased inflammatory mediator secretion and lower cell viability observed in cell cultures of low passage number following WS exposure. This simple cell culture system may facilitate studies on the toxicological impact of future tobacco products and nicotine delivery devices.

  2. Evaluation of Kinetic Controls on SO42- Reduction at Experimentally Induced Small-Scale Mixing Interfaces Using Modified Push-Pull Tests in a Landfill-Leachate Contaminated Wetland, Norman Landfill

    NASA Astrophysics Data System (ADS)

    Kneeshaw, T. A.; McGuire, J. T.; Cozzarelli, I. M.; Smith, E. W.

    2006-05-01

    A wide variety of methods have been used to quantify the subsurface activities of microorganisms in response to geochemical perturbations but identifying representative reaction rates has proven challenging. This study was conducted at the Norman Landfill, Norman, OK, to evaluate kinetic controls on SO42- reduction at simulated in situ mixing interfaces between wetland porewater and groundwater impacted by landfill leachate using a series of modified push-pull tests. Small (cm) scale mixing zones exhibiting steep geochemical gradients were targeted because quantifying the role of these poorly understood reaction zones is important for understanding system level biogeochemical cycling and in turn the fate and transport of contaminants. This study was designed to isolate rates of reactions from push-pull tests in an effort to evaluate the kinetic controls on rates within these dynamic mixing zones. To obtain in situ rates we evaluated kinetic controls on SO42- reduction using geochemical data collected from small-scale push-pull tests used to introduce electron- acceptor (SO42-) limited wetland porewater to anaerobic groundwater containing abundant electron acceptor (SO42-), thus simulating the aquifer-wetland interface. A relatively well-sorted, fine-grained sand lens within the reducing wetland sediments was targeted using small-diameter (2.54 cm, O.D.) drive-point wells with a discrete, internally packed 4.5 cm well screen. A series of push-pull tests were performed in these wells by injecting the SO42--rich aquifer water into the targeted zone. The SO42--rich water used for the push phase of the tests was pumped from the anaerobic aquifer at the site and amended with 100 mg/L bromide (as NaBr) which served as a conservative tracer to track dilution from mixing, advection, and dispersion. Geochemical results revealed that 1) SO42- reduction was the dominant terminal electron accepting process initiated by the mixing event 2) in all tests in which sulfate reduction

  3. The CDS at the Age of Multitouch Interfaces and Mobility

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Boch, T.; Fernique, P.; Kaestlé, V.

    2012-09-01

    Currently, we are witnessing a rapid evolution of new human-machine interfaces based on the widespread use of multitouch screens. This evolution is not just a replacement of the mouse-keyboard couple but requires a recast of the interfaces to take advantage of the new features (example: simultaneous selections in different parts of the screen). Traditional operating systems (mostly Windows and Linux) are also moving towards the integration of multitouch. It is possible in Windows7, also in Ubuntu (since release 10.10). The user interfaces of existing applications should be deeply impacted, as it is not just an adaptation of the existing ones: it is a transition from a selection in menus, click on button, to an intuitive based interaction. In this context the use of the semantics could help to understand what the user wants to do and to simplify the interfaces. The number of mobile devices (Smartphones based on iPhoneOS, AndroidOS and others, tablet computers (iPad, Galaxy Tab, etc.) is growing exponentially with a sustained frequency of replacement (18 months for a device). Smartphones provide an access to Web services but also to dedicated applications (available on App Store, Android Market, etc.). Investment in human resources to provide services on mobile devices could be limited in the first case (a simple adaptation of existing Web pages), but is higher in the case of dedicated applications (software development for a given operating system and the porting to other systems to achieve sufficient diffusion). Following this step, we have developed an Aladin Allsky lite application for Android, SkySurveys. This application is based on HEALPix and it was a real challenge to provide a tool with good display performances on a basic hardware device compared to a desktop or a laptop. We are now focusing the study on the use of HTML5, an emerging technology supported by recent versions of Internet browsers, which can provide rich content. HTML5 has the advantage of

  4. Comparative evaluation of the effect of different bonding agents on the ultramorphology of primary tooth dentin and the resin dentin interface

    PubMed Central

    Vashisth, Pallavi; Goswami, Mousumi; Mittal, Mudit; Chaudhary, Seema

    2012-01-01

    Aim: To analyze and compare the changes in the ultramorphology of dentin in primary teeth using different bonding agents and to study the resin/dentin interface produced by them. Materials and Methods: Occlusal surfaces of 50 extracted human deciduous teeth were grounded to expose the dentin. The teeth were divided into two groups (A) For viewing surface morphology- 18 teeth divided into four groups: (a) for viewing dentinal morphology (3 teeth), (b) Scotchbond multi-purpose (5 teeth), (c) Adhe SE (5 teeth), (d) Futurabond (5 teeth). (B) For viewing interfacial morphology- 32 teeth divided into four groups with 8 teeth each: (a) Scotch Bond Multipurpose (3M, ESPE),), (b) Adhe Se (Vivadent), (c) Optibond All-in-One (Kerr), (d) Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group following the manufacturer's instruction. All the samples were then prepared for viewing under SEM. Results: The photographs were graded using a four-step (0-3) scale method proposed by Ferrari et al. For Scotchbond, 12 (75%) were graded as 2 Grade 3 was observed in only 1 observation in the entire lot of materials. The results obtained for Adhe SE and Optibond AIO were similar, i.e. in 5 (31.25%) observations each the scores were 0 and in 11 (68.75%) observations each the scores were 1. In case of Futurabond, 3 (18.75%) observations were graded as 0 and 13 (81.25%) were graded as 1, thus showing a mean score of 0.81±0.40. Conclusion: Three- step bonding agent results in the complete removal of smear layer. While the self- etch approach is not efficient in removing the smear layer and opening of the dentinal tubules. The longest resin tags with lateral branches were seen in two groups- Scotch bond multipurpose and Optibond FL. PMID:23112484

  5. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface.

    PubMed

    Yu, Juhua; Ding, Shiming; Zhong, Jicheng; Fan, Chengxin; Chen, Qiuwen; Yin, Hongbin; Zhang, Lei; Zhang, Yinlong

    2017-03-16

    Sediment dredging is an effective restoration method to control the internal phosphorus (P) loading of eutrophic lakes. However, the core question is that the real mechanism of dredging responsible for sediment internal P release still remains unclear. In this study, we investigated the P exchange across the sediment-water interface (SWI) and the internal P resupply ability from the sediments after dredging. The study is based on a one-year field simulation study in Lake Taihu, China, using a Rhizon soil moisture sampler, high-resolution dialysis (HR-Peeper), ZrO-Chelex diffusive gradients in thin film (ZrO-Chelex DGT), and P fractionation and adsorption isotherm techniques. The results showed low concentration of labile P in the pore water with a low diffusion potential and a low resupply ability from the sediments after dredging. The calculated flux of P from the post-dredged sediments decreased by 58% compared with that of non-dredged sediments. Furthermore, the resupply in the upper 20mm of the post-dredged sediments was reduced significantly after dredging (P<0.001). Phosphorus fractionation analysis showed a reduction of 25% in the mobile P fractions in the post-dredged sediments. Further analysis demonstrated that the zero equilibrium P concentration (EPC0), partitioning coefficient (Kp), and adsorption capacity (Qmax) on the surface sediments increased after dredging. Therefore, dredging could effectively reduce the internal P resupply ability of the sediments. The reasons for this reduction are probably the lower contributions of mobile P fractions, higher retention ability, and the adsorption capacity of P for post-dredged sediments. Overall, this investigation indicated that dredging was capable of effectively controlling sediment internal P release, which could be ascribed to the removal of the surface sediments enriched with total phosphorus (TP) and/or organic matter (OM), coupled with the inactivation of P to iron (Fe) (hydr)oxides in the upper 20mm

  6. Cursor control by Kalman filter with a non-invasive body-machine interface

    NASA Astrophysics Data System (ADS)

    Seáñez-González, Ismael; Mussa-Ivaldi, Ferdinando A.

    2014-10-01

    Objective. We describe a novel human-machine interface for the control of a two-dimensional (2D) computer cursor using four inertial measurement units (IMUs) placed on the user’s upper-body. Approach. A calibration paradigm where human subjects follow a cursor with their body as if they were controlling it with their shoulders generates a map between shoulder motions and cursor kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from upper-body motions. We compared cursor control performance in a centre-out reaching task performed by subjects using different amounts of information from the IMUs to control the 2D cursor. Main results. Our results indicate that taking advantage of the redundancy of the signals from the IMUs improved overall performance. Our work also demonstrates the potential of non-invasive IMU-based body-machine interface systems as an alternative or complement to brain-machine interfaces for accomplishing cursor control in 2D space. Significance. The present study may serve as a platform for people with high-tetraplegia to control assistive devices such as powered wheelchairs using a joystick.

  7. Human facial neural activities and gesture recognition for machine-interfacing applications.

    PubMed

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  8. Designing the Instructional Interface.

    ERIC Educational Resources Information Center

    Lohr, L. L.

    2000-01-01

    Designing the instructional interface is a challenging endeavor requiring knowledge and skills in instructional and visual design, psychology, human-factors, ergonomic research, computer science, and editorial design. This paper describes the instructional interface, the challenges of its development, and an instructional systems approach to its…

  9. Metaphors for Interface Design.

    ERIC Educational Resources Information Center

    Hutchins, Edwin

    This discussion of the utilization by computer designers and users of metaphors as organizing structures for dealing with the complexity of behavior of human/computer interfaces begins by identifying three types of metaphor that describe various aspects of human-computer interface design, i.e., activity, mode of interaction, and task domain. The…

  10. Thread Pool Interface (TPI)

    SciTech Connect

    Edwards, H. Carter

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  11. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  12. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  13. TMS communications software. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Lenker, M. D.

    1979-01-01

    A prototype bus communications system, which is being used to support the Trend Monitoring System (TMS) as well as for evaluation of the bus concept is considered. Hardware and software interfaces to the MODCOMP and NOVA minicomputers are included. The system software required to drive the interfaces in each TMS computer is described. Documentation of other software for bus statistics monitoring and for transferring files across the bus is also included.

  14. Interface markings in crystals experiment MA-060

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1976-01-01

    Doped germanium single crystals with interface demarcation were successfully grown during the Apollo Soyuz Test Project mission. Interface demarcation permitted the determination of the microscopic growth behavior from the onset to the termination of solidification. Preliminary segregation analysis shows striking differences in segregation in the presence of gravity. The correlation between microscopic growth rate behavior and the composition of the solid on the microscale is being evaluated.

  15. Clustering Students to Evaluate and Understand Handheld Communication Interfaces: The Way We Use a Product Is as Important as What that Product Can Do, or What It Looks Like

    ERIC Educational Resources Information Center

    Stone, R. Brian

    2004-01-01

    A user communicates, or interacts, with a handheld device via a series of interfaces. These interfaces facilitate a dialog between the person and the cell phone, PDA, or MP3 player by receiving input and responding to human action with feedback. People interact with handheld screen interfaces at a very intimate level. It is rare that someone will…

  16. General Purpose Computer (GPC) to GPC systems interface description

    NASA Technical Reports Server (NTRS)

    Breyer, B. C.

    1976-01-01

    The General Purpose Computer (GPC) 'subsystem' of the Orbiter Data Processing System was described. Two interface areas are discussed. One is the area of GPC intraconnections and intracommunications involving the hardware/software interface between the Central Processing Unit (CPU) and the Input/Output Processor (IOP). The other is the area of GPC interconnections and intercommunications and involves the hardware/software interface between the five Orbiter GPC's. Based on the detailed GPC interface given, it is felt that the basic CPU to IOP interface and the GPC to GPC interface have the potential for trouble free operation. However, due to the complexity of the interface and the criticality of GPC synchronization to overall avionics performance, the GPC to GPC interface should be carefully evaluated when attempting to resolve test anomalies that may involve GPC timing and synchronization errors.

  17. Development and Evaluation of a Head-Controlled Human-Computer Interface with Mouse-Like Functions for Physically Disabled Users

    PubMed Central

    Pereira, César Augusto Martins; Neto, Raul Bolliger; Reynaldo, Ana Carolina; de Miranda Luzo, Maria Cândida; Oliveira, Reginaldo Perilo

    2009-01-01

    OBJECTIVES The objectives of this study were to develop a pointing device controlled by head movement that had the same functions as a conventional mouse and to evaluate the performance of the proposed device when operated by quadriplegic users. METHODS Ten individuals with cervical spinal cord injury participated in functional evaluations of the developed pointing device. The device consisted of a video camera, computer software, and a target attached to the front part of a cap, which was placed on the user’s head. The software captured images of the target coming from the video camera and processed them with the aim of determining the displacement from the center of the target and correlating this with the movement of the computer cursor. Evaluation of the interaction between each user and the proposed device was carried out using 24 multidirectional tests with two degrees of difficulty. RESULTS According to the parameters of mean throughput and movement time, no statistically significant differences were observed between the repetitions of the tests for either of the studied levels of difficulty. CONCLUSIONS The developed pointing device adequately emulates the movement functions of the computer cursor. It is easy to use and can be learned quickly when operated by quadriplegic individuals. PMID:19841704

  18. Generic experimental cockpit for evaluating pilot assistance systems

    NASA Astrophysics Data System (ADS)

    Toebben, Helmut H.; Doehler, Hans-Ullrich; Hecker, Peter

    2002-07-01

    The workload of aircraft crews, especially during taxiing, take-off, approach and landing under adverse weather conditions has heavily increased due to the continuous growth of air traffic. New pilot assistance systems can improve the situational awareness of the aircrew and consequently increase the safety and reduce the workload. For demonstration and human factor evaluation of such new systems the DLR has built a Generic Experimental Cockpit Simulator equipped with a modern glass-cockpit collimated display. The Primary Flight Display (PFD), the human machine interface for an Advanced Flight Management System (AFMS), a Taxi Guidance System called Taxi and Ramp Management and Control (TARMAC) and an Enhanced Vision System (EVS) based on real time simulation of MMWR and FLIR sensors are integrated into the cockpit on high resolution TFT touch screens. The situational awareness is further enhanced by the integration of a raster/stroke capable Head-Up Display (HUD). It prevents the pilot's eye from permanent accommodation between the Head-Down Displays and the outside view. This contribution describes the technical implementation of the PFD, the Taxi Guidance System and the EVS onto the HUD. The HUD is driven by a normal PC, which provides the Arinc data for the stroke generator and the video signal for the raster image. The PFD uses the built-in stroke generator and is working under all operations. During taxi operations the cleared taxi route and the positions of other aircraft are displayed via raster. The images of the real time simulation of the MMWR and FLIR Sensors are presented via raster on demand. During approach and landing a runway symbol or a 3D wire frame database is shown which exactly matches the outside view and obstacles on the runway are highlighted. The runway position is automatically calculated from the MMWR Sensor as reported in previous contributions.

  19. Online Searching Using Speech as a Man/Machine Interface.

    ERIC Educational Resources Information Center

    Peters, B. F.; And Others

    1989-01-01

    Describes the development, implementation, and evaluation of a voice interface for the British Library Blaise Online Information Retrieval System. Results of the evaluation show that the use of currently available speech recognition and synthesis hardware, along with intelligent software, can provide an interface well suited to the needs of online…

  20. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  1. Operator interface for vehicles

    SciTech Connect

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  2. Driving while using a smartphone-based mobility application: Evaluating the impact of three multi-choice user interfaces on visual-manual distraction.

    PubMed

    Louveton, N; McCall, R; Koenig, V; Avanesov, T; Engel, T

    2016-05-01

    Innovative in-car applications provided on smartphones can deliver real-time alternative mobility choices and subsequently generate visual-manual demand. Prior studies have found that multi-touch gestures such as kinetic scrolling are problematic in this respect. In this study we evaluate three prototype tasks which can be found in common mobile interaction use-cases. In a repeated-measures design, 29 participants interacted with the prototypes in a car-following task within a driving simulator environment. Task completion, driving performance and eye gaze have been analysed. We found that the slider widget used in the filtering task was too demanding and led to poor performance, while kinetic scrolling generated a comparable amount of visual distraction despite it requiring a lower degree of finger pointing accuracy. We discuss how to improve continuous list browsing in a dual-task context.

  3. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  4. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.

    PubMed

    Abbott, W W; Faisal, A A

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.

  5. Scalable coherent interface

    SciTech Connect

    Alnaes, K.; Kristiansen, E.H. ); Gustavson, D.B. ); James, D.V. )

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs.

  6. Evaluating 3D printing to solve the sample-to-device interface for LRS and POC diagnostics: example of an interlock meter-mix device for metering and lysing clinical urine samples.

    PubMed

    Jue, Erik; Schoepp, Nathan G; Witters, Daan; Ismagilov, Rustem F

    2016-05-21

    This paper evaluates the potential of 3D printing, a semi-automated additive prototyping technology, as a means to design and prototype a sample-to-device interface, amenable to diagnostics in limited-resource settings, where speed, accuracy and user-friendly design are critical components. As a test case, we built and validated an interlock meter-mix device for accurately metering and lysing human urine samples for use in downstream nucleic acid amplification. Two plungers and a multivalve generated and controlled fluid flow through the device and demonstrate the utility of 3D printing to create leak-free seals. Device operation consists of three simple steps that must be performed sequentially, eliminating manual pipetting and vortexing to provide rapid (5 to 10 s) and accurate metering and mixing. Bretherton's prediction was applied, using the bond number to guide a design that prevents potentially biohazardous samples from leaking from the device. We employed multi-material 3D printing technology, which allows composites with rigid and elastomeric properties to be printed as a single part. To validate the meter-mix device with a clinically relevant sample, we used urine spiked with inactivated Chlamydia trachomatis and Neisseria gonorrhoeae. A downstream nucleic acid amplification by quantitative PCR (qPCR) confirmed there was no statistically significant difference between samples metered and mixed using the standard protocol and those prepared with the meter-mix device, showing the 3D-printed device could accurately meter, mix and dispense a human urine sample without loss of nucleic acids. Although there are some limitations to 3D printing capabilities (e.g. dimension limitations related to support material used in the printing process), the advantages of customizability, modularity and rapid prototyping illustrate the utility of 3D printing for developing sample-to-device interfaces for diagnostics.

  7. Data Reorganization Interface

    DTIC Science & Technology

    2007-11-02

    Data Reorganization Interface Kenneth Cain Mercury Computer Systems, Inc. Phone: (978)-967-1645 Email Address: kcain@mc.com Abstract...6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury Computer Systems...18 © 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance

  8. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  9. MER SPICE Interface

    NASA Technical Reports Server (NTRS)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  10. Evaluation.

    ERIC Educational Resources Information Center

    McAnany, Emile G.; And Others

    1980-01-01

    Two lead articles set the theme for this issue devoted to evaluation as Emile G. McAnany examines the usefulness of evaluation and Robert C. Hornik addresses four widely accepted myths about evaluation. Additional articles include a report of a field evaluation done by the Accion Cultural Popular (ACPO); a study of the impact of that evaluation by…

  11. SIGMA WEB INTERFACE FOR REACTOR DATA APPLICATIONS

    SciTech Connect

    Pritychenko,B.; Sonzogni, A.A.

    2010-05-09

    We present Sigma Web interface which provides user-friendly access for online analysis and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The interface includes advanced browsing and search capabilities, interactive plots of cross sections, angular distributions and spectra, nubars, comparisons between evaluated and experimental data, computations for cross section data sets, pre-calculated integral quantities, neutron cross section uncertainties plots and visualization of covariance matrices. Sigma is publicly available at the National Nuclear Data Center website at http://www.nndc.bnl.gov/sigma.

  12. Evaluation of the efficacy of photodynamic antimicrobial therapy using a phenothiazine compound and Laser (λ=660ηm) on the interface: macrophage vs S. aureus

    NASA Astrophysics Data System (ADS)

    de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Pires-Santos, Gustavo M.; Sampaio, Fernando José P.; Zanin, Fátima Antônia A.; Pinheiro, Antônio L. B.

    2015-03-01

    Nowadays photodynamic inactivation has been proposed as an alternative treatment for localized bacterial infections as a response to the problem of antibiotic resistance. Much is already known about the photodynamic inactivation of microorganisms: both antibiotic-sensitive and -resistant strains can be successfully photoinactivated and there is the additional advantage that repeated photosensitization of bacterial cells does not induce a selection of resistant strains. Staphylococcus spp. are opportunistic microorganisms known for their capacity to develop resistance against antimicrobial agents. The emergence of resistant strains of bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) poses a major challenge to healthcare. MRSA is a major cause of hospital-acquired infection throughout the world and is now also prevalent in the community as well as nursing and residential homes. The aim of this study was to evaluate the phagocytic function of macrophages J774 against S. aureus in the presence and absence of AmPDT with phenothiazine compound (12.5 μg/mL) and low level laser (λ=660nm, 12 J/cm²). Experimental groups: Control group (L-P-), Phenothiazine group (L-P+) Laser group (L+P-), AmPDT group (L+P+).The tests presented in this study were performed in triplicate. This study showed that AmPDT induced bacterial death in about 80% as well as increasing phagocytic capacity of macrophages by approximately 20% and enhanced the antimicrobial activity by approximately 50% compared to the control group and enabling more intense oxidative burst.

  13. Evaluation of the efficacy of photodynamic antimicrobial therapy using a phenothiazine compound and LED (red-orange) on the interface: macrophage vs S. aureus

    NASA Astrophysics Data System (ADS)

    Sampaio, Fernando José P.; de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Pires-Santos, Gustavo M.; Gesteira, Maria F. M.; Pinheiro, Antônio L. B.

    2015-03-01

    Antimicrobial Photodynamic therapy is a technique in which microorganisms are exposed to a photosensitizing drug and then irradiated with low-intensity visible light of the appropriate wavelength. The resulting photochemical reaction generates cytotoxic reactive oxygen species, such as singlet oxygen and free radicals, which are able to exert bactericidal effect. Much is already known about the photodynamic inactivation of microorganisms: both antibiotic-sensitive and - resistant strains can be successfully photo inactivated, and there is the additional advantage that repeated photosensitization of bacterial cells does not induce a selection of resistant strains. Recently, a series of studies have shown that it is possible to kill bacteria with a light source after the microorganisms have been sensitized with low concentration of dye, such as phenothiazines. The aim of this study was to evaluate the phagocytic function of macrophages J774 against S. aureus in the presence and absence of AmPDT with phenothiazine compound (12.5 μg/mL) and red-orange LED. Experimental groups: Control Group (L-F-), Phenothiazine group (L-F+) LED group (L+F-), Photodynamic therapy group (L+F+). The tests presented in this study were carried out in triplicate. This study demonstrated that AmPDT is able to increase about twice the phagocytic ability of macrophages; however, the bactericidal capacity of these cells did not show a substantial improvement, probably because the oxidative burst was less intense.

  14. Toward High-Performance Communications Interfaces for Science Problem Solving

    NASA Astrophysics Data System (ADS)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  15. Environmental materials and interfaces

    SciTech Connect

    Not Available

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig.

  16. Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis

    PubMed Central

    Haderlein, Tino; Schwemmle, Cornelia; Döllinger, Michael; Matoušek, Václav; Ptok, Martin; Nöth, Elmar

    2015-01-01

    Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 women and 15 men; 48.7 ± 17.8 years) containing the German version of the text “The North Wind and the Sun” were evaluated perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support Vector Regression with measurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners' ratings. The best human-machine results for roughness were obtained from a combination of six prosodic features and CFx (r = 0.71, ρ = 0.57). These correlations were approximately the same as the interrater agreement among human raters (r = 0.65, ρ = 0.61). CQx was one of the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a meaningful objective support for perceptual analysis. PMID:26136813

  17. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  18. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  19. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  20. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  1. TMS communications software. Volume 2: Bus interface unit

    NASA Technical Reports Server (NTRS)

    Gregor, P. J.

    1979-01-01

    A data bus communication system to support the space shuttle's Trend Monitoring System (TMS) and to provide a basis for evaluation of the bus concept is described. Installation of the system included developing both hardware and software interfaces between the bus and the specific TMS computers and terminals. The software written for the microprocessor-based bus interface units is described. The software implements both the general bus communications protocol and also the specific interface protocols for the TMS computers and terminals.

  2. Profile Interface Generator

    SciTech Connect

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.

  3. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  4. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  5. Modal Interfaces in Hawaii

    NASA Technical Reports Server (NTRS)

    Wright, E. Alvey

    1974-01-01

    Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.

  6. A conservative interface-interaction model with insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Schranner, Felix S.; Adams, Nikolaus A.

    2016-12-01

    In this paper we extend the conservative interface-interaction method of Hu et al. (2006) [34], adapted for weakly-compressible flows by Luo et al. (2015) [37], to include the effects of viscous, capillary, and Marangoni stresses consistently as momentum-exchange terms at the sharp interface. The interface-interaction method is coupled with insoluble surfactant transport which employs the underlying sharp-interface representation. Unlike previous methods, we thus achieve discrete global conservation in terms of interface interactions and a consistently sharp interface representation. The interface is reconstructed locally, and a sub-cell correction of the interface curvature improves the evaluation of capillary stresses and surfactant diffusion in particular for marginal mesh resolutions. For a range of numerical test cases we demonstrate accuracy and robustness of the method. In particular, we show that the method is at least as accurate as previous diffuse-interface models while exhibiting throughout the considered test cases improved computational efficiency. We believe that the method is attractive for high-resolution level-set interface-tracking simulations as it straightforwardly incorporates the effects of variable surface tension into the underlying conservative interface-interaction approach.

  7. Interface Electronic Circuitry for an Electronic Tongue

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  8. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  9. Interfacing the Digital.

    ERIC Educational Resources Information Center

    Dietz, Steve

    In the last 5 years, there has been at times heated debate not only about how best to present digital and specifically networked art in an institutional context but also whether to do so at all. Not all of the discussion revolves around issues of physical interfaces to such works, but their onsite presentation is a critical concern for both…

  10. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture is under development for use as a multipurpose interface environment. Initial applications of the system are in telerobotics, data-management and human factors research. System configuration and research directions are described.

  11. A Thermistor Interface.

    ERIC Educational Resources Information Center

    Kamin, Gary D.; Dowden, Edward

    1987-01-01

    Describes the use of a precalibrated stainless steel thermistor, interfaced with an Apple computer, in chemistry experiments. Discusses the advantages of "instant" temperature readings in experiments requiring that readings be taken at certain intervals. Outlines such an experiment which investigates freezing point depressions. (TW)

  12. Interfacing with a DMM.

    ERIC Educational Resources Information Center

    Beatty, Jim

    1985-01-01

    Suggests purchasing a digital multimer (DMM) with an IEEE-488 option to interface an instrument to a microcomputer, indicating that a DMM is well protected from overloads and is easy to connect. An example of its use in an experiment involving hydrolysis of tertiary butyl alcohol (with program listing) is given. (JN)

  13. Photochemistry at Interfaces

    SciTech Connect

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  14. the EXFOR interface

    SciTech Connect

    Brown, D. A.

    2011-03-10

    The x4i package is an interface to the EXFOR nuclear data library. It simplifies retrieval of EXFOR entries and can automatically parse them, allowing one to extract cross-section (and other) data in a simple, plot-able format. x4i also understands and can parse the entire reaction string, allowing one to build a strategy for processing the data

  15. Interface It Yourself.

    ERIC Educational Resources Information Center

    Westling, Bruce D.; Bahe, Margaret E.

    1986-01-01

    Describes several ways to build data collection devices for microcomputers. The interface devices connect with either the computer's game port or an analog-to-digital converter. Discusses how teachers have designed the equipment and appropriate software to use with the computer in biology teaching. (TW)

  16. Foreword: Quasicrystals at Interfaces

    NASA Astrophysics Data System (ADS)

    Fournée, Vincent; Ledieu, Julian; Thiel, Patricia

    2008-08-01

    The term 'quasicrystals' stands for quasiperiodic crystals and by no means signifies that they are imperfect crystals. Quasicrystals represent a well-ordered state of matter just like periodic crystals, characterized by diffraction peaks as sharp as those for nearly perfect crystals such as silicon. But their long range order is aperiodic, and therefore they cannot be described by the periodic repetition of a small unit cell like normal crystals. Instead, quasiperiodic structures can be described as the three-dimensional restriction of a periodic structure embedded in a hyperspace of dimension N > 3. For example, a six-dimensional cubic lattice is used to generate the icosahedral quasilattice in three-dimensions. This is a general property of quasiperiodic functions, an archetype being the function f(x) = cos(x) + cos(√2x), which is the sum of two periodic functions with incommensurate periods. This function can be regarded as the restriction along the line with irrational slope y = √2x of the function F(x, y) = cos(x) + cos(y), which is periodic in the (x, y) plan. Quasicrystalline materials were discovered 25 years ago by D Shechtman et al in rapidly solidified Al-Mn alloys. Many quasicrystals have been identified since then in binary and ternary systems. Most of them present non-crystallographic rotational symmetry like five-fold or ten-fold axes. Interest in this new class of materials was further driven by their potentially useful physical properties, either in the form of functional coatings or as reinforcement particle in composites. These practical aspects in turn raised fundamental questions about the nature of interfaces between periodic and quasiperiodic materials. Interfaces are regions of high energy compared to the bulk, where atomic positions need to be adjusted on both sides of the interface to accommodate the two different lattices. How to describe interfaces and how nature minimizes the interface energy between a periodic and a quasiperiodic

  17. User interface devices for mission control

    NASA Technical Reports Server (NTRS)

    Boatman, Wayne

    1987-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) in Houston, Texas, is being upgraded with new technology engineering/scientific workstations. These workstations will replace the existing consoles and will emulate the present hardware input and display media. The workstations will be using new and different input devices for the flight controller to interact with the workstation and mainframes. This paper presents the results of the User Interface survey conducted by the Workstation Prototype Lab (WPL). The WPL offered the opportunity for users to do hands-on evaluations of a number of user interface options prototyped by lab personnel.

  18. Interface Configuration Experiment: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1994-01-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum re-oriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  19. Space Shuttle flight crew/computer interface simulation studies.

    NASA Technical Reports Server (NTRS)

    Callihan, J. C.; Rybarczyk, D. T.

    1972-01-01

    An approach to achieving an optimized set of crew/computer interface requirements on the Space Shuttle program is described. It consists of defining the mission phases and crew timelines, developing a functional description of the crew/computer interface displays and controls software, conducting real-time simulations using pilot evaluation of the interface displays and controls, and developing a set of crew/computer functional requirements specifications. The simulator is a two-man crew station which includes three CRTs with keyboards for simulating the crew/computer interface. The programs simulate the mission phases and the flight hardware, including the flight computer and CRT displays.

  20. PREFACE: Water at interfaces Water at interfaces

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  1. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  2. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  3. A Robust Camera-Based Interface for Mobile Entertainment

    PubMed Central

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user’s head by processing the frames provided by the mobile device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user’s perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  4. A Robust Camera-Based Interface for Mobile Entertainment.

    PubMed

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-02-19

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user's head by processing the frames provided by the mobile device's front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device's orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user's perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people.

  5. Multifunctional microcontrollable interface module

    NASA Astrophysics Data System (ADS)

    Spitzer, Mark B.; Zavracky, Paul M.; Rensing, Noa M.; Crawford, J.; Hockman, Angela H.; Aquilino, P. D.; Girolamo, Henry J.

    2001-08-01

    This paper reports the development of a complete eyeglass- mounted computer interface system including display, camera and audio subsystems. The display system provides an SVGA image with a 20 degree horizontal field of view. The camera system has been optimized for face recognition and provides a 19 degree horizontal field of view. A microphone and built-in pre-amp optimized for voice recognition and a speaker on an articulated arm are included for audio. An important feature of the system is a high degree of adjustability and reconfigurability. The system has been developed for testing by the Military Police, in a complete system comprising the eyeglass-mounted interface, a wearable computer, and an RF link. Details of the design, construction, and performance of the eyeglass-based system are discussed.

  6. Immunochemistry at interfaces.

    PubMed Central

    Nygren, H; Stenberg, M

    1989-01-01

    The immunochemistry of antibody binding to solid-phase immobilized antigen is reviewed. Experimental data are compared with different theoretical models of reaction mechanisms at solid-liquid interfaces. It was found that reactions at the solid-liquid interface can become limited by the diffusion rate due to depletion of reactants close to the surface, even though the intrinsic bimolecular reaction at the surface is reaction-rate limited. The forward reaction-rate constant decreases with increasing concentration of bound antibodies at the surface, and when not limited by diffusion the forward reaction rate can be more than 1000-fold slower than the corresponding reaction in a liquid solution. Possible explanations for this phenomenon are discussed. The dissociation of bound antibodies is a slow process at solid phases. The antigen-antibody complexes formed are practically irreversible. Some evidence is presented which indicates that the stability of these complexes can be due to attractive lateral interactions between bound antibodies. PMID:2649437

  7. Interface scattering in polycrystalline thermoelectrics

    SciTech Connect

    Popescu, Adrian; Haney, Paul M.

    2014-03-28

    We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with a Landauer approach, while that of phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall system is well described by effective medium theory. Using bulk parameters similar to those of PbTe and a square barrier potential for the interface electron scattering, we identify the interface scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering is generally detrimental due to a reduction in electrical conductivity; however, for sufficiently weak electronic interface scattering, ZT is enhanced due to phonon interface scattering.

  8. SNE Industrial Fieldbus Interface

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos

    2011-01-01

    Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.

  9. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1990-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project period the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work.

  10. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1991-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependant FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers if contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work. 2 figs.

  11. Metaphors for Interface Design

    DTIC Science & Technology

    1987-04-01

    deturms what soa of thing the user thinks the computer is. Is it a conversational parmer? An environment for action? A tool box and materials shed...user takes that action. It means instead that it is simply not possible, using dte tools that the interface language pro- vides, to generate an...manipulated by the people in the course of doing the task. These include the navigation chart, plotting tools , measurement tools , written records

  12. Systems interface biology

    PubMed Central

    Doyle, Francis J; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Hence, the interface between systems and biology is of mutual benefit to both disciplines. PMID:16971329

  13. User Interface Software Tools

    DTIC Science & Technology

    1994-08-01

    97. 19. Mark A. Flecchia and R. Daniel Bergeron. Specifying Complex Dialogs in ALGAE. Human Factors in Computing Systems, CHI+GI󈨛, Toronto, Ont...Spreadsheet Model. Tech. Rept. GIT-GVU-93-20, Georgia Tech Graphics, Visualization and Usability Center, May, 1993. 35. Daniel H.H. Ingalls. "I’he Smalltalk...Interactive Graphical Applications". Comm. ACM 36,4 (April 1993), 41-55. User Interface Software Tools -39 38. Anthony Karrer and Walt Scacchi . Requirements

  14. Standard interface file handbook

    SciTech Connect

    Shapiro, A.; Huria, H.C. )

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  15. User Interface Design Patterns

    DTIC Science & Technology

    2010-07-01

    the beginning of our research) led us to Glade (glade.gnome.org), a cross- platform GUI builder platform that saves its descriptive files in XML format...Major consideration was initially given to Java Netbeans and Java Eclipse, and later extended to Glade .) The saved XML files fully describe... Glade -designed user interfaces. Glade libraries are available for numerous programming languages on many computing platforms. This makes the choice of

  16. Virtual button interface

    DOEpatents

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  17. Virtual button interface

    DOEpatents

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  18. Systems interface biology.

    PubMed

    Doyle, Francis J; Stelling, Jörg

    2006-10-22

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Hence, the interface between systems and biology is of mutual benefit to both disciplines.

  19. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  20. The THOSE remote interface

    NASA Astrophysics Data System (ADS)

    Klawon, Kevin; Gold, Josh; Bachman, Kristen

    2013-05-01

    The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.

  1. Human computer interface guide, revision A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.

  2. ADAM -- Interface Module Reference Manual

    NASA Astrophysics Data System (ADS)

    Chipperfield, A. J.; Kelly, B. D.; Wright, S. L.

    ADAM Interface Modules provide an interface between ADAM application programs and the rest of the system. This document describes in detail the facilities available with ADAM Interface Modules and the rules for using them. It is intended as a reference manual and should shed light on some of the finer points of the ADAM parameter system. Readers requiring an introduction to Interface Modules should read SG/4.

  3. Special Interfaces for Special Students.

    ERIC Educational Resources Information Center

    Tinker, Robert

    1983-01-01

    Computer software can be made accessible to physically handicapped individuals using interfaces. The trick performed by the interface is to make the handicapped individual's responses mediated through the interface indistinguishable from inputs that the software expects from users in normal hardware configurations. Several of these keyboard…

  4. User interfaces for voice applications.

    PubMed Central

    Kamm, C

    1995-01-01

    This paper discusses some of the aspects of task requirements, user expectations, and technological capabilities that influence the design of a voice interface and then identifies several components of user interfaces that are particularly critical in successful voice applications. Examples from several applications are provided to demonstrate how these components are used to produce effective voice interfaces. PMID:7479721

  5. User interfaces for voice applications.

    PubMed

    Kamm, C

    1995-10-24

    This paper discusses some of the aspects of task requirements, user expectations, and technological capabilities that influence the design of a voice interface and then identifies several components of user interfaces that are particularly critical in successful voice applications. Examples from several applications are provided to demonstrate how these components are used to produce effective voice interfaces.

  6. User Interfaces for Voice Applications

    NASA Astrophysics Data System (ADS)

    Kamm, Candace

    1995-10-01

    This paper discusses some of the aspects of task requirements, user expectations, and technological capabilities that influence the design of a voice interface and then identifies several components of user interfaces that are particularly critical in successful voice applications. Examples from several applications are provided to demonstrate how these components are used to produce effective voice interfaces.

  7. Single-interface Casimir torque

    NASA Astrophysics Data System (ADS)

    Morgado, Tiago A.; Silveirinha, Mário G.

    2016-10-01

    A different type of Casimir-type interaction is theoretically predicted: a single-interface torque at a junction of an anisotropic material and a vacuum or another material system. The torque acts to reorient the polarizable microscopic units of the involved materials near the interface, and thus to change the internal structure of the materials. The single-interface torque depends on the zero-point energy of the interface localized and extended modes. Our theory demonstrates that the single-interface torque is essential to understand the Casimir physics of material systems with anisotropic elements and may influence the orientation of the director of nematic liquid crystals.

  8. Conceptual Framework for Aquatic Interfaces

    NASA Astrophysics Data System (ADS)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  9. Matched Interface and Boundary Method for Elasticity Interface Problems

    PubMed Central

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439

  10. Matched Interface and Boundary Method for Elasticity Interface Problems.

    PubMed

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-09-01

    Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé's parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms.

  11. Dynamics of curved interfaces

    SciTech Connect

    Escudero, Carlos

    2009-08-15

    Stochastic growth phenomena on curved interfaces are studied by means of stochastic partial differential equations. These are derived as counterparts of linear planar equations on a curved geometry after a reparametrization invariance principle has been applied. We examine differences and similarities with the classical planar equations. Some characteristic features are the loss of correlation through time and a particular behavior of the average fluctuations. Dependence on the metric is also explored. The diffusive model that propagates correlations ballistically in the planar situation is particularly interesting, as this propagation becomes nonuniversal in the new regime.

  12. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1986-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  13. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  14. Bidirectional Neural Interfaces

    PubMed Central

    Masters, Matthew R.; Thakor, Nitish V.

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very-large-scale integration (VLSI) has advanced the design of complex integrated circuits. System-on-chip (SoC) devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems. PMID:26753776

  15. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  16. Mysteries at Ice Interfaces

    NASA Astrophysics Data System (ADS)

    Fain, Samuel C., Jr.

    1996-03-01

    Michael Faraday noted that ``two pieces of thawing ice, if put together, adhere and become one...the effect will take place in air, or in water, or in vacuo." Why? He proposed that ``a particle of water, which could retain the liquid state whilst touching ice only on one side, could not retain the liquid state if it were touched by ice on both sides."footnote M. Faraday, Proc. Roy. Soc. London 10, 440 (1860) The existence of special properties at interfaces of ice is generally agreed and has important environmental consequences.(J. G. Dash, H. Fu, and J. S. Wettlaufer, Rep. Prog. Phys. 58), 115 (1995) Why do different experiments infer different properties for this layer? Impurities and electric fields at the interfaces may be responsible for some of the variations in experimental results.footnote V. F. Petrenko, U. S. Army Cold Regions Research and Engineering Laboratory Report 94-22 (1994) Some background on the physical properties of ice will be discussed, including recent force microscopy measurements done at the University of Washington.footnote C.R. Slaughterbeck, E.W. Kukes, B. Pittenger, D.J. Cook, P.C. Williams, V.L. Eden, S.C. Fain, Jr., J. Vac. Sci. Technol. (in press) Supported by NSF Grant DMR-91-19701.

  17. Laparoscopic simulation interface

    DOEpatents

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  18. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  19. Testing of the Automated Fluid Interface System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S.; Tyler, Tony R.

    1998-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.

  20. Thermal interface conductance across metal alloy-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Freedman, Justin P.; Yu, Xiaoxiao; Davis, Robert F.; Gellman, Andrew J.; Malen, Jonathan A.

    2016-01-01

    We present measurements of thermal interface conductance as a function of metal alloy composition. Composition spread alloy films of A uxC u1 -x and A uxP d1 -x solid solutions were deposited on single crystal sapphire substrates via dual electron-beam evaporation. High throughput measurements of thermal interface conductance across the (metal alloy)-sapphire interfaces were made by positional scanning of frequency domain thermoreflectance measurements to sample a continuum of Au atomic fractions (x ˜0 →1 ) . At a temperature of 300 K, the thermal interface conductance at the A uxC u1 -x -sapphire interfaces monotonically decreased from 197 ±39 MW m-2K-1 to 74 ±11 MW m-2K-1 for x =0 →0.95 ±0.02 and at the A uxP d1 -x -sapphire interfaces from 167 ±35 MW m-2K-1 to 60 ±10 MW m-2K-1 for x =0.03 →0.97 ±0.02 . To shed light on the phonon physics at the interface, a Diffuse Mismatch Model for thermal interface conductance with alloys is presented and agrees reasonably with the thermal interface conductance data.