Science.gov

Sample records for humanized anti-her2 monoclonal

  1. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles.

    PubMed

    Kouchakzadeh, Hasan; Shojaosadati, Seyed Abbas; Tahmasebi, Fathollah; Shokri, Fazel

    2013-04-15

    Human serum albumin (HSA) nanoparticles represent an attractive strategy for active targeting of therapeutics into tumor cells due to the presence of superficial functional groups. HER2 is highly expressed in a significant proportion of cancers and monoclonal antibodies (mAbs) directed against HER2 hold great promise for effective therapy. Herein, covalent coupling of a novel mAb (1F2) directed against the extracellular domain of HER2 to the surface of HSA nanoparticles was evaluated to obtain nanoparticles with highest cellular uptake. HER2 reactivity of 1F2-conjugated nanoparticles produced under different conditions was screened by an indirect ELISA and flow cytometry techniques. Monoclonal antibody thiolation with 100-fold molar excess of 2-iminothiolane and the ratio of 10:1 for the thiolated 1F2 (μg) to PEGylated nanoparticles (mg), were optimum for the attachment process. Under this condition, 23±4% of 1F2 was conjugated to nanoparticles. The flow cytometry results show that 1F2-modified nanoparticles interact with nearly all HER2 receptors on the surface of BT474 cells. In addition, no cellular uptake was observed on MCF7 cells. In vitro analyses showed no significant cytotoxicity of produced system against BT474 cells. Therefore, 1F2-attached HSA nanoparticles represent a potential delivery system for targeted transport of therapeutic agents into HER2-positive tumor cells.

  2. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    PubMed Central

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy. PMID:27092488

  3. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    PubMed

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-04-15

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  4. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer

    PubMed Central

    Li, Hongwen; Yu, Chao; Jiang, Jing; Huang, Changjiang; Yao, Xuejing; Xu, Qiaoyu; Yu, Fang; Lou, Liguang; Fang, Jianmin

    2016-01-01

    ABSTRACT Antibody-drug conjugate (ADC) is a novel class of therapeutics for cancer target therapy. This study assessed antitumor activity of ADC with an antimitotic agent, monomethyl auristatin E (MMAE) and a humanized monoclonal anti-HER2 antibody, hertuzumab, in gastric cancer. The efficacy of hertuzumab-MC-Val-Cit-PAB-MMAE (hertuzumab-vcMMAE) on human epidermal growth factor receptor 2 (HER2) positive human gastric cancer cells, NCI-N87, was evaluated in vitro and in vivo. The cytotoxicity of hertuzumab was significantly enhanced after conjugation with MMAE. Compared to trastuzumab, hertuzumab had a higher affinity to HER2 and had more potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. After conjugation with MMAE, the binding specificity for HER2 was not affected. Furthermore, the internalization of hertuzumab-vcMMAE in HER2 positive gastric cancer cells was verified. Although the conjugation of hertuzumab and MMAE decreased the ADCC effect, the overall cytotoxicity was dramatically increased in HER2 positive gastric cancer cells. In vitro data on this hertuzumab-vcMMAE has exerted much stronger antitumor activity compared to trastuzumab-DM1 in HER2 positive gastric cancer cells. A single administration of hertuzumab-vcMMAE at 5 or 10 mg/kg showed high potency and a sustained tumor inhibitory effect on NCI-N87 xenografts in mice. In conclusion, hertuzumab-vcMMAE conjugate is a highly effective anti-HER2 targeted therapy for HER2-positive gastric cancer. PMID:26853765

  5. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer.

    PubMed

    Wang, G; Qiu, J; Wang, R; Krause, A; Boyer, J L; Hackett, N R; Crystal, R G

    2010-08-01

    Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10alphaHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2(+) tumor cell lines. A single administration of AAVrh.10alphaHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2(+) tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

  6. A Conjugate Based on Anti-HER2 Diaffibody and Auristatin E Targets HER2-Positive Cancer Cells

    PubMed Central

    Serwotka-Suszczak, Anna M.; Sochaj-Gregorczyk, Alicja M.; Pieczykolan, Jerzy; Krowarsch, Daniel; Jelen, Filip; Otlewski, Jacek

    2017-01-01

    Antibody-drug conjugates (ADCs) have recently emerged as efficient and selective cancer treatment therapeutics. Currently, alternative forms of drug carriers that can replace monoclonal antibodies are under intensive investigation. Here, a cytotoxic conjugate of an anti-HER2 (Human Epidermal Growth Factor Receptor 2) diaffibody with monomethyl-auristatin E (MMAE) is proposed as a potential anticancer therapeutic. The anti-HER2 diaffibody was based on the ZHER2:4 affibody amino acid sequence. The anti-HER2 diaffibody has been expressed as a His-tagged protein in E. coli and purified by Ni-nitrilotriacetyl (Ni-NTA) agarose chromatography. The molecule was properly folded, and the high affinity and specificity of its interaction with HER2 was confirmed by surface plasmon resonance (SPR) and flow cytometry, respectively. The (ZHER2:4)2DCS-MMAE conjugate was obtained by coupling the maleimide group linked with MMAE to cysteines, which were introduced in a drug conjugation sequence (DCS). Cytotoxicity of the conjugate was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide MTT assay and the xCELLigence Real-Time Cell Analyzer. Our experiments demonstrated that the conjugate delivered auristatin E specifically to HER2-positive tumor cells, which finally led to their death. These results indicate that the cytotoxic diaffibody conjugate is a highly potent molecule for the treatment of various types of cancer overexpressing HER2 receptors. PMID:28216573

  7. Anti-HER2 cancer therapy and cardiotoxicity.

    PubMed

    Babar, Tania; Blomberg, Christopher; Hoffner, Eileen; Yan, Xinhua

    2014-01-01

    A significant milestone in the treatment of breast cancer is the identification of the HER2 receptor as a drug target for cancer therapies. Trastuzumab (Herceptin), a monoclonal antibody that blocks the HER2 receptor, is among the first of such drugs approved by the US Food and Drug Administration for targeted cancer therapy. Clinical studies have shown that Trastuzumab significantly improves the overall survival of breast cancer patients. However, an unforeseen significant side-effect of cardiotoxicity manifested as left ventricular dysfunction and heart failure. Concurrent studies have demonstrated the essential role of the HER2 receptor in cardiac development and maintaining the physiological function of an adult heart. The HER2 receptor, therefore, has become a critical link between the oncology and cardiology fields. In addition to Trastuzumab, new drugs targeting the HER2 receptor, such as Lapatinib, Pertuzumab and Afatinib, are either approved or being evaluated in clinical trials for cancer therapy. With the concern of cardiotoxicity caused by HER2 inhibition, it becomes clear that new therapeutic strategies for preventing such cardiac side effects need to be developed. It is the intent of this paper to review the potential cardiac impact of anti-HER2 cancer therapy.

  8. Current therapeutic strategies of anti-HER2 treatment in advanced breast cancer patients

    PubMed Central

    Nowara, Elżbieta

    2016-01-01

    The HER2/neu (ERBB2) oncogene is amplified and/or overexpressed in approximately 20% of breast cancers, and is a strong prognostic factor for relapse and poor overall survival, particularly in node-positive patients. It is also an important predictor for response to trastuzumab, which has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. Treatment with the anti-HER2 humanized monoclonal antibody – trastuzumab significantly improves progression-free and overall survival among patients with HER2-positive breast cancer. However, in most patients with HER2-positive metastatic breast cancer, the disease progresses occurred, what cause the need for new targeted therapies for advanced disease. In clinical trials, there are tested new drugs to improve the results of treatment for this group of patients. This paper presents new drugs introduced into clinical practice for treatment of advanced breast cancer, whose molecular target are receptors of the HER2 family. In addition, new therapeutic strategies and drugs that are currently in clinical researches are discussed. PMID:27095932

  9. Gene therapy using plasmid DNA-encoded anti-HER2 antibody for cancers that overexpress HER2

    PubMed Central

    Kim, H; Danishmalik, S N; Hwang, H; Sin, J-I; Oh, J; Cho, Y; Lee, H; Jeong, M; Kim, S-H; Hong, H J

    2016-01-01

    Plasmid DNA-encoded antibodies, or DNA-based monoclonal antibodies (dMAbs), are delivered by intramuscular injection and in vivo electroporation (EP) and are effective in virus neutralization, although they have not been evaluated for tumor gene therapy. Here we investigated whether a dMAb was appropriate for tumor gene therapy. We constructed the expression plasmids coding for the heavy or light chain of a parental murine antibody of Herceptin with the antibody genes codon- and RNA-optimized and fused to the Kozak-IgE leader sequence in pVax1. Transfection of the plasmids into human muscle RD cells resulted in functional expression of the antibody, and this exhibited the same in vitro antiproliferative activity as Herceptin. A single intramuscular injection and in vivo EP of the plasmids (100 μg per head) resulted in high and sustained antibody expression in the sera of normal mice and in effective inhibition of tumor growth in nude mice bearing HER2-positive human breast carcinoma BT474 xenografts. The antitumor efficacy of the anti-HER2 dMAb was similar to that of four doses of intravenously injected 10 mg kg−1 Herceptin. The results demonstrate that the dMAb is effective in the treatment of HER2-positive breast cancer, suggesting that this dMAb may be applicable for tumor gene therapy. PMID:27632934

  10. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer

    PubMed Central

    de Melo Gagliato, Debora; Leonardo Fontes Jardim, Denis; Marchesi, Mario Sergio Pereira; Hortobagyi, Gabriel N.

    2016-01-01

    Breast Cancer (BC) is a highly prevalent disease. A woman living in the United States has a 12.3% lifetime risk of being diagnosed with breast cancer [1]. It is the most common female cancer and the second most common cause of cancer death in women [2]. Of note, amplification or overexpression of Human Epidermal Receptor 2 (HER2) oncogene is present in approximately 18 to 20% of primary invasive breast cancers, and until personalized therapy became available for this specific BC subtype, the worst rates of Overall Survival (OS) and Recurrence-Free Survival (RFS) were observed in the HER2+ BC cohort, compared to all other types, including triple negative BC (TNBC) [3]. HER2 is a member of the epidermal growth factor receptor (EGFR) family. Other family members include EGFR or HER1, HER3 and HER4. HER2 can form heterodimers with any of the other three receptors, and is considered to be the preferred dimerization partner of the other HER or ErbB receptors [4]. Phosphorylation of tyrosine residues within the cytoplasmic domain is the result of receptor dimerization and culminates into initiation of a variety of signalling pathways involved in cellular proliferation, transcription, motility and apoptosis inhibition [5]. In addition to being an important prognostic factor in women diagnosed with BC, HER2 overexpression also identifies those patients who benefit from treatment with agents that target HER2, such as trastuzumab, pertuzumab, trastuzumab emtansine (T-DM1) and small molecules tyrosine kinase inhibitors of HER2 [6, 11, 127]. In fact, trastuzumab altered the natural history of patients diagnosed with HER2+ BC, both in early and metastatic disease setting, in a major way [8–10]. Nevertheless, there are many women that will eventually develop metastatic disease, despite being treated with anti-HER2 therapy in the early disease setting. Moreover, advanced tumors may reach a point where no anti-HER2 treatment will achieve disease control, including recently

  11. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy

    PubMed Central

    Aura, Claudia; Garrido-Castro, Ana; Vilaro, Marta; Peg, Vicente; Jimenez, José; Vicario, Rocio; Cecchi, Fabiola; Hoos, William; Burrows, Jon; Hembrough, Todd; Ferreres, Juan Carles; Perez-Garcia, José; Arribas, Joaquin; Cortes, Javier; Scaltriti, Maurizio

    2016-01-01

    Introduction Current methods to determine HER2 (human epidermal growth factor receptor 2) status are affected by reproducibility issues and do not reliably predict benefit from anti-HER2 therapy. Quantitative measurement of HER2 may more accurately identify breast cancer (BC) patients who will respond to anti-HER2 treatments. Methods Using selected reaction monitoring mass spectrometry (SRM-MS), we quantified HER2 protein levels in formalin-fixed, paraffin-embedded (FFPE) tissue samples that had been classified as HER2 0, 1+, 2+ or 3+ by immunohistochemistry (IHC). Receiver operator curve (ROC) analysis was conducted to obtain optimal HER2 protein expression thresholds predictive of HER2 status (by standard IHC or in situ hybridization [ISH]) and of survival benefit after anti-HER2 therapy. Results Absolute HER2 amol/μg levels were significantly correlated with both HER2 IHC and amplification status by ISH (p < 0.0001). A HER2 threshold of 740 amol/μg showed an agreement rate of 94% with IHC and ISH standard HER2 testing (p < 0.0001). Discordant cases (SRM-MS-negative/ISH-positive) showed a characteristic amplification pattern known as double minutes. HER2 levels >2200 amol/μg were significantly associated with longer disease-free survival (DFS) and overall survival (OS) in an adjuvant setting and with longer OS in a metastatic setting. Conclusion Quantitative HER2 measurement by SRM-MS is superior to IHC and ISH in predicting outcome after treatment with anti-HER2 therapy. PMID:26422389

  12. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine.

    PubMed

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-10-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as 'dog epidermal growth factor receptor-2 (DER-2)', with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vivo application applicationof humanized antibodies to other species would lead to specific hypersensitivity reactions. Therefore, HER-2 mimotope vaccines that actively induce autologous trastuzumab-like immunoglobulins represent a novel and economic treatment option to overcome species-specific limitations. Thus, the present review proposes the implementation of clinical trials with HER-2 vaccines in canine cancer model modelpatients with spontaneous DER-2 positive mammary gland carcinomas in order to assess their safety and efficacy. This approach would not only pave the way into the veterinary oncology market, but would also similarly generate robust data for human trials and facilitate the testing of novel combinatorial treatments.

  13. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine

    PubMed Central

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-01-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as ‘dog epidermal growth factor receptor-2 (DER-2)’, with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vivo application applicationof humanized antibodies to other species would lead to specific hypersensitivity reactions. Therefore, HER-2 mimotope vaccines that actively induce autologous trastuzumab-like immunoglobulins represent a novel and economic treatment option to overcome species-specific limitations. Thus, the present review proposes the implementation of clinical trials with HER-2 vaccines in canine cancer model modelpatients with spontaneous DER-2 positive mammary gland carcinomas in order to assess their safety and efficacy. This approach would not only pave the way into the veterinary oncology market, but would also similarly generate robust data for human trials and facilitate the testing of novel combinatorial treatments. PMID:27698788

  14. Twenty years of anti-HER2 therapy-associated cardiotoxicity

    PubMed Central

    Pondé, Noam F; Lambertini, Matteo; de Azambuja, Evandro

    2016-01-01

    Over the past 20 years, the prognosis of HER2-positive breast cancer has been transformed by the development of anti-HER2 targeted therapies. In early clinical trials of trastuzumab (ie, the first anti-HER2 agent to be developed) cardiotoxicity became a major concern. In the first published phase 3 trial of trastuzumab, 27% of patients receiving anthracyclines and trastuzumab experienced cardiac events and 16% suffered from severe congestive heart failure. In subsequent trials conducted in advanced and early settings, the incidence of cardiac events was reduced through changes in chemotherapy regimens, more strict patient selection and close cardiac assessment. However, cardiotoxicity remains a significant problem in clinical practice that is likely to increase as new agents are approved and exposure times increase through improved patients' survival. Though numerous trials have led to improved understanding of many aspects of anti-HER2 therapy-related cardiotoxicity, its underlying physiopathology mechanisms are not well understood. The purpose of this article is to provide an in-depth review on anti-HER2 therapy-related cardiotoxicity, including data on both trastuzumab and the recently developed anti-HER2 targeted agents. PMID:27843627

  15. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huerta-Núñez, L. F. E.; Villanueva-Lopez, G. Cleva; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J. G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, Marco E.; González, C. A.

    2016-09-01

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague-Dawley rats: control ( n = 6) and BC chemically induced ( n = 3). Bioconjugated "anti-Her2-MNPs" were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl's Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  16. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mu, Qingxin; Kievit, Forrest M.; Kant, Rajeev J.; Lin, Guanyou; Jeon, Mike; Zhang, Miqin

    2015-10-01

    Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells.Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular

  17. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    NASA Astrophysics Data System (ADS)

    Shukla, Rameshwer; Thomas, Thommey P.; Desai, Ankur M.; Kotlyar, Alina; Park, Steve J.; Baker, James R., Jr.

    2008-07-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  18. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation.

  19. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    PubMed

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  20. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    PubMed

    Gijsen, Merel; King, Peter; Perera, Tim; Parker, Peter J; Harris, Adrian L; Larijani, Banafshé; Kong, Anthony

    2010-12-21

    Herceptin (trastuzumab) is used in patients with breast cancer who have HER2 (ErbB2)-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET) methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2). The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining HER2

  1. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.

    PubMed

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs.

  2. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells.

    PubMed

    Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M; Jin, Takashi

    2009-01-01

    The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23∼0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission) on the fluorescence image of KPL-4 cells.

  3. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    PubMed Central

    Tiwari, Dhermendra K.; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M.; Jin, Takashi

    2009-01-01

    The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23∼0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission) on the fluorescence image of KPL-4 cells. PMID:22291567

  4. Pathologic complete response after preoperative anti-HER2 therapy correlates with alterations in PTEN, FOXO, phosphorylated Stat5, and autophagy protein signaling

    PubMed Central

    2013-01-01

    Background To define protein molecular characteristics of tumor cells prior to, and immediately following, preoperative human epidermal growth factor receptor 2 (HER2)-targeted therapy that correlate with pathologic complete response (pCR) or non response (no pCR) to preoperative HER2-directed therapy and chemotherapy. Methods This open-label, phase II study randomized patients with HER2-positive stage II or III invasive breast cancer to trastuzumab, lapatinib, or both, 2 weeks prior to and during chemotherapy with FEC75 for 4 courses; then paclitaxel 80 mg/m2 weekly for 12 courses, then surgery. Core needle biopsies were collected at baseline and after 2 weeks of anti-HER2 therapy prior to chemotherapy. Data were correlated with pCR, defined as absence of invasive tumor in breast and lymph nodes. Results Of 100 enrolled patients, the analysis population included those who had surgery and received ≥75% chemotherapy (78% [n = 78]). pCRs by arm are: trastuzumab (n = 26), 54% [n = 14]; lapatinib (n = 29), 45% [n = 13]; trastuzumab plus lapatinib (n = 23), 74% [n = 17]). Paired biopsy specimens were available for 49 patients (63%). Tumor cells of patients with pCR in the trastuzumab or lapatinib treatment arms showed nonphosphorylated FOXO, phosphorylated Stat5, and sparse signal-transduction protein network crosstalk representing different patterns of connections with PI3K and autophagy proteins compared with no pCR. Conclusion In this exploratory study, pCR with preoperative anti-HER2 therapy and chemotherapy correlated with the levels and phosphorylation status of specific baseline signal pathway proteins in tumor cells. These data may provide candidate biomarkers to stratify initial treatment and potential combination therapies for future study. Tissue preservation technology introduced here makes this procedure widely feasible. Trial registration ClinicalTrials.gov: NCT00524303 PMID:24304724

  5. A comparison of anti-HER2 IgA and IgG1 in vivo efficacy is facilitated by high N-glycan sialylation of the IgA

    PubMed Central

    Rouwendal, Gerard JA; van der Lee, Miranda M; Meyer, Saskia; Reiding, Karli R; Schouten, Jan; de Roo, Guy; Egging, David F; Leusen, Jeanette HW; Boross, Peter; Wuhrer, Manfred; Verheijden, Gijs F; Dokter, Wim H; Timmers, Marco; Ubink, Ruud

    2016-01-01

    Monomeric IgA has been proposed as an alternative antibody format for cancer therapy. Here, we present our studies on the production, purification and functional evaluation of anti-HER2 IgA antibodies as anti-cancer agents in comparison to the anti-HER2 IgG1 trastuzumab. MALDI-TOF MS analysis showed profound differences in glycosylation traits across the IgA isotypes and cell lines used for production, including sialylation and linkage thereof, fucosylation (both core and antennary) and the abundance of high-mannose type species. Increases in sialylation proved to positively correlate with in vivo plasma half-lives. The polymerization propensity of anti-HER2 IgA2m2 could be suppressed by an 18-aa deletion of the heavy chain tailpiece - coinciding with the loss of high-mannose type N-glycan species - as well as by 2 cysteine to serine mutations at positions 320 and 480. The HER2 F(ab')2-mediated anti-proliferative effect of the IgA2m1 and IgA2m2 subtypes was similar to IgG1, whereas the IgA1 isotype displayed considerably lower potency and efficacy. The Fc-mediated induction of antibody-dependent cell-mediated cytotoxicity (ADCC) using human whole blood ADCC assays did not demonstrate such clear differences between the IgA isotypes. However, the potency of the anti-HER2 IgA antibodies in these ADCC assays was found to be significantly lower than that of trastuzumab. In vivo anti-tumor activity of the anti-HER2 IgA antibodies was compared to that of trastuzumab in a BT-474 breast cancer xenograft model. Multiple dosing and sialylation of the IgA antibodies compensated for the short in vivo half-life of native IgA antibodies in mice compared to a single dose of IgG1. In the case of the IgA2m2 antibody, the resulting high plasma exposure levels were sufficient to cause clear tumor stasis comparable to that observed for trastuzumab at much lower plasma exposure levels. PMID:26440530

  6. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies.

    PubMed

    Hanker, Ariella B; Pfefferle, Adam D; Balko, Justin M; Kuba, María Gabriela; Young, Christian D; Sánchez, Violeta; Sutton, Cammie R; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-08-27

    Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.

  7. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.

    PubMed

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2016-01-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  8. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer.

    PubMed

    Koski, Gary K; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Sharma, Anupama; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Czerniecki, Brian J

    2012-01-01

    Twenty-seven patients with HER-2/neu overexpressing ductal carcinoma in situ of the breast were enrolled in a neoadjuvant immunization trial for safety and immunogenicity of DC1-polarized dendritic cells (DC1) pulsed with 6 HER-2/neu promiscuous major histocompatibility complex class II-binding peptides and 2 additional human leukocyte antigen (HLA)-A2.1 class I-binding peptides. DC1 were generated with interferon-γ and a special clinical-grade bacterial endotoxin (lipopolysaccharide) and administered directly into groin lymph nodes 4 times at weekly intervals before scheduled surgical resection of ductal carcinoma in situ. Patients were monitored for the induction of new or enhanced antipeptide reactivity by interferon-γ ELISPOT and enzyme-linked immunosorbentassays performed on Th cells obtained from peripheral blood or excised sentinel lymph nodes. Responses by cytotoxic T lymphocyte against HLA-A2.1-binding peptides were measured using peptide-pulsed T2 target cells or HER-2/neu-expressing or nonexpressing tumor cell lines. DC1 showed surface phenotype indistinct from "gold standard" inflammatory cocktail-activated DC, but displayed a number of distinguishing functional characteristics including the secretion of soluble factors and enhanced "killer DC" capacity against tumor cells in vitro. Postimmunization, we observed sensitization of Th cells to at least 1 class II peptide in 22 of 25 (88%; 95% exact confidence interval, 68.8%-97.5%) evaluable patients, whereas 11 of 13 (84.6%; 95% exact confidence interval, 64%-99.8%) HLA-A2.1 patients were successfully sensitized to class I peptides. Perhaps most importantly, anti-HER-2/neu peptide responses were observed up to 52-month postimmunization. These data show that even in the presence of early breast cancer such DC1 are potent inducers of durable type I-polarized immunity, suggesting potential clinical value for development of cancer immunotherapy.

  9. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines

    PubMed Central

    2011-01-01

    Introduction Inhibiting the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of breast carcinoma cells, and this is linked to human epidermal growth factor receptor 2 (HER2) signaling pathways in models of simultaneous expression of FASN and HER2. Methods In a xenograft model of breast carcinoma cells that are FASN+ and HER2+, we have characterised the anticancer activity and the toxicity profile of G28UCM, the lead compound of a novel family of synthetic FASN inhibitors. In vitro, we analysed the cellular and molecular interactions of combining G28UCM with anti-HER drugs. Finally, we tested the cytotoxic ability of G28UCM on breast cancer cells resistant to trastuzumab or lapatinib, that we developed in our laboratory. Results In vivo, G28UCM reduced the size of 5 out of 14 established xenografts. In the responding tumours, we observed inhibition of FASN activity, cleavage of poly-ADPribose polymerase (PARP) and a decrease of p-HER2, p- protein kinase B (AKT) and p-ERK1/2, which were not observed in the nonresponding tumours. In the G28UCM-treated animals, no significant toxicities occurred, and weight loss was not observed. In vitro, G28UCM showed marked synergistic interactions with trastuzumab, lapatinib, erlotinib or gefitinib (but not with cetuximab), which correlated with increases in apoptosis and with decreases in the activation of HER2, extracellular signal-regulated kinase (ERK)1/2 and AKT. In trastuzumab-resistant and in lapatinib-resistant breast cancer cells, in which trastuzumab and lapatinib were not effective, G28UCM retained the anticancer activity observed in the parental cells. Conclusions G28UCM inhibits fatty acid synthase (FASN) activity and the growth of breast carcinoma xenografts in vivo, and is active in cells with acquired resistance to anti-HER2 drugs, which make it a candidate for further pre-clinical development. PMID:22177475

  10. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy

    PubMed Central

    Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao; Fu, Xiaoyong; Nardone, Agostina; Herrera, Sabrina; Mao, Sufeng; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Hilsenbeck, Susan G.; De Angelis, Carmine; Wang, Nicholas J.; Heiser, Laura M.; Gray, Joe W.; Lopez-Tarruella, Sara; Pavlick, Anne C.; Trivedi, Meghana V.; Chamness, Gary C.; Chang, Jenny C.; Osborne, C. Kent; Rimawi, Mothaffar F.; Schiff, Rachel

    2015-01-01

    Purpose To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples. Experimental design Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies, and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 post treatment), were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and western blot. The effects of Bcl2 and ER inhibition, by ABT-737 and fulvestrant respectively, were tested in parental versus lapatinib-resistant UACC812 cells in vitro. Results Expression of ER and Bcl2 was significantly increased in xenograft tumors with acquired resistance to anti-HER2 therapy, compared with untreated tumors, in both preclinical models (UACC812: ER p=0.0014; Bcl2 p<0.001. MCF7/HER2-18: ER p=0.0007; Bcl2 p=0.0306). In the neoadjuvant clinical study, lapatinib treatment for two weeks was associated with parallel upregulation of ER and Bcl2 (Spearman’s coefficient: 0.70; p=0.0002). Importantly, 18% of tumors originally ER-negative (ER−) converted to ER+ upon anti-HER2 therapy. In ER−/HER2+ MCF7/HER2-18 xenografts, ER re-expression was primarily observed in tumors responding to potent combination of anti-HER2 drugs. Estrogen deprivation added to this anti-HER2 regimen significantly delayed tumor progression (p=0.018). In the UACC812 cells, fulvestrant, but not ABT-737, was able to completely inhibit anti-HER2-resistant growth (p<0.0001). Conclusion HER2 inhibition can enhance or restore ER expression with parallel Bcl2 upregulation, representing an ER-dependent survival mechanism potentially leading to anti-HER2 resistance. PMID:26015514

  11. Restoring Lost Anti-HER-2 Th1 Immunity in Breast Cancer: A Crucial Role for Th1 Cytokines in Therapy and Prevention

    PubMed Central

    Nocera, Nadia F.; Lee, M. Catherine; De La Cruz, Lucy M.; Rosemblit, Cinthia; Czerniecki, Brian J.

    2016-01-01

    The ErbB/B2 (HER-2/neu) oncogene family plays a critical role in the development and metastatic spread of several tumor types including breast, ovarian and gastric cancer. In breast cancer, HER-2/neu is expressed in early disease development in a large percentage of DCIS lesions and its expression is associated with an increased risk of invasion and recurrence. Targeting HER-2 with antibodies such as trastuzumab or pertuzumab has improved survival, but patients with more extensive disease may develop resistance to therapy. Interestingly, response to HER-2 targeted therapies correlates with presence of immune response genes in the breast. Th1 cell production of the cytokines interferon gamma (IFNγ) and TNFα can enhance MHC class I expression, PD-L1 expression, augment apoptosis and tumor senescence, and enhances growth inhibition of many anti-breast cancer agents, including anti-estrogens and HER-2 targeted therapies. Recently, we have identified that a loss of anti-HER-2 CD4 Th1 in peripheral blood occurs during breast tumorigenesis and is dramatically diminished, even in Stage I breast cancers. The loss of anti-HER-2 Th1 response is specific and not readily reversed by standard therapies. In fact, this loss of anti-HER-2 Th1 response in peripheral blood correlates with lack of complete response to neoadjuvant therapy and diminished disease-free survival. This defect can be restored with HER-2 vaccinations in both DCIS and IBC. Correcting the anti-HER-2 Th1 response may have significant impact in improving response to HER-2 targeted therapies. Development of immune monitoring systems for anti-HER-2 Th1 to identify patients at risk for recurrence could be critical to improving outcomes, since the anti-HER-2 Th1 response can be restored by vaccination. Correction of the cellular immune response against HER-2 may prevent recurrence in high-risk patients with DCIS and IBC at risk of developing new or recurrent breast cancer. PMID:27766079

  12. Synthesis, Characterization, and Biological Evaluation of Anti-HER2 Indocyanine Green-Encapsulated PEG-Coated PLGA Nanoparticles for Targeted Phototherapy of Breast Cancer Cells

    PubMed Central

    Lee, Yu-Hsiang; Lai, Yun-Han

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-overexpressed breast cancer is known to be more aggressive and resistant to medicinal treatment and therefore to whom an alternative therapeutics is needed. Indocyanine green (ICG) has been widely exploited in breast cancer phototherapy. However, drawbacks of accelerated degradation and short half-life (2–4 min) in blood seriously hamper its use in the clinic. To overcome these challenges, an anti-HER2 ICG-encapsulated polyethylene glycol-coated poly(lactic-co-glycolic acid) nanoparticles (HIPPNPs) were developed in this study. Through the analyses of degradation rate coefficients of ICG with and without polymeric encapsulation, the photostability of HIPPNP-entrapped ICG significantly enhanced 4 folds (P < 0.05) while its thermal stabilities at 4 and 37°C significantly enhanced 5 and 3 (P < 0.05 for each) folds, respectively, under equal lighting and/or heating treatment for 48 h. The target specificity of HIPPNPs to HER2-positive cells was demonstrated based on a 6-fold (P < 0.05) enhancement of uptake efficiency of HIPPNPs in MDA-MB-453/HER2(+) cells within 4 h as compared with that in MCF7/HER2(-) cells. Moreover, the HIPPNPs with ≤ 25 μM ICG equivalent were nontoxic to cells in the absence of light illumination, and enabled to generate similar amount of singlet oxygen and hyperthermia effect as compared with that used by free ICG upon NIR irradiation. After 808 nm-laser irradiation with intensity of 6 W/cm2 for 5 min, the viability of MDA-MB-453 cells pre-treated by HIPPNPs with ≥ 5 μM ICG equivalent for 4 h significantly reduced as compared with that treated by equal concentration of free ICG (P < 0.05) and > 90% of the cells were eradicated while the dose of HIPPNPs was increased to 25 μM ICG equivalent. In summary, the developed HIPPNPs are anticipated as a feasible tool for use in phototherapy of breast cancer cells with HER2 expression. PMID:27942034

  13. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  14. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.

    PubMed

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.

  15. Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs

    PubMed Central

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies. PMID:26107737

  16. Comparison between Internalizing Anti-HER2 mAbs and Non-Internalizing Anti-CEA mAbs in Alpha-Radioimmunotherapy of Small Volume Peritoneal Carcinomatosis Using 212Pb

    PubMed Central

    Busson, Muriel; Garambois, Véronique; Jarlier, Marta; Charalambatou, Paraskevi; Pèlegrin, André; Paillas, Salomé; Chouin, Nicolas; Quenet, François; Maquaire, Patrick; Torgue, Julien; Navarro-Teulon, Isabelle; Pouget, Jean-Pierre

    2013-01-01

    Background and Purpose We assessed the contribution of antibody internalization in the efficacy and toxicity of intraperitoneal α-radioimmunotherapy (RIT) of small volume carcinomatosis using 212Pb-labeled monoclonal antibodies (mAbs) that target HER2 (internalizing) or CEA (non-internalizing) receptors. Materials and Methods Athymic nude mice bearing 2–3 mm intraperitoneal tumor xenografts were intraperitoneally injected with similar activities (370, 740 and 1480 kBq; 37 MBq/mg) of 212Pb-labeled 35A7 (anti-CEA), trastuzumab (anti-HER2) or PX (non-specific) mAbs, or with equivalent amounts of unlabeled mAbs, or with NaCl. Tumor volume was monitored by bioluminescence and survival was reported. Hematologic toxicity and body weight were assessed. Biodistribution of 212Pb-labeled mAbs and absorbed dose-effect relationships using MIRD formalism were established. Results Transient hematological toxicity, as revealed by white blood cells and platelets numbering, was reported in mice treated with the highest activities of 212Pb-labeled mAbs. The median survival (MS) was significantly higher in mice injected with 1.48 MBq of 212Pb-35A7 (non-internalizing mAbs) (MS = 94 days) than in animals treated with the same activity of 212Pb-PX mAbs or with NaCl (MS = 18 days). MS was even not reached after 130 days when follow-up was discontinued in mice treated with 1.48 MBq of 212Pb-trastuzumab. The later efficacy was unexpected since final absorbed dose resulting from injection of 1.48 MBq, was higher for 212Pb-35A7 (35.5 Gy) than for 212Pb-trastuzumab (27.6 Gy). These results also highlight the lack of absorbed dose-effect relationship when mean absorbed dose was calculated using MIRD formalism and the requirement to perform small-scale dosimetry. Conclusions These data indicate that it might be an advantage of using internalizing anti-HER2 compared with non-internalizing anti-CEA 212Pb-labeled mAbs in the therapy of small volume xenograft tumors. They support clinical

  17. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model.

    PubMed

    Zahmatkeshan, Masoumeh; Gheybi, Fatemeh; Rezayat, Seyed Mahdi; Jaafari, Mahmoud Reza

    2016-04-30

    Targeted cancer therapy is a powerful therapeutic strategy to management of cancer. HER2 as an anticancer target has long been studied. Its overexpression plays an important role in the pathogenesis and progressiveness of breast and other cancers. To establish efficient and reliable drug delivery to HER2-overexpressing cells, the authors of this study have developed anti-HER2 (ErbB2) peptide-liposomal formulations of doxorubicin (DOX) by an engineered breast tumor-targeting peptide ligand, AHNP, Anti-HER2/neu peptide, (FCDGFYACYADV) with three glycine amino acids as spacer before its original sequencing. Towards this goal, PEGylated liposome doxorubicin (PLD) bearing different ligand densities of AHNP was prepared and characterized for their size, zeta potential and peptide conjugation. The AHNP functionalization and density effects on breast tumor cell uptake, selective cytotoxicity, prevention of tumor growth and the tissue biodistribution of encapsulated DOX were studied in mice bearing TUBO breast cancer tumor model. The findings demonstrated that increasing the ligand density of AHNP increases cytotoxicity and cell-uptake in SKBR3 and TUBO cells which overexpress HER2 but not in MDA-MB-231with low HER2 expression profile. The anticancer activity was also superior for targeted liposomal DOX with more AHNP densities. Overall, the results showed that optimum AHNP density functionalization of PLD can significantly improve selectivity and the therapeutic index of liposomal DOX in the treatment of HER2 positive breast cancer and merits further investigation.

  18. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by ImmunoPET

    PubMed Central

    Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon; Koumarianou, Eftychia; Weitzel, Douglas; Osada, Takuya; Lyerly, H. Kim; Zalutsky, Michael R.

    2016-01-01

    The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. ImmunoPET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ~13 kDa) after 18F labeling by two methods. Methods The 5F7 Nanobody was labeled with 18F using the novel residualizing label N-succinimidyl 3-((4-(4-18F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate (18F-SFBTMGMB; 18F-RL-I) and also via the most commonly utilized 18F protein labeling prosthetic agent, N-succinimidyl 3-18F-fluorobenzoate (18F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-125I-iodobenzoate (125I-SGMIB). Paired label (18F/125I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Micro positron emission tomography/computed tomography (microPET/CT) imaging of 5F7 Nanobody labeled using 18F-RL-I also was performed. Results Internalization assays indicated that intracellularly retained radioactivity for 18F-RL-I-5F7 was similar to that for co-incubated 125I-SGMIB-5F7, while that for 18F-SFB-5F7 was lower than co-incubated 125I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of 18F-RL-I-5F7 was 28.97 ± 3.88 %ID/g at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by >90% trastuzumab blocking, indicating HER2-specificity of uptake, and also 26–28% higher (P < 0.05) than that of 18F-SFB-5F7. At 2 h, the tumor-to-blood ratio for 18F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for 18F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28–36

  19. ctDNA dynamics: a novel indicator to track resistance in metastatic breast cancer treated with anti-HER2 therapy

    PubMed Central

    Guan, Yanfang; Yang, Ling; Xia, Xuefeng; Chen, Shanshan; Li, Qiao; Guan, Xiuwen; Yi, Zongbi; Qian, Haili; Yi, Xin; Xu, Binghe

    2016-01-01

    Background Most studies utilizing circulating tumor DNA (ctDNA) to monitor disease interrogated only one or a few genes and failed to develop workable criteria to inform clinical practice. We evaluated the feasibility of detecting resistance to anti-HER2 therapy by serial gene-panel ctDNA sequencing. Results Primary therapeutic resistance was identified in 6 out of 14 patients with events of progressive disease. For this subset comparison of pre- and post-treatment ctDNA assay results revealed that HER2 amplification concurred with disease progression (4/6, 66.7%). Mutations in TP53 (3/6, 50.0%) and genes implicated in the PI3K/mTOR pathway (3/6, 50.0%) were also dominant markers of resistance. Together, resistance to HER2 blockade should be indicated during treatment if any of the following situations applies: 1) recurrence or persistence of HER2 amplification in the blood; 2) emergence or ≥20% increase in the fraction of mutations in any of these resistance-related genes including TP53/PIK3CA/MTOR/PTEN. Compared with CT scans, dynamic ctDNA profiling utilizing pre-defined criteria was sensitive in identifying drug resistance (sensitivity 85.7%, specificity 55.0%), with a concordance rate up to 82.1%. Besides, the ctDNA criteria had a discriminating role in the prognosis of HER2-positive metastatic breast cancer. Methods 52 plasma samples were prospectively collected from 18 patients with HER2-positive metastatic breast cancer who were treated with an oral anti-HER1/HER2 tyrosine kinase inhibitor (ClinicalTrials.gov NCT01937689). ctDNA was assayed by gene-panel target-capture next-generation sequencing. Conclusions Longitudinal gene-panel ctDNA sequencing could be exploited to determine resistance and guide the precise administration of anti-HER2 targeted therapy in the metastatic setting. PMID:27602761

  20. Application of the 2013 ASCO/CAP guideline and the SISH technique for HER2 testing of breast cancer selects more patients for anti-HER2 treatment.

    PubMed

    Polónia, António; Leitão, Dina; Schmitt, Fernando

    2016-04-01

    The aim of this study is to assess the impact of changes of the 2013 ASCO/CAP guideline on the results of HER2 testing in breast cancer. A series of 916 primary invasive breast cancer cases, assessed as HER2 2+ by IHC in part using the 2007 and in part the 2013 ASCO/CAP criteria, was evaluated for HER2 amplification status by SISH and classified according to both 2007 and 2013 ASCO/CAP ISH guideline criteria. We observed a significant increase of HER2-positive cases (12.4 to 16.8%) and a decrease of HER2-equivocal cases (3.6 to 0.7%). Of the cases studied, 52.1% fulfilled both criteria of HER2/CEP17 ratio and average HER2 copy number per cell to be classified as HER2-positive. Reclassification of the cases from before the introduction of the new ASCO/CAP guideline with the 2013 ISH criteria resulted in an increase of cases with a HER2-positive status (12.4 to 14.2%) and in a decrease of HER2-equivocal cases (3.6 to 1.6%). The 2013 ASCO/CAP guideline selects more patients for anti-HER2 targeted therapy, mostly based on the modifications of criteria to evaluate ISH-HER2.

  1. Evaluation of anti-HER2 scFv-conjugated PLGA-PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    NASA Astrophysics Data System (ADS)

    Thuy Duong Le, Thi; Pham, Thu Hong; Nghia Nguyen, Trong; Giang Ngo, Thi Hong; Nhung Hoang, Thi My; Huan Le, Quang

    2016-06-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv-Doc-PLGA-PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv-Doc-PLGA-PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv-Doc-PLGA-PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies.

  2. Recombinant genetic libraries and human monoclonal antibodies.

    PubMed

    Adams, Jarrett J; Nelson, Bryce; Sidhu, Sachdev S

    2014-01-01

    In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.

  3. Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Hye-In; Hwang, Dobeen; Jeon, Su-Ji; Lee, Sangyeop; Park, Jung Hyun; Yim, Dabin; Yang, Jin-Kyoung; Kang, Homan; Choo, Jaebum; Lee, Yoon-Sik; Chung, Junho; Kim, Jong-Ho

    2015-03-01

    Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2

  4. Conjugation of Monoclonal Antibodies to Super Paramagnetic Iron Oxide Nanoparticles for Detection of her2/neu Antigen on Breast Cancer Cell Lines.

    PubMed

    Shamsipour, Fereshteh; Zarnani, Amir Hassan; Ghods, Roya; Chamankhah, Mahmood; Forouzesh, Flora; Vafaei, Sedigheh; Bayat, Ali Ahmad; Akhondi, Mohammad Mehdi; Ali Oghabian, Mohammad; Jeddi-Tehrani, Mahmood

    2009-04-01

    Conjugation of monoclonal antibodies to super paramagnetic nanoparticles is an effective method for cancer diagnosis and treatment. In this study the humanized anti her2/neu monoclonal antibody- Herceptin- was conjugated to super paramagnetic iron oxide (SPIO) nanoparticles using EDC method. The concentration of the conjugated antibodies was measured by Bradford assay. The antibody-nanoparticle conjugates were incubated with SKBR-3 and T47D human breast carcinoma cell lines and the presence of the conjugates on cell surface was confirmed by Prussian blue iron staining method. Conjugation of Herceptin to SPIO resulted in a precipitate-free conjugate containing 20µg antibody/mg SPIO. Prussian blue iron-staining of cells showed successful binding of the conjugates to the cell surfaces. Conjugation of monoclonal antibodies to SPIO may be a useful method for detection of tumor cells, especially by MRI techniques.

  5. Localisation of malignant glioma by a radiolabelled human monoclonal antibody.

    PubMed Central

    Phillips, J; Alderson, T; Sikora, K; Watson, J

    1983-01-01

    Human monoclonal antibodies were produced by fusing intratumoral lymphocytes from patients with malignant gliomas with a human myeloma line. One antibody was selected for further study after screening for binding activity to glioma cell lines. The patient from whom it was derived developed recurrent glioma. 1 mg of antibody was purified, radiolabelled with 131I, and administered intravenously. The distribution of antibody was determined in the blood, CSF and tumour cyst fluid and compared with that of a control human monoclonal immunoglobulin. Antibody localisation in the tumour was observed and confirmed by external scintiscanning. Images PMID:6101173

  6. Therapeutic monoclonal antibodies in human breast milk: a case study.

    PubMed

    Ross, Elle; Robinson, Steven E; Amato, Carol; McMillan, Colette; Westcott, Jay; Wolf, Tiffany; Robinson, William A

    2014-04-01

    Recently, therapeutic monoclonal antibodies have been introduced for the treatment of advanced melanoma and other diseases. It remains unclear whether these drugs can be safely administered to women who are breast feeding because of the potential hazardous side effects for nursing infants. One such therapy for metastatic melanoma is ipilimumab, a human monoclonal antibody that blocks cytotoxic T-lymphocyte-antigen-4, and is the preferred treatment for patients with metastatic melanoma when other molecular therapies are not viable. This study measured ipilimumab levels in the breast milk of a patient undergoing treatment that were enough to raise concerns for a nursing infant exposed to ipilimumab.

  7. [Production of human monoclonal antibody reactive with gastrointestinal carcinoma].

    PubMed

    Soyama, N; Ohyanagi, H; Saitoh, Y

    1990-12-01

    Lymphocytes obtained from regional lymph nodes and spleen in the patients with gastrointestinal carcinoma were fused with the human B lymphoblastoid cell line GC01 and human hybridomas producing human monoclonal antibody (MoAb) were derived. Human MoAb No. 235 (IgM) derived from spleen cell of a gastric cancer patient reacted with adenocarcinoma of stomach, colon, and pancreas in the new immunohistochemical assay, modified direct immunoperoxidase method, and reacted with KATO III cells in cultured cell lines. The antigenic determinant of this antibody was suspected to be protein moiety after enzyme treatment. The competitive binding inhibition assay indicated that its epitope was different from anti-CEA monoclonal antibodies (KM10, A10, B9, AH3, JA4) and KM01. These findings suggested the possible use of human MoAb No. 235 for clinical application of targeting cancer chemotherapy in the future.

  8. Immunohistochemical identification of cytotoxic lymphocytes using human perforin monoclonal antibody.

    PubMed Central

    Hameed, A.; Olsen, K. J.; Cheng, L.; Fox, W. M.; Hruban, R. H.; Podack, E. R.

    1992-01-01

    Perforin is a potent cytolytic pore-forming protein expressed in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells. A new monoclonal antibody raised against human perforin was used to detect both in vitro and in vivo perforin expression in cytotoxic cells. Immunohistochemical analysis of human peripheral blood mononuclear cells cultured in recombinant interleukin-2 (rIL-2) showed strong granular cytoplasmic staining of the IL-2 activated cytotoxic cells. Fresh-frozen tissue sections from patients with heart allograft rejection were also stained. Strong granular cytoplasmic staining of the mononuclear inflammatory infiltrate characteristic for perforin in cardiac allograft rejection was observed. The detection and quantitative analysis of perforin-associated cytotoxic cells by the human anti-perforin monoclonal antibody will help to evaluate the significance of these functionally distinct cytotoxic cells in human tissue. Images Figure 1 PMID:1374586

  9. 78 FR 7438 - Prospective Grant of Exclusive License: Development of Human Monoclonal Antibodies Against DR4

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Human Monoclonal Antibodies Against DR4 AGENCY: National Institutes of Health, Public Health Service... Monoclonal Antibodies Against DR4'' (HHS Ref. No. E-158-2010/0) to Customized Biosciences, Inc., which is... relates to the development of two human monoclonal antibodies (mAbs) that bind to death receptor 4...

  10. Monoclonal Antibodies Against Human Cardiac Troponin I for Immunoassays II.

    PubMed

    Lee, Gregory; Liu, Suefay

    2015-06-01

    Human cardiac troponin I (cTnI) is one of the most specific biomarkers for detection of acute myocardial infarction (AMI). To formulate immunoassay kits for rapid immunodiagnosis of AMI, monoclonal antibodies with high affinity and specificity were generated against cTnI and subsequently tested through a series of experiments. C57BL/6 mice were immunized with cTnI as the immunogen and cell fusions with myeloma cells of BALB/c origin were performed to generate hybridomas. The supernatants of the hybridoma cell culture were routinely screened for antibody secretions against intact cTnI and synthetic peptides from the N-terminal half of cTnI (amino acid residues N1-30, N24-40, N59-79, and N80-95). Monoclonal antibodies specific to different epitope regions were then determined and selected, according to their respective affinity and specificity, for formulation of enzyme immunoassay kits. The results of this study found that most of the selected antibodies revealed comparable binding affinity to cTnI and to the corresponding synthetic peptides. Optimal sandwich enzyme immunoassays with high sensitivity could be achieved through proper combinations of the epitope-distinct monoclonal antibodies in different capture-detection pairs; signal enhancements were frequently observed when a mixture of epitope-distinct anti-cTnI monoclonal antibodies was used for coating. This indicates that a combination of epitope-distinct anti-cTnI monoclonal antibodies recognizing the N-terminal half of cTnI yield reliable detection and greater sensitivity for cTnI in AMI patients.

  11. Generation of human monoclonal antibodies reactive with cellular antigens.

    PubMed Central

    Cote, R J; Morrissey, D M; Houghton, A N; Beattie, E J; Oettgen, H F; Old, L J

    1983-01-01

    Human lymphocytes from lymph node, peripheral blood, spleen, and tumor specimens have been fused with the LICR-LON-HMy2 (LICR-2) or SKO-007 human cell lines or the NS-1 mouse myeloma line. Over 75 fusions with the three myeloma-lymphoblastoid lines have been performed. Several factors appeared to improve the fusion outcome, including maintenance of the myeloma-lymphoblastoid lines in logarithmic phase growth at greater than or equal to 95% viability, a delay of 24 hr in the introduction of aminopterin to the fused cells, and preselection of the fetal calf serum used in the medium. For a given number of lymphocytes, fusions with NS-1 produced 5-20 times more clones than fusions with LICR-2 or SKO-007, and LICR-2 produced 4 times as many clones as SKO-007. The percentage of clones secreting human immunoglobulin, the range of immunoglobulin production, and the proportion of IgM, IgA, and IgG secretors were comparable for clones derived from the three myeloma-lymphoblastoid lines. Stable Ig-secreting clones were isolated with approximately equal frequency from LICR-2 and NS-1 fusions. A number of stable clones producing human monoclonal antibodies reacting with cell-surface, cytoplasmic, or nuclear antigens have been isolated from tumor-bearing patients and normal individuals. A surface antigenic system present on normal and malignant cells has been defined with a human monoclonal antibody derived from a patient with breast cancer. Techniques for producing human monoclonal antibody now appear to be sufficiently advanced to initiate a serological dissection of the humoral immune response to cancer. Images PMID:6572959

  12. Initial Characterization of Monoclonal Antibodies against Human Monocytes

    NASA Astrophysics Data System (ADS)

    Ugolini, Valentina; Nunez, Gabriel; Smith, R. Graham; Stastny, Peter; Capra, J. Donald

    1980-11-01

    Three monoclonal antibodies against human monocytes have been produced by somatic cell fusion. Extensive specificity analysis suggests that these antibodies react with most if not all human peripheral blood monocytes and not with highly purified T or B cells. Initial chemical characterization of the monocyte antigen recognized by two of these antibodies is presented. The molecule is a single polypeptide chain with an apparent molecular weight of 200,000. These reagents should prove useful in the clinical definition of disorders of monocyte differentiation, in studies of monocyte function, and in the elucidation of the genetics and structure of monocyte cell surface antigens.

  13. Monoclonal Antibody Cross-Reactions between Drosophila and Human Brain

    NASA Astrophysics Data System (ADS)

    Miller, Carol A.; Benzer, Seymour

    1983-12-01

    A panel of 146 monoclonal antibodies (MAbs), obtained with Drosophila melanogaster tissue as primary immunogen, was tested for cross-reactivity with the human central nervous system. Sites examined included spinal cord, cerebellum, hippocampus, and optic nerve. Nonnervous tissues tested were liver and lymph node. Approximately half of the antibodies reacted with one or more sites in the human central nervous system, identifying regional, cell class, and subcellular antigens. Some recognized neuronal, glial, or axonal subsets. Immunoblot analysis revealed that some antibodies reacted with similar antigen patterns in both species.

  14. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  15. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    PubMed

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  16. Limiting the protein corona: A successful strategy for in vivo active targeting of anti-HER2 nanobody-functionalized nanostars.

    PubMed

    D'Hollander, Antoine; Jans, Hilde; Velde, Greetje Vande; Verstraete, Charlotte; Massa, Sam; Devoogdt, Nick; Stakenborg, Tim; Muyldermans, Serge; Lagae, Liesbet; Himmelreich, Uwe

    2017-04-01

    Gold nanoparticles hold great promise as anti-cancer theranostic agents against cancer by actively targeting the tumor cells. As this potential has been supported numerously during in vitro experiments, the effective application is hampered by our limited understanding and control of the interactions within complex in vivo biological systems. When these nanoparticles are exposed to a biological environment, their surfaces become covered with proteins and biomolecules, referred to as the protein corona, reducing the active targeting capabilities. We demonstrate a chemical strategy to overcome this issue by reducing the protein corona's thickness by blocking the active groups of the self-assembled monolayer on gold nanostars. An optimal blocking agent, 2-mercapto ethanol, has been selected based on charge and length of the carbon chain. By using a nanobody as a biological ligand of the human epidermal growth factor 2 receptor (HER2), the active targeting is demonstrated in vitro and in vivo in an experimental tumor model by using darkfield microscopy and photoacoustic imaging. In this study, we have established gold nanostars as a conceivable theranostic agent with a specificity for HER2-positive tumors.

  17. Sperm-immobilizing monoclonal antibody to human seminal plasma antigens.

    PubMed Central

    Shigeta, M; Watanabe, T; Maruyama, S; Koyama, K; Isojima, S

    1980-01-01

    Rat spleen cells immunized to human azoospermic semen (a mixture of seminal plasma components) and mouse myeloma cells (P3/X63 Ag8U1; P3U1) (Marguilies et al., 1976) were successfully fused with polyethylene glycol (PEG 1500) and 19 of 89 fused cell cultures were found to produce sperm-immobilizing antibody. The cells that produced antibody indicating the highest sperm-immobilizing activity were distributed into wells for further recloning and 10 clones producing sperm-immobilizing antibody were established. The clone (1C4) producing the highest antibody titre was found to produce a large amount of IgG in culture supernatants and to contain a mixture of rat and mouse chromosomes. It was proved by immunodiffusion test that the monoclonal antibody was produced to the human seminal plasma antigen No. 7 which is common to human milk protein. Using this hybridoma which produced a large amount of monoclonal sperm-immobilizing antibody, a new method could be developed for purifying human seminal plasma antigen by immunoaffinity chromatography with bound antibody from the hybridoma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6783353

  18. Efficient generation of human IgA monoclonal antibodies.

    PubMed

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  19. 77 FR 5036 - Prospective Grant of Exclusive License: The Development of Human Anti-Mesothelin Monoclonal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Human Anti-Mesothelin Monoclonal Antibodies for the Treatment of Human Cancers AGENCY: National... Antibodies Specific for Mesothelin'' [HHS Ref. E-079-2008/0- US-01], PCT Application PCT/US2009/038228 entitled ``Human Monoclonal Antibody Against Mesothelin'' , Australian patent application AU...

  20. A human monoclonal antibody that binds serotype A botulinum neurotoxin.

    PubMed

    Adekar, Sharad P; Jones, R Mark; Elias, M D; Al-Saleem, Fetweh H; Root, Michael J; Simpson, Lance L; Dessain, Scott K

    2008-02-01

    Monoclonal antibodies have demonstrated significant potential as therapeutics for botulinum neurotoxin exposures. We previously described a hybridoma method for cloning native human antibodies that uses a murine myeloma cell line that ectopically expresses the human telomerase catalytic subunit gene (hTERT) and the murine interleukin-6 gene (mIL-6). Here we describe a heterohybridoma cell line that ectopically expresses mIL-6 and hTERT and has improved stability of hTERT expression. We fused this cell line to human peripheral blood B cells from a subject who had received the botulinum toxoid vaccine, cloning a high-affinity antibody (13A) specific for serotype A botulinum neurotoxin (BoNT/A). The 13A antibody is an affinity-matured, post-germinal center IgG(1) lambda antibody that has partial neutralization activity in vivo. 13A binds an epitope on BoNT/A that overlaps the binding epitope of an IgG antibody previously shown to fully neutralize a lethal dose of BoNT/A in vivo. The 13A antibody may be useful for diagnostic testing or for incorporation into an oligoclonal therapeutic to counteract BoNT/A exposure.

  1. Production of human anti-HLA monoclonal antibodies

    SciTech Connect

    Walker, M.C.; Mercier, F.; Roger, J.; Varin, M.

    1986-03-01

    Only 40% of the several hundred anti-HLA murine monoclonal antibodies (MAbs) that have been made detect HLA-A,B,C or DR specificities previously defined by human alloantisera, the range of recognized specificities is very narrow, and few of the MAbs have proven useful as tissue typing reagents. In hopes of obtaining HLA typing reagents, the authors are developing a protocol for the production of human anti-HLA MAbs from HLA-antigen (Ag) immunized peripheral blood B cells of volunteering renal patients, immunized to one or more HLA Ags through therapeutic blood transfusions. A simple enrichment of the donor B cells has not been sufficient for anti-HLA MAb production, the authors are currently delineating the conditions necessary for increasing the number of HLA-specific donor B cells by in vitro stimulation with cells expressing the HLA Ag to which the B cell donor is immunized. For the production of MAbs, the stimulated B cells are transformed with Epstein-Barr virus and subsequently fused with KR-4 lymphoblastoid cells. Hybridomas are selected by HAT and Ouabain. Supernatants are screened for anti-HLA activity against lymphocyte targets expressing the original immunizing HLA Ag by complement mediated /sup 51/Cr release assay. Antibody specificity is determined by the complement-dependent microcytotoxicity test used for HLA typing.

  2. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C3-amide)-[anti-HER2/neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole

    PubMed Central

    Coyne, CP; Jones, Toni; Bear, Ryan

    2015-01-01

    Aims Delineate the feasibility of simultaneous, dual selective “targeted” chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively “targeted” for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. Methodology Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it’s potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. Results Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with

  3. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma

    PubMed Central

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Krejci, Eric; Blake, Thomas A.; Johnson, Rudolph C.; Masson, Patrick; Lockridge, Oksana

    2016-01-01

    Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immunoextract BChE from the plasma of humans, monkey and other animals. PMID:26585590

  4. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma.

    PubMed

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Krejci, Eric; Blake, Thomas A; Johnson, Rudolph C; Masson, Patrick; Lockridge, Oksana

    2016-01-05

    Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals.

  5. In vitro inhibition of Cryptosporidium parvum infection by human monoclonal antibodies.

    PubMed Central

    Elliot, B C; Wisnewski, A V; Johnson, J; Fenwick-Smith, D; Wiest, P; Hamer, D; Kresina, T; Flanigan, T P

    1997-01-01

    Cryptosporidium parvum infection of the small epithelial intestine causes unremitting diarrhea and malabsorption that can lead to chronic and sometimes fatal illness in patients with AIDS. The illness may be ameliorated by passive oral immunoglobulin therapy. The objective of this study was to produce anti-Cryptosporidium human monoclonal antibodies for evaluation as potential therapy. All human monoclonal cell lines that produced C. parvum antibodies were originally generated from the peripheral blood lymphocytes of a human immunodeficiency virus-seronegative woman. She had recovered from C. parvum infection and had a high specific antibody titer. Hybridization of these lymphocytes with a tumor cell line was accomplished by hypo-osmolar electrofusion. Twelve clones were identified by enzyme-linked immunosorbent assay (ELISA) as secreting anti-Cryptosporidium antibodies after the initial hybridization. From the 12 positive clones, two high antibody-secreting clones, 17A and 17B, were maintained in long-term culture. A second hybridization produced two other human monoclonal cell lines, EC5 and BB2. Human monoclonal antibody from the first two cell lines bound to C. parvum sporozoites and oocysts by immunofluorescence. The ability of human monoclonal antibodies to inhibit C. parvum infection in vitro was assessed by using a human enterocyte cell line, HT29.74. The antibodies of the four different human hybridomas inhibited infection by 35 to 68% (P < 0.05) compared to a control irrelevant human monoclonal antibody derived in a similar fashion. Human monoclonal antibodies are candidate molecules for immunotherapy of C. parvum infection. PMID:9284173

  6. Belimumab: anti-BLyS human monoclonal antibody, anti-BLyS monoclonal antibody, BmAb, human monoclonal antibody to B-lymphocyte stimulator.

    PubMed

    2008-01-01

    Belimumab is a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, or BLyS. Belimumab is in phase III trials for the treatment of systemic lupus erythematosus (SLE) and has completed a phase II trial in rheumatoid arthritis (RA); the product may also have potential in the treatment of other autoimmune disorders. In May 2001, Cambridge Antibody Technology (now MedImmune) completed its discovery programme and Human Genome Sciences identified belimumab as a candidate for clinical development. More than 1000 distinct human antibodies specific to BLyS were characterized by the collaboration.B-lymphocyte stimulator is a naturally occurring protein discovered by Human Genome Sciences that stimulates B-lymphocytes to develop into mature B cells. Laboratory studies have indicated that higher than normal levels of B-lymphocyte stimulator may contribute to the pathogenesis of autoimmune diseases, such as SLE and RA. Human Genome Sciences (HGS) and Cambridge Antibody Technology signed a collaborative agreement in August 1999 to study the B-lymphocyte stimulator as a human protein target. HGS is also developing other BLyS products. In March 2000, HGS and Cambridge Antibody Technology expanded their agreement into a 10-year collaboration and product development alliance, providing Human Genome Sciences with the right to use the antibody technology of Cambridge Antibody Technology to fully develop human antibodies for therapeutic and diagnostic purposes. Cambridge Antibody Technology will receive royalty payments on product sales from HGS, as well as the development and milestone payments it has already received. Belimumab will be manufactured in Human Genome Sciences' manufacturing facility, located in Rockville, MD, USA. HGS holds commercial rights to the drug. In July 2005, GlaxoSmithKline (GSK) exercised its co-development and co-promotion option to belimumab. In an agreement made in June 1996, HGS had

  7. The Use of Humanized Monoclonal Antibodies for the Prevention of Respiratory Syncytial Virus Infection

    PubMed Central

    Arcuri, Santo; Galletti, Silvia; Faldella, Giacomo

    2013-01-01

    Monoclonal antibodies are widely used both in infants and in adults for several indications. Humanized monoclonal antibodies (palivizumab) have been used for many years for the prevention of respiratory syncytial virus infection in pediatric populations (preterm infants, infants with chronic lung disease or congenital heart disease) at high risk of severe and potentially lethal course of the infection. This drug was reported to be safe, well tolerated and effective to decrease the hospitalization rate and mortality in these groups of infants by several clinical trials. In the present paper we report the development and the current use of monoclonal antibodies for prophylaxis against respiratory syncytial virus. PMID:23840240

  8. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  9. 77 FR 9678 - Prospective Grant of Exclusive License: The Development of Human Anti-CD22 Monoclonal Antibodies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Human Anti-CD22 Monoclonal Antibodies for the Treatment of Human Cancers and Autoimmune Disease AGENCY... Antibodies Specific for CD22'' , PCT Application PCT/US2009/124109 entitled ``Human and Improved Murine Monoclonal Antibodies Against CD22'' , U.S. patent application 12/934,214 entitled ``Human...

  10. Polyspecificity of monoclonal lupus autoantibodies produced by human-human hybridomas.

    PubMed

    Shoenfeld, Y; Rauch, J; Massicotte, H; Datta, S K; André-Schwartz, J; Stollar, B D; Schwartz, R S

    1983-02-24

    We studied the serologic properties of monoclonal autoantibodies that were produced by hybridomas derived from lymphocytes of patients with systemic lupus erythematosus. The hybridomas were made by fusion of a human lymphoblastoid cell line, GM 4672 (derived from a patient with multiple myeloma), with peripheral-blood or splenic lymphocytes from six patients with lupus. Thirty monoclonal autoantibodies, selected for their ability to react with denatured DNA, were analyzed. Eighteen of them reacted with three or more additional polynucleotides, including native DNA, left-handed double-helical DNA (Z-DNA), poly(l), and poly(dT). Ten reacted both with nucleic acids and the phospholipid cardiolipin. The multiple binding reactions of the monoclonal autoantibodies may be explained by the presence of appropriately spaced phosphodiester groups in both the polynucleotides and the phospholipid. The sharing of antigenic groups by polymers of different natures may contribute to the apparent diversity of serologic reactions in systemic lupus erythematosus. These findings suggest that DNA itself need not be the immunogenic stimulus for autoantibody formation in this disease.

  11. Characterization of monoclonal antibodies against human apolipoprotein E.

    PubMed Central

    Milne, R W; Douste-Blazy, P; Marcel, Y L; Retegui, L

    1981-01-01

    From a single cell fusion, five stable hybridomas secreting antiapolipoprotein E (apo E) were obtained. The immunoglobulin (Ig)G subclasses containing the respective monoclonal antibodies were isolated and were used as the antibody component in a solid-phase radioimmunoassay. The binding of 125I-apo E to the insolubilized antibody was inhibited by unlabeled apo E but not by unlabeled apoproteins A-I, A-II, C-II, and C-III, or by low density lipoprotein immunodepleted of endogenous apo E. Competition curves were obtained with lipoprotein subfractions that had the same shape as those obtained with purified apo E. Apo E levels in normal and hyperlipidemic plasma were well correlated when measured by the five monoclonal antibodies and polyclonal anti-apo E, although differences in absolute values were observed. In normal subjects 34, 10, 20, and 36% of apo E was recovered in the very low density lipoprotein, low density lipoprotein, high density lipoprotein, and the d greater than 1.21-gl/ml fractions, respectively, whereas these values were 34, 7, 12, and 47%, respectively, in type III patients. All antibodies indicated the same subfraction distribution of apo E. The monoclonal antibodies reacted with all of the isomorphs of apo E. One of the antibodies could be clearly distinguished by its reactivity with chemically modified very low density lipoprotein. Images PMID:6788802

  12. SPAM-8, a mouse-human heteromyeloma fusion partner in the production of human monoclonal antibodies. Establishment of a human monoclonal antibody against cytomegalovirus.

    PubMed

    Gustafsson, B; Jondal, M; Sundqvist, V A

    1991-01-01

    A heteromyeloma (mouse x human) cell line (SPAM-8) was produced by fusing mouse myeloma cells (SP2/0) with human peripheral blood lymphocytes. The cells were sensitive to aminopterin and resistant to ouabain. The cells showed a doubling time of about 19 hours and a cloning efficiency of 0.8 cells/well (to obtain growth in 50% of wells seeded) using mouse thymocytes as feeder cells. The number of chromosomes was about 86 and 1% of the total DNA was of human origin. Fusion of SPAM-8 cells with lymphocytes prepared from human spleens resulted in approximately one hybridoma per 10(5) seeded lymphocytes. A trioma (human x [mouse x human]) cell line was established by fusing cells of an Epstein-Barr virus-transformed B cell line with SPAM-8 cells. The trioma cells produced antibodies (IgG1, K) against cytomegalovirus, in a concentration of 7 micrograms/ml in spent medium, over a period of six months of continuous culture. The results obtained indicate that the heteromyeloma SPAM-8 may be used as a fusion partner in the production of human monoclonal antibodies.

  13. A human-mouse hybridoma producing monoclonal antibody against human sperm coating antigen.

    PubMed Central

    Kyurkchiev, S D; Shigeta, M; Koyama, K; Isojima, S

    1986-01-01

    Since anti-sperm antibodies were first discovered in the sera of women, the relationship of these antibodies to sterility has been studied by many investigators. In order to determine the antigens of spermatozoa responsible for raising antibodies to spermatozoa in humans, many studies have been carried out by purifying human spermatozoa cell membrane and seminal plasma components. Since it was found that the purification was difficult by physiochemical procedures, the immunoaffinity chromatography bound monoclonal antibody (Mab) to spermatozoa antigens was attempted for this purpose. The establishment of hybridomas producing Mabs to human seminal plasma and human spermatozoa was reported by Shigeta et al. (1980), Isojima, Koyoma & Fujiwara (1982), Lee et al. (1982) and Isahakia & Alexander (1984). The ordinary approaches to obtain the Mabs consisted of xenogenic immunization with human semen and cell fusion of immunized spleen cells with mouse myeloma cells. However, the antigenic epitopes of human spermatozoa, which induced antibody production, are xenogenic for the mouse, and therefore there is a possibility that there is a difference in recognized antigenic epitopes in humans as isotypic and in mice as xenogenic. In order to study these antigenic epitopes, which correspond to antibodies against spermatozoa in women, the establishment of human-mouse hybridomas, which produced anti-semen antibodies as produced in sterile women, became essential. In these studies, we used recently developed cell fusion techniques to fuse immunized human peripheral lymphocytes with mouse myeloma cells. PMID:3456978

  14. Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies.

    PubMed

    Mao, S J; Patton, J G; Badimon, J J; Kottke, B A; Alley, M C; Cardin, A D

    1983-11-01

    Four monoclonal antibodies (IgG2b) to human plasma low-density lipoproteins (LDL) have been characterized. The binding affinities of each monoclonal antibody to 125I-labeled LDL were moderately high, ranging from 10(8) to 10(10) L/mol at 4 degrees C, but were reduced by at least 50-70% at 37 degrees C. The maximum binding of each monoclonal antibody was unique, ranging from 20 to 95% of total 125I-labeled LDL, suggesting that LDL particles were immunochemically heterogeneous. One antibody, LP-34, had both high and low binding affinities to LDL. Another, LP-47, exhibited high affinity for isolated LDL, yet reacted poorly with native LDL in plasma, indicating that the conformation of isolated LDL differs from that of native LDL in plasma. Unlike polyclonal serum antibodies, a mixture of four monoclonal antibodies failed to precipitate LDL, but did show a drastic increase in binding to LDL. We found that only two of our monoclonal antibodies were necessary for such synergistic enhancement. We propose that one of the monoclonal antibodies may serve as a catalytic reagent, and discuss the clinical significance of this finding.

  15. Production of Human Monoclonal Rheumatoid Factor Secreting Hybridomas Derived from Rheumatoid Synovial Cells

    DTIC Science & Technology

    1989-01-01

    antisera to human [gM and human IgG heavy chains , kappa and lambda lightTable 2: Rheumatoid synowal cell tRF subelass speclicity profiles chains , and...antisera to whole mouse Ig including light chains .(ELISA)frompantie MKin Table 1& AD7 RF was a human 1gM k monoclonal antibody without Well IgGI gG2

  16. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  17. Accessing of recombinant human monoclonal antibodies from patient libraries by eukaryotic ribosome display.

    PubMed

    Tang, Jie; Wang, Lin; Markiv, Anatoliy; Jeffs, Simon A; Dreja, Hanna; McKnight, Áine; He, Mingyue; Kang, Angray S

    2012-01-01

    What are effective antibodies and when do they arise to prevent or delay disease onset during a natural infection or in the course of vaccination? To address these questions at a molecular level requires longitudinal studies, capturing and analyzing the antibody repertoire at regular intervals following exposure or sero-conversion. Such studies require a method that allows the rapid generation and evaluation of monoclonal antibodies from relatively small volumes of blood. Here we describe an approach for rapidly generating human monoclonal antibodies in vitro by directly screening single-chain antibody repertories derived from donor peripheral blood mononuclear cells using ribosome display. Two single-chain antibody libraries were constructed using RNA extracted from peripheral blood mononuclear cells of two HIV-1 long-term non-progressor donors (K530 and M325). Both libraries were subjected to a single round of in vitro ribosome display for enrichment of human monoclonal antibodies against recombinant gp120(K530), derived from virus isolated from donor K530. This study has validated a novel, in vitro method for the rapid generation of human monoclonal antibodies. An antibody library could be constructed from as little as 3 μg of total RNA, the equivalent of 3-5 mL of human blood.

  18. Human monoclonal rheumatoid factors derived from the polyclonal repertoire of rheumatoid synovial tissue: production and characterization.

    PubMed Central

    Randen, I; Thompson, K M; Natvig, J B; Førre, O; Waalen, K

    1989-01-01

    A panel of 20 human monoclonal antibodies was produced from cells derived from the synovial tissue of two rheumatoid arthritis patients and one polyarticular juvenile rheumatoid arthritis patient. Fourteen IgM monoclonal antibodies were classical rheumatoid factors (RFs) with specificities restricted to IgG and included twelve kappa and two lambda proteins. Two of them were pan-specific for IgG and reacted with all four human subclasses. Nine showed the Ga specificity, i.e. they reacted with IgG1, IgG2 and IgG4 subclass proteins. Two showed the 'new Ga-related' specificity, i.e. they reacted with IgG1, IgG2 and IgG4 subclass proteins, and also with the Ge3m(st) allotype proteins. One RF demonstrated an anti-G3m(u) anti-allotypic specificity. Five IgM(lambda) monoclonal antibodies and one IgM(kappa) monoclonal antibody demonstrated polyreactivity against various antigens including DNA, human thyroglobulin, human serum albumin and tetanus toxoid. PMID:2805416

  19. Harnessing the immune system's arsenal: producing human monoclonal antibodies for therapeutics and investigating immune responses

    PubMed Central

    Sullivan, Meghan; Kaur, Kaval; Pauli, Noel

    2011-01-01

    Monoclonal antibody technology has undergone rapid and innovative reinvention over the last 30 years. Application of these technologies to human samples revealed valuable therapeutic and experimental insights. These technologies, each with their own benefits and flaws, have proven indispensable for immunological research and in our fight to provide new treatments and improved vaccines for infectious disease. PMID:21876728

  20. Monoclonal antibodies to human apolipoproteins: application to the study of high density lipoprotein subpopulations.

    PubMed

    Bustos, P; Ulloa, N; Calvo, C; Muller, D; Durán, D; Martínez, J; Salazar, L; Quiroga, A

    2000-09-01

    We produced, selected and cloned hybridomas that secrete monoclonal antibodies against human apolipoprotein (apo) A-I. All of the antibodies corresponded to the IgG(1) subclass and were named 1C11, 2B4, 2C10, 7C5, 8A4 and 8A5. The antibodies were characterized by their reactivity with whole lipoproteins, apolipoproteins, synthetic peptides and fragments generated by cleavage of the apo A-I. Three of the monoclonal antibodies studied (2B4, 2C10 and 7C5) were similarly inhibited by an amino-terminal peptide (amino acid sequence 1-20) of apo A-I, whereas antibodies 1C11, 8A4 and 8A5 had no reaction. Other results show that monoclonal antibody 1C11 recognizes an epitope located between amino acids 135-148. We evaluated the monoclonal antibody 8A4 against different HDL subpopulations by competitive displacement analysis and it showed a similar reactivity with the HDL particles: LpA-I and LpA-I:A-II. This antibody was used to standardize a sandwich ELISA to quantitate LpA-I in plasma. We conclude that these monoclonal antibodies are relevant for the study of apo A-I epitope expression and for quantitating apo A-I containing lipoparticles.

  1. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    SciTech Connect

    Holers, V.M.; Kotzin, B.L.

    1985-09-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases.

  2. Specific killing of human melanoma cells with an efficient 10B-compound on monoclonal antibodies

    SciTech Connect

    Komura, A.; Tokuhisa, T.; Nakagawa, T.; Sasase, A.; Ichihashi, M.; Ferrone, S.; Mishima, Y. )

    1989-07-01

    We previously established methods which have enabled us to target a sufficient number of 10B atoms on human melanoma cells to destroy them by thermal neutron irradiation. Monoclonal antibodies were here used as vector of 10B atoms on the target cell. Thermal neutrons require at least 10(9) 10B atoms to destroy the cell. In order to accumulate an adequate number of 10B atoms on target cells, our first approach was to make an effective compound that contains 12 atoms of 10B in a molecule. The second step was to conjugate the compound with an avidin molecule (10B12-avidin). One molecule of the 10B12-avidin carries about 30 atoms of 10B. This 10B12-avidin can be specifically targeted on human melanoma cells by biotinated monoclonal antibodies specific for the cells. Furthermore, the number of 10B atoms on target cells can be augmented by a hapten-antihapten monoclonal antibody system. The cultured human melanoma cells treated with these methods were damaged by thermal neutron irradiation. This is the first study that indicates thermal neutrons do injure target cells boronated by monoclonal antibodies.

  3. Identification of human plasma cells with a lamprey monoclonal antibody

    PubMed Central

    Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho; Tong, Jiefei; Li, Zhihua; Shi, Mengyao; Davani, Dariush; Parsons, Marion; Khan, Srijit; Zhan, Wei; Kyu, Shuya; Grunebaum, Eyal; Campisi, Paolo; Propst, Evan J.; Jaye, David L.; Trudel, Suzanne; Moran, Michael F.; Ostrowski, Mario; Herrin, Brantley R.; Lee, F. Eun-Hyung; Sanz, Ignacio; Cooper, Max D.; Ehrhardt, Götz R.A.

    2016-01-01

    Ab-producing plasma cells (PCs) serve as key participants in countering pathogenic challenges as well as being contributors to autoimmune and malignant disorders. Thus far, only a limited number of PC–specific markers have been identified. The characterization of the unique variable lymphocyte receptor (VLR) Abs that are made by evolutionarily distant jawless vertebrates prompted us to investigate whether VLR Abs could detect novel PC antigens that have not been recognized by conventional Abs. Here, we describe a monoclonal lamprey Ab, VLRB MM3, that was raised against primary multiple myeloma cells. VLRB MM3 recognizes a unique epitope of the CD38 ectoenzyme that is present on plasmablasts and PCs from healthy individuals and on most, but not all, multiple myelomas. Binding by the VLRB MM3 Ab coincides with CD38 dimerization and NAD glycohydrolase activity. Our data demonstrate that the lamprey VLRB MM3 Ab is a unique reagent for the identification of plasmablasts and PCs, with potential applications in the diagnosis and therapeutic intervention of PC or autoimmune disorders. PMID:27152361

  4. Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells.

    PubMed

    Nogales-Gadea, Gisela; Saxena, Abhishek; Hoffmann, Carolin; Hounjet, Judith; Coenen, Daniëlle; Molenaar, Peter; Losen, Mario; Martinez-Martinez, Pilar

    2015-06-05

    Finding new methods for generating human monoclonal antibodies is an active research field that is important for both basic and applied sciences, including the development of immunotherapeutics. However, the techniques to identify and produce such antibodies tend to be arduous and sometimes the heavy and light chain pair of the antibodies are dissociated. Here, we describe a relatively simple, straightforward protocol to produce human recombinant monoclonal antibodies from human peripheral blood mononuclear cells using immortalization with Epstein-Barr Virus (EBV) and Toll-like receptor 9 activation. With an adequate staining, B cells producing antibodies can be isolated for subsequent immortalization and clonal expansion. The antibody transcripts produced by the immortalized B cell clones can be amplified by PCR, sequenced as corresponding heavy and light chain pairs and cloned into immunoglobulin expression vectors. The antibodies obtained with this technique can be powerful tools to study relevant human immune responses, including autoimmunity, and create the basis for new therapeutics.

  5. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells.

    PubMed

    Majeti, R

    2011-03-03

    Accumulating evidence indicates that many human cancers are organized as a cellular hierarchy initiated and maintained by self-renewing cancer stem cells. This cancer stem cell model has been most conclusively established for human acute myeloid leukemia (AML), although controversies still exist regarding the identity of human AML stem cells (leukemia stem cell (LSC)). A major implication of this model is that, in order to eradicate the cancer and cure the patient, the cancer stem cells must be eliminated. Monoclonal antibodies have emerged as effective targeted therapies for the treatment of a number of human malignancies and, given their target antigen specificity and generally minimal toxicity, are well positioned as cancer stem cell-targeting therapies. One strategy for the development of monoclonal antibodies targeting human AML stem cells involves first identifying cell surface antigens preferentially expressed on AML LSC compared with normal hematopoietic stem cells. In recent years, a number of such antigens have been identified, including CD123, CD44, CLL-1, CD96, CD47, CD32, and CD25. Moreover, monoclonal antibodies targeting CD44, CD123, and CD47 have demonstrated efficacy against AML LSC in xenotransplantation models. Hopefully, these antibodies will ultimately prove to be effective in the treatment of human AML.

  6. Neutralizing human monoclonal antibodies to conformational epitopes of human T-cell lymphotropic virus type 1 and 2 gp46.

    PubMed Central

    Hadlock, K G; Rowe, J; Perkins, S; Bradshaw, P; Song, G Y; Cheng, C; Yang, J; Gascon, R; Halmos, J; Rehman, S M; McGrath, M S; Foung, S K

    1997-01-01

    Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection. PMID:9223472

  7. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  8. [Anti Shiga-like toxin II(SLT-II) humanized monoclonal antibody].

    PubMed

    Matsumoto, Yoh-ichi

    2002-03-01

    Anti-Shiga-Like Toxin II(SLT-II) Humanized Monoclonal Antibody(TMA-15) was constructed from Mouse Monoclonal Antibody(MuVTm1.1) recognizing the same antigen using recombinant and CDR grafting technology. TMA-15 had almost the same affinity to SLT-II as MuVTm1.1 and showed the good protective activity of mice challenged either with SLT-II or with SLT-II secreting Shiga-like Toxin producing E. coli(STEC). TMA-15 showed no acute toxicity to monkeys and no cross-reactivity to human tissues in pre-clinical safety studies. From the preliminary results of Phase 1 clinical trial using healthy adult volunteers, doses up to planned maximum dose were well tolerated and TMA-15 showed long half life in blood almost comparable to gamma globulin preparations. Therefore, TMA-15 is expected to show clinical efficacy in coming clinical trial using pediatric STEC patients.

  9. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    SciTech Connect

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  10. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.

    1984-11-29

    The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.

  11. The human thymus microenvironment: heterogeneity detected by monoclonal anti-epithelial cell antibodies.

    PubMed Central

    de Maagd, R A; MacKenzie, W A; Schuurman, H J; Ritter, M A; Price, K M; Broekhuizen, R; Kater, L

    1985-01-01

    Monoclonal antibodies were raised against human thymus stromal cells and their specificity for the epithelial component of thymus stroma assessed by double immunofluorescence using anti-keratin antibodies to identify epithelium. Our monoclonal antibodies identify six distinct patterns of epithelial cell antigen expression within the thymus: pan epithelial (antibody IP1); cortex (MR3 and MR6); cortical/medullary junction (IP2); subcapsule and subpopulation of medulla (MR10/MR14); Hassall's corpuscles and adjacent subpopulation of medulla (IP3); Hassall's corpuscles only (MR13/IP4). This heterogeneity of antigen expression suggests that many different epithelial microenvironments exist within the human thymus. Images Figure 1 Figure 1 Cont Figure 2 PMID:3884494

  12. The Cloning and Expression of Human Monoclonal Antibodies: Implications for Allergen Immunotherapy.

    PubMed

    James, Louisa K

    2016-02-01

    Allergic responses are dependent on the highly specific effector functions of IgE antibodies. Conversely, antibodies that block the activity of IgE can mediate tolerance to allergen. Technologies that harness the unparalleled specificity of antibody responses have revolutionized the way that we diagnose and treat human disease. This area of research continues to advance at a rapid pace and has had a significant impact on our understanding of allergic disease. This review will present an overview of humoral responses and provide an up-to-date summary of technologies used in the generation of human monoclonal antibodies. The impact that monoclonal antibodies have on allergic disease will be discussed, with a particular focus on allergen immunotherapy, which remains the only form of treatment that can modulate the underlying immune mechanisms and induce long-term clinical tolerance.

  13. New monoclonal-antibody two-site solid-phase immunoradiometric assay for human thyrotropin evaluated

    SciTech Connect

    Pekary, A.E.; Hershman, J.M.

    1984-07-01

    The authors compared results with a commercial solid-phase two-site immunoradiometric assay kit for human thyrotropin in which monoclonal antibodies are used with those by our radioimmunoassay, which is optimized for measurement of low concentrations of thyrotropin. In the immunoradiometric assay a specific antibody to the beta subunit of human thyrotropin is immobilized on a polystyrene bead, and a radiolabeled monoclonal antibody directed against the alpha subunit provides a measure of bead-immobilized hormone. The mean thyrotropin concentrations in 70 euthyroid serum samples were similar in the two assays. Values for hypothyroid patients were clearly higher in both assays than values for euthyroid individuals. In commercial assays the major source of error in measurement of thyrotropin response to thyroliberin in terms of the increment over the basal concentration of thyrotropin has been systematic errors in the measurement of those basal concentrations. With the present assay, however, basal values are obtained with good precision and accuracy.

  14. Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin Challenge

    PubMed Central

    Sully, Erin K.; Bohorova, Natasha; Bohorov, Ognian; Kim, Do; Pauly, Michael H.; Whaley, Kevin J.

    2016-01-01

    PB10 is a murine monoclonal antibody against an immunodominant epitope on ricin toxin's enzymatic subunit. Here, we characterize a fully humanized version of PB10 IgG1 (hPB10) and demonstrate that it has potent in vitro and in vivo toxin-neutralizing activities. We also report the minimum serum concentrations of hPB10 required to protect mice against 10 times the 50% lethal dose of ricin when delivered by injection and inhalation. PMID:27466351

  15. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type

    NASA Technical Reports Server (NTRS)

    He, X. M.; Ruker, F.; Casale, E.; Carter, D. C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 degrees. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  16. Human Monoclonal Antibodies as a Countermeasure Against Botulinum Toxins

    DTIC Science & Technology

    2012-11-30

    producing wells were determined by  FRET   analysis.  Those wells were consolidated and supernatants tested for BoNT/E first by  FRET , and reconfirmed by...believed to express well when humanized. The A ) Intact G10 m ass 147500 150000 152500 155000 % 0 100 080212_004 148 (13.087) M1 [Ev-18813,It44] (Gs

  17. Monoclonal antibodies against human BAP31 for immunocytochemistry.

    PubMed

    Song, Chaojun; Wang, Fuli; Xu, Zhuwei; Hu, Jintao; Tao, Haiqiang; Yang, Angang; Yang, Kun; Jin, Boquan

    2009-06-01

    Human BAP31 is a 28 kDa polytopic integral protein of the ER and part of a large BAP hetero-oligomeric complex that includes the related BAP29 protein and connections to actomyosin. BAP31 interacts with mIgD, cellubrevin, major histocompatibility complex class I, and BCL-2/BCL-X(L), and plays an important role in regulating the egress of these proteins and in apoptosis. Northern blot analyses have revealed BAP31 RNA transcripts in many tissues, including thymus, spleen, brain, kidney, testis, liver, and lung. However, prominent BAP31 protein expression analyzed by immunohistochemistry is restricted to a minority of cells in normal human tissue. Further studies should be made to verify the expression profiles of BAP31 in the protein level. Production of high affinity MAbs suitable for immunohistochemical staining has lagged. Here we generate a set of MAbs that could be used in Western blot, immunoprecipitation, and immunocytochemistry, providing a new powerful tool for investigation of expression profile of BAP31 protein and furthers the study of BAP31 functions.

  18. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies

    SciTech Connect

    Britton, W.J.; Hellqvist, L.; Basten, A.; Raison, R.L.

    1985-12-01

    Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bands of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.

  19. Development of monoclonal antibodies against parathyroid hormone: genetic control of the immune response to human PTH

    SciTech Connect

    Nussbaum, S.R.; Lin, C.S.; Potts, J.T. Jr.; Rosenthal, A.S.; Rosenblatt, M.

    1985-01-01

    Seventeen monocloanl antibodies against the aminoterminal portion of parathyroid hormone (PTH) were generated by using BALB/c mouse for immunization fully biologically active synthetic human PTH-(1-34) and bovine PTH-(1-84) as immunogens, monoclonal antibody methods, and a solid-phase screening assay. Isotypic analysis of these monoclonal antibodies was performed using affinity purified goat antimouse immunoglobulins specific for IgG heavy chains and ..mu..(IgM). All antibodies were IgM as evidenced by 40 times greater than background activity when 25,000 cpm of /sup 125/I-labelled goat anti-mouse IgM was used as second antibody in a radioimmunoassay.

  20. Protein polymorphism of human IL-18 identified by monoclonal antibodies.

    PubMed

    Seya, T; Matsumoto, M; Shiratori, I; Fukumori, Y; Toyoshima, K

    2001-11-01

    Six mAbs were raised against human "functionally inactive" recombinant IL-18, ELISA for determination of "functionally inactive" forms of IL-18 were established using two of these mAbs (#21 and #132), and inactive species of IL-18 protein were examined with human blood plasma and macrophages (Mp). In 6-day GM-CSF-treated monocytes, namely Mp, the mAb #21 recognized the IL-18 proform (24 kDa) and a 48 kDa dimer by immunoblotting. In contrast, only the 24 kDa species was detected as a relatively faint band with a commercial mAb against "active" IL-18. No IL-18 species was detected in premature monocytes. Thus, the dimeric IL-18 was produced in Mp and detectable with the mAb we established. In blood plasma of normal subjects and patients, the #21-recognizable IL-18 was also detected by ELISA, the levels of which were not consistent with those obtained with the commercially available kit for determination of "functionally active" IL-18. We designated the former as type 2 and the latter as type 1. Strikingly, IL-18 type 1 was detected in all volunteers while type 2 was detected in approximately 30% of healthy subjects, and the levels of type 2 were high (10-100 ng/ml) compared to those of type 1 (0.02-0.55 ng/ml) in their blood plasma. In patients with atopic dermatitis, the mean value of type 1 was high (200 ng/ml) compared to those of normal subjects (0.122 ng/ml) and patients with lung cancer (0.113 ng/ml). Production of high type 1 may be associated with an immunomodulatory state in atopic dermatitis. The levels and frequencies of IL-18 type 2 were not significantly changed among these populations. Hence, large amounts of type 2 species are produced in monocyte-Mp differentiation, and their levels and frequencies are unchanged in blood plasma irrespective of the levels of type 1.

  1. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    PubMed Central

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  2. A Fully Human Inhibitory Monoclonal Antibody to the Wnt Receptor RYK

    PubMed Central

    Parish, Clare L.; Takano, Elena A.; Fox, Stephen; Layton, Daniel; Nice, Edouard; Stacker, Steven A.

    2013-01-01

    RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain–specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies. PMID:24058687

  3. Monoclonal antibodies to human interferon-gamma: production, affinity purification and radioimmunoassay.

    PubMed Central

    Novick, D; Eshhar, Z; Fischer, D G; Friedlander, J; Rubinstein, M

    1983-01-01

    Human interferon-gamma (IFN-gamma) purified to electrophoretic homogeneity by a cation exchange h.p.l.c., was used for the development of monoclonal antibodies. Following immunization, spleen lymphocytes of two mice showing the highest binding and neutralizing titers were isolated, fused with NSO mouse myeloma cells and cloned. The screening of hybridomas was based on precipitation of the immune complexes with a second antibody and recovery of the biological activity of IFN-gamma from the precipitate. Twenty nine independent hybridomas secreting antibodies specific to IFN-gamma were obtained. Twelve out of these 29 hybridomas produced antibodies that neutralized the antiviral activity of pure as well as crude IFN-gamma. Moreover, IFN-gamma obtained by various induction procedures was neutralized as well, indicating that these various IFN-gamma subtypes are immunologically cross-reactive. Immune precipitation of partially purified 125I-labelled IFN-gamma by several monoclonal antibodies revealed two protein bands of 26,000 and 21,000 daltons. Immunoaffinity chromatography of IFN-gamma gave a 50-fold purification to a specific activity > or = 4 x 10(7) units/mg. Two of the monoclonal antibodies were found suitable for a sensitive and rapid double antibody solid-phase radioimmunoassay, allowing the detection of IFN-gamma at concentrations of at least 4 ng/ml (150 units/ml) within 8 h. Images Fig. 1. Fig. 2. PMID:11892806

  4. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    SciTech Connect

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-03-07

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.

  5. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody.

    PubMed Central

    Gorny, M K; Conley, A J; Karwowska, S; Buchbinder, A; Xu, J Y; Emini, E A; Koenig, S; Zolla-Pazner, S

    1992-01-01

    The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is thought to induce potent neutralizing antibodies which are generally defined as type specific and reactive with individual viral isolates. In contrast, the CD4-binding domain is thought to induce neutralizing antibodies that are group specific and capable of neutralizing all isolates of HIV-1. However, in this study, we used a panel of human monoclonal antibodies to these regions of gp120 which displays specificities and neutralizing activities that challenge these tenets. In particular, we used a human monoclonal antibody to the V3 domain with exceptionally potent and broad neutralizing activity against many diverse HIV-1 isolates. The anti-CD4-binding domain antibodies, on the other hand, showed a more restricted pattern of activity. PMID:1433529

  6. Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica

    PubMed Central

    Tachibana, Hiroshi; Cheng, Xun-Jia; Watanabe, Katsuomi; Takekoshi, Masataka; Maeda, Fumiko; Aotsuka, Satoshi; Kaneda, Yoshimasa; Takeuchi, Tsutomu; Ihara, Seiji

    1999-01-01

    Genes coding for human antibody Fab fragments specific for Entamoeba histolytica were cloned and expressed in Escherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced into Escherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from five Escherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia coli lysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis. PMID:10225840

  7. Monoclonal Antibodies Detect a Spectrin-Like Protein in Normal and Dystrophic Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Appleyard, S. T.; Dunn, M. J.; Dubowitz, V.; Scott, M. L.; Pittman, S. J.; Shotton, D. M.

    1984-02-01

    Spectrin is the major protein of the erythrocyte membrane skeleton, which is bound to the cytoplasmic surface of the membrane's lipid bilayer and is responsible for cell shape and membrane elasticity. Inability to identify spectrin in other cell types led to the assumption that this protein was unique to erythrocytes. However, spectrin-like proteins have been demonstrated recently in a variety of cell types, including skeletal and cardiac muscle, in several species. We used monoclonal antibodies against human erythrocyte spectrin subunits in an immunocytochemical study to detect related proteins in normal and diseased human skeletal muscle. Six of seven monoclonal antibodies against β -spectrin determinants were bound at the cytoplasmic surface of muscle fiber plasma membranes, whereas none of six monoclonal antibodies against α -spectrin determinants was bound. Muscle fibers of patients with neuromuscular diseases showed similar distribution and specificity of antibody binding to those of normal subjects, but the intensity of binding was increased. In contrast, probable regenerating fibers in muscle of patients with muscular dystrophies showed reduced binding of antibodies, but reduced binding was not seen in fetal muscle fibers nor in those of a patient with a myotubular myopathy. We conclude that human skeletal muscle fibers possess a spectrin-related protein associated with their plasma membrane that shows extensive β -chain similarities to erythrocyte spectrin but differs significantly with respect to the α -subunit. Its function may be associated with the maintenance of membrane and myofibril integrity during contraction, and the increased antibody binding in diseased muscle may reflect a structural rearrangement of spectrin or a compensatory increase in spectrin abundance in response to increased stress on these systems.

  8. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  9. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  10. Targeting Breast Cancer With Anti-HER2/neu Diabodies

    DTIC Science & Technology

    2002-07-01

    single-chain Fv fragments,- 15. NUMBER OF PAGES radioimmunotherapy, radioimmunoimaging, radioimmunoguided surgery, yttrium-90, 7 iodine-131, astatine -211... astatine -21 1 (211At) conjugated to an engineered antibody-based molecule. This study (described in detail below) demonstrated the efficacy of...profile. While we will continue our work to evaluate astatine -21 1, we feel that yttrium- 90 based therapy has demonstrated sufficient efficacy to justify

  11. Characterization of four monoclonal antibodies to recombinant human tartrate-resistant acid phosphatase.

    PubMed

    Miyazaki, Takashi; Matsunaga, Toshiyuki; Miyazaki, Shuichi; Hokari, Shigeru; Komoda, Tsugikazu

    2002-06-01

    In this study we produced a recombinant human Tartrate-resistant acid phosphatase (TRAP) enzyme from baculovirus-infected insect cells, generated four monoclonal antibodies (MAbs) 15A4, 13B9, 1C6 and 3G7, to the enzyme, and characterized these antibodies. In the human serum and lung specimen, all four antibodies appeared to have a high specificity for native TRAP enzyme in western blot analysis, immunohistochemical analysis and enzyme immunoassay. These antibodies may react with respective conformational determinants, therefore, they may be useful for detection of active TRAP. Only one of the antibodies, 15A4 also reacted with a denatured epitope, therefore, it is suitable for western blot analysis, enzyme immunoassay and for immunohistochemistry in the rat. Taken together, having characterized properties of four monoclonal antibodies against recombinant human TRAP enzyme may be useful for development of TRAP specific immunoassays in pathology and hematology of the bone. They will certainly be of use for the study of biosynthesis, regulation and function of the TRAP enzyme.

  12. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  13. Cell surface antigens of human trophoblast: definition of an apparently unique system with a monoclonal antibody.

    PubMed Central

    Mueller, U W; Hawes, C S; Jones, W R

    1986-01-01

    An epitope with apparent specificity for the surface of human syncytiotrophoblast was defined by a murine monoclonal antibody, FDO46B (IgG1, kappa). The epitope was predominantly expressed during the first trimester of pregnancy. Binding was detected on frozen tissue sections and on cultured trophoblast by the immunoperoxidase technique. It was also detected on the surface of a small percentage (less than 10%) of cultured choriocarcinoma cells (JEG-3). A panel of human tissues was negative, as were normal and malignant human lymphocytes. The antigen bearing the FDO46B epitope was still expressed by trophoblast after culture in the presence of tunicamycin, indicating that it is possibly protein in nature. This antigen may have potential utility as a target for a contraceptive vaccine. Images Figure 1 Figure 2 Figure 3 PMID:2428734

  14. Generation and characterization of human B lymphocyte stimulator blocking monoclonal antibody.

    PubMed

    Zhuang, Weiliang; Zhang, Jianjun; Pei, Lili; Fang, Shuping; Liu, Honghao; Wang, Ruixue; Su, Yunpeng

    2016-09-01

    The cytokine, B lymphocyte stimulator (Blys) is essential for activation and proliferation of B cells and is involved in the pathogenesis of B-cell mediated autoimmune diseases. Based on its essential activity, Blys may be a potential therapeutic target for human autoimmune diseases. In this article, we have described the development of a novel humanized anti-Blys antibody, NMB04, that binds with high affinity and specificity to both soluble and membrane bound Blys. This monoclonal antibody has the potential to block Blys binding to all its three receptors, TACI, BCMA and BR-3. Further in vivo studies revealed that NMB04 possessed more potent inhibitory activity against human Blys as compared to an existing antibody, Belimumab. Therefore, NMB04 may have potential as a therapeutic candidate targeting autoimmune diseases.

  15. Characterization of a Novel Monoclonal Antibody against Human Mitochondrial Ferritin and Its Immunohistochemical Application in Human and Monkey Substantia Nigra

    PubMed Central

    Yang, Mingchun; Yang, Hongkuan; Guan, Hongpeng; Kato, Tomoko; Mukaisho, Kenichi; Sugihara, Hiroyuki; Ogasawara, Kazumasa; Terada, Tomohiro; Tooyama, Ikuo

    2017-01-01

    Mitochondrial ferritin (FtMt) is a novel iron storage protein with high homology to H-ferritin. Unlike the ubiquitously expressed H- and L-ferritin, FtMt is expressed in specific tissues such as the testis, heart, and brain. The function of FtMt is not fully understood; however, evidence suggests that it has a neuroprotective role in neurodegenerative diseases. We have previously reported that FtMt is expressed in catecholaminergic neurons of the monkey brainstem. To explore FtMt expression in human dopaminergic neurons, we designed a novel monoclonal antibody, C65-2, directed against human FtMt. Here, we report the properties of our C65-2 antibody. Western blots analysis and immunoabsorption tests demonstrated that the C65-2 antibody specifically recognized FtMt with no cross-reactivity to H-ferritin. Immunohistochemistry showed that the C65-2 antibody detected FtMt in neurons of the substantia nigra pars compacta (SNc) in humans and monkeys. We confirmed that FtMt is expressed in dopaminergic neurons of the human SNc. Our results suggest that FtMt is involved in various physiological and pathological mechanisms in human dopaminergic neurons, and the C65-2 monoclonal antibody promises to be a useful tool for determining the localization and biological functions of FtMt in the brain. PMID:28386150

  16. Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1.

    PubMed

    Zhu, Zhongyu; Prabakaran, Ponraj; Chen, Weizao; Broder, Christopher C; Gong, Rui; Dimitrov, Dimiter S

    2013-04-01

    More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.

  17. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus

    PubMed Central

    Smith, Scott A.; Silva, Laurie A.; Fox, Julie M.; Flyak, Andrew; Kose, Nurgun; Sapparapu, Gopal; Khomadiak, Solomiia; Ashbrook, Alison W.; Kahle, Kristen M.; Fong, Rachel H.; Swayne, Sherri; Doranz, Benjamin J.; McGee, Charles E.; Heise, Mark T.; Pal, Pankaj; Brien, James D.; Austin, S. Kyle; Diamond, Michael S.; Dermody, Terence S.; Crowe, James E.

    2015-01-01

    SUMMARY Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/mL), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development. PMID:26159721

  18. [Study of the antigenic structure of human immunoglobulin lambda-chain using monoclonal antibodies].

    PubMed

    Arsen'eva, E L; Bogacheva, G T; Solomon, A; Weiss, D; Ibragimov, A R; Rokhlin, O V

    1990-01-01

    Nine monoclonals against human Ig lambda chains were produced, 4 antibodies react with C-domain, 5--with V-domain of the lambda chain. Anti-C lambda domain antibodies recognize not less than 3 epitopes and one of them is expressed only on the isolated chain. Anti-V lambda antibodies bind both isolated lambda chain and intact IgG, IgM, IgA. Four epitopes are expressed by few lambda Bence Jones proteins of the III subgroup, the immunogen possessing the same isotype. The 4 mentioned epitopes represent private idiotypic determinants. The epitope 3E10 is characteristic of 50% Bence Jones proteins of the II and III V lambda-subgroups thus representing a common idiotypic determinant. Using anti-V lambda antibodies germ line variability of V lambda III proteins was analysed and the similarity of antigenic structure of normal and myeloma human Ig lambda chains was demonstrated.

  19. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    PubMed

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.

  20. Maturation of human B lymphocytes--studies with a panel of monoclonal antibodies against membrane antigens.

    PubMed Central

    Zola, H; McNamara, P J; Moore, H A; Smart, I J; Brooks, D A; Beckman, I G; Bradley, J

    1983-01-01

    The expression of six different membrane markers by cells of the human B lymphocyte lineage has been studied, using monoclonal antibodies. B cells representing various stages of differentiation/maturation have been examined, using normal cells, leukaemia cells, and continuous cell lines. The expression of the six markers has been compared with maturation stages defined by immunoglobulin expression. The HLA/beta 2-microglobulin complex is present throughout the B cell lineage, whilst the Ia (p28,33) marker is present from the earliest stage that can be attributed to the B lineage, but is lost during plasma cell differentiation. A marker detected by monoclonal antibody FMC 1 is present only on mature B lymphocytes, being absent from pre-B cells or plasma cells. FMC 7 detects an antigen found on a relatively mature subpopulation, whereas FMC 8 detects early as well as mature B cells. FMC 3 expression is found on a proportion of cells at any maturation stage, suggesting that expression of this marker is controlled by factors unrelated to maturation. Images Fig. 1 PMID:6191892

  1. [Pharmacokinetics of injection of iodine-131 labelling MEI-TUO-XI monoclonal antibody in human body].

    PubMed

    Li, Yunchun; Tan, Tianzhi; Mo, Tingshu; Lu, Wusheng; Deng, Houfu; Yang, Xiaochuan; Li, Xiao

    2007-08-01

    To study pharmacokinetics of injection of iodine-131 labelling MEI-TUO-XI monoclonal antibody (hepatoma monoclonal antibody HAb18 F(ab')2) in vivo. 24 cases of primary hepatocelluar carcinoma (PHC) were equally divided into the low dose group, middle dose group and high dose group. After the relevant injection was administrated into the hepatic artery of each case, intravenous blood and urine samples were separately collected at different time for determination of the radioactive count ratio (min(-1)). The proportion of 131I-HAb18 F(ab')2 in serum of each blood sample was determined, and the radioactive count ratio (min(-1)) of druggery for each blood sample was revised according to the proportion. The pharmacokinetic parameters were calculated using DAS ver 1.0 (Drug And Statistics for Windows) program. The component of urine radiomaterial was determined and the percentages of urine radioactivity in administration dosage were calculated. The catabolism of the injection with time accorded with dynamics two-compartment model. The catabolism product was mainly free-131I and was excreted via kidney; the urine radioactivity was 47.70%-51.16% of administration dosage during 120 h after administration of drug. Therefore, the pharmacokinetics of the injection can satisfy the clinical demands. The drug dose recommended for clinical use was 27.75 MBq of the injection for each kg of human body.

  2. Identification of a Monoclonal Antibody Against Pneumococcal Pilus 1 Ancillary Protein Impairing Bacterial Adhesion to Human Epithelial Cells.

    PubMed

    Amerighi, Fulvia; Valeri, Maria; Donnarumma, Danilo; Maccari, Silvia; Moschioni, Monica; Taddei, Annarita; Lapazio, Lucia; Pansegrau, Werner; Buccato, Scilla; De Angelis, Gabriella; Ruggiero, Paolo; Masignani, Vega; Soriani, Marco; Pezzicoli, Alfredo

    2016-02-15

    The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.

  3. Development and characterization of new monoclonal antibodies against human recombinant CA XII.

    PubMed

    Dekaminaviciute, Dovile; Lasickiene, Rita; Parkkila, Seppo; Jogaite, Vaida; Matuliene, Jurgita; Matulis, Daumantas; Zvirbliene, Aurelija

    2014-01-01

    Carbonic anhydrases (CAs) are enzymes that catalyse the reversible hydration of CO2 to bicarbonate. CA XII is considered a potential biomarker of tumor cells and a promising target for specific therapies. The aim of the current study was to develop new monoclonal antibodies (MAbs) against human recombinant CA XII and evaluate their diagnostic potential. An extracellular catalytic domain of human CA XII was expressed in E. coli and used as an immunogen. Seven stable hybridoma cell lines producing high-affinity IgG antibodies against human CA XII were generated. The majority of MAbs were highly specific to CA XII and did not cross-react with human recombinant CA I, CA II, CA VII, and CA XIII. In order to demonstrate the diagnostic value of the MAbs, they were employed for the immunohistochemistry analysis of CA XII expression in tissues. Two MAbs (15A4 and 4A6) demonstrated a strong and specific immunostaining of CA XII in human tissue specimens. Flow cytometry analysis of 5 human tumor cell lines with the MAb 15A4 revealed its immunoreactivity with cellular CA XII. In conclusion, the MAbs raised against recombinant catalytic domain of CA XII recognize cellular CA XII and represent a promising diagnostic tool for the immunodetection of CA XII-expressing cells.

  4. Human immunoglobulin allotypes: previously unrecognized determinants and alleles defined with monoclonal antibodies.

    PubMed Central

    Zelaschi, D; Newby, C; Parsons, M; van West, B; Cavalli-Sforza, L L; Herzenberg, L A; Herzenberg, L A

    1983-01-01

    The highly polymorphic system of serologically defined genetic markers on human IgG heavy chains (Gm allotypes) is second only to the HLA complex in terms of the large number of determinants, alleles, and haplotypes that can be used for analyses of disease associations and other genetic studies. However, present typing methods are based on the use of anti-Gm antisera that are derived mainly from fortuitously immunized human donors, often requiring processing before use, and must be used in a hemagglutination-inhibition assay that cannot be used in typing for isoallotypic determinants (currently termed "non-markers"). In studies presented here, we describe an allotyping system that utilizes monoclonal antibodies in a "sandwich" modification of the solid-phase radioimmunoassay, which is capable of reliable quantitative typing of allotypic, isoallotypic, and isotypic immunoglobulin determinants. We show that these highly reproducible, easily disseminated, and essentially inexhaustible reagents can be used for rapid, sensitive, and quantitative Gm typing. Using this system we define two previously unrecognized Gm determinants, one of which, found to date only in Caucasians, is different from all known Gm markers and thus defines previously unrecognized alleles and haplotypes. The other determinant co-segregates with the conventional G3m(b1) marker but is distinct from that marker on serological grounds. The successful preparation of mouse monoclonal antibodies that detect human Gm allotypic differences and the development of an assay system capable of typing isoallotypic as well as allotypic determinants opens the way to further dissection and application of this rich genetic system. PMID:6190180

  5. Human monoclonal antibodies that recognize conserved epitopes in the core-lipid A region of lipopolysaccharides.

    PubMed Central

    Pollack, M; Raubitschek, A A; Larrick, J W

    1987-01-01

    Epstein-Barr virus (EBV)-transformed human B lymphocytes were fused with a murine-human heteromyeloma to produce stable hybrid cell lines that secreted human monoclonal antibodies (mAbs) of the IgM class that recognized conserved epitopes in the core-lipid A region of lipopolysaccharides (LPS). Three of the mAbs reacted with epitopes on the lipid A moiety, while a fourth recognized a determinant in the core oligosaccharide. The lipid A-specific mAbs cross-reacted with heterologous rough LPS and with lipid As released by acid hydrolysis of different intact (smooth) LPS. Carbohydrate groups in the O-side chain and core oligosaccharide of isolated, smooth LPS restricted antibody access to antigenic sites on lipid A. Yet, one lipid A-reactive mAb recognized its epitope on the surfaces of a variety of intact bacteria. These findings confirm the presence of highly conserved epitopes in the core-lipid A complex and prove the existence of human B cell clones with the potential for secreting high avidity IgM antibodies that react with these widely shared determinants. Such human mAbs might provide protective activity against disease caused by diverse gram-negative bacteria. Images PMID:2437155

  6. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  7. Binding and regulation of cellular functions by monoclonal antibodies against human tumor necrosis factor receptors

    PubMed Central

    1990-01-01

    The present study was undertaken to further characterize the interaction of monoclonal antibodies (mAbs) against tumor necrosis factor (TNF) receptors with different targets, and to assess their ability to influence TNF effects on U937 and human endothelial cell (HEC) functions. Actions of recombinant TNF-alpha on U937 and HEC were effectively inhibited by Htr-5 and Utr-1, and to a greater extent by a combination of both mAbs. These observations indicate that TNF interaction with antigenically different components of membrane receptors (p55 and p75) represents a crucial step in transduction of signals for TNF toxicity against U937 and TNF activation of HEC functions. PMID:2172437

  8. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens.

    PubMed

    Clementi, Nicola; Mancini, Nicasio; Solforosi, Laura; Castelli, Matteo; Clementi, Massimo; Burioni, Roberto

    2012-01-01

    In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.

  9. Expression of POTE protein in human testis detected by novel monoclonal antibodies.

    PubMed

    Ise, Tomoko; Das, Sudipto; Nagata, Satoshi; Maeda, Hiroshi; Lee, Yoomi; Onda, Masanori; Anver, Miriam R; Bera, Tapan K; Pastan, Ira

    2008-01-25

    The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2gammaC, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2gammaC and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.

  10. Expression of POTE protein in human testis detected by novel monoclonal antibodies

    SciTech Connect

    Ise, Tomoko; Das, Sudipto; Nagata, Satoshi; Maeda, Hiroshi; Lee, Yoomi; Onda, Masanori; Anver, Miriam R.; Pastan, Ira

    2008-01-25

    The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2{gamma}C, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2{gamma}C and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.

  11. Monoclonal antibodies to the cell surface and a soluble form of the human nerve growth factor receptor

    SciTech Connect

    Clagett-Dame, M.; Chung, C.; Chao, M.V.; DiStefano, P.S. )

    1990-12-01

    Monoclonal antibodies (designated IIIG5, VIID1, VIIIC8, and XIF1) have been produced that bind to the human nerve growth factor receptor (NGF-R) as well as to a soluble, truncated form of the receptor (NGF-Rt). The antibodies were generated against partially purified NGF-Rt from the conditioned medium of E9b cells, a transfected mouse fibroblast cell line (Ltk-) that expresses large numbers of the low affinity form of the human NGF-R on its cell surface. Hybridomas were screened by radiometric immunosorbent assay (RISA) and by immunoprecipitation of solubilized cell surface receptor covalently cross-linked to {sup 125}I-NGF. Four positive lines were cloned by limiting dilution and were found to secrete monoclonal antibodies of the IgGl,k subclass. All monoclonal antibodies bound to both NGF-R and NGF-Rt. Two monoclonal antibodies (VIID1, XIF1) immunoblotted the NGF-R from E9b cell preparations resolved on non-reducing sodium dodecyl sulfate (SDS)-polyacrylamide gels. The antibodies immunoprecipitated NGF-R from both E9b cells and from SH-SY5Y human neuroblastoma cells. The monoclonal antibodies bound to monkey (rhesis and cynomolgus) NGF-Rt, but did not cross-react with NGF-R from chick or rat. Results of antibody competition studies demonstrated that three antibodies bound to a similar or overlapping epitope on the NGF-Rt and one monoclonal antibody (IIIG5) recognized a distinct receptor epitope. Antibodies that bound to different sites on the receptor were used to develop a sensitive 2-site RISA. The 2-site RISA can be used to rapidly quantitate NGF-R and NGF-Rt in large numbers of biological samples in the absence of added {sup 125}I-labeled NGF.

  12. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells.

    PubMed

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong Won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun

    2016-05-01

    The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  13. Unique glycoprotein antigen defined by monoclonal antibody on human neurobiastoma cells

    SciTech Connect

    Mujoo, K.; Spiro, R.C.; Reisfeld, R.A.

    1986-05-01

    The authors have characterized a new target antigen on the surface of human neuroblastoma cells and defined it with a monoclonal antibody (Mab) 5G3. This antibody is of IgG2a type and has an association constant of 8 x 10/sup 9/ M/sup -1/. In ELISA assays, Mab 5G3 reacted with human neuroblastoma as well as melanoma, squamous lung, skin carcinoma, and osteogenic sarcoma. Immunocytochemical analysis of frozen tissue sections revealed strong reactivity with all neuroblastoma tissues and marginal reactivity with melanoma and glioma tissues. There was no reactivity with fetal or normal tissues with the exception of cerebellum. The antigen recognized by Mab 5G3 is a glycoprotein of 200 and 215 kDa expressed on the SK-N-AS neuroblastoma cells. The antigen appears to contain N-linked carbohydrates based on treatment of human neuroblastoma cells with tunicamycin before and after intrinsic radiolabeling followed by indirect immunoprecipitation. The pulse-chase biosynthetic studies followed by indirect immunoprecipitation and SDS-PAGE indicated the precursor/product relationship between 200 and 215 kDa molecules. The 200 kDa component is endoglycosidase H-sensitive, whereas 215 kDa molecule is Endo-H resistant. The 215 kDa component is also sulfated, sialylated, and phosphorylated at serine residues. Preliminary data suggests that Mab, aside from identifying a unique target antigen on human neuroblastoma cells, may be suited as a targeting device for chemotherapeutic drugs.

  14. Efficient generation of a monoclonal antibody against the human C-type lectin receptor DCIR by targeting murine dendritic cells

    PubMed Central

    Heidkamp, Gordon F.; Neubert, Kirsten; Haertel, Eric; Nimmerjahn, Falk; Nussenzweig, Michel C.; Dudziak, Diana

    2010-01-01

    1. Summary Dendritic cells (DCs) are very important for the generation of long lasting immune responses against pathogens or the induction of anti-tumor responses. Targeting antigen to dendritic cells via monoclonal antibodies specific for DC cell surface receptors such as DEC205 was shown to elicit potent cellular and humoral immune responses in vivo. Therefore we investigated whether this novel strategy might also be useful for the generation of new monoclonal antibodies against molecules of choice. We show, that by targeting the extracellular domain of the human C-type lectin receptor ClecSF6/DCIR/LLIR (hDCIR) to DEC205 on DCs in vivo, we were able to generate highly specific monoclonal antibodies against hDCIR. PMID:20566350

  15. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin

    PubMed Central

    Kaji, Chiaki; Tsujimoto, Yuta; Kato Kaneko, Mika; Kato, Yukinari; Sawa, Yoshihiko

    2012-01-01

    This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG2a) and anti-human mAb NZ-1.2 (IgG2a) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections. PMID:23012488

  16. Sequence similarities among kappa IIIb chains of monoclonal human IgM kappa autoantibodies

    PubMed Central

    1984-01-01

    Light chains of the serologically and chemically defined V region sub- subgroup kappa IIIb are preferentially associated with several types of human IgM kappa (monoclonal) autoantibodies and are remarkably homologous in primary structure, as evidenced by partial amino acid sequence data. To establish the extent of homology among such proteins, we have determined the complete variable region (V) sequence of the light chains of four monoclonal IgM kappa autoantibodies, of which two (GAR and GOT) are rheumatoid factors (RFs), the third (SON) has anti- apo beta lipoprotein specificity, and the fourth (PIE) binds specifically to intermediate filaments. The region encoded by the V kappa segment gene (positions 1-95) in all four light (L) chains is virtually identical in sequence, differing by only one residue in the FR3 of protein SON and in the first CDR of protein GOT. Further, the CDR3 of kappa chain SON contains an additional residue (prolyl) located at the carboxyl-terminus of the V segment. The region encoded by the J gene (positions 96-108) is identical after position 96 for the two RFs GAR and GOT (J kappa 2), but different in proteins SON (J kappa 4) and PIE (J kappa 1). The amino acid residue at position 96, located in CDR3 at the site of combinatoriaL joining of the V kappa and J kappa gene segments and involved as a contacting residue in the hapten binding site, is different in all four light chains. These results demonstrate the extensive homology in sequence among light chains of IgM kappa autoantibodies and indicate that a particular V kappa germ line gene, kappa IIIb, is expressed as a phylogenetic response to certain self antigens or as part of a selection process by which these autoimmune responses are regulated. PMID:6432934

  17. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment

    PubMed Central

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  18. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  19. Human anti-murine immune response following administration of radiolabeled monoclonal antibodies

    SciTech Connect

    Reynolds, J.C.; Carrasquillo, J.C.; Larson, S.M.

    1985-05-01

    The author's purpose is to measure circulating anti-murine immunoglobulin antibodies (HAMA) in patients who previously received radiolabeled monoclonal antibodies (MoAb) for tumor imaging and therapy. Because the presence of HAMA may negate further use of MoAb in patients, it is important to determine the frequency and rate of HAMA development. Patients received radiolabeled MoAb Fab 96.5 (IgG2a), Fab 48.7 (IgG1), T101 (IgG2a), B72.3 (IgG1), 9.2.27 (IgG2a) and 791T/36 (IgG2b). HAMA was measured by incubating I-125 labeled 96.5, 48.7 or B72.3 with serum and isolating human IgG with Staphyloccocal protein A cells by centrifugation. The assays were capable of detecting HAMA concentrations which bound 20 ng/ml of monoclonal antibody. 12 of 37 patients who received IgG developed HAMA within 4 months of a single injection. For one patient this occurred as early as 1 week post injection. 2 of 18 patients who received Fab developed HAMA. One of these patients received multiple injections of MoAb. 2 of 3 patients who received IgG2B were positive for HAMA. There was no apparent difference in the positive HAMA when antibody or fragment was given SubQ or IV. The authors conclude that the use of IgG MoAb are more likely to lead to the development of antimurine immunoglobulin antibodies.

  20. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis.

    PubMed

    Kreye, Jakob; Wenke, Nina K; Chayka, Mariya; Leubner, Jonas; Murugan, Rajagopal; Maier, Nikolaus; Jurek, Betty; Ly, Lam-Thanh; Brandl, Doreen; Rost, Benjamin R; Stumpf, Alexander; Schulz, Paulina; Radbruch, Helena; Hauser, Anja E; Pache, Florence; Meisel, Andreas; Harms, Lutz; Paul, Friedemann; Dirnagl, Ulrich; Garner, Craig; Schmitz, Dietmar; Wardemann, Hedda; Prüss, Harald

    2016-10-01

    SEE ZEKERIDOU AND LENNON DOI101093/AWW213 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesias, and seizures. Little is known about the cerebrospinal fluid autoantibody repertoire. Antibodies against the NR1 subunit of the NMDAR are thought to be pathogenic; however, direct proof is lacking as previous experiments could not distinguish the contribution of further anti-neuronal antibodies. Using single cell cloning of full-length immunoglobulin heavy and light chain genes, we generated a panel of recombinant monoclonal NR1 antibodies from cerebrospinal fluid memory B cells and antibody secreting cells of NMDAR encephalitis patients. Cells typically carried somatically mutated immunoglobulin genes and had undergone class-switching to immunoglobulin G, clonally expanded cells carried identical somatic hypermutation patterns. A fraction of NR1 antibodies were non-mutated, thus resembling 'naturally occurring antibodies' and indicating that tolerance induction against NMDAR was incomplete and somatic hypermutation not essential for functional antibodies. However, only a small percentage of cerebrospinal fluid-derived antibodies reacted against NR1. Instead, nearly all further antibodies bound specifically to diverse brain-expressed epitopes including neuronal surfaces, suggesting that a broad repertoire of antibody-secreting cells enrich in the central nervous system during encephalitis. Our functional data using primary hippocampal neurons indicate that human cerebrospinal fluid-derived monoclonal NR1 antibodies alone are sufficient to cause neuronal surface receptor downregulation and subsequent impairment of NMDAR-mediated currents, thus providing ultimate proof of antibody pathogenicity. The observed formation of immunological memory might be relevant for clinical relapses.

  1. Production and characterization of a panel of monoclonal antibodies against native human cellular prion protein.

    PubMed

    Jones, Michael; McLoughlin, Victoria; Connolly, John G; Farquhar, Christine F; MacGregor, Ian R; Head, Mark W

    2009-02-01

    The human prion diseases, such as variant Creutzfeldt-Jakob disease (vCJD), are characterized by the conversion of the normal cellular prion protein (PrP(C)) into an abnormal disease associated form (PrP(Sc)). Monoclonal antibodies (MAbs) that recognize these different PrP isoforms are valuable reagents both in the diagnosis of these diseases and in prion disease research in general but we know of no attempts to raise MAbs against native human PrP(C). We immunized prion protein gene ablated (PrP(-/-)) mice with native human PrP(C) purified from platelets (pHuPrP) generating a predominantly IgG isotype anti-pHuPrP polyclonal antibody response in all mice. Following fusion of splenocytes from the immunized mice with SP2/0 myeloma cells, we were able to identify single cell clone and cryopreserve 14 stable hybridoma cell lines producing MAbs that reacted with pHuPrP. The properties of these MAbs (such as isotype, binding to native/denatured pHuPrP, and HuPrP epitopes recognized) are described. Furthermore, several of these MAbs showed a selectivity in their ability to immunoprecipitate disease associated PrP(Sc) and its corresponding protease resistant core (PrP(res)).

  2. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    SciTech Connect

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki; Oshita, Masatoshi; Ideno, Shoji; Yunoki, Mikihiro; Kuhara, Motoki; Yamamoto, Naomasa; Okuno, Yoshinobu; Ikuta, Kazuyoshi

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  3. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein

    SciTech Connect

    Calvert, Amanda E.; Kalantarov, Gavreel F.; Chang, Gwong-Jen J.; Trakht, Ilya; Blair, Carol D.; Roehrig, John T.

    2011-02-05

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  4. Production, characterization, and applications of two novel monoclonal antibodies against human interleukin-28A.

    PubMed

    Li, M; Chen, Y; Huang, T; Liu, Y; He, S

    2006-12-01

    Interleukin-28A (IL-28A) is a novel cytokine discovered in recent years and has been shown to have antiviral activity. In this study, IL-28A complementary DNA was inserted into prokaryotic expression vector pET-44 Ek/LIC. The Nus-S-His-tagged IL-28A fusion protein was expressed in Escherichia coli BL21 (DE3) in the soluble fraction. The fusion protein was purified by S-protein agarose affinity chromatography, and the fusion tag was removed from recombinant IL-28A by cleavage with thrombin. To prepare specific monoclonal antibody against human IL-28A, BALB/c mice were immunized with IL-28A, and hybridoma cell lines were obtained by fusing mouse spleen cells with myeloma NS-1 cells. Two strains of hybridoma cells, which produced the anti-human IL-28A antibodies 1B9 and 4B5 were obtained. They are IgM isotype and working in western blot analysis and enzyme-linked immunosorbent assay. In the present study, it was shown for the first time that human umbilical vein endothelial cells treated with interferon-alpha and poly(I:C) express IL-28A protein assessed by flow cytometry and immunofluorescent staining techniques. Immunohistochemistry showed that macrophage-like cells in colon and lung tissue and alveolar epithelial cells in lung tissue contain IL-28A, indicating a novel mechanism for both cell types to carry out their antivirus or antitumor functions.

  5. First human study of a chimeric anti-methamphetamine monoclonal antibody in healthy volunteers.

    PubMed

    Stevens, Misty W; Henry, Ralph L; Owens, S Michael; Schutz, Ralph; Gentry, W Brooks

    2014-01-01

    This first-in-human study examined the safety and pharmacokinetics of ch-mAb7F9, an anti-methamphetamine monoclonal antibody, in healthy volunteers. Single, escalating doses of ch-mAb7F9 over the range of 0.2 to 20 mg/kg were administered to 42 subjects who were followed for 147 d. Safety was measured by physical examinations, adverse events, vital signs, electrocardiograms, and clinical laboratory testing. Serum ch-mAb7F9 concentration and immunogenicity analyses were performed. There were no serious adverse reactions or discontinuations from the study due to adverse events. No trends emerged in the frequency, relatedness, or severity of adverse events with increased dose or between active and placebo treated subjects. Ch-mAb7F9 displayed expected IgG pharmacokinetic parameters, including a half-life of 17-19 d in the 3 highest dose groups and volume of distribution of 5-6 L, suggesting the antibody is confined primarily to the vascular compartment. Four (12.5%) of the 32 subjects receiving ch-mAb7F9 were confirmed to have developed a human anti-chimeric antibody response by the end of the study; however, this response did not appear to be dose related. Overall, no apparent safety or tolerability concerns were identified; a maximum tolerated dose was not reached in this Phase 1 study. Ch-mAb7F9 therefore appears safe for human administration.

  6. Efficacy of broadly neutralizing monoclonal antibody PG16 in HIV-infected humanized mice.

    PubMed

    Stoddart, Cheryl A; Galkina, Sofiya A; Joshi, Pheroze; Kosikova, Galina; Long, Brian R; Maidji, Ekaterina; Moreno, Mary E; Rivera, Jose M; Sanford, Ukina R; Sloan, Barbara; Cieplak, Witold; Wrin, Terri; Chan-Hui, Po-Ying

    2014-08-01

    Highly potent broadly neutralizing human monoclonal antibodies hold promise for HIV prophylaxis and treatment. We used the SCID-hu Thy/Liv and BLT humanized mouse models to study the efficacy of these antibodies, primarily PG16, against HIV-1 clades A, B, and C. PG16 targets a conserved epitope in the V1/V2 region of gp120 common to 70-80% of HIV-1 isolates from multiple clades and has extremely potent in vitro activity against HIVJR-CSF. PG16 was highly efficacious in SCID-hu mice as a single intraperitoneal administration the day before inoculation of R5-tropic HIV directly into their Thy/Liv implants and demonstrated even greater efficacy if PG16 administration was continued after Thy/Liv implant HIV inoculation. However, PG16 as monotherapy had no activity in humanized mice with established R5-tropic HIV infection. These results provide evidence of tissue penetration of the antibodies, which could aid in their ability to prevent infection if virus crosses the mucosal barrier.

  7. Binding properties of monoclonal antibodies recognizing external epitopes of the human MDR1 P-glycoprotein.

    PubMed

    Schinkel, A H; Arceci, R J; Smit, J J; Wagenaar, E; Baas, F; Dollé, M; Tsuruo, T; Mechetner, E B; Roninson, I B; Borst, P

    1993-09-30

    Monoclonal antibodies (MAbs) recognizing external epitopes of the human MDR1 P-glycoprotein have been used both for the detection of multidrug-resistant cells and as specific inhibitors of P-glycoprotein-mediated multidrug resistance. Using a panel of recently developed transfected or transgenic cell lines containing variants of the human MDR1 and MDR3 P-glycoproteins, we have compared the specificity and binding properties of the previously isolated MAbs MRK16, HYB-241, UIC2 and 4E3, and of the newly isolated MAb 7G4. The removal of 1, 2 or all 3 of the N-glycosylation sites present in the first extracellular loop of MDR1 P-glycoprotein did not significantly affect the binding of these MAbs. In contrast, 20 amino acid deletion in the first extracellular loop of MDR1 P-glycoprotein completely abolished binding of UIC2, whereas the binding of all other MAbs was hardly affected. None of the MAbs tested bound detectably to cell lines containing a high level of the human MDR3 P-glycoprotein. The differences in the binding specificity between UIC2 and the other tested antibodies parallel the reported functional differences in the ability of these antibodies to inhibit P-glycoprotein-mediated drug efflux.

  8. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein.

    PubMed

    Calvert, Amanda E; Kalantarov, Gavreel F; Chang, Gwong-Jen J; Trakht, Ilya; Blair, Carol D; Roehrig, John T

    2011-02-05

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  9. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits.

    PubMed

    Robinson, James E; Hastie, Kathryn M; Cross, Robert W; Yenni, Rachael E; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Smira, Ashley A; Garry, Courtney E; Bradley, Benjamin T; Yu, Haini; Shaffer, Jeffrey G; Boisen, Matt L; Hartnett, Jessica N; Zandonatti, Michelle A; Rowland, Megan M; Heinrich, Megan L; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C; Andersen, Kristian G; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J; Fonnie, Richard; Jalloh, Simbirie C; Kargbo, Brima; Vandi, Mohamed A; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A; Okokhere, Peter O; Follarin, Onikepe A; Schieffelin, John S; Pitts, Kelly R; Geisbert, Joan B; Kulakoski, Peter C; Wilson, Russell B; Happi, Christian T; Sabeti, Pardis C; Gevao, Sahr M; Khan, S Humarr; Grant, Donald S; Geisbert, Thomas W; Saphire, Erica Ollmann; Branco, Luis M; Garry, Robert F

    2016-05-10

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.

  10. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B

    PubMed Central

    Zheng, Xiaojing; Li, Yanqing; Zhao, Junli; Wang, Dongyang; Xia, Haibin; Mao, Qinwen

    2016-01-01

    Human FAM76B (hFAM76B) is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s) of FAM76B, murine monoclonal antibodies (MAbs) against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B) specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s) of FAM76B. PMID:27018871

  11. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  12. Novel monoclonal antibodies broadly reactive to human recombinant sapovirus-like particles.

    PubMed

    Kitamoto, Noritoshi; Oka, Tomoichiro; Katayama, Kazuhiko; Li, Tian-Cheng; Takeda, Naokazu; Kato, Yoji; Miyoshi, Tatsuya; Tanaka, Tomoyuki

    2012-11-01

    Sapovirus (SaV), a member of the family Caliciviridae, is an important cause of acute epidemic gastroenteritis in humans. Human SaV is genetically and antigenically diverse and can be classified into four genogroups (GI, GII, GIV, and GV) and 16 genotypes (7 GI [GI.1-7], 7 GII, [GII.1-7], 1 GIV and 1 GV), based on capsid sequence similarities. Monoclonal antibodies (MAbs) are powerful tools for examining viruses and proteins. PAI myeloma cells were fused with spleen cells from mice immunized with a single type of recombinant human SaV virus-like particles (VLPs) (GI.1, GI.5, GI.6, GII.3, GIV, or GV). Sixty-five hybrid clones producing MAbs were obtained. Twenty-four MAbs were characterized by ELISA, according to their cross-reactivity to each VLP (GI.1, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GIV, and GV). The MAbs were classified by this method into: (i) MAbs broadly cross-reactive to all GI, GII, GIV and GV strains; (ii) those reactive in a genogroup-specific; and (iii) those reactive in a genotype-specific manner. Further analysis of three broadly cross-reactive MAbs with a competitive ELISA demonstrated that at least two different common epitopes are located on the capsid protein of human SaVs in the four genogroups. The MAbs generated and characterized in this study will be useful tools for further study of the antigenic and structural topography of the human SaV virion and for developing new diagnostic assays for human SaV.

  13. Fully-human Monoclonal Antibodies Against Human EphrinB2 and EphB4 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cacner Institute's Nanobiology Program is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize fully-human monoclonal antibodies against human EphrinB2 and EphB4.

  14. Radial-immunodiffusion assay of human apolipoprotein A-I with use of two monoclonal antibodies combined.

    PubMed

    Marcovina, S; Di Cola, G; Catapano, A L

    1986-12-01

    We produced and characterized several monoclonal antibodies directed toward human plasma apolipoprotein A-I. Two of them, A-I-12 and A-I-57, individually precipitated purified or native high-density lipoprotein in agarose gel by double immunodiffusion. Because radial immunodiffusion performed with a single monoclonal antibody gave faint and diffuse rings of precipitation, we developed and optimized working conditions for using these two monoclonal antibodies combined to determine apolipoprotein A-I in human plasma. This combination gave easy-to-measure, clear, sharp rings, and linear and parallel standard curves for HDL3 (the primary standard) and a reference serum (the secondary standard). Moreover, no pretreatment of samples with dissociating agents or detergents is necessary. The assay was complete after overnight incubation, as compared with two to three days when polyclonal antisera were used. Apolipoprotein A-I concentrations as measured in 128 normolipidemic subjects and in 72 patients with various lipid disorders by the radial immunodiffusion technique with monoclonal antibodies (x) compared well (r = 0.882; y = 1.029x-0.036) with those measured by radial immunodiffusion with polyclonal antisera (y).

  15. Generation of Human Antigen-Specific Monoclonal IgM Antibodies Using Vaccinated “Human Immune System” Mice

    PubMed Central

    van Geelen, Caroline M. M.; Noerder, Miriam; Huntington, Nicholas D.; Lim, Annick; Yasuda, Etsuko; Diehl, Sean A.; Scheeren, Ferenc A.; Ott, Michael; Weijer, Kees; Wedemeyer, Heiner; Di Santo, James P.; Beaumont, Tim; Guzman, Carlos A.; Spits, Hergen

    2010-01-01

    Background Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the ‘humanization’ of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique. Methodology/Principal Findings After transplantation with CD34+CD38− human hematopoietic progenitor cells, BALB/c Rag2−/−IL-2Rγc−/− mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. “Human Immune System” mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively. Conclusion/Significance This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens. PMID:20957227

  16. LpMab-23: A Cancer-Specific Monoclonal Antibody Against Human Podoplanin.

    PubMed

    Yamada, Shinji; Ogasawara, Satoshi; Kaneko, Mika K; Kato, Yukinari

    2017-04-07

    Human podoplanin (hPDPN), the ligand of C-type lectin-like receptor-2, is involved in cancer metastasis. Until now, many monoclonal antibodies (mAbs) have been established against hPDPN. However, it is still difficult to develop a cancer-specific mAb (CasMab) against hPDPN because the protein sequence of hPDPN expressed in cancer cells is the same as that in normal cells. Herein, we report LpMab-23 of the mouse IgG1 subclass, a novel CasMab against hPDPN. In an immunohistochemical analysis, LpMab-23 reacted with tumor cells of human oral cancer, but did not react with normal cells such as lymphatic endothelial cells (LECs). In contrast, LpMab-17, another anti-hPDPN mAb, reacted with both tumor cells and LECs. Furthermore, flow cytometric analysis revealed that LpMab-23 reacted with hPDPN-expressing cancer cell lines (LN319, RERF-LC-AI/hPDPN, Y-MESO-14/hPDPN, and HSC3/hPDPN) but showed little reaction with normal cells (LECs and HEK-293T), although another anti-hPDPN mAb, LpMab-7, reacted with both hPDPN-expressing cancer cells and normal cells, indicating that LpMab-23 is a CasMab against hPDPN.

  17. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.

    PubMed

    Li, Linzhong; Gardner, Iain; Dostalek, Miroslav; Jamei, Masoud

    2014-09-01

    Compared to small chemical molecules, monoclonal antibodies and Fc-containing derivatives (mAbs) have unique pharmacokinetic behaviour characterised by relatively poor cellular permeability, minimal renal filtration, binding to FcRn, target-mediated drug disposition, and disposition via lymph. A minimal physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics of mAbs in humans was developed. Within the model, the body is divided into three physiological compartments; plasma, a single tissue compartment and lymph. The tissue compartment is further sub-divided into vascular, endothelial and interstitial spaces. The model simultaneously describes the levels of endogenous IgG and exogenous mAbs in each compartment and sub-compartment and, in particular, considers the competition of these two species for FcRn binding in the endothelial space. A Monte-Carlo sampling approach is used to simulate the concentrations of endogenous IgG and mAb in a human population. Existing targeted-mediated drug disposition (TMDD) models are coupled with the minimal PBPK model to provide a general platform for simulating the pharmacokinetics of therapeutic antibodies using primarily pre-clinical data inputs. The feasibility of utilising pre-clinical data to parameterise the model and to simulate the pharmacokinetics of adalimumab and an anti-ALK1 antibody (PF-03446962) in a population of individuals was investigated and results were compared to published clinical data.

  18. Epitope mapping of 10 monoclonal antibodies against the pig analogue of human membrane cofactor protein (MCP)

    PubMed Central

    PéRez De La Lastra, J M; Van Den Berg, C W; Bullido, R; Almazán, F; Domínguez, J; Llanes, D; Morgan, B P

    1999-01-01

    Pig membrane cofactor protein (MCP; CD46) is a 50 000–60 000 MW glycoprotein that is expressed on a wide variety of cells, including erythrocytes. Pig MCP has cofactor activity for factor I-mediated cleavage of C3b and is an efficient regulator of the classical and alternative pathway of human and pig complement. A panel of 10 monoclonal antibodies (mAbs) was collected from two different laboratories; all of these mAbs were raised against pig leucocytes and all recognized the same complex banding pattern on sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) of erythrocyte membranes. All were shown to be reactive with pig MCP and were divided into four groups of mutually competitive antibodies based on competition studies for membrane-bound MCP and for soluble MCP, the latter by surface plasmon resonance (SPR) analysis. The antigenic properties of membrane-bound and soluble MCP were similar, although some interesting differences were revealed. None of the 10 mAbs were cross-reactive with human MCP and only one showed cross-reactivity with leucocytes from a panel of large mammals – a weak cross-reactivity with a subset of dog leucocytes. All antibodies in one of the epitope groups and some in a second epitope group were able to block the functional activity of pig MCP, as measured by inhibition of MCP-catalysed C3 degradation by factor I. PMID:10233756

  19. Purification of human seminal plasma no. 7 antigen by immunoaffinity chromatography on bound monoclonal antibody.

    PubMed Central

    Isojima, S; Koyama, K; Fujiwara, N

    1982-01-01

    Human seminal plasma (HSP) No. 7 antigen was purified by immunoaffinity chromatography on bound 1C4 monoclonal antibody (Moab) (Shigeta et al., 1980b). The pooled HSP protein was applied to a CNBr-activated Sepharose 4B column of bound 1C4 Moab gamma globulin and the antibody bound fraction (fr) eluted was further purified by rechromatography in the same way. The purified antigen in the antibody bound fr obtained by rechromatography gave a single band on SDS-PAGE in a position corresponding to a molecular weight of 15,000 daltons. This preparation was 196.2 times more effective than the original HSP protein in neutralizing the sperm immobilizing activity of 1C4 Moab. The purified HSP No. 7 antigen contained iron, but was different from lactoferrin and transferrin. It did not show any enzymatic activities, such as those of acid phosphatase, LDH or trypsin inhibitor, and shared antigenicity with human milk protein. It was present in seminal plasma as a molecule with a higher molecular weight but seemed to be cleaved to a monomer of 15,000 daltons during purification procedures. This antigen is present on spermatozoa as sperm-coating antigen and the corresponding antibody can immobilize spermatozoa with complement. Images Fig. 3 PMID:7127911

  20. Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies.

    PubMed

    Thornton, Christopher R

    2009-05-01

    Pseudallescheria boydii has long been known to cause white grain mycetoma in immunocompetent humans, but it has recently emerged as an opportunistic pathogen of humans, causing potentially fatal invasive infections in immunocompromised individuals and evacuees of natural disasters, such as tsunamis and hurricanes. The diagnosis of P. boydii is problematic since it exhibits morphological characteristics similar to those of other hyaline fungi that cause infectious diseases, such as Aspergillus fumigatus and Scedosporium prolificans. This paper describes the development of immunoglobulin M (IgM) and IgG1 kappa-light chain monoclonal antibodies (MAbs) specific to P. boydii and certain closely related fungi. The MAbs bind to an immunodominant carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and hyphal cell walls of P. boydii and Scedosporium apiospermum. The MAbs do not react with S. prolificans, Scedosporium dehoogii, or a large number of clinically relevant fungi, including A. fumigatus, Candida albicans, Cryptococcus neoformans, Fusarium solani, and Rhizopus oryzae. The MAbs were used in immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to accurately differentiate P. boydii from other infectious fungi and to track the pathogen in environmental samples. Specificity of the DAS-ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of environmental isolates.

  1. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein

    PubMed Central

    Tang, Aimin; Callahan, Cheryl; Pristatsky, Pavlo; Swoyer, Ryan; Cejas, Pedro; Nahas, Debbie; Galli, Jennifer; Cosmi, Scott; DiStefano, Daniel; Hoang, Van M.; Bett, Andrew; Casimiro, Danilo

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction. PMID:27258388

  2. Development of humanized rabbit monoclonal antibodies against vascular endothelial growth factor receptor 2 with potential antitumor effects.

    PubMed

    Yu, Yanlan; Lee, Pierre; Ke, Yaohuang; Zhang, Yongke; Chen, Jungang; Dai, Jihong; Li, Mingzhen; Zhu, Weimin; Yu, Guo-Liang

    2013-07-05

    Vascular endothelial growth factor-A (VEGF-A) plays a critical role in physiologic and pathologic angiogenesis through its receptors especially through VEGFR2. The lack of cross-reactivity of monoclonal antibodies with human VEGFR2/mouse Flk-1 is a major obstacle in preclinical developments. In this study, using a unique hybridoma technique, we generated a panel of 30 neutralization anti-VEGFR2 rabbit monoclonal antibodies (RabMAbs) either blocking VEGF/VEGFR2 interaction or inhibiting VEGF-stimulated VEGFR2 tyrosine kinase phosphorylation. Among 18 RabMAbs with human/mouse VEGFR2 cross-reactivity, we humanized one lead candidate RabMAb by Mutational Lineage Guided (MLG) method and further demonstrated its potent inhibition of tumor growth in xenograft mouse model. Our study suggests that RabMAbs are highly relevant for therapeutic applications.

  3. A monoclonal IgM protein with antibody-like activity for human albumin.

    PubMed

    Hauptman, S; Tomasi, T B

    1974-03-01

    The serum of a patient (L'ec) with an IgM lambda monoclonal protein was noted to bind albumin on immunoelectrophoresis. Analytical ultracentrifugation of the L'ec serum demonstrated 23S and 12S peaks, but no 4S (albumin) boundary. Immunologically identical 20S and 9S IgM proteins were isolated from the serum and the addition in vitro of either the patient's albumin or albumin isolated from normal serum was shown to reconstitute the 23S and 12S boundaries. The binding of high molecular weight IgM to albumin was demonstated by Sephadex G200 chromatography with (125)I-labeled albumin and isolated IgM. Immunoelectrophoresis of the L'ec IgM developed with aggregated albumin (reverse immunoelectrophoresis) also demonstrated the binding of albumin to IgM. That all of the patient's IgM complexed with albumin was shown by affinity chromatography employing an aggregated albumin-immunoadsorbent column. Binding was shown to be of the noncovalent type by polyacrylamide gel electrophoresis in 8 M urea. With hot trypsin proteolysis, Fabmu and Fcmu5 fragments were isolated, and monomer albumin was shown to complex only with the Fabmu fragment by both analytical ultracentrifugation and molecular sieve chromatogaphy employing (125)I-labeled Fab fragments. 1 mol of Fabmu fragment bound 1 mol of monomer albumin. Polymers of human albumin, produced by heat aggregation, precipitated with the isolated L'ec protein on gel diffusion analysis and, when coated on sheep red blood cells, gave a hemagglutination titer greater than 1 million with the whole L'ec serum. 50 additional monoclonal IgM, 33 IgA, and 80 IgG sera failed to show precipitation or hemagglutination with aggregated albumin. Native monomer albumin inhibited precipitation only at high concentrations (> 50 mg/ml); dimer albumin or fragments of albumin produced by trypsin digestion inhibited at low concentrations (0.4 mg/ml). No reactivity occurred with the albumin of five other mammalian species, including bovine. The L

  4. Idiotypic and subgroup analysis of human monoclonal rheumatoid factors. Implications for structural and genetic basis of autoantibodies in humans.

    PubMed Central

    Silverman, G J; Goldfien, R D; Chen, P; Mageed, R A; Jefferis, R; Goñi, F; Frangione, B; Fong, S; Carson, D A

    1988-01-01

    Rheumatoid factors (RFs) in humans have been studied intensively because of their association with autoimmune and lymphoproliferative diseases. Many human IgM-RFs express cross-reactive idiotypes (CRIs) and have homologous light chains, some of which are encoded by a single V kappa gene, termed V kappa 325. However, although antibody activity generally requires the interaction between heavy and light chain variable regions, much less is known about structural relationships among RF heavy chains. To delineate further the structural and genetic basis of RF autoantibody synthesis, we generated "sequence-dependent" reagents specific for the human heavy and kappa light chain subgroups, and used them to analyze a panel of 27 monoclonal RFs. In addition, these proteins were tested for the expression of a heavy chain-associated CRI (G6), and a light chain-associated CRI (17.109). The results showed that most 17.109-reactive RFs contain heavy chains of the VHI subgroup, which bear the G6 idiotypic marker. However, among the 14 17.109-reactive RFs, two have heavy chains of the VHII subgroup, and another two contain heavy chains of the VHIII subgroup. Previously, we have shown that 17.109 is a phenotypic marker of the human V kappa 325 gene. Accordingly, these results demonstrate that the same human V kappa gene can combine with several VH genes from different VH gene subgroups to generate RF activity. Images PMID:3136191

  5. Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner.

    PubMed

    Ohta, Akane; Fujita, Ayano; Murayama, Tsugiya; Iba, Yoshitaka; Kurosawa, Yoshikazu; Yoshikawa, Tetsushi; Asano, Yoshizo

    2009-11-01

    Human antibodies specific for HCMV are currently considered as potential anti-HCMV therapeutic agents. In this study, we used a combinatorial human antibody library to isolate and characterize complete human monoclonal antibodies that effectively neutralize HCMV in a complement-dependent manner. One hundred and six clones were isolated in two independent screens using HCMV virions and recombinant glycoprotein B, gB654, as antigens. All of the clones recognized the same molecule gB and were classified into 14 groups based on the amino acid sequence of the V(H) region. Seven representative clones from these 14 groups had a strong gB654 binding affinity by surface plasmon resonance (SPR). A pairwise binding competition analysis suggested that there were three groups based on differences in the gB recognition sites. Although Fab fragments of the seven groups showed strong affinity for gB, none of the Fab fragments neutralized HCMV infectivity in vitro. In contrast, complete human IgG(1) antibodies of at least three groups neutralized HCMV in a complement-dependent manner. These data suggest that potent therapeutic antibodies can be obtained from a human antibody library, including most of the functional antibodies that mediate humoral immunity to the selected pathogen.

  6. Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I

    NASA Technical Reports Server (NTRS)

    Casale, Elena; He, Xiao-Min; Snyder, Robert S.; Carter, Daniel C.; Wenisch, Elisabeth; Jungbauer, Alois; Tauer, Christa; Ruker, Florian; Righetti, Pier Giorgio

    1990-01-01

    A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable platelike crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A, and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.

  7. Comparison of 5 monoclonal antibodies for immunopurification of human butyrylcholinesterase on Dynabeads: KD values, binding pairs, and amino acid sequences

    PubMed Central

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Targosova, Katarina; Krejci, Eric; Blake, Thomas A.; Johnson, Rudolph C.; Masson, Patrick; Lockridge, Oksana

    2016-01-01

    Human butyrylcholinesterase (HuBChE) is a stoichiometric bioscavenger of nerve agents and organophosphorus pesticides. Mass spectrometry methods detect stable nerve agent adducts on the active site serine of HuBChE. The first step in sample preparation is immunopurification of HuBChE from plasma. Our goal was to identify monoclonal antibodies that could be used to immunopurify HuBChE on Dynabeads Protein G. Mouse anti-HuBChE monoclonal antibodies were obtained in the form of ascites fluid, dead hybridoma cells stored frozen at −80°C for 30 years, or recently frozen hybridoma cells. RNA from 4 hybridoma cell lines was amplified by PCR for determination of their nucleotide and amino acid sequences. Full-length light and heavy chains were expressed, and the antibodies purified from culture medium. A fifth monoclonal was purchased. The 5 monoclonal antibodies were compared for ability to capture HuBChE from human plasma on Dynabeads Protein G. In addition, they were evaluated for binding affinity by Biacore and ELISA. Epitope mapping by pairing analysis was performed on the Octet Red96 instrument. The 5 monoclonal antibodies, B2 12-1, B2 18-5, 3E8, mAb2, and 11D8, had similar KD values of 10−9 M for HuBChE. Monoclonal B2 18-5 outperformed the others in the Dynabeads Protein G assay where it captured 97% of the HuBChE in 0.5 ml plasma. Pairing analysis showed that 3E8 and B2 12-1 share the same epitope, 11D8 and B2 18-5 share the same epitope, but mAb2 and B2 12-1 or mAb2 and 3E8 bind to different epitopes on HuBChE. B2 18-5 was selected for establishment of a stable CHO cell line for production of mouse anti-HuBChE monoclonal. PMID:26343001

  8. Comparison of 5 monoclonal antibodies for immunopurification of human butyrylcholinesterase on Dynabeads: KD values, binding pairs, and amino acid sequences.

    PubMed

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Targosova, Katarina; Krejci, Eric; Blake, Thomas A; Johnson, Rudolph C; Masson, Patrick; Lockridge, Oksana

    2015-10-05

    Human butyrylcholinesterase (HuBChE) is a stoichiometric bioscavenger of nerve agents and organophosphorus pesticides. Mass spectrometry methods detect stable nerve agent adducts on the active site serine of HuBChE. The first step in sample preparation is immunopurification of HuBChE from plasma. Our goal was to identify monoclonal antibodies that could be used to immunopurify HuBChE on Dynabeads Protein G. Mouse anti-HuBChE monoclonal antibodies were obtained in the form of ascites fluid, dead hybridoma cells stored frozen at -80 °C for 30 years, or recently frozen hybridoma cells. RNA from 4 hybridoma cell lines was amplified by PCR for determination of their nucleotide and amino acid sequences. Full-length light and heavy chains were expressed, and the antibodies purified from culture medium. A fifth monoclonal was purchased. The 5 monoclonal antibodies were compared for ability to capture HuBChE from human plasma on Dynabeads Protein G. In addition, they were evaluated for binding affinity by Biacore and ELISA. Epitope mapping by pairing analysis was performed on the Octet Red96 instrument. The 5 monoclonal antibodies, B2 12-1, B2 18-5, 3E8, mAb2, and 11D8, had similar KD values of 10(-9) M for HuBChE. Monoclonal B2 18-5 outperformed the others in the Dynabeads Protein G assay where it captured 97% of the HuBChE in 0.5 ml plasma. Pairing analysis showed that 3E8 and B2 12-1 share the same epitope, 11D8 and B2 18-5 share the same epitope, but mAb2 and B2 12-1 or mAb2 and 3E8 bind to different epitopes on HuBChE. B2 18-5 was selected for establishment of a stable CHO cell line for production of mouse anti-HuBChE monoclonal.

  9. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication.

    PubMed

    Sevigny, Leila M; Booth, Brian J; Rowley, Kirk J; Leav, Brett A; Cheslock, Peter S; Garrity, Kerry A; Sloan, Susan E; Thomas, William; Babcock, Gregory J; Wang, Yang

    2013-11-01

    Diphtheria antitoxin (DAT) has been the cornerstone of the treatment of Corynebacterium diphtheriae infection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in an in vivo lethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.

  10. Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Newman, Walter

    1982-06-01

    A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.

  11. Targeting human vasohibin-2 by a neutralizing monoclonal antibody for anti-cancer treatment.

    PubMed

    Koyanagi, Takahiro; Suzuki, Yasuhiro; Komori, Kazuki; Saga, Yasushi; Matsubara, Shigeki; Fujiwara, Hiroyuki; Sato, Yasufumi

    2016-12-29

    There are 2 members of the vasohibin (VASH) family, VASH1 and VASH2. VASH1 is expressed mainly in endothelial cells to inhibit angiogenesis, whereas VASH2 is expressed mainly in cancer cells to stimulate tumor growth. The aim of the present study was to establish neutralizing monoclonal antibody (mAb) against human VASH2 and apply it as an anti-cancer treatment. We previously raised mAbs against several synthetic peptides of hVASH1, and found that one of them exhibited neutralizing activity against hVASH1. Because of the similarity in the amino acid sequences between VASH1 and VASH2, we hypothesized that they shared the bioactive center. When we mutated 4 amino acids within the region, the mutant VASH2 lost its pro-angiogenic activity. We therefore raised mAb against a synthetic peptide overlapping the mutated amino acids of hVASH2, and isolated one clone (1760) that almost completely inhibited the stimulatory effect of hVASH2 on the migration of and tube formation by ECs. When we used this clone 1760 antibody for cancer treatment, the peritoneal injection of it inhibited both tumor growth and angiogenesis in a mouse xenograft model of human cancer cells. In terms of anti-tumor activity, 25 mg/kg of clone 1760 was equivalent to 5 mg/kg of bevacizmab. From these results, we propose the targeting of human VASH2 with neutralizing mAb as a new strategy for cancer treatment. This article is protected by copyright. All rights reserved.

  12. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in newborn macaques

    PubMed Central

    Hessell, Ann J.; Jaworski, J. Pablo; Epson, Erin; Matsuda, Kenta; Pandey, Shilpi; Kahl, Christoph; Reed, Jason; Sutton, William F.; Hammond, Katherine B.; Cheever, Tracy A.; Barnette, Philip T.; Legasse, Alfred W.; Planer, Shannon; Stanton, Jeffrey J.; Pegu, Amarendra; Chen, Xuejun; Wang, Keyun; Siess, Don; Burke, David; Park, Byung S.; Axthelm, Michael K.; Lewis, Anne; Hirsch, Vanessa M.; Graham, Barney S.; Mascola, John R.; Sacha, Jonah B.; Haigwood, Nancy L.

    2016-01-01

    Prevention of mother to child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested anti-HIV-1 human neutralizing monoclonal antibodies (NmAb) as post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with SHIVSF162P3. On days 1, 4, 7, and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h following administration. Replicating virus was found in multiple tissues by day 1 in animals without treatment. All NmAb-treated macaques were free of virus in blood and tissues at 6 months post-exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged following CD8+ T cell depletion. These results suggest early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs. PMID:26998834

  13. A novel human B-lymphocyte antigen shared with lymphoid dendritic cells: characterization by monoclonal antibody.

    PubMed Central

    Ishii, Y; Takami, T; Kokai, Y; Yuasa, H; Fujimoto, J; Takei, T; Kikuchi, K

    1985-01-01

    A novel cell-surface antigen (L25) expressed on human B cells was identified using a B cell-reactive monoclonal antibody (TB1-4D5). This L25 antigen was expressed on most B-lineage cells but not other cell types including thymocytes, T cells, granulocytes and monocytes. Thus, L25 existed on the majority of normal B cells present in the blood and lymphoid tissues, on cultured cell lines derived from normal and malignant B cells, and on neoplastic cells isolated from patients with B cell-derived malignancies. Though L25 was persistently expressed on B cells until 7 days after their activation with pokeweed mitogen (PWM), neither normal nor neoplastic plasma cells expressed L25. Moreover, L25 was present on cultured as well as freshly isolated leukaemic cells with common acute lymphatic leukaemia (CALL) antigen, which have been thought to correspond to the early B-cell ontogeny. Besides pan-B cell reactivity of TB1-4D5 antibody, it apparently cross-reacted with so-called dendritic or interdigitating cells located in the thymic-dependent areas of peripheral lymphoid organs, which have been presumably ascribed to those associated with accessory-cell function. Functional studies showed that anti-L25 (TB1-4D5) antibody had inhibitory effect on induction of immunoglobulin synthesis by PWM-stimulated B cells. Images Fig. 2 PMID:3907905

  14. Highly potent anti-human GPVI monoclonal antibodies derived from GPVI knockout mouse immunization.

    PubMed

    Matsumoto, Yutaka; Takizawa, Hisao; Gong, Xiaoqi; Le, Sang; Lockyer, Simon; Okuyama, Keiji; Tanaka, Michinori; Yoshitake, Masuhiro; Tandon, Narendra N; Kambayashi, Junichi

    2007-01-01

    Recent progress in the understanding of thrombus formation has suggested an important role for glycoprotein (GP) VI in this process. To clarify the exact role in detail, it is necessary to use specific, high affinity inhibitory antibodies. However, possibly due to the conserved structure of GPVI among species, it has been difficult to obtain potent antibodies. In this study, we developed highly potent anti-human GPVI monoclonal antibodies using GPVI knockout mice for immunization. Fab fragments of these antibodies, named OM1 and OM2, potently inhibit collagen-induced platelet aggregation. The IC(50) values for OM1 and OM2 are 0.6+/-0.05 and 1.7+/-0.5 microg/mL, respectively, showing potency greater than, or equal to that of abciximab (1.7+/-0.3 microg/mL), an anti-GPIIb/IIIa antibody. Fab fragments of OM1 and OM2 also potently inhibit collagen-induced ATP release, thromboxane A(2) formation, and platelet adhesion to immobilized collagen under static and flow conditions. Interestingly, platelet aggregation induced with collagen-related peptide was potently inhibited by OM2 but not OM1, indicating that OM1 recognizes an epitope that is different from collagen-related peptide-binding site on GPVI. These results suggest that OM1 and OM2 may be useful tools to understand the role of GPVI in thrombus formation. Furthermore, these antibodies have the potential to be developed as a new class of therapeutic tool.

  15. Applications of monoclonal antibodies and recombinant cytokines for the treatment of human colorectal and other carcinomas

    SciTech Connect

    Greiner, J.W.; Smalley, R.V.; Borden, E.C.; Martin, E.W.; Guadagni, F.; Roselli, M.; Schlom, J. )

    1991-01-01

    Monoclonal antibodies (MAbs) which recognize a human tumor antigen, termed tumor-associated glycoprotein-72 (TAG-72), have successfully been used to localize primary as well as metastatic colorectal tumor lesions in patients. The localization of the anti-TAG-72 MAbs has also been exploited intraoperatively using a hand-held gamma probe. That procedure, termed radioimmunoguided surgery (RIGS), has identified occult tumors which were not detected using standard external imaging techniques. In another clinical trial, interferon-gamma (IFN-gamma) was administered intraperitoneally to patients diagnosed with either gastrointestinal or ovarian carcinoma with secondary ascites. Analysis of the tumor cells isolated from the malignant ascites revealed a substantial increase in TAG-72 expression on the surface of tumor cells isolated from seven of eight patients. The results provide evidence that the combination of an anti-carcinoma MAb with the administration of a cytokine, such as IFN-gamma, may be an effective approach for the detection and subsequent treatment, of colorectal carcinoma. 15 references.

  16. Synthetic human monoclonal antibodies toward staphylococcal enterotoxin B (SEB) protective against toxic shock syndrome.

    PubMed

    Karauzum, Hatice; Chen, Gang; Abaandou, Laura; Mahmoudieh, Mahta; Boroun, Atefeh R; Shulenin, Sergey; Devi, V Sathya; Stavale, Eric; Warfield, Kelly L; Zeitlin, Larry; Roy, Chad J; Sidhu, Sachdev S; Aman, M Javad

    2012-07-20

    Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 μg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development.

  17. Synthetic Human Monoclonal Antibodies toward Staphylococcal Enterotoxin B (SEB) Protective against Toxic Shock Syndrome*

    PubMed Central

    Karauzum, Hatice; Chen, Gang; Abaandou, Laura; Mahmoudieh, Mahta; Boroun, Atefeh R.; Shulenin, Sergey; Devi, V. Sathya; Stavale, Eric; Warfield, Kelly L.; Zeitlin, Larry; Roy, Chad J.; Sidhu, Sachdev S.; Aman, M. Javad

    2012-01-01

    Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 μg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development. PMID:22645125

  18. Production and characterization of domain-specific monoclonal antibodies against human ECM1.

    PubMed

    Li, Ya; Li, Yanqing; Zhao, Junli; Wang, Dongyang; Mao, Qinwen; Xia, Haibin

    2016-05-01

    Human extracellular matrix protein-1 (hECM1), a secreted glycoprotein, is widely expressed in different tissues and organs. ECM1 has been implicated in multiple biological functions, which are potentially mediated by the interaction of different ECM1 domains with its ligands. However, the exact biological functions of ECM1 have not been elucidated yet, and the functional study of ECM1 has been partially hampered by the lack of sensitive and specific antibodies, especially those targeting different ECM1 domains. In this study, six strains of monoclonal antibody (MAb) against hECM1 were generated using purified, prokaryotically-expressed hECM1 as an immunogen. The MAbs were shown to be highly sensitive and specific, and suitable for western blot, immunoprecipitation assays and immunohistochemistry. Furthermore, the particular ECM1 domains recognized by different MAbs were identified. Lastly, the MAbs were found to have neutralizing activities, inhibiting the proliferation, migration and metastasis of MDA-MB-231 cells. In conclusion, the domain-specific anti-ECM1 MAbs produced in this study should provide a useful tool for investigating ECM1's biological functions, and cellular pathways in which it is involved.

  19. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    PubMed

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.

  20. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  1. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies.

    PubMed

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung

    2012-12-17

    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 μg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.

  2. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies.

    PubMed

    Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M

    2017-02-24

    CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices.

  3. Preparation of Monoclonal Antibodies and a Simple Myeloperoxidase-Immunosorbent Assay for Detecting Human Myeloperoxidase.

    PubMed

    Bian, Zhi-Ping; Li, Xiong-Zhi; Wu, Heng-Fang; Xu, Jin-Dan; Gu, Chun-Rong; Chen, Xiang-Jian; Yang, Di

    2016-04-01

    Myeloperoxidase (MPO), a leukocyte hemoprotein released from neutrophils, is thought to be a potential participant in plaque formation and plaque rupture. Therefore, MPO is regarded as an early marker predicting the risk for atherosclerosis, especially for coronary artery disease and acute coronary syndrome. We generated hybridoma clones 1E3 and 3E8 secreting monoclonal antibodies (mAbs) specific to human MPO. BALB/c mice were immunized with MPO protein purified from human neutrophils. Splenocytes from these mice were fused with the mouse myeloma cell line SP2/0. Based on isotyping of the mAbs, both clones 1E3 and 3E8 were referred to the IgG1 subclass. The specificities of 1E3 and 3E8 were assessed by enzyme-linked immunosorbent assay (ELISA), and only 3E8 was confirmed by western blot. We developed a simple MPO-immunosorbent assay (MPO-ISA) on microplate based on both the immune activity and peroxidase activity of MPO. The mAb secreted by clone 3E8 was chosen as coating antibody to capture the plasma MPO without interfering with the peroxidase activity of MPO. Then, tetramethylbenzidine substrate was added to the microwell directly, catalyzed by captured MPO, and a colored product was formed. The simple MPO-ISA test has a sensitivity of 3.68 ng/mL. The linear concentration of MPO-ISA for commercial MPO standard ranged to 250 ng/mL. The average recovery rate is 101.02%. The imprecision within-day was <10% at three different MPO levels. The imprecision between-day was <10% at low and middle MPO levels and varied to 14.61% at the high MPO level. We found that the established MPO-ISA can detect the plasma MPO from human and cavy, but not from mouse and rat. Compared with the commercial human MPO ELISA assay, the MPO-ISA can be used to detect the natural human MPO protein, but not recombinant MPO polypeptides. The generated mAbs and MPO-ISA test may be useful tools to assess risk for inflammation and cardiac events.

  4. Production of monoclonal antibody recognizing a subpopulation of human B lymphocytes producing B cell growth factor (BCGF)

    SciTech Connect

    Witzel, N.; Ambrus, J.L. Jr.; Jurgensen, C.H.; Mostowski, H.; Fauci, A.S.

    1986-03-05

    Several laboratories have recently reported production of B cell growth factors (BCGF) by a variety of human B cell lines. The authors have described production of BCGF by clones of B cell lymphoma lines and by normal Staphylococcus aureus Cowan I-activated B cells. To further evaluate whether BCGF production was the function of particular subpopulations of B cells, they immunized mice with the BCGF producing line Namalva and then developed a panel of hybridomas. Monoclonal antibodies were screened for binding to Namalva and the absence of binding to a non-BCGF producing B cell line. One monoclonal antibody, NN4, which met these criteria was also noted by fluorescence-activated cell sorter analysis to stain clones from a B cell lymphoma line producing BCGF but not clones from the same line which do not produce BCGF. The monoclonal antibody did not stain T cells or monocytes but stained 1-5% of normal human B lymphocytes from peripheral blood or tonsils. Binding of /sup 125/I-labeled NN4 to NN4/sup +/ B cells was not affected by the presence of BCGF. Therefore, NN4 recognizes a unique antigen present on B cell lines which produces BCGF; studies are in progress to determine the significance of this antigen on normal B cells.

  5. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4.

    PubMed

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi

    2008-10-01

    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  6. Triggering of monoclonal human lymphoma B cells with antibodies to IgM heavy chains: differences of response obtained with monoclonal as compared to polyclonal antibodies.

    PubMed Central

    Godal, T; Ruud, E; Heikkilä, R; Funderud, S; Michaelsen, T; Jefferis, R; Ling, N R; Hildrum, K

    1983-01-01

    A comparative study of human B lymphoma cells activation by monoclonal (murine hybridoma) antibodies to mu heavy chains (Ma-mu) as compared to polyclonal (rabbit) antibodies to mu heavy chains (Ra-mu) has been carried out. Early events related to calmodulin activation such as 86Rb influx and changes in cell volume at 4 h could be induced by Ma-mu. One antibody (AF6) approached Ra-mu with regard to the strength of response obtained. However, Ma-mus including AF6 were deficient in inducing DNA synthesis under conditions where this was achieved with Ra-mu. Studies in one lymphoma, where stimulation of re-expressed surface IgM could be studied, revealed that Ma-mu was deficient in stimulating re-expressed sIgM. These findings raise questions with regard to polyclonal antibody to surface Ig as a model for B cell triggering by antigen and suggest that antigen-induced B cell triggering may be more complex than indicated by previous studies with polyclonal antibody. PMID:6418424

  7. Immunodiagnosis of human cysticercosis (Taenia solium) with antigens purified by monoclonal antibodies.

    PubMed Central

    Nascimento, E; Tavares, C A; Lopes, J D

    1987-01-01

    Monoclonal antibodies were generated from mice immunized with scolex protein antigen of Cysticercus cellulosae. Three monoclonal antibodies specific for cysticercal antigens, which did not show any cross-reactivity with Taenia solium or Taenia saginata antigens, were selected. Each monoclonal antibody coupled to Sepharose could purify one antigen, which appeared as a single band on polyacrylamide gel electrophoresis. When antigens purified by monoclonal antibodies were used to detect antibody in serum samples taken from patients with cysticercosis, taeniasis, and other parasitic infections in an enzyme-linked immunosorbent assay, cross-reactivity was observed until a serum dilution of 1:128 was reached. Since serum samples from unexposed subjects showed positive reactions until a dilution of 1:64 was reached, we chose a discriminative dilution (1:128) above which no cross-reaction was observed. The percent positive serum samples from cysticercosis patients was 100% by the enzyme-linked immunosorbent assay with any of the antigens purified by monoclonal antibodies. Images PMID:3611310

  8. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1

    NASA Technical Reports Server (NTRS)

    He, Xiao M.; Rueker, Florian; Casale, Elena; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 deg. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  9. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras

    PubMed Central

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia

    2016-01-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  10. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

    PubMed

    Gibson, S J; Bond, N J; Milne, S; Lewis, A; Sheriff, A; Pettman, G; Pradhan, R; Higazi, D R; Hatton, D

    2017-03-28

    Monoclonal antibodies (mAbs) contain short N-terminal signal peptides on each individual polypeptide that comprises the mature antibody, targeting them for export from the cell in which they are produced. The signal peptide is cleaved from each heavy chain (Hc) and light chain (Lc) polypeptide after translocation to the ER and prior to secretion. This process is generally highly efficient, producing a high proportion of correctly cleaved Hc and Lc polypeptides. However, mis-cleavage of the signal peptide can occur, resulting in truncation or elongation at the N-terminus of the Hc or Lc. This is undesirable for antibody manufacturing as it can impact efficacy and can result in product heterogeneity. Here, we describe a truncated variant of the Lc that was detected during a routine developability assessment of the recombinant human IgG1 MEDI8490 in Chinese hamster ovary cells. We found that the truncation of the Lc was caused due to the use of the murine Hc signal peptide together with a lambda Lc containing an SYE amino acid motif at the N-terminus. This truncation was not caused by mis-processing of the mRNA encoding the Lc and was not dependent on expression platform (transient or stable), the scale of the fed-batch culture or clonal lineage. We further show that using alternative signal peptides or engineering the Lc SYE N-terminal motif prevented the truncation and that this strategy will improve Lc homogeneity of other SYE lambda Lc-containing mAbs. This article is protected by copyright. All rights reserved.

  11. Polymorphic expression of a human superficial bladder tumor antigen defined by mouse monoclonal antibodies.

    PubMed Central

    Fradet, Y; Islam, N; Boucher, L; Parent-Vaugeois, C; Tardif, M

    1987-01-01

    Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up. Images PMID:3313389

  12. In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody

    PubMed Central

    Kim, Won-Tae; Lee, Hyun Min; Kim, Min Kyu; Choi, Hong Seo; Ryu, Chun Jeih

    2016-01-01

    Background The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. Methods Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Results Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. Conclusion 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation. PMID:27871153

  13. Human pancreatic cancer fusion 2 (HPC2) 1-B3: a novel monoclonal antibody to screen for pancreatic ductal dysplasia.

    PubMed

    Morgan, Terry K; Hardiman, Karin; Corless, Christopher L; White, Sandra L; Bonnah, Robert; Van de Vrugt, Henry; Sheppard, Brett C; Grompe, Markus; Cosar, Ediz F; Streeter, Philip R

    2013-01-01

    BACKGROUND.: Pancreatic ductal adenocarcinoma is rarely detected early enough for patients to be cured. The objective of the authors was to develop a monoclonal antibody to distinguish adenocarcinoma and precancerous intraductal papillary mucinous neoplasia (IPMN) from benign epithelium. METHODS.: Mice were immunized with human pancreatic adenocarcinoma cells and monoclonal antibodies were screened against a panel of archived pancreatic tissue sections, including pancreatitis (23 cases), grade 1 IPMN (16 cases), grade 2 IPMN (9 cases), grade 3 IPMN (13 cases), and various grades of adenocarcinoma (17 cases). One monoclonal antibody, human pancreatic cancer fusion 2 (HPC2) 1-B3, which specifically immunostained adenocarcinoma and all grades of IPMN, was isolated. Subsequently, HPC2 1-B3 was evaluated in a retrospective series of 31 fine-needle aspiration (FNA) biopsies from clinically suspicious pancreatic lesions that had long-term clinical follow-up. RESULTS.: HPC2 1-B3 was negative in all 31 cases of chronic pancreatitis that were tested. In contrast, HPC2 1-B3 immunostained the cytoplasm and luminal surface of all 16 well- to moderately differentiated pancreatic ductal adenocarcinomas. It demonstrated only weak focal staining of poorly differentiated carcinomas. All high-grade IPMNs were found to be positive for HPC2 1-B3. The majority of low-grade to intermediate-grade IPMNs were positive (66% of cases). Immunostaining a separate series of pancreatic FNA cell blocks for HPC2 1-B3 demonstrated that the relative risk for detecting at least low-grade dysplasia (2.0 [95% confidence interval, 1.23-3.26]) was statistically significant (P = .002 by the Fisher exact test). CONCLUSIONS.: To reduce the mortality of pancreatic cancer, more effective early screening methods are necessary. The data from the current study indicate that a novel monoclonal antibody, HPC2 1-B3, may facilitate the diagnosis of early pancreatic dysplasia.

  14. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    SciTech Connect

    Duan, Hongying; Takagi, Akira; Kayano, Hidekazu; Koyama, Isamu; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  15. Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells.

    PubMed

    Pereira, Patrícia M R; Carvalho, José J; Silva, Sandrina; Cavaleiro, José A S; Schneider, Rudolf J; Fernandes, Rosa; Tomé, João P C

    2014-03-21

    The synthesis of a novel PS conjugated with bovine and human serum albumin (BSA and HSA) and a monoclonal antibody anti-CD104 is reported, as well as their biological potential against the human bladder cancer cell line UM-UC-3. No photodynamic effect was detected when the non-conjugated porphyrin was used. Yet, when it was coupled covalently with the mAb anti-CD104, BSA and HSA, the resulting photosensitizer conjugates demonstrated high efficacy in destroying the cancer cells, the mAb anti-CD104 efficacy overruling the albumins.

  16. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  17. Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and Generation of L2-Specific Human Chimeric Monoclonal Antibodies

    PubMed Central

    Wang, Joshua W.; Jagu, Subhashini; Wu, Wai-Hong; Viscidi, Raphael P.; Macgregor-Das, Anne; Fogel, Jessica M.; Kwak, Kihyuck; Daayana, Sai; Kitchener, Henry; Stern, Peter L.; Gravitt, Patti E.; Trimble, Cornelia L.

    2015-01-01

    Presently, the seroprevalence of human papillomavirus (HPV) minor capsid antigen L2-reactive antibody is not well understood, and no serologic standard exists for L2-specific neutralizing antibodies. Therefore, we screened a total of 1,078 serum samples for HPV16 L2 reactivity, and these were obtained from four prior clinical studies: a population-based (n = 880) surveillance study with a high-risk HPV DNA prevalence of 10.8%, a cohort study of women (n = 160) with high-grade cervical intraepithelial neoplasia (CIN), and two phase II trials in women with high-grade vulvar intraepithelial neoplasia (VIN) receiving imiquimod therapy combined with either photodynamic therapy (PDT) (n = 19) or vaccination with a fusion protein comprising HPV16 L2, E7, and E6 (TA-CIN) (n = 19). Sera were screened sequentially by HPV16 L2 enzyme-linked immunosorbent assay (ELISA) and then Western blot. Seven of the 1,078 serum samples tested had L2-specific antibodies, but none were detectably neutralizing for HPV16. To develop a standard, we substituted human IgG1 sequences into conserved regions of two rodent monoclonal antibodies (MAbs) specific for neutralizing epitopes at HPV16 L2 residues 17 to 36 and 58 to 64, creating JWW-1 and JWW-2, respectively. These chimeric MAbs retained neutralizing activity and together reacted with 33/34 clinically relevant HPV types tested. In conclusion, our inability to identify an HPV16 L2-specific neutralizing antibody response even in the sera of patients with active genital HPV disease suggests the subdominance of L2 protective epitopes and the value of the chimeric MAbs JWW-1 and JWW-2 as standards for immunoassays to measure L2-specific human antibodies. PMID:25972404

  18. Monoclonal antibody "gold rush".

    PubMed

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  19. Evaluation of monoclonal antibodies to human plasma low density lipoproteins. A requirement for lipids to maintain antigenic structure.

    PubMed

    Patton, J G; Alley, M C; Mao, S J

    1982-12-17

    Human plasma low density lipoproteins (LDL) are composed of approximately 25% apoproteins and 75% lipids (w/w). Immunochemical properties of LDL were studied using monoclonal antibodies. BALB/c mice were immunized with LDL and the spleen cells from these mice were then fused with a non-immunoglobulin secreting myeloma cell line (F0). The clones producing desirable antibodies were selected to study the antigenic properties of LDL by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay. First, it was found that the maximal binding of 125I-labeled LDL to polyvinyl chloride microtiter dishes was not temperature dependent. The binding affinity was high with a Ka value of approximately 1.9 X 10(10) M-1 while the monoclonal antibodies possessed an affinity to LDL of 5 X 10(8) M-1 which was 2 orders less than the affinity of LDL to the dishes. The former binding, once established, was irreversible as judged by a subsequent incubation with an excess of unlabeled LDL. The latter binding could be displaced by unlabeled LDL. Therefore, the ELISA technique offered a satisfactory approach to study the interaction between LDL and monoclonal antibodies. Removal of lipids from bound LDL by organic extraction resulted in a 50% loss of immunoreactivity, suggesting that the lipids of LDL are important in maintaining the antigenic structure of LDL. Since the apoprotein of LDL also constitutes approximately 40% of the mass (w/w) of very low density lipoproteins (VLDL), the immunoreactivity of VLDL assessed by LDL-monoclonal antibodies was also carried out. Removal of triglycerides from VLDL by lipoprotein lipase resulted in a substantial loss of immunoreactivity as determined by radioimmunoassay. These findings are consistent with the concept that lipids play a role in maintaining the integrity of the antigenic structure of LDL.

  20. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection.

    PubMed

    Bossart, Katharine N; Zhu, Zhongyu; Middleton, Deborah; Klippel, Jessica; Crameri, Gary; Bingham, John; McEachern, Jennifer A; Green, Diane; Hancock, Timothy J; Chan, Yee-Peng; Hickey, Andrew C; Dimitrov, Dimiter S; Wang, Lin-Fa; Broder, Christopher C

    2009-10-01

    Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.

  1. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces

    PubMed Central

    Couston, Ruairidh G.; Skoda, Maximilian W.; Uddin, Shahid; van der Walle, Christopher F.

    2013-01-01

    One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested (“mAb-1”) showed highest surface loading to silica at pH 7.4 (~12 mg/m2), with lower surface loading at pH 5.5 (~5.5 mg/m2, further from its pI of 8.99) and to hydrophobized silica (~2 mg/m2). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50–5000 mg/L, pH 5.5, and 50–2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO2 surface at near saturation with an end-on” orientation, while the outer mAb-1 layer was sparse and molecules had a “side-on” orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO2 surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding. PMID:23196810

  2. Monoclonal antibodies to human growth hormone induce an allosteric conformational change in the antigen.

    PubMed Central

    Mazza, M M; Retegui, L A

    1989-01-01

    We re-investigated the properties of a monoclonal antibody (mAb), 4D11, to human growth hormone (hGH) that showed a very weak affinity, recognizing hGH only when the hormone was solubilized on a solid surface. MAb4D11 did not significantly bind 125I-hGH. It was found that three mAb directed to different hGH epitopes (mAb 3C11, 10C1 and NA71) were able to induce the binding of the soluble antigen to mAb 4D11. The co-operative effect could be demonstrated by the formation of binary complexes (Ag:Ab, 1:2) detected by high-performance liquid chromatography (HPLC) and by the increase of radioactivity found when the synergistic mAb were added to 125I-hGH incubated with mAb 4D11 immobilized on polyvinyl microplates. Other possible explanations, such as the formation of cyclic complexes or the generation of a new epitope in the Fc fragment of the first antibody (Ab), were dismissed because the Fab fragment of one of the enhancing mAb (3C11) gave the same effect as the intact Ab. The data suggest that the hGH molecule undergoes a localized conformational change after binding to mAb 3C11, NA71 or 10C1 and that mAb 4D11 binds with high affinity to the modified region of the hormone. The formation or not of ternary complexes (Ag:Ab, 1:3) was used to localize the 4D11 epitope on the surface of the Ag. It is suggested that mAb 4D11 recognizes a conformational change produced in the region defined by the AE5/AC8 epitopes, which is close to the hGH antigenic domain only expressed when the protein is immobilized on plastic surfaces. PMID:2473953

  3. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation.

    PubMed

    Kettleborough, C A; Saldanha, J; Heath, V J; Morrison, C J; Bendig, M M

    1991-10-01

    A mouse monoclonal antibody (mAb 425) with therapeutic potential was 'humanized' in two ways. Firstly the mouse variable regions from mAb 425 were spliced onto human constant regions to create a chimeric 425 antibody. Secondly, the mouse complementarity-determining regions (CDRs) from mAb 425 were grafted into human variable regions, which were then joined to human constant regions, to create a reshaped human 425 antibody. Using a molecular model of the mouse mAb 425 variable regions, framework residues (FRs) that might be critical for antigen-binding were identified. To test the importance of these residues, nine versions of the reshaped human 425 heavy chain variable (VH) regions and two versions of the reshaped human 425 light chain variable (VL) regions were designed and constructed. The recombinant DNAs coding for the chimeric and reshaped human light and heavy chains were co-expressed transiently in COS cells. In antigen-binding assays and competition-binding assays, the reshaped human antibodies were compared with mouse 425 antibody and to chimeric 425 antibody. The different versions of 425-reshaped human antibody showed a wide range of avidities for antigen, indicating that substitutions at certain positions in the human FRs significantly influenced binding to antigen. Why certain individual FR residues influence antigen-binding is discussed. One version of reshaped human 425 antibody bound to antigen with an avidity approaching that of the mouse 425 antibody.

  4. Monoclonal Antibodies That Recognize Various Folding States of Pure Human Butyrylcholinesterase Can Immunopurify Butyrylcholinesterase from Human Plasma Stored at Elevated Temperatures

    PubMed Central

    2016-01-01

    Human plasma to be analyzed for exposure to cholinesterase inhibitors is stored at 4 °C or lower to prevent denaturation of human butyrylcholinesterase (HuBChE), the biomarker of exposure. Currently published protocols immunopurify HuBChE using antibodies that bind native HuBChE before analysis by mass spectrometry. It is anticipated that the plasma collected from human casualties may be stored nonideally at elevated temperatures of up to 45 °C for days or maybe weeks. At 45 °C, the plasma loses 50% of its HuBChE activity in 8 days and 95% in 40 days. Our goal was to identify a set of monoclonal antibodies that could be used to immunopurify HuBChE from plasma stored at 45 °C. The folding states of pure human HuBChE stored at 4 and 45 °C and boiled at 100 °C were visualized on nondenaturing gels stained with Coomassie blue. Fully active pure HuBChE tetramers had a single band, but pure HuBChE stored at 45 °C had four bands, representing native, partly unfolded, aggregated, and completely denatured, boiled tetramers. The previously described monoclonal B2 18-5 captured native, partly unfolded, and aggregated HuBChE tetramers, whereas a new monoclonal, C191 developed in our laboratory, was found to selectively capture completely denatured, boiled HuBChE. The highest quantity of HuBChE protein was extracted from 45 °C heat-denatured human plasma when HuBChE was immunopurified with a combination of monoclonals B2 18-5 and C191. Using a mixture of these two antibodies in future emergency response assays may increase the capability to confirm exposure to cholinesterase inhibitors. PMID:28058292

  5. Limited proteolysis of human leukocyte interferon-. cap alpha. 2 and localization of the monoclonal antibody-binding antigenic determinant

    SciTech Connect

    Kostrov, S.V.; Chernovskaya, T.V.; Khodova, O.M.; Borukhov, S.I.; Ryzhavskaya, A.S.; Izotova, L.S.; Strongin, A.Ya.

    1986-05-20

    Large peptide fragments of human leukocyte interferon-..cap alpha..2 (INF-..cap alpha..2) were produced by limited proteolysis with trypsin, pepsin, thermolysin, and Bacillus amyloliquefaciens serine proteinase, and the ability of the fragments to react with murine monoclonal antibodies NK2, directed toward INF-..cap alpha..2, was studied by the immunoblotting technique. The region of the sequence 110-149 is the most sensitive to proteinase attack and evidently is exposed on the surface of the INF-..cap alpha..2 molecule. The INF-..cap alpha..2 fragments 1-139, 1-147, and 1-149 react with antibodies, whereas the fragments 1-109 and 1-112 do not bind NK2 antibodies. A comparison of the primary structure of the families of human leukocyte and murine leukocyte INF in the region of the sequence 110-139 and an analysis of the ability of human INF differing in amino acid sequence to interact with NK2 antibodies suggested that the antigenic determinant that binds monoclonal antibodies NK2 is the sequence Glu/sub 114/-Asp/sub 115/-Ser/sub 116/-He/sub 117/ of the INF-..cap alpha..2 molecule.

  6. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    PubMed Central

    Ahlskog, J K J; Schliemann, C; Mårlind, J; Qureshi, U; Ammar, A; Pedley, R B; Neri, D

    2009-01-01

    Background: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models. Methods: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology. Results: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies. Conclusion: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. PMID:19623173

  7. Purification of human adult and foetal intestinal alkaline phosphatases by monoclonal antibody immunoaffinity chromatography.

    PubMed Central

    Vockley, J; Harris, H

    1984-01-01

    We have used the technique of monoclonal antibody immunoaffinity chromatography to purify adult and foetal intestinal alkaline phosphatases. Pure adult intestinal enzyme was obtained from a crude tissue extract with a single immunoaffinity chromatographic step in yields exceeding 95%. An additional ion-exchange chromatographic step was necessary for purification of the foetal enzyme, but yields still exceeded 70%. Experiments to optimize the efficiency of the monoclonal antibody immunoaffinity chromatography procedure suggest that the relative strength of binding of an antibody to its antigen is the most important factor to consider when constructing such columns. A column made from an antibody of too low an avidity will not retain the enzyme, while one of too high an avidity will make elution of enzyme in the active state difficult. A scheme is suggested for the application of this technique to a general approach to enzyme purification. Images Fig. 2. PMID:6365087

  8. Molecular cloning of the first human monoclonal antibodies neutralizing with high potency swine-origin influenza A pandemic virus (S-OIV).

    PubMed

    Burioni, Roberto; Canducci, Filippo; Mancini, Nicasio; Clementi, Nicola; Sassi, Monica; De Marco, Donata; Saita, Diego; Diotti, Roberta Antonia; Sautto, Giuseppe; Sampaolo, Michela; Clementi, Massimo

    2009-10-01

    The pandemic caused by the new H1N1 swine-origin influenza virus (S-OIV) strain is a worldwide health emergency and alternative therapeutic and prophylactic options are greatly needed. Two human monoclonal antibody Fab fragments (HMab) neutralizing the novel H1N1 influenza strain at very low concentrations were cloned from a patient who had a broad-range anti-H1N1 serum neutralizing activity. The two HMabs neutralized S-OIV with an IC50 of 2.8 and 4 microg/mL. The genes coding for the neutralizing HMabs could be used for generating full human monoclonal IgGs that can be safely administered with the potentially of representing a novel drug to be used in the prophylaxis and the treatment of this human infection. This is the first report of molecular cloning of human monoclonal antibodies against the new pandemic swine-origin influenza virus.

  9. Anti-(+)-methamphetamine monoclonal antibody antagonists designed to prevent the progression of human diseases of addiction.

    PubMed

    Gentry, W B; Rüedi-Bettschen, D; Owens, S M

    2010-09-01

    Anti-(+)-methamphetamine monoclonal antibodies (mAbs) have the potential to reduce the devastating behavioral and societal effects of the worldwide epidemic of (+)-methamphetamine (METH) addiction and transform the treatment paradigm for diseases of addiction. These novel, protein-based medications could play a vital role in helping patients to achieve sustainable abstinence from METH abuse by serving as an in vivo, around-the-clock sentry against a patient's vulnerability to relapse.

  10. Broad-range neutralizing anti-influenza A human monoclonal antibodies: new perspectives in therapy and prophylaxis.

    PubMed

    Clementi, Nicola; Criscuolo, Elena; Castelli, Matteo; Clementi, Massimo

    2012-10-01

    Broadly neutralizing monoclonal antibodies (mAbs) directed against different subtypes of influenza A viruses are novel tools for the potential development of effective anti-influenza prophylactic and therapeutic strategies. In both cases, the main candidates for passive transfer and new vaccine development are represented by protective mAbs directed against influenza hemagglutinin (HA). A large number of mAbs directed against influenza HA has been developed to date. However, even if they can be useful and contribute to develop new vaccinal strategies, only few of them can be a good candidate for human administration. In this review, we will describe the most relevant human mAb directed against influenza HA able to recognize highly divergent influenza isolates and possibly useful for human therapy and prophylaxis.

  11. Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein-Barr virus transformants producing specific antibody to a variety of antigens without prior deliberate immunization.

    PubMed Central

    Winger, L; Winger, C; Shastry, P; Russell, A; Longenecker, M

    1983-01-01

    This paper describes a simple protocol for the efficient generation of large numbers of human monoclonal antibody-producing cells. This system is based on initial limiting-dilution culture after Epstein-Barr virus exposure of highly enriched precursors selected from peripheral blood mononuclear cells. Precursors can be enriched by using rosetting or panning approaches. Antibodies to erythrocytes, a mouse mammary carcinoma, DNA, and sperm antigens, produced without any deliberate immunization, are described. Large-scale human monoclonal antibody production may be facilitated by a combination of this protocol with a human cellular fusion system. For efficient precursor analysis and short-term (2 months or more) monoclonal antibody production, however, the system described here may be sufficient. Images PMID:6308627

  12. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts.

    PubMed

    Kennel, S J; Falcioni, R; Wesley, J W

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains (mouse 450-9D, 450-30A1, and rat 439-9B) localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied. The percent of injected dose per g of MoAb in the tumor at 48 h did not vary

  13. Antigenic structure of human hepatitis A virus defined by analysis of escape mutants selected against murine monoclonal antibodies.

    PubMed Central

    Ping, L H; Lemon, S M

    1992-01-01

    We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1. PMID:1312628

  14. Stable, continuous large-scale production of human monoclonal HIV-1 antibody using a computer-controlled pilot plant.

    PubMed

    Unterluggauer, F; Doblhoff-Dier, O; Tauer, C; Jungbauer, A; Gaida, T; Reiter, M; Schmatz, C; Zach, N; Katinger, H

    1994-01-01

    A completely automated pilot plant used for fermentation has been employed with direct digital control (DDC) technology for monitoring and regulating growth of human cells. A human hybridoma cell line (3D6) producing anti-human immunodeficiency virus (HIV)-1 antibodies was used as a model for large-scale production (300-liter airlift fermentor) in continuous culture. Parameters controlled were pH, dissolved oxygen, temperature and the flow rate of four gases used in the process. A control strategy was implemented to achieve constant fluid velocity and mixing by maintaining the rate of gas flow at a constant level. Another advantage of this approach was that the total gas flow required for optimal fluid circulation was reduced from 1 volume gas/volume fermenter/hour (vvh) to 0.3 vvh. Use of a low flow rate eliminated the serious problems of foaming, which contributed significantly to cell destruction, shorter filter-life and other considerations. Dilution rate was optimized at laboratory scale for maximum productivity, which results in relatively low viability. At a dilution rate of 0.0076 h-1, a total cell density of 6-7 x 10(5) cells/ml with a viability of approximately 75% was maintained during long-term continuous cultivation. These growth conditions resulted in a product titer stabilized in the range of 35 micrograms IgG/ml. Batchwise purification was achieved with a recovery of more than 50% and a final purification of active monoclonal antibody representing about 99% product. Results from isoelectric focusing and Western blotting demonstrated batch-to-batch consistency of the purified human monoclonal antibody to HIV-1 during the continuous growth process.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures.

    PubMed

    Madeira, Luisa M; Szeto, Tim H; Henquet, Maurice; Raven, Nicole; Runions, John; Huddleston, Jon; Garrard, Ian; Drake, Pascal M W; Ma, Julian K-C

    2016-02-01

    Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.

  16. Characterization of two anti-dengue human monoclonal antibodies prepared from PBMCs of patients with dengue illness in Thailand.

    PubMed

    Li, Z-Y; Yamashita, A; Kawashita, N; Sasaki, T; Pan, Y; Ono, K-I; Ikuta, K; Li, Y-G

    2016-06-01

    The global spread of the four dengue virus (DENV) serotypes (dengue-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness. In this study, two monoclonal antibodies prepared by using peripheral blood mononuclear cells (PBMCs) from patients with dengue fever were characterized. Epitope mapping revealed that amino acid residues 254-278 in domain II of the viral envelope protein E were the target region of these antibodies. A database search revealed that certain sequences in this epitope region showed high conservation among the four serotypes of DENV. These two human monoclonal antibodies could neutralize DENV-2,-4 more effectively than DENV-1,-3. The amino acid sequences could not explain this difference in neutralizing activity. However, the 3D structure results showed that amino acid 274 could be the critical residue for the difference in neutralization. These results may provide basic information for the development of a dengue vaccine.

  17. Local distribution and concentration of intravenously injected sup 131 I-9. 2. 27 monoclonal antibody in human malignant melanoma

    SciTech Connect

    Del Vecchio, S.; Reynolds, J.C.; Carrasquillo, J.A.; Blasberg, R.G.; Neumann, R.D.; Lotze, M.T.; Bryant, G.J.; Farkas, R.J.; Larson, S.M. )

    1989-05-15

    Regional measurements of {sup 131}I-9.2.27 distribution in human melanoma tumors were obtained using quantitative autoradiography. Tumors were removed from patients 72-96 h after they had received an i.v. injection of 9.15 mCi (100 mg) of {sup 131}I-9.2.27. The autoradiographic images showed that the radioactivity reaching the tumor was heterogeneously distributed. Areas of relative high and low uptake were selected in each tumor. Regions of high activity contained from 51 to 1371 nCi/g, while areas with low uptake had radioactivity ranging from 12 to 487 nCi/g. The reliability of the autoradiographic measurements was demonstrated by the strong positive correlation with direct tissue sample counting (r = 0.994 P less than 0.001). Since comparative immunocytochemistry showed a homogeneous and diffuse staining of target antigen on viable tumor cells, variability of monoclonal antibody uptake within individual tumors was not primarily due to heterogeneity of antigen expression in these cases. However, antigen levels accounted for some of the variation from tumor to tumor. When immunoperoxidase staining was repeated on adjacent sections without the addition of 9.2.27, it confirmed the nonuniform distribution of monoclonal antibody found at autoradiography. Thus, quantitative autoradiography gives information about the distribution and the local concentration of radioactive antibody in tumors allowing calculation of the radiation dose delivered to small regions within tumors.

  18. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo.

    PubMed

    Dobson, Claire L; Devine, Paul W A; Phillips, Jonathan J; Higazi, Daniel R; Lloyd, Christopher; Popovic, Bojana; Arnold, Joanne; Buchanan, Andrew; Lewis, Arthur; Goodman, Joanne; van der Walle, Christopher F; Thornton, Peter; Vinall, Lisa; Lowne, David; Aagaard, Anna; Olsson, Lise-Lotte; Ridderstad Wollberg, Anna; Welsh, Fraser; Karamanos, Theodoros K; Pashley, Clare L; Iadanza, Matthew G; Ranson, Neil A; Ashcroft, Alison E; Kippen, Alistair D; Vaughan, Tristan J; Radford, Sheena E; Lowe, David C

    2016-12-20

    Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins.

  19. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo

    PubMed Central

    Dobson, Claire L.; Devine, Paul W. A.; Phillips, Jonathan J.; Higazi, Daniel R.; Lloyd, Christopher; Popovic, Bojana; Arnold, Joanne; Buchanan, Andrew; Lewis, Arthur; Goodman, Joanne; van der Walle, Christopher F.; Thornton, Peter; Vinall, Lisa; Lowne, David; Aagaard, Anna; Olsson, Lise-Lotte; Ridderstad Wollberg, Anna; Welsh, Fraser; Karamanos, Theodoros K.; Pashley, Clare L.; Iadanza, Matthew G.; Ranson, Neil A.; Ashcroft, Alison E.; Kippen, Alistair D.; Vaughan, Tristan J.; Radford, Sheena E.; Lowe, David C.

    2016-01-01

    Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins. PMID:27995962

  20. A Unique Report: Development of Super Anti-Human IgG Monoclone with Optical Density Over Than 3

    PubMed Central

    Aghebati Maleki, Leili; Baradaran, Behzad; Abdolalizadeh, Jalal; Ezzatifar, Fatemeh; Majidi, Jafar

    2013-01-01

    Purpose: Monoclonal antibodies and related conjugates are key reagents used in biomedical researches as well as, in treatment, purification and diagnosis of infectious and non- infectious diseases. Methods: Balb/c mice were immunized with purified human IgG. Spleen cells of the most immune mouse were fused with SP2/0 in the presence of Poly Ethylene Glycol (PEG). Supernatant of hybridoma cells was screened for detection of antibody by ELISA. Then, the sample was assessed for cross-reactivity with IgM & IgA by ELISA and confirmed by immunoblotting. The subclasses of the selected mAbs were determined. The best clone was injected intraperitoneally to some pristane-injected mice. Anti-IgG mAb was purified from the animals' ascitic fluid by Ion exchange chromatography and then, mAb was conjugated with HRP. Results: In the present study, over than 50 clones were obtained that 1 clone had optical density over than 3. We named this clone as supermonoclone which was selected for limiting dilution. The result of the immunoblotting, showed sharp band in IgG position and did not show any band in IgM&IgA position. Conclusion: Based on the findings of this study, the conjugated monoclonal antibody could have application in diagnosis of infectious diseases like Toxoplasmosis, Rubella and IgG class of other infectious and non- infectious diseases. PMID:24312857

  1. Identification, immunoaffinity purification and initial characterization of a novel 71 kD human decidua associated protein by use of specific monoclonal antibodies.

    PubMed

    Halperin, R; Fleminger, G; Ovadia, Y; Kraicer, P F; Hadas, E

    1990-01-01

    This study is part of an ongoing attempt to identify and characterize proteins associated with the human decidual tissue. A novel decidual-associated glycoprotein with an apparent molecular weight of 71 kD named hDP71 (human decidual-protein 71), has been identified and purified by immunoaffinity technique using monoclonal antibodies. The monoclonal antibodies recognizing the hDP71 were raised against a partly purified preparation of decidual associated proteins, which was obtained by immunoabsorption of serum proteins from crude decidual extract. Although the hDP71 was copurified with another decidual-associated glycoprotein, the previously described hDP200 (Halperin et al., 1989), evidence is presented showing that the monoclonal antibodies described above are specific for hDP71.

  2. Epitope analysis of Japanese cedar pollen allergen Cry j2 with a human IgM class monoclonal antibody 404-117.

    PubMed

    Chiba, Seiya; Yokoyama, Haruka; Kumazawa, Ayane; Shimmoto, Michie; Naganawa, Yasunori; Shinmoto, Hiroshi

    2017-01-01

    Japanese cedar pollen allergen Cry j2 is a causal allergen of seasonal pollinosis in Japan. To analyze B cell epitopes of Cry j2, we established two human-mouse hybridomas secreting IgM class human monoclonal antibodies to Cry j2. A pin-peptide enzyme-linked immunosorbent assay with synthesized icosa peptides showed that 404-117 monoclonal antibody bound to peptides #11-13 with cry j2 amino acid sequence of 101F-L140. Detailed analysis with octa peptides and alanine substituted peptides indicated that an amino acid sequence of 118FKVD121 was an essential for antibody binding. When K119 (Asn) was substituted with alanine, 404-117 monoclonal antibody did not bind to the alanine substituted peptide. We concluded that the 118FKVD121 sequence might have a very important role in early recognition by Cry j2-specific B cells, which could act as antigen presenting cells.

  3. Immunohistological analysis of human bone marrow trephine biopsies using monoclonal antibodies.

    PubMed

    Falini, B; Martelli, M F; Tarallo, F; Moir, D J; Cordell, J L; Gatter, K C; Loreti, G; Stein, H; Mason, D Y

    1984-03-01

    This paper describes the use of a recently developed immuno-alkaline phosphatase method (the 'APAAP' technique) for labelling frozen sections of undecalcified bone marrow biopsies with monoclonal antibodies, including reagents reactive with T cells and their subsets, B cells, glycophorin, HLA-DR antigen, common ALL antigen, epithelial cells and megakaryocytes. Use of an immuno-alkaline phosphatase technique avoids problems due to endogenous enzyme activity encountered when staining bone marrow by immunoperoxidase procedures. Immunohistological labelling of frozen trephine biopsies is of particular value when it is impossible to aspirate marrow particles and for identifying cells which do not readily enter suspension (e.g. dendritic reticulum cells or stromal cells). Details are given of cases in which immunohistological analysis was used for the phenotyping of acute leukaemias, for the differential diagnosis of intramedullary T and B cell proliferations, and for identifying bone marrow metastases.

  4. Efficacy and safety evaluation of claudin-4-targeted antitumor therapy using a human and mouse cross-reactive monoclonal antibody.

    PubMed

    Hashimoto, Yosuke; Kawahigashi, Yumi; Hata, Tomoyuki; Li, Xiangru; Watari, Akihiro; Tada, Minoru; Ishii-Watabe, Akiko; Okada, Yoshiaki; Doi, Takefumi; Fukasawa, Masayoshi; Kuniyasu, Hiroki; Yagi, Kiyohito; Kondoh, Masuo

    2016-10-01

    Claudin-4 (CLDN-4), a tight-junction protein, is overexpressed in various malignant tumors, including gastric, colorectal, pancreatic, and breast cancers. However, CLDN-4 is also expressed in normal tissues, including the liver, pancreas, kidney, and small intestine. Whether CLDN-4 is an effective and safe target for cancer therapy has been unclear owing to the lack of a binder with both CLDN-4 specificity and cross-reactivity to human and murine cells. In this study, we successfully generated a rat anti-CLDN-4 monoclonal antibody (5D12) that was specific to, and cross-reactive with, human and mouse CLDN-4. 5D12 recognized the second extracellular domain of human CLDN-4 in a conformation-dependent manner. A human-rat chimeric IgG1 of 5D12 (xi-5D12) activated the Fcγ IIIa receptor, indicating the activation of antibody-dependent cellular cytotoxicity in CLDN-4-expressing cells. Moreover, xi-5D12 significantly suppressed tumor growth in mice bearing human colorectal and gastric tumors without apparent adverse effects, such as weight loss or liver and kidney damage. These results suggest that CLDN-4 is a potent target for cancer therapy and that an anti-CLDN-4 antibody is a promising candidate anticancer agent.

  5. Characterization in vitro and in vivo of the pig analogue of human CD59 using new monoclonal antibodies.

    PubMed Central

    Hanna, S M; Williams, G T; Van Den Berg, C W; Morgan, B P

    1998-01-01

    CD59 is the sole characterized regulator of the complement membrane attack complex in humans. It is very widely and abundantly distributed, being present on all circulating cells, endothelia and epithelia, and in most tissues. CD59 analogues in rodents are distributed similarly. Interest in complement regulation in the pig has developed out of the current enthusiasm to exploit this species as a donor in xenotransplantation of organs to humans. We have recently isolated and cloned the pig analogue of human CD59. We here report the development and characterization of monoclonal antibodies against pig CD59. We have used these antibodies to develop efficient methods for the purification of pig CD59 to homogeneity from erythrocyte membranes and have obtained new information on the structure and function of the purified protein. The antibodies were found to function well in immunohistochemistry and have been used to perform a comprehensive survey of the expression and distribution of pig CD59 on cells and in organs of normal pigs. Pig CD59, like human CD59, is broadly expressed but there are some striking differences in tissue distribution, notably the apparent lack of pig CD59 on circulating platelets and on a subset of leucocytes in blood and lymphoid organs. The reported findings have important implications for the current approaches to avoiding complement-mediated hyperacute rejection in pig-to-human xenografts. Images Figure 1 Figure 4 Figure 5 PMID:9824510

  6. Monoclonal antibodies raised against 167-180 aa sequence of human carbonic anhydrase XII inhibit its enzymatic activity.

    PubMed

    Dekaminaviciute, Dovile; Kairys, Visvaldas; Zilnyte, Milda; Petrikaite, Vilma; Jogaite, Vaida; Matuliene, Jurgita; Gudleviciene, Zivile; Vullo, Daniela; Supuran, Claudiu T; Zvirbliene, Aurelija

    2014-12-01

    Abstract Human carbonic anhydrase XII (CA XII) is a single-pass transmembrane protein with an extracellular catalytic domain. This enzyme is being recognized as a potential biomarker for different tumours. The current study was aimed to generate monoclonal antibodies (MAbs) neutralizing the enzymatic activity of CA XII. Bioinformatics analysis of CA XII structure revealed surface-exposed sequences located in a proximity of its catalytic centre. Two MAbs against the selected antigenic peptide spanning 167-180 aa sequence of CA XII were generated. The MAbs were reactive with recombinant catalytic domain of CA XII expressed either in E. coli or mammalian cells. Inhibitory activity of the MAbs was demonstrated by a stopped flow CO2 hydration assay. The study provides new data on the surface-exposed linear CA XII epitope that may serve as a target for inhibitory antibodies with a potential immunotherapeutic application.

  7. Control of pro-inflammatory cytokine release from human monocytes with the use of an interleukin-10 monoclonal antibody.

    PubMed

    Patel, Hardik; Davidson, Dennis

    2014-01-01

    The monocytes (MONOs) can be considered as "double-edge swords"; they have both important pro-inflammatory and anti-inflammatory functions manifested in part by cytokine production and release. Although MONOs are circulating cells, they are the major precursors of a variety of tissue-specific immune cells such as the alveolar macrophage, dendritic cells, microglial cells, and Kupffer cells. Unlike the polymorphonuclear leukocyte, which produces no or very little interleukin-10 (IL-10), the monocyte can produce this potent anti-inflammatory cytokine to control inflammation. IL-10, on an equimolar basis, is a more potent inhibitor of pro-inflammatory cytokines produced by monocytes than many anti-inflammatory glucocorticoids which are used clinically. This chapter describes how to isolate monocytes from human blood and the use of IL-10 monoclonal antibody to determine the effect and timing of endogenous IL-10 release on the production and release of pro-inflammatory cytokines.

  8. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma.

    PubMed

    Palumbo, Antonio; Sonneveld, Pieter

    2015-08-01

    Although multiple myeloma has historically been treated with chemotherapy, prolonged survival has only been possible since the introduction of thalidomide, lenalidomide and bortezomib. However, multiple myeloma remains largely incurable, and new treatments are needed to improve long-term outcome. Elotuzumab is a humanized IgG1 monoclonal antibody that targets Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7) to activate NK cells, enabling selective killing of myeloma cells with minimal effects on normal tissue. The combination of elotuzumab with antimyeloma therapies that stimulate host immunity may be an attractive treatment option for patients with newly diagnosed or relapsed/refractory multiple myeloma. Here, we review the role of SLAMF7 in the pathogenesis of multiple myeloma and the preclinical and clinical development of elotuzumab.

  9. Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce β-chemokines

    PubMed Central

    Liao, Hua-Xin; Alam, S. Munir; Scearce, Richard M.; Plonk, M. Kelly; Kozink, Daniel M.; Drinker, Mark S.; Zhang, Ruijun; Xia, Shi-Mao; Sutherland, Laura L.; Tomaras, Georgia D.; Giles, Ian P.; Kappes, John C.; Ochsenbauer-Jambor, Christina; Edmonds, Tara G.; Soares, Melina; Barbero, Gustavo; Forthal, Donald N.; Landucci, Gary; Chang, Connie; King, Steven W.; Kavlie, Anita; Denny, Thomas N.; Hwang, Kwan-Ki; Chen, Pojen P.; Thorpe, Philip E.; Montefiori, David C.

    2010-01-01

    Traditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to ∼10 µg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1α and MIP-1β. The release of these β-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes. PMID:20368576

  10. A human monoclonal IgG1 potently neutralizing the pro-inflammatory cytokine GM-CSF.

    PubMed

    Krinner, Eva-Maria; Raum, Tobias; Petsch, Silke; Bruckmaier, Sandra; Schuster, Ioana; Petersen, Laetitia; Cierpka, Ronny; Abebe, Derege; Mølhøj, Michael; Wolf, Andreas; Sørensen, Poul; Locher, Mathias; Baeuerle, Patrick A; Hepp, Julia

    2007-02-01

    The pro-inflammatory cytokine GM-CSF is aberrantly produced in many autoimmune and chronic inflammatory human diseases. GM-CSF neutralization by antibodies has been shown to have a profound therapeutic effect in animal models of rheumatoid arthritis, inflammatory lung diseases, psoriasis and multiple sclerosis. Moreover, the absence of GM-CSF in null mutant mice ameliorates or prevents certain of these diseases. Here we describe the biophysical and biological properties of a human anti-GM-CSF IgG1 antibody designated MT203, which was derived by phage display guided selection. MT203 bound with picomolar affinity to an epitope on human and macaque GM-CSF involved in high-affinity receptor interaction. As a consequence, the antibody potently prevented both GM-CSF-induced proliferation of TF-1 cells with a sub-nanomolar IC50 value and the production of the chemokine IL-8 by U937 cells. MT203 neutralized equally well recombinant (r) human (h) GM-CSF from Escherichia coli and yeast, and also normally glycosylated GM-CSF secreted by human lung epithelial cells in response to IL-1beta stimulation. Furthermore, MT203 significantly reduced both survival and activation of peripheral human eosinophils as may be required for effective treatment of inflammatory lung diseases. The antibody did not show a detectable loss of neutralizing activity after 5 days in human serum at 37 degrees C. Based on its favorable properties, MT203 has been selected for development as a novel anti-inflammatory human monoclonal antibody with therapeutic potential in a multitude of human autoimmune and inflammatory diseases.

  11. Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts.

    PubMed

    Yang, F E; Brown, R S; Koral, K F; Clavo, A C; Jackson, G A; Wahl, R L

    1992-01-01

    We studied the effect of monoclonal antibody protein dose on the uniformity of radioiodinated antibody distribution within tumor masses using quantitative autoradiography. Groups (n = 11-13/group) of athymic nude mice with subcutaneous HTB77 human ovarian carcinoma xenografts were injected intraperitoneally with an 125I-labeled anticarcinoma-associated antigen murine monoclonal antibody, 5G6.4 using a high or a low protein dose (500 micrograms or 5 micrograms). At 6 days post-injection the macroscopic and microscopic intratumoral biodistribution of radiolabeled antibody was determined. The degree of heterogeneity of the labeled antibody distribution within each tumor was quantified and expressed as the coefficient of variation (CV) of the activity levels in serial histological sections. Tumors from mice given the 500-micrograms protein doses had substantially lower CV values, 0.327 +/- 0.027, than did tumors from animals given 5-micrograms protein doses, 0.458 +/- 0.041, (P = 0.0078), indicating that the higher protein dose resulted in more homogeneous distribution of radioactivity in tumors than did the lower dose. While the percentage of the injected dose reaching the tumor was comparable between groups, injecting the higher dose of protein resulted in significantly lower tumor to non-tumor uptake ratios than those obtained for the lower protein dose. These data indicate, in this system, that to achieve more uniform intratumoral antibody (and radiation for radioimmunotherapy) delivery, a relatively high protein dose must be administered. However, to obtain this increased uniformity, a substantial drop in tumor/background uptake ratios was seen. Quantitative autoradiographic evaluation of human tumor xenografts is a useful method to assess the intratumoral distribution of antibodies.

  12. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults.

    PubMed

    Ledgerwood, J E; Coates, E E; Yamshchikov, G; Saunders, J G; Holman, L; Enama, M E; DeZure, A; Lynch, R M; Gordon, I; Plummer, S; Hendel, C S; Pegu, A; Conan-Cibotti, M; Sitar, S; Bailer, R T; Narpala, S; McDermott, A; Louder, M; O'Dell, S; Mohan, S; Pandey, J P; Schwartz, R M; Hu, Z; Koup, R A; Capparelli, E; Mascola, J R; Graham, B S

    2015-12-01

    VRC-HIVMAB060-00-AB (VRC01) is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase I dose-escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5-40 mg/kg i.v. dose range (n = 18), the clearance was 0.016 l/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half-life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies.

  13. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells.

    PubMed

    Belleudi, Francesca; Marra, Emanuele; Mazzetta, Francesca; Fattore, Luigi; Giovagnoli, Maria Rosaria; Mancini, Rita; Aurisicchio, Luigi; Torrisi, Maria Rosaria; Ciliberto, Gennaro

    2012-04-01

    Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.

  14. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247

    PubMed Central

    Kirby, Karen A.; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G.; Chiang, Leslie A.; Pan, Yun; Moran, Jennifer L.; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P.; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G.

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly312-Pro313-Gly314-Arg315 arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg315 of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg315 of the V3 loop is based on a network of interactions that involve TyrL32, TyrL92, and AsnL27d that directly interact with Arg315, thus elucidating the molecular interactions of KD-247 with its V3 loop target.—Kirby, K. A., Ong, Y. T., Hachiya, A., Laughlin, T. G., Chiang, L. A., Pan, Y., Moran, J. L., Marchand, B., Singh, K., Gallazzi, F., Quinn, T. P., Yoshimura, K., Murakami, T., Matsushita, S., Sarafianos, S. G. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247. PMID:25351987

  15. Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    PubMed Central

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L.; Fusco, Deborah L.; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z.; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S.; Bishop-Lilly, Kimberly A.; Broder, Christopher C.; Nikolov, Dimitar B.

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines. PMID:24130486

  16. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody

    PubMed Central

    Rossi, Edmund A.; Stein, Rhona; Cardillo, Thomas M.; Czuczman, Myron S.; Hernandez-Ilizaliturri, Francisco J.; Hansen, Hans J.; Chang, Chien-Hsing

    2009-01-01

    Veltuzumab is a humanized anti-CD20 monoclonal antibody with complementarity-determining regions (CDRs) identical to rituximab, except for one residue at the 101st position (Kabat numbering) in CDR3 of the variable heavy chain (VH), having aspartic acid (Asp) instead of asparagine (Asn), with framework regions of epratuzumab, a humanized anti-CD22 antibody. When compared with rituximab, veltuzumab has significantly reduced off-rates in 3 human lymphoma cell lines tested, aswell as increased complement-dependent cytotoxicity in 1 of 3 cell lines, but no other in vitro differences. Mutation studies confirmed that the differentiation of the off-rate between veltuzumab and rituximab is related to the single amino acid change in CDR3-VH. Studies of intraperitoneal and subcutaneous doses in mouse models of human lymphoma and in normal cynomolgus monkeys disclosed that low doses of veltuzumab control tumor growth or deplete circulating or sessile B cells. Low- and high-dose veltuzumab were significantly more effective in vivo than rituximab in 3 lymphoma models. These findings are consistent with activity in patients with non-Hodgkin lymphoma given low intravenous or subcutaneous doses of veltuzumab. Thus, changing Asn101 to Asp101 in CDR3-VH of rituximab is responsible for veltuzumab's lower off-rate and apparent improved potency in preclinical models that could translate into advantages in patients. PMID:18941114

  17. Chimeric human/murine monoclonal IgM antibodies to HIV-1 Nef antigen expressed on chronically infected cells.

    PubMed

    Kawai, Masahiro; He, Lianying; Kawamura, Takeshi; Omoto, Shinya; Fujii, Yoichi R; Okada, Noriko

    2003-01-01

    Human IgM antibody (Ab) to gangliosides induced cytolysis of HIV-1-infected cells by homologous human complement. We expected that any human IgM Ab reactive with HIV-1 infected cells could cause complement-mediated cytolysis. The trans-chromosome mouse (TC mouse) contains human chromosomes harboring genes responsible for immunoglobulin production. Spleen cells from TC mice immunized with recombinant Nef were fused with mouse myeloma cells to generate hybridomas, and we selected those that produced human mu-chain-positive Abs reactive with Nef fixed on an ELISA plate. However, the L-chain of the monoclonal Abs (mAbs) were murine lambda in type and were chimeric, and we could not succeed in obtaining mAb with human mu- and human kappa-chains. The chimeric mAbs reacted with the HIV-1 infected cells as seen with flow cytometric analysis, and the surface expression of Nef was also detectable on chronically infected OM10.1 cells which had no detectable gp120. However, although the reaction of the chimeric IgM mAb with HIV-1-infected MOLT4 cells induced C3 deposition on cell surfaces on incubation with fresh human serum, the cells remained unlysed, as determined by 51Cr release assay. The amount of Nef antigen on the cells might not have been high enough to overcome the function of HRF20 (CD59) that restricts formation of membrane attack complexes of homologous complement. However, combination of anti-Nef IgM mAb with other IgM mAbs reactive with the surface of HIV-1-infected cells may induce a synergistic effect in complement mediated cytolysis.

  18. Monoclonal antibodies against bacteria.

    PubMed

    Macario, A J; Conway de Macario, E

    1988-01-01

    Highlights are presented of most recent work in which monoclonal antibodies have been instrumental in the study of bacteria and their products. Topics summarized pertain to human and veterinary medicines, dentistry, phytopathology, ichthyology, and bacterial ecophysiology, differentiation, evolution and methanogenic biotechnology.

  19. [Evolution of monoclonal antibodies in cancer treatment].

    PubMed

    Kubczak, Małgorzata; Rogalińska, Małgorzata

    2016-01-01

    Since late 90s of last century the new age of directed therapy began using mainly biological constructs produced in rodents called monoclonal antibodies. The side effects of monoclonal antibodies were a challenge for pharmaceutical companies to improve the biological properties of these biological drugs. The humanization of monoclonal constructs was an idea to improve monoclonal antibodies next generation activity cancer cell reduction in humans. Moreover for some other patients sensitive for monoclonal antibodies therapy could also potentially induce immunological differences that might imply on human health. The new idea related to monoclonal antibodies was to design a small molecule constructs of nanoantibodies with ability to enter into cells. Such small molecules could find their targets inside human cells, even in nuclei leading to differences in cancer cells expression. The existing knowledge on monoclonal antibodies as well as directed activity of nanoantibodies could improve anticancer treatment efficancy of diseases.

  20. Anti-tax interacting protein-1 (TIP-1) monoclonal antibody targets human cancers.

    PubMed

    Yan, Heping; Kapoor, Vaishali; Nguyen, Kim; Akers, Walter J; Li, Hua; Scott, Jalen; Laforest, Richard; Rogers, Buck; Thotala, Dinesh; Hallahan, Dennis

    2016-07-12

    Radiation-inducible neo-antigens are proteins expressed on cancer cell surface after exposure to ionizing radiation (IR). These neo-antigens provide opportunities to specifically target cancers while sparing normal tissues. Tax interacting protein-1 (TIP-1) is induced by irradiation and is translocated to the surface of cancer cells. We have developed a monoclonal antibody, 2C6F3, against TIP-1.Epitope mapping revealed that 2C6F3 binds to the QPVTAVVQRV epitope of the TIP-1 protein. 2C6F3 binds to the surface of lung cancer (A549, LLC) and glioma (D54, GL261) cell lines. 2C6F3 binds specifically to TIP-1 and ELISA analysis showed that unconjugated 2C6F3 efficiently blocked binding of radiolabeled 2C6F3 to purified TIP-1 protein. To study in vivo tumor binding, we injected near infrared (NIR) fluorochrome-conjugated 2C6F3 via tail vein in mice bearing subcutaneous LLC and GL261 heterotopic tumors. The NIR images indicated that 2C6F3 bound specifically to irradiated LLC and GL261 tumors, with little or no binding in un-irradiated tumors.We also determined the specificity of 2C6F3 to bind tumors in vivo using SPECT/CT imaging. 2C6F3 was conjugated with diethylene triamine penta acetic acid (DTPA) chelator and radiolabeled with 111Indium (111In). SPECT/CT imaging revealed that 111In-2C6F3 bound more to the irradiated LLC tumors compared to un-irradiated tumors. Furthermore, injection of DTPA-2C6F3 labeled with the therapeutic radioisotope, 90Y, (90Y-DTPA-2C6F3) significantly delayed LLC tumor growth. 2C6F3 mediated antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP) in vitro.In conclusion, the monoclonal antibody 2C6F3 binds specifically to TIP-1 on cancer and radio-immunoconjugated 2C6F3 improves tumor control.

  1. Anti-tax interacting protein-1 (TIP-1) monoclonal antibody targets human cancers

    PubMed Central

    Yan, Heping; Kapoor, Vaishali; Nguyen, Kim; Akers, Walter J.; Li, Hua; Scott, Jalen; Laforest, Richard; Rogers, Buck; Thotala, Dinesh; Hallahan, Dennis

    2016-01-01

    Radiation-inducible neo-antigens are proteins expressed on cancer cell surface after exposure to ionizing radiation (IR). These neo-antigens provide opportunities to specifically target cancers while sparing normal tissues. Tax interacting protein-1 (TIP-1) is induced by irradiation and is translocated to the surface of cancer cells. We have developed a monoclonal antibody, 2C6F3, against TIP-1. Epitope mapping revealed that 2C6F3 binds to the QPVTAVVQRV epitope of the TIP-1 protein. 2C6F3 binds to the surface of lung cancer (A549, LLC) and glioma (D54, GL261) cell lines. 2C6F3 binds specifically to TIP-1 and ELISA analysis showed that unconjugated 2C6F3 efficiently blocked binding of radiolabeled 2C6F3 to purified TIP-1 protein. To study in vivo tumor binding, we injected near infrared (NIR) fluorochrome-conjugated 2C6F3 via tail vein in mice bearing subcutaneous LLC and GL261 heterotopic tumors. The NIR images indicated that 2C6F3 bound specifically to irradiated LLC and GL261 tumors, with little or no binding in un-irradiated tumors. We also determined the specificity of 2C6F3 to bind tumors in vivo using SPECT/CT imaging. 2C6F3 was conjugated with diethylene triamine penta acetic acid (DTPA) chelator and radiolabeled with 111Indium (111In). SPECT/CT imaging revealed that 111In-2C6F3 bound more to the irradiated LLC tumors compared to un-irradiated tumors. Furthermore, injection of DTPA-2C6F3 labeled with the therapeutic radioisotope, 90Y, (90Y-DTPA-2C6F3) significantly delayed LLC tumor growth. 2C6F3 mediated antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP) in vitro. In conclusion, the monoclonal antibody 2C6F3 binds specifically to TIP-1 on cancer and radio-immunoconjugated 2C6F3 improves tumor control. PMID:27270318

  2. The monoclonal antibody GZS-1 detects a maturation-associated antigen of human spermatozoa that is also present on the surface of human mononuclear blood cells.

    PubMed

    Hutter, H; Hammer, A; Blaschitz, A; Hartmann, M; Mahnert, W; Sedlmayr, P; Primus, G; Rosenkranz, C; Gebru, G; Henkel, R; Dohr, G

    1996-05-01

    A monoclonal antibody (GZS-1) has been generated by fusion of mouse myeloma cells with spleen cells from BALB/c mice immunised with human sperm cells. The antibody was determined to be an IgG1. The corresponding antigen is present on the whole surface of ejaculated human spermatozoa. It is not detectable on spermatozoa of other mammalian species (rabbit, cat, dog, sheep, boar, bull, horse). In human male genital organs, immunostaining with GZS-1 is observed on sperm cells in the epididymis and the ductus deferens together with the lining epithelium of those organs. No reactivity of sperm cells or germ cell precursors in the testis has been detected. Functional tests using the antibody show a strong inhibitory effect of human sperm in the hamster egg penetration assay. Furthermore, the GZS-1 antigen is detectable on the surface of human lymphocytes and monocytes by immunogold electron microscopy and FACS analysis. By Western blotting of human sperm and seminal plasma performed under reducing conditions immunostaining was detected at 21-25, 31, 51-54, and 62 kDa. The reaction with human lymphocytes shows one major band at 62 kDa and additional bands at 31 and 54 kDa. The results suggest that the monoclonal antibody GZS-1 may recognise an antigen which is secreted from the epithelial cells of the epididymis and binds to ejaculated spermatozoa as a sperm coating antigen. This component may be involved in the capacitation of the sperm and the acrosome reaction. Molecules that are expressed both on sperm and on immunocompetent cells may be relevant for the regulation of immunological processes or for the development of the related immunological tolerance of sperm in the female reproductive tract.

  3. In Vitro and In Vivo Pharmacology and Pharmacokinetics of a Human Engineered™ Monoclonal Antibody to Epithelial Cell Adhesion Molecule

    PubMed Central

    Ammons, W Steve; Bauer, Robert J; Horwitz, Arnold H; Chen, Zhi J; Bautista, Eddie; Ruan, Harry H; Abramova, Marina; Scott, Kristen R; Dedrick, Russell L

    2003-01-01

    Abstract ING-1(heMAb), a Human Engineered™ monoclonal antibody to epithelial cell adhesion molecule (Ep-CAM), was evaluated for its in vitro and in vivo activity. The dissociation constant of ING-1(heMAb) for binding to Ep-CAM on HT-29 human colon tumor cells was 2 to 5 nM, similar to chimeric ING-1. In antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity assays, ING-1(heMAb) caused a concentration -dependent lysis of BT-20 breast, MCF-7 breast, HT-29 colon, and CACO-2 colon tumor cells, with maximum cytolysis at approximately 1 µg/ml. After an intravenous injection in rats, plasma ING-1(heMAb) levels declined with an alpha half-life of 8 to 11 hours, and a beta half-life of 20 days, typical of an IgG in a species without the target for ING-1. In nude mice with human HT-29 colon tumors, plasma ING-1(heMAb) levels declined more rapidly than in non-tumor-bearing mice, suggesting an enhanced clearance via the tumor-associated human Ep-CAM. In nude mice, intravenous treatments with ING-1(heMAb) twice a week for 3 weeks significantly suppressed the growth of human HT-29 colon and PC-3 prostate tumors in a dose-dependent manner, with 1.0 mg/kg providing the greatest benefit. These results indicate that Human Engineered™ ING-1(heMAb) is a high-affinity antibody with potent in vitro activity that targets and suppresses the growth of human tumors in vivo. PMID:12659687

  4. [Towards an industrial control of the cloning of lymphocytes B human for the manufacturing of monoclonal antibodies stemming from the human repertoire].

    PubMed

    Guillot-Chene, P; Lebecque, S; Rigal, D

    2009-05-01

    Monoclonal antibodies (mAbs) are efficient drugs for treating infectious, inflammatory and cancer diseases. Antibodies secreted by human lymphocytes that have been isolated from either peripheral blood or tissues present the definite interest of being part of the physiological or disease-related response to antigens present in the human body. However, attempts to generate hybridomas with human B cells have been largely unsuccessful, and cloning of human B cells has been achieved only via their inefficient immortalization with Epstein Barr Virus (EBV). However, recent progress in our understanding of the molecular mechanisms of polyclonal B cell activation has dramatically increased the capacity to clone human B cells. In particular, activation of human naïve and memory B cells through CD40 or memory B cells only through TLR9 was shown to greatly facilitate their immortalization by EBV. Industrial development based on these observations will soon provide large collections of high affinity human mAbs of every isotype directly selected by the human immune system directed to recognize epitopes relevant for individual patients. Moreover, after CD40 activation, these mAbs will cover the full human repertoire, including the natural auto-immune repertoire. Full characterization of the biological activity of these mAbs will in turn bring useful information for selecting vaccine epitopes. This breakthrough in human B cell cloning opens the way into new areas for therapeutic use of mAbs.

  5. Characterization of binding of four monoclonal antibodies to the human ovarian adenocarcinoma cell line HEY.

    PubMed

    Sheldon, K; Marks, A; Baumal, R

    1987-05-01

    Four mouse monoclonal antibodies (mAb) (10B, IgG1; 8C, IgG2a; M2A, IgG2a; M2D, IgG2b) were characterized with respect to their binding to the ovarian adenocarcinoma cell line HEY, using displacement assays and Scatchard plot analyses. The four mAb reacted with different antigens on the surface of HEY cells, with affinity constants ranging from 1 X 10(9) to 3 X 10(9) M-1. The number of binding sites per cell for each antibody was approximately 2 X 10(4). mAb 8C and M2D remained associated with the cell surface following binding to their respective antigens, while mAb 10B was rapidly internalized, with 50% of the bound mAb being lost from the cell surface during 4 h of incubation at 37 degrees C. These different binding characteristics of the mAb may influence their ability to target radioactivity and cytotoxic drugs to HEY cells.

  6. First-in-man Study With Inclacumab, a Human Monoclonal Antibody Against P-selectin

    PubMed Central

    Abt, Markus; Ciorciaro, Cornelia; Kling, Dorothee; Jamois, Candice; Schick, Eginhard; Solier, Corinne; Benghozi, Renée; Gaudreault, Jacques

    2015-01-01

    Abstract: Inclacumab, a novel monoclonal antibody against P-selectin in development for the treatment and prevention of atherosclerotic cardiovascular diseases, was administered in an ascending single-dose study as intravenous infusion to evaluate safety, pharmacokinetics, and pharmacodynamics. Fifty-six healthy subjects were enrolled in this randomized, double-blind placebo-controlled study. Each dose level (0.03–20 mg/kg) was investigated in separate groups of 8 subjects (6 on inclacumab, 2 on placebo). Platelet–leukocyte aggregates, free/total soluble P-selectin concentration ratio, drug concentrations, bleeding time, platelet aggregation, antibody formation, and routine laboratory parameters were measured frequently until 32 weeks. Pharmacokinetic profiles were indicative of target-mediated drug disposition. Platelet–leukocyte aggregate inhibition and soluble P-selectin occupancy showed dose dependency and were strongly correlated to inclacumab plasma concentrations, with IC50 of 740 and 4600 ng/mL, respectively. Inclacumab was well tolerated by the majority of subjects and did neither affect bleeding time nor platelet aggregation. These findings allowed the investigation of the potential beneficial therapeutic use of inclacumab in patient study. PMID:25714598

  7. First-in-Man Study With Inclacumab, a Human Monoclonal Antibody Against P-selectin.

    PubMed

    Schmitt, Christophe; Abt, Markus; Ciorciaro, Cornelia; Kling, Dorothee; Jamois, Candice; Schick, Eginhard; Solier, Corinne; Benghozi, Renée; Gaudreault, Jacques

    2015-06-01

    Inclacumab, a novel monoclonal antibody against P-selectin in development for the treatment and prevention of atherosclerotic cardiovascular diseases, was administered in an ascending single-dose study as intravenous infusion to evaluate safety, pharmacokinetics, and pharmacodynamics. Fifty-six healthy subjects were enrolled in this randomized, double-blind placebo-controlled study. Each dose level (0.03-20 mg/kg) was investigated in separate groups of 8 subjects (6 on inclacumab, 2 on placebo). Platelet-leukocyte aggregates, free/total soluble P-selectin concentration ratio, drug concentrations, bleeding time, platelet aggregation, antibody formation, and routine laboratory parameters were measured frequently until 32 weeks. Pharmacokinetic profiles were indicative of target-mediated drug disposition. Platelet-leukocyte aggregate inhibition and soluble P-selectin occupancy showed dose dependency and were strongly correlated to inclacumab plasma concentrations, with IC50 of 740 and 4600 ng/mL, respectively. Inclacumab was well tolerated by the majority of subjects and did neither affect bleeding time nor platelet aggregation. These findings allowed the investigation of the potential beneficial therapeutic use of inclacumab in patient study.

  8. Lymphoscintigraphy of human colorectal carcinoma metastases in athymic mice by use of radioiodinated B72. 3 monoclonal antibody

    SciTech Connect

    Shah, S.A.; Gallagher, B.M.; Sands, H.

    1987-06-01

    The potential of radioiodinated monoclonal antibody B72.3 for lymphoscintigraphy was evaluated, using suitable animal models of a human colorectal carcinoma. LS174T xenografts were grown at various sites in beta-estradiol-pretreated athymic mice, and the development of metastases in different organs was assessed histologically. After iv inoculation of the mice, 66% of the animals developed ''metastases'' to the axillary lymph nodes. Of these mice, 100% also developed multiple tumors on their backs and 79% had lung micrometastases. Livers, kidneys, and spleens showed no evidence of tumor growth. In 33% of the mice in which primary LS174T tumors had been removed from the hindfoot pad, metastases to the popliteal lymph nodes were observed 3 1/2 weeks after tumor implantation. BALB/c (nu/nu) female mice bearing axillary and popliteal lymph node metastases were used to test the potential of radiolabeled B72.3 antibody (an IgG1) as a lymphoscintigraphic agent. A monoclonal antibody against horseradish peroxidase (also an IgG1), which did not bind LS174T tumor cells in vitro, served as a control. Both normal and tumor-bearing axillary and popliteal lymph nodes imaged up to 6 hours after the sc injection of 20-40 mu Ci of /sup 125/I-labeled B72.3 into either the forefoot or hindfoot pads. The localization index (L.I.) (specific/nonspecific antibody in tumor divided by specific/nonspecific antibody in blood) for LS174T tumors in lymph nodes was approximately 1 during the first 6 hours after antibody injection, thus indicating no specific antibody accumulation.

  9. Human anti-murine antibody responses in ovarian cancer patients undergoing radioimmunotherapy with the murine monoclonal antibody OC-125

    SciTech Connect

    Muto, M.G.; Finkler, N.J.; Kassis, A.I.; Lepisto, E.M.; Knapp, R.C. )

    1990-08-01

    Human anti-murine antibody (HAMA) responses were monitored in 23 patients with recurrent or persistent epithelial ovarian carcinoma undergoing single-dose intraperitoneal radioimmunotherapy (RIT) with the murine monoclonal antibody OC-125. Sera of patients receiving escalating doses of OC-125 F(ab')2 (10-70 mg) radiolabeled with 18 to 141 mCi of iodine-131 were assayed for HAMA by a protein A-based radioimmunoassay. Overall, 70% of patients (16/23) developed HAMA within 10 to 46 days (median = 29) postinfusion, with peak values (23 +/- 6 to 325 +/- 10 micrograms/ml) at 32 to 102 days (median = 38). HAMA was undetectable prior to infusion in all cases and persisted up to 76 weeks. Of patients receiving a dose of 123 mCi or less, 80% (16/20) developed HAMA, whereas in the 140-mCi group, none of the three patients had detectable levels. Two patients in the 140-mCi group demonstrated dose-limiting bone marrow toxicity (severe thrombocytopenia and neutropenia). It is concluded that a single intraperitoneal dose of monoclonal antibody leads to a high incidence of HAMA production. The results also suggest that the likelihood of HAMA formation in patients who either had undergone recent chemotherapy or had received the highest dose of the radioimmunoconjugate is reduced. These observations may be of significance in designing multiple-dose therapy trials as HAMA has been demonstrated to decrease antibody-to-tumor binding and may potentially increase renal, hepatic, and hematologic toxicity associated with radioimmunotherapy.

  10. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  11. Molecular Mechanisms and Translational Therapies for Human Epidermal Receptor 2 Positive Breast Cancer

    PubMed Central

    Lv, Quanxia; Meng, Ziyuan; Yu, Yuanyuan; Jiang, Feng; Guan, Daogang; Liang, Chao; Zhou, Junwei; Lu, Aiping; Zhang, Ge

    2016-01-01

    Breast cancer is the second leading cause of cancer death among women. Human epidermal receptor 2 (HER2) positive breast cancer (HER2+ BC) is the most aggressive subtype of breast cancer, with poor prognosis and a high rate of recurrence. About one third of breast cancer is HER2+ BC with significantly high expression level of HER2 protein compared to other subtypes. Therefore, HER2 is an important biomarker and an ideal target for developing therapeutic strategies for the treatment HER2+ BC. In this review, HER2 structure and physiological and pathological roles in HER2+ BC are discussed. Two diagnostic tests, immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH), for evaluating HER2 expression levels are briefly introduced. The current mainstay targeted therapies for HER2+ BC include monoclonal antibodies, small molecule tyrosine kinase inhibitors, antibody–drug conjugates (ADC) and other emerging anti-HER2 agents. In clinical practice, combination therapies are commonly adopted in order to achieve synergistic drug response. This review will help to better understand the molecular mechanism of HER2+ BC and further facilitate the development of more effective therapeutic strategies against HER2+ BC. PMID:27983617

  12. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    SciTech Connect

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; Chen, Zhenguo; Klose, Thomas; Fokine, Andrei; Liu, Yue; Porta, Jason; Sapparapu, Gopal; Akahata, Wataru; Doranz, Benjamin J.; Crowe, James E.; Diamond, Michael S.; Rossmann, Michael G.

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints of these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.

  13. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    DOE PAGES

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; ...

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less

  14. Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice.

    PubMed

    Keck, Zhen-Yong; Wang, Yong; Lau, Patrick; Lund, Garry; Rangarajan, Sneha; Fauvelle, Catherine; Liao, Grant C; Holtsberg, Frederick W; Warfield, Kelly L; Aman, M Javad; Pierce, Brian G; Fuerst, Thomas R; Bailey, Justin R; Baumert, Thomas F; Mariuzza, Roy A; Kneteman, Norman M; Foung, Steven K H

    2016-12-01

    Direct-acting antivirals (DAAs) have led to a high cure rate in treated patients with chronic hepatitis C virus (HCV) infection, but this still leaves a large number of treatment failures secondary to the emergence of resistance-associated variants (RAVs). To increase the barrier to resistance, a complementary strategy is to use neutralizing human monoclonal antibodies (HMAbs) to prevent acute infection. However, earlier efforts with the selected antibodies led to RAVs in animal and clinical studies. Therefore, we identified an HMAb that is less likely to elicit RAVs for affinity maturation to increase potency and, more important, breadth of protection. Selected matured antibodies show improved affinity and neutralization against a panel of diverse HCV isolates. Structural and modeling studies reveal that the affinity-matured HMAb mediates virus neutralization, in part, by inducing conformational change to the targeted epitope, and that the maturated light chain is responsible for the improved affinity and breadth of protection. A matured HMAb protected humanized mice when challenged with an infectious HCV human serum inoculum for a prolonged period. However, a single mouse experienced breakthrough infection after 63 days when the serum HMAb concentration dropped by several logs; sequence analysis revealed no viral escape mutation.

  15. Human macrophages produce dimeric forms of IL-18 which can be detected with monoclonal antibodies specific for inactive IL-18.

    PubMed

    Kikkawa, S; Matsumoto, M; Shida, K; Fukumori, Y; Toyoshima, K; Seya, T

    2001-02-23

    We established two monoclonal antibodies (mAbs) which specifically recognize human 'functionally inactive' recombinant IL-18, and IL-18 protein polymorphism was examined using human monocytes and macrophages (M phi). In 6 day GM-CSF-treated M phi, an 'inactive' IL-18-recognizing mAb 21 detected the IL-18 proform (24 kDa) and a 48-kDa protein, which were gradually increased concomitant with maturation stage. Majority of the 24- and 48-kDa forms were barely detectable with other mAbs recognizing 'active' IL-18. No reagents including Toll stimulators up-regulated these IL-18 populations in M phi. The 21-recognizable IL-18 species were separated using an anion-exchanger column and their IFN gamma-inducing activity was assessed with human lymphocytes plus IL-12. Virtually no as yet known activity was detected with these IL-18 species. After processed with M phi proteases, an 18-kDa form was generated to express the IFN gamma-inducing activity, although the activity was far weaker than that of control 'active' IL-18. These observations suggested that large amounts of various IL-18 species are produced with monocyte-M phi differentiation and most of these IL-18 species are functionally 'inactive' in terms of the reported IL-18 function even after proteolytic 18-kDa conversion.

  16. Tumor localization by combinations of monoclonal antibodies in a new human colon carcinoma cell line (LIM1899)

    SciTech Connect

    Andrew, S.M.; Teh, J.G.; Johnstone, R.W.; Russell, S.M.; Whitehead, R.H.; McKenzie, I.F.; Pietersz, G.A. )

    1990-09-01

    One of the problems of in vivo diagnosis and therapy of tumors with monoclonal antibodies is their heterogeneity with respect to antigen expression, with some cells expressing no antigen and others being weakly or strongly positive. Selected mixtures of antibodies to different antigens are therefore likely to react with more cells than single antibodies and be more effective for imaging and therapy. With this in mind, we have examined a new human colon cancer cell line (LIM1899) which has a heterogeneous expression of several cell surface molecules: by flow cytometry 38% were carcinoembryonic antigen positive; 64%, human milk fat globule positive, and 73%, CD46 positive; 87% of tumor cells bound a mixture of all three antibodies in vitro. Some blocking of the binding of anti-human milk fat globule antibody by the anti-CD46 antibody was noted. LIM1899 was established as a xenograft in nude mice and in vivo biodistribution studies performed using antibodies alone or in combination. Mixtures of antibodies clearly showed a higher percentage of injected dose of antibody in the tumor than did single antibodies: one antibody gave 10%; two together, 17 to 21%; and all three together gave 29% of the injected dose in the tumor. Tumor:blood ratios were also superior for combinations of antibodies, provided that low doses of the antibodies were used; at higher doses the effect was lost. The study demonstrates that combinations of antibodies are better than single antibodies for localization, provided that the dose used is carefully selected.

  17. Construction of scFv derived from a tumor-associated monoclonal antibody having tumoricidal activity on human hepatocellular carcinoma.

    PubMed

    Tungpradabkul, Sumalee; Sandee, Duanpen; Puthong, Songchan; Laohathai, Kingkarn

    2005-04-01

    A mouse monoclonal antibody (Mab-HepTAA43), classified as an anti-tumor-associated antigen, was raised by immunizing BALB/c mice with the Thai human hepatocellular carcinoma S102 (HCC-S102) cell line cells using hybridoma techniques. The Mab-HepTAA43 reacted with and markedly inhibited the growth of human hepatocellular carcinoma cell lines as well as a tumor mass in an animal model. Human hepatoma transplanted into nude mice did not show metastasis after 20 injections amounting to a total of about 4 mg of the Mab over 1-month period. A single-chain variable fragment (scFv) molecule derived from the Mab was constructed by phage display method. DNA sequence analysis of the active variable regions of both heavy- and light-chains of the cDNA clone was subsequently performed. The scFv43 molecule contains a V(L) kappa type and a unique V(H) sequence having 88% amino acid homology to that of Mab-MAK B raised against tumor-associated antigen. Immunohistochemical staining on frozen sections of paired hepatoma (NCI-I) and normal liver tissue from the same individual showed that both scFv43 and Mab-HepTAA43 antibodies reacted with hepatoma but not with normal liver tissue. The results suggest that scFv43 may be useful in the immunotherapy of hepatocellular carcinoma.

  18. Cloning, characterization, and modeling of a monoclonal anti-human transferrin antibody that competes with the transferrin receptor.

    PubMed Central

    Orlandini, M.; Santucci, A.; Tramontano, A.; Neri, P.; Oliviero, S.

    1994-01-01

    In this report we describe the isolation and characterization of a monoclonal antibody against human serum transferrin (Tf) and the cloning and sequencing of its cDNA. The antibody competes with the transferrin receptor (TR) for binding to human Tf and is therefore expected to bind at or very close to a region of interaction between Tf and its receptor. From the deduced amino acid sequence, we constructed a 3-dimensional model of the variable domains of the antibody based on the canonical structure model for the hypervariable loops. The proposed structure of the antibody is a first step toward a more detailed characterization of the antibody-Tf complex and possibly toward a better understanding of the Tf interaction with its receptor. The model might prove useful in guiding site-directed mutagenesis studies, simplifying the experimental elucidation of the antibody structure, and in the use of automatic procedures to dock the interacting molecules as soon as structural information about the structure of the human Tf molecule will be available. PMID:7530542

  19. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    PubMed Central

    Li, Yuan; Burns, Janine A; Cheney, Carol A; Zhang, Ningyan; Vitelli, Salvatore; Wang, Fubao; Bett, Andrew; Chastain, Michael; Audoly, Laurent P; Zhang, Zhi-Qiang

    2010-01-01

    Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC), but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers. PMID:20631820

  20. Production and characterization of high-affinity human monoclonal antibodies to human immunodeficiency virus type 1 envelope glycoproteins in a mouse model expressing human immunoglobulins.

    PubMed

    Sheppard, Neil C; Davies, Sarah L; Jeffs, Simon A; Vieira, Sueli M; Sattentau, Quentin J

    2007-02-01

    Human (Hu) monoclonal antibodies (MAbs) against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) are useful tools in the structural and functional analysis of Env, are under development both as potential prophylaxis and as therapy for established HIV-1 infection, and have crucial roles in guiding the design of preventative vaccines. Despite representing more than 50% of infections globally, no MAbs have been generated in any species against C clade HIV-1 Env. To generate HuMAbs to a novel Chinese C clade Env vaccine candidate (primary isolate strain HIV-1(97CN54)), we used BAB5 mice that express a human immunoglobulin (Ig) M antibody repertoire in place of endogenous murine immunoglobulins. When immunized with HIV-1(97CN54) Env, these mice developed antigen-specific IgM antibodies. Hybridoma fusions using splenocytes from these mice enabled the isolation of two Env-specific IgM HuMAbs: N3C5 and N03B11. N3C5 bound to HIV-1 Env from clades A and C, whereas N03B11 bound two geographically distant clade C isolates but not Env from other clades. These HuMAbs bind conformational epitopes within the immunodominant region of the gp41 ectodomain. N3C5 weakly neutralized the autologous isolate in the absence of complement and weakly enhanced infection in the presence of complement. N03B11 has no effect on infectivity in either the presence or the absence of complement. These novel HuMAbs are useful reagents for the study of HIV-1 Env relevant to the global pandemic, and mice producing human immunoglobulin present a tool for the production of such antibodies.

  1. Cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  2. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  3. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody

    PubMed Central

    Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-01-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  4. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    PubMed

    Ye, Xiaohua; Fan, Chen; Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-03-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.

  5. Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum

    PubMed Central

    Vanier, Gaëtan; Hempel, Franziska; Chan, Philippe; Rodamer, Michael; Vaudry, David; Maier, Uwe G.; Lerouge, Patrice; Bardor, Muriel

    2015-01-01

    Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans. PMID:26437211

  6. Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum.

    PubMed

    Vanier, Gaëtan; Hempel, Franziska; Chan, Philippe; Rodamer, Michael; Vaudry, David; Maier, Uwe G; Lerouge, Patrice; Bardor, Muriel

    2015-01-01

    Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans.

  7. Epitope mapping of anti-human transferrin monoclonal antibodies: potential uses for transferrin-transferrin receptor interaction studies.

    PubMed

    Perera, Yasser; García, Darién; Guirola, Osmany; Huerta, Vivian; García, Yanet; Muñoz, Yasmiana

    2008-01-01

    Human transferrin (hTf) is an 80 kDa glycoprotein involved in iron transport from the absorption sites to the sites of storage and utilization. Additionally, transferrin also plays a relevant role as a bacteriostatic agent preventing uncontrolled bacterial growth in the host. In this work we describe a well-characterized Mabs panel in terms of precise epitope localization and estimate affinity for the two major hTf isoforms. We found at least four antigenic regions in the hTf molecule, narrowed down the interacting antigen residues within three of such regions, and located them on a molecular model of hTf. Two of the antigenic regions partially overlap with previously described transferrin-binding sites for both human receptor (antigenic region I: containing amino acid residues from Asp-69 to Asn-76 at the N-lobe) and bacterial receptors from two pathogenic species (antigenic region III: amino acid residues from Leu-665 to Ser-672 at the C-lobe). Hence, such monoclonal antibodies (Mabs) could be used as an additional tool for conformational studies and/or the characterization of the interaction between hTf and both types of receptor molecules.

  8. Rapid detection of human group C rotaviruses by reverse passive hemagglutination and latex agglutination tests using monoclonal antibodies.

    PubMed Central

    Kuzuya, M; Fujii, R; Hamano, M; Nagabayashi, T; Tsunemitsu, H; Yamada, M; Nii, S; Mori, T

    1993-01-01

    Reverse passive hemagglutination (RPHA) tests and a latex agglutination test with monoclonal antibodies (MAbs) were developed for the rapid detection of noncultivatable human group C rotaviruses. For RPHA tests, two MAbs, MAb 5A12 recognizing the outer capsid and MAb 13A3 recognizing the inner capsid, were separately used for the coating of sheep erythrocytes (SRBCs). Forty-six fecal samples were examined to confirm the practicality of the tests. As a result, there was concordance between the RPHA test with SRBCs coated with MAb 5A12 and polyacrylamide gel electrophoresis of viral RNA (RNA-PAGE) in 44 (95.6%) of 46 samples, while the diagnoses by the RPHA test with SRBCs coated with MAb 13A3 were in complete agreement with those by RNA-PAGE. Furthermore, a latex agglutination test with MAb 13A3 was also developed, and this test was fast enough and sensitive enough to successfully detect the viruses from most fecal samples within 2 min. The present procedures would be useful for the diagnosis of human group C rotavirus infections in clinical laboratories which are not well equipped. Images PMID:8388891

  9. Rozrolimupab, a mixture of 25 recombinant human monoclonal RhD antibodies, in the treatment of primary immune thrombocytopenia.

    PubMed

    Robak, Tadeusz; Windyga, Jerzy; Trelinski, Jacek; von Depka Prondzinski, Mario; Giagounidis, Aristoteles; Doyen, Chantal; Janssens, Ann; Alvarez-Román, María Teresa; Jarque, Isidro; Loscertales, Javier; Rus, Gloria Pérez; Hellmann, Andrzej; Jêdrzejczak, Wieslaw Wiktor; Kuliczkowski, Kazimierz; Golubovic, Lana M; Celeketic, Dusica; Cucuianu, Andrei; Gheorghita, Emanuil; Lazaroiu, Mihaela; Shpilberg, Ofer; Attias, Dina; Karyagina, Elena; Svetlana, Kalinina; Vilchevska, Kateryna; Cooper, Nichola; Talks, Kate; Prabhu, Mukhyaprana; Sripada, Prasad; Bharadwaj, T P R; Næsted, Henrik; Skartved, Niels J Ø; Frandsen, Torben P; Flensburg, Mimi F; Andersen, Peter S; Petersen, Jørgen

    2012-11-01

    Rozrolimupab, a recombinant mixture of 25 fully human RhD-specific monoclonal antibodies, represents a new class of recombinant human antibody mixtures. In a phase 1 or 2 dose escalation study, RhD(+) patients (61 subjects) with primary immune thrombocytopenia received a single intravenous dose of rozrolimupab ranging from 75 to 300 μg/kg. The primary outcome was the occurrence of adverse events. The principal secondary outcome was the effect on platelet levels 7 days after the treatment. The most common adverse events were headache and pyrexia, mostly mild, and reported in 20% and 13% of the patients, respectively, without dose relationship. Rozrolimupab caused an expected transient reduction of hemoglobin concentration in the majority of the patients. At the dose of 300 μg/kg platelet responses, defined as platelet count ≥ 30 × 10(9)/L and an increase in platelet count by > 20 × 10(9)/L from baseline were observed after 72 hours and persisted for at least 7 days in 8 of 13 patients (62%). Platelet responses were observed within 24 hours in 23% of patients and lasted for a median of 14 days. Rozrolimupab was well tolerated and elicited rapid platelet responses in patients with immune thrombocytopenia and may be a useful alternative to plasma-derived products. This trial is registered at www.clinicaltrials.gov as #NCT00718692.

  10. Appearance of cross linked proteins in human atheroma and rat pre-fibrotic liver detected by a new monoclonal antibody.

    PubMed

    Itabe, H; Jimi, S; Kamimura, S; Suzuki, K; Uesugi, N; Imanaka, T; Shijo, H; Takano, T

    1998-02-27

    A new monoclonal antibody against malondialdehyde (MDA)-treated low density lipoprotein (LDL) was raised using homogenate of human atheroma as immunogen. This antibody, DLH2, was obtained by selecting the clones which did not react to native LDL but did react to copper-induced oxidized LDL (OxLDL). DLH2 showed a greater reactivity to MDA-LDL than to OxLDL. When LDL was treated with various aldehyde containing reagents, treatment of LDL with glutaraldehyde or MDA greatly increased the reactivity to the antibody, while LDL treated with 2,4-hexadienal or 4-hydroxynonenal was not reactive. Among many proteins tested, high density lipoprotein, bovine serum albumin and hemoglobin showed significant reactivity to DLH2 after they were treated with MDA or glutaraldehyde. When low density and high density lipoproteins treated with MDA were subjected to immunoblot analysis, newly formed products larger than the original apolipoproteins were detected with the antibody, suggesting that this antibody recognizes aggregated proteins with divalent short chain cross linkers. The antigenic materials were shown by immunohistochemical analysis to be present in foamy macrophages in human atheromatous lesions. DLH2 antigen did not colocalize either with apolipoprotein B. Furthermore, we found a massive accumulation of the antigenic material in Kupffer cells in the liver of rats treated with alcohol and carbonyl iron, a model of hepatic fibrosis due to oxidative stress. These results suggest the presence of cross linked proteins in damaged tissues.

  11. Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies.

    PubMed Central

    Broder, C C; Earl, P L; Long, D; Abedon, S T; Moss, B; Doms, R W

    1994-01-01

    A majority of monoclonal antibodies (mAbs) raised against soluble oligomeric human immunodeficiency virus type 1 isolate IIIB (HIV-1IIIB) envelope (env) glycoprotein reacted with conformational epitopes within the gp120 or gp41 subunits. Of 35 mAbs directed against gp41, 21 preferentially reacted with oligomeric env. A subset of these mAbs reacted only with env oligomers (oligomer-specific mAbs). In contrast, only 1 of 27 mAbs directed against the gp120 subunit reacted more strongly with env oligomers than with monomers, and none were oligomer-specific. However, 50% of anti-gp120 mAbs preferentially recognized monomeric env, suggesting that some epitopes in gp120 are partially masked or altered by intersubunit contacts in the native env oligomer. Two mAbs to oligomer-dependent epitopes in gp41 neutralized HIV-1IIIB and HIV-1SF2, and binding of these mAbs to env was blocked by preincubation with HIV-1-positive human serum. Thus, immunization with soluble, oligomeric env elicits antibodies to conserved, conformational epitopes including a newly defined class of neutralizing antibodies that bind to oligomer-specific epitopes in gp41, and may also minimize the production of antibodies that preferentially react with monomeric env protein. Images PMID:7972127

  12. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27

    PubMed Central

    Yu, Xiaojuan; Zhang, Senyan; Jiang, Liwei; Cui, Ye; Li, Dongxia; Wang, Dongli; Wang, Nianshuang; Fu, Lili; Shi, Xuanlin; Li, Ziqiang; Zhang, Linqi; Wang, Xinquan

    2015-01-01

    The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans with an approximately 30% mortality rate. The envelope spike glycoprotein on the surface of MERS-CoV mediates receptor binding, membrane fusion, and viral entry. We previously reported two human monoclonal antibodies that target the receptor binding domain (RBD) of the spike and exhibit strong neutralization activity against live and pesudotyped MERS-CoV infection. Here we determined the crystal structure of MERS-CoV RBD bound to the Fab fragment of MERS-27 antibody at 3.20 Å resolution. The MERS-27 epitope in the RBD overlaps with the binding site of the MERS-CoV receptor DPP4. Further biochemical, viral entry, and neutralization analyses identified two critical residues in the RBD for both MERS-27 recognition and DPP4 binding. One of the residues, Trp535, was found to function as an anchor residue at the binding interface with MERS-27. Upon receptor binding, Trp535 interacts with the N-linked carbohydrate moiety of DPP4. Thus, MERS-27 inhibits MERS-CoV infection by directly blocking both protein-protein and protein-carbohydrate interactions between MERS-CoV RBD and DPP4. These results shed light on the molecular basis of MERS-27 neutralization and will assist in the optimization of MERS-27 as a tool to combat MERS-CoV infection. PMID:26281793

  13. A monoclonal antibody that specifically reacts with human embryonal carcinomas, spermatogonia and oocytes is able to induce human EC cell death.

    PubMed

    Nakano, T; Umezawa, A; Abe, H; Suzuki, N; Yamada, T; Nozawa, S; Hata, J

    1995-02-01

    We developed a mouse monoclonal antibody, 6E2 (IgG3), against a human embryonal carcinoma (EC) cell line, NCR-G3, that possesses totipotent differentiation capabilities. Culturing human EC cells in the presence of 6E2 causes their death. It has been shown that 6E2 kills EC cells dose dependently. In immunohistochemical examination with normal human germ cells, 6E2 reacted specifically with spermatogonia and oocytes. Among human germ cell tumor tissues on aceton-fixed frozen sections, 6E2 reacted with embryonal carcinomas, seminomas and dysgerminomas, but it did not react with choriocarcinomas or with yolk sac tumors. Consistently, in flow cytometric analysis of cultured human germ cell tumor cell lines, 6E2 reacted exclusively with EC cells including NCR-G3 cells. It was revealed, by preserving its antigenicity after treatment with periodic acid and tunicamycin and by radiolabeling cells followed by immunoprecipitation, that the molecule defined by 6E2 is a cell surface protein having a molecular weight of approximately 80 kDa. These data illustrate that the molecule defined by 6E2 links human germ cell tumors, especially embryonal carcinoma, seminoma and dysgerminoma, to their normal counterparts and that it may play a role in survival and proliferation of human EC cells.

  14. Monoclonal antibodies specific to human Δ42PD1: A novel immunoregulator potentially involved in HIV-1 and tumor pathogenesis

    PubMed Central

    Cheng, Lin; Tang, Xian; Liu, Li; Peng, Jie; Nishiura, Kenji; Cheung, Allen Ka Loon; Guo, Jia; Wu, Xilin; Tang, Hang Ying; An, Minghui; Zhou, Jingying; Cheung, Ka Wai; Wang, Hui; Guan, Xinyuan; Wu, Zhiwei; Chen, Zhiwei

    2015-01-01

    We recently reported the identification of Δ42PD1, a novel alternatively spliced isoform of human PD1 that induces the production of pro-inflammatory cytokines from human peripheral blood mononuclear cells and enhances HIV-specific CD8+ T cell immunity in mice when engineered in a fusion DNA vaccine. The detailed functional study of Δ42PD1, however, has been hampered due to the lack of a specific monoclonal antibody (mAb). In this study, we generated 2 high-affinity mAbs, clones CH34 (IgG2b) and CH101 (IgG1), from Δ42PD1-immunized mice. They recognize distinct domains of Δ42PD1 as determined by a yeast surface-displaying assay and ELISA. Moreover, they recognize native Δ42PD1 specifically, but not PD1, on cell surfaces by both flow cytometry and immunohistochemical assays. Δ42PD1 appeared to be expressed constitutively on healthy human CD14+ monocytes, but its level of expression was down-regulated significantly during chronic HIV-1 infection. Since the level of Δ42PD1 expression on CD14+ monocytes was negatively correlated with the CD4 count of untreated patients in a cross-sectional study, Δ42PD1 may play a role in HIV-1 pathogenesis. Lastly, when examining Δ42PD1 expression in human esophageal squamous-cell carcinoma tissues, we found high-level expression of Δ42PD1 on a subset of tumor-infiltrating T cells. Our study, therefore, resulted in 2 Δ42PD1-specific mAbs that can be used to further investigate Δ42PD1, a novel immune regulatory protein implicated in HIV-1 and tumor pathogenesis as well as other immune diseases. PMID:25692916

  15. Monoclonal antibodies to human glycophorin A and cell lines for the production thereof

    DOEpatents

    Vanderlaan, Martin; Bigbee, William L.; Jensen, Ronald H.; Fong, Stella S. N.; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A.sup.N and differentiate between the M and N forms of human glycophorin A.

  16. Monoclonal Antibodies in Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Waldmann, Thomas A.

    1991-06-01

    Monoclonal antibodies have been applied clinically to the diagnosis and therapy of an array of human disorders, including cancer and infectious diseases, and have been used for the modulation of immune responses. Effective therapy using unmodified monoclonal antibodies has, however, been elusive. Recently, monoclonal antibody-mediated therapy has been revolutionized by advances such as the definition of cell-surface structures on abnormal cells as targets for effective monoclonal antibody action, genetic engineering to create less immunogenic and more effective monoclonal antibodies, and the arming of such antibodies with toxins or radionuclides to enhance their effector function.

  17. A murine monoclonal anti-idiotypic antibody detects a common idiotope on human, mouse and rabbit antibodies to allergen Lol p IV.

    PubMed

    Zhou, E M; Dzuba-Fischer, J M; Rector, E S; Sehon, A H; Kisil, F T

    1991-09-01

    A syngeneic mouse monoclonal anti-idiotypic antibody (anti-Id), designated as B1/1, was generated against a monoclonal antibody (MoAb 91) specific for Ryegrass pollen allergen Lol p IV. This anti-Id recognized an idiotope (Id) that was also present on other monoclonal antibodies with the same specificity as MoAb 91. Observations that (i) the anti-Id inhibited the binding of MoAb 91 to Lol p IV and (ii) the Id-anti-Id interaction could be inhibited by Lol p IV indicated that the Id was located within or near the antigen combining site. These properties served to characterize B1/1 as an internal image anti-Id. Evidence that an immune response in different species to Lol p IV elicits the formation of antibodies which express a common Id was provided by the observations that (i) the Id-anti-Id interactions could be inhibited by mouse, human and rabbit antisera to Lol p IV and (ii) the binding of these antisera to Lol p IV could be inhibited by the anti-Id. Interestingly, the internal image anti-Id B1/1 also recognized an Id on a monoclonal antibody which was directed to an epitope of Lol p IV, different from that recognized by MoAb 91.

  18. Characterization of two distinct antigens expressed on either resting or activated human B cells as defined by monoclonal antibodies.

    PubMed Central

    Kokai, Y; Ishii, Y; Kikuchi, K

    1986-01-01

    Two antigen systems (L29 & L30) expressed on two distinct human B cell subpopulations were identified by using BL1-4D6 and TB3-7D5 monoclonal antibodies, respectively. L29 was expressed on approximately one-third of B cells in human lymphoid tissues. These B cells associated with L29 were large activated B cells located in the germinal centres of lymphoid follicles. L30, on the other hand, existed on approximately two-thirds of B cells mainly located in the mantle zone of lymphoid follicles, most of which also expressed IgM and IgD on their cell membrane. In addition, L30 was shared on mature granulocytes. With the use of polyclonal activators such as pokeweek mitogen (PWM) and protein A-bearing staphylococci (SAC), L29 antigen was inducible on PWM- or SAC-stimulated B cells in correspondence with the emergence of Tac and T10 antigens of these B cells. In contrast, L30 antigen on the B cells stimulated by the polyclonal activators was decreased in its expression and was finally lost from these B cells. Although none of L29 and L30 was expressed on normal, non-activated human thymus and peripheral T cells, L29 but not L30 was expressed on concanavalin A-activated T cells. Immunochemical studies showed that L30 consist of a single polypeptide with mol. wt of 40,000. L29 antigen is presently under study. Images Fig. 2 Fig. 4 PMID:3527505

  19. Efficacy and safety of AVP-21D9, an anthrax monoclonal antibody, in animal models and humans.

    PubMed

    Malkevich, Nina V; Hopkins, Robert J; Bernton, Edward; Meister, Gabriel T; Vela, Eric M; Atiee, George; Johnson, Virginia; Nabors, Gary S; Aimes, Ronald T; Ionin, Boris; Skiadopoulos, Mario H

    2014-07-01

    Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. Timely administration of antibiotics approved for the treatment of anthrax disease may prevent associated morbidity and mortality. However, any delay in initiating antimicrobial therapy may result in increased mortality, as inhalational anthrax progresses rapidly to the toxemic phase of disease. An anthrax antitoxin, AVP-21D9, also known as Thravixa (fully human anthrax monoclonal antibody), is being developed as a therapeutic agent against anthrax toxemia. The efficacy of AVP-21D9 in B. anthracis-infected New Zealand White rabbits and in cynomolgus macaques was evaluated, and its safety and pharmacokinetics were assessed in healthy human volunteers. The estimated mean elimination half-life values of AVP-21D9 in surviving anthrax-challenged rabbits and nonhuman primates (NHPs) ranged from approximately 2 to 4 days and 6 to 11 days, respectively. In healthy humans, the mean elimination half-life was in the range of 20 to 27 days. Dose proportionality was observed for the maximum serum concentration (Cmax) of AVP-21D9 and the area under the concentration-time curve (AUC). In therapeutic efficacy animal models, treatment with AVP-21D9 resulted in survival of up to 92% of the rabbits and up to 67% of the macaques. Single infusions of AVP-21D9 were well tolerated in healthy adult volunteers across all doses evaluated, and no serious adverse events were reported. (This study has been registered at ClinicalTrials.gov under registration no. NCT01202695.).

  20. Colocalization of elastase and myeloperoxidase in human blood and bone marrow neutrophils using a monoclonal antibody and immunogold.

    PubMed Central

    Cramer, E. M.; Beesley, J. E.; Pulford, K. A.; Breton-Gorius, J.; Mason, D. Y.

    1989-01-01

    The authors have localized elastase in human blood and bone marrow neutrophils by immunoelectron microscopy using a monoclonal anti-human elastase antibody (NP 57) and compared its distribution with myeloperoxidase (MPO) and lactoferrin (LF), which mark primary and secondary neutrophil granule, respectively. Human bone marrow and blood polymorphonuclear leukocytes (PMN), either unstimulated or after phagocytosis of latex microbeads, were fixed in 4% paraformaldehyde. Ultrathin frozen sections were immunolabeled with NP 57, followed by an immunogold probe. In bone marrow granulocyte precursors elastase appeared simultaneously in the immature first granules of myeloblasts with MPO. As these granules became denser with maturation, labeling for both enzymes became weaker and sometimes negative (possibly due to masking of immunoreactivity). The ellipsoidal primary granules were strongly labeled by NP57. LF positive granules appeared later, at the myelocyte stage, and contained neither MPO nor elastase. In mature neutrophils, immunolabeling for elastase was found together with MPO in the large electron-dense primary granules and in a different granule population from the LF-positive secondary granules. Double labeling with two different-sized gold particles was used to compare the kinetics of degranulation of secondary and primary granules. The observation and the analysis of single phagosome content was made possible by this new technique. In conclusion, immunoelectron microscopy was used to show elastase in the primary granules of neutrophils, where it appears simultaneously with MPO. This technique has also allowed comparison of the kinetics of degranulation of both types of granules, and could be applied to different experimental and pathologic conditions. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 PMID:2547320

  1. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4.

    PubMed

    Dias, J D; Hemminki, O; Diaconu, I; Hirvinen, M; Bonetti, A; Guse, K; Escutenaire, S; Kanerva, A; Pesonen, S; Löskog, A; Cerullo, V; Hemminki, A

    2012-10-01

    Promising clinical results have been achieved with monoclonal antibodies (mAbs) such as ipilimumab and tremelimumab that block cytotoxic T lymphocyte-associated antigen-4 (CTLA-4, CD152). However, systemic administration of these agents also has the potential for severe immune-related adverse events. Thus, local production might allow higher concentrations at the target while reducing systemic side effects. We generated a transductionally and transcriptionally targeted oncolytic adenovirus Ad5/3-Δ24aCTLA4 expressing complete human mAb specific for CTLA-4 and tested it in vitro, in vivo and in peripheral blood mononuclear cells (PBMCs) of normal donors and patients with advanced solid tumors. mAb expression was confirmed by western blotting and immunohistochemistry. Biological functionality was determined in a T-cell line and in PBMCs from cancer patients. T cells of patients, but not those of healthy donors, were activated by an anti-CTLA4mAb produced by Ad5/3-Δ24aCTLA4. In addition to immunological effects, a direct anti-CTLA-4-mediated pro-apoptotic effect was observed in vitro and in vivo. Local production resulted in 43-fold higher (P<0.05) tumor versus plasma anti-CTLA4mAb concentration. Plasma levels in mice remained below what has been reported safe in humans. Replication-competent Ad5/3-Δ24aCTLA4 resulted in 81-fold higher (P<0.05) tumor mAb levels as compared with a replication-deficient control. This is the first report of an oncolytic adenovirus producing a full-length human mAb. High mAb concentrations were seen at tumors with lower systemic levels. Stimulation of T cells of cancer patients by Ad5/3-Δ24aCTLA4 suggests feasibility of testing the approach in clinical trials.

  2. Monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues

    SciTech Connect

    Zwadlo, G.; Schlegel, R.; Sorg, C.

    1986-07-15

    A monoclonal antibody is described that was generated by immunizing mice with cultured human blood monocytes. The antibody (27E10) belongs to the IgG1 subclass and detects a surface antigen at M/sub r/ 17,000 that is found on 20% of peripheral blood monocytes. The antigen is increasingly expressed upon culture of monocytes, reaching a maximum between days 2 and 3. Stimulation of monocytes with interferon-..gamma.. (IFN-..gamma..), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and lipopolysaccharide (LPS) Ylalanine (fMLP) increased the 27E10 antigen density. The amount of 27E10-positive cells is not or is only weakly affected. The antigen is absent from platelets, lymphotyces, and all tested human cell lines, yet it cross-reacts with 15% of freshly isolated granulocytes. By using the indirect immunoperoxidase technique, the antibody is found to be negative on cryostat sections of normal human tissue (skin, lung, and colon) and positive on only a few monocyte-like cells in liver and on part of the cells of the splenic red pulp. In inflammatory tissue, however, the antibody is positive on monocytes/macrophages and sometimes on endothelial cells and epidermal cells, depending on the stage and type of inflammation, e.g., BCG ranulomas are negative, whereas psoriasis vulgaris, atopic dermatitis, erythrodermia, pressure urticaria, and periodontitis contain positively staining cells. In contact eczemas at different times after elicitation (6 hr, 24 hr, and 72 hr), the 27E10 antigen is seen first after 24 hr on a few infiltrating monocytes/macrophages, which increase in numbers after 72 hr.

  3. Immunoscintigraphy of human pancreatic carcinoma in nude mice with I-131-F(ab')/sub 2/-fragments of monoclonal antibodies

    SciTech Connect

    Senekowitsch, R.; Maul, F.D.; Wenisch, H.J.C.; Kriegel, H.; Hor, G.

    1985-05-01

    In the present study radioiodinated F(ab')/sub 2/-fragments of CA19-9 and antibody that reacts specifically with human gastrointestinal cancer were examined for their ability to detect human pancreatic carcinoma hosted in nude mice. Tumor-bearing mice received 80..mu..Ci of I-131-F(ab')/sub 2/ with a specific activity of 1.8..mu..Ci/..mu..g. All mice were imaged after the injection and every 24hr up to 6 days. The retained radioactivity was also registered with a whole-body counter immediately after imaging. As a control F(ab's)/sub 2/ of a nonspecific antibody were administered in parallel to another group of animals bearing the same tumor. Three animals of each group were killed at 1,2,4 and 8 days for determination of the distribution of both labeled antibody-fragments. On scintigraphic images obtained with the CA19-9-F(ab')/sub 2/ the tumors could be visualized 24hr after injection, the best dilineation however was achieved 96hr p.i.. The biodistribution data exhibited a more rapid blood clearance for the specific fragments compared to that for the unspecific ones. Tumors showed an increase in uptake up to 48hr reaching 1.7% of the injected dose per gram, declining to values of 0.08%/g at day 6 p.i.. The highest tumor-to-blood ratios were found after 96h. They were 7 for the CA19-9-fragments compared to 1.5 for the unspecific fragments. The whole body counting revealed a more rapid excretion for the fragments of the specific monoclonal antibodies than for the unspecific ones. In summary the authors were able to show that CA19-9-F(ab')/sub 2/-fragments can be used for immunodetection of human pancreatic carcinoma hosted in nude mice.

  4. Structural, functional, and tissue distribution analysis of human transferrin receptor-2 by murine monoclonal antibodies and a polyclonal antiserum.

    PubMed

    Deaglio, Silvia; Capobianco, Andrea; Calì, Angelita; Bellora, Francesca; Alberti, Federica; Righi, Luisella; Sapino, Anna; Camaschella, Clara; Malavasi, Fabio

    2002-11-15

    Human transferrin receptor-2 (TFR-2) is a protein highly homologous to TFR-1/CD71 and is endowed with the ability to bind transferrin (TF) with low affinity. High levels of TFR-2 mRNA were found in the liver and in erythroid precursors. Mutations affecting the TFR-2 gene led to hemochromatosis type 3, a form of inherited iron overload. Several issues on distribution and function of the receptor were answered by raising a panel of 9 monoclonal antibodies specific for TFR-2 by immunizing mice with murine fibroblasts transfected with the human TFR-2 cDNA. A polyclonal antiserum was also produced in mice immunized with 3 peptides derived from the TFR-2 sequence, exploiting an innovative technique. The specificity of all the reagents produced was confirmed by reactivity with TFR-2(+) target cells and simultaneous negativity with TFR-1(+) cells. Western blot analyses showed a dominant chain of approximately 90 kDa in TFR-2 transfectants and HepG2 cell line. Analysis of distribution in normal tissues and in representative cell lines revealed that TFR-2 displays a restricted expression pattern--it is present at high levels in hepatocytes and in the epithelial cells of the small intestine, including the duodenal crypts. Exposure of human TFR-2(+) cells to TF-bound iron is followed by a significant up-regulation and relocalization of membrane TFR-2. The tissue distribution pattern, the behavior following exposure to iron-loaded TF, and the features of the disease resulting from TFR-2 inactivation support the hypothesis that TFR-2 contributes to body iron sensing.

  5. Description and partial characterization of a nucleolar RNA-associated autoantigen defined by a human monoclonal antibody

    PubMed Central

    1987-01-01

    B lymphocytes from a patient with systemic lupus erythematosus (SLE) and several circulating autoantibodies (including antinucleolar antibodies) were immortalized by fusion with a hypoxanthine/guanine phosphoribosyl transferase (HGPRT)-deficient human B cell line. Multiple human monoclonal antibodies (mAb) were obtained which, in solid-phase enzyme immunoassay, were reactive with DNA. One mAb was of special interest because it reacted strongly with both single-stranded DNA and an extractable nuclear antigen found in rabbit thymus extract (RTE). In an immunofluorescent assay using fixed human cells, the latter mAb also bound predominantly to cell nucleoli. A combination of enzyme digestion and metabolic inhibitor studies of the target cells in this immunofluorescent assay suggested that the antigen(s) bound by the mAb was an RNA-associated protein or a ribonucleoprotein that is distinct from intact RNA polymerase I and not associated with the transcriptional units of the nucleolus. In other experiments, using fractions of RTE isolated by ion-exchange chromatography, the antigens bound by the mAb were shown to be highly negatively charged molecules. Immunoprecipitation and SDS-PAGE analyses of labeled cell extracts bound by the mAb revealed a doublet of 17 and 18 kD. Since the original patient's serum autoantibodies also bound to both an RNase-sensitive, acidic, extractable nuclear antigen and to nucleoli, and immunoprecipitated proteins of similar molecular masses in SDS-PAGE, it appears that the described mAb is a product of an immortalized autoantibody-producing B cell clone from the SLE patient's peripheral blood. This mAb probably defines a novel RNA-associated autoantigen residing predominantly in the nucleolus or, less likely, a variant of either RNA polymerase I or the ribosomal autoantigens (P proteins). PMID:2435834

  6. Generation and characterization of a panel of monoclonal antibodies specific for human fibroblast growth factor receptor 4 (FGFR4).

    PubMed

    Chen, Chaoyuan; Patel, Sima; Corisdeo, Susanne; Liu, Xiangdong; Micolochick, Holly; Xue, Jiyang; Yang, Qifeng; Lei, Ying; Wang, Baiyang; Soltis, Daniel

    2005-06-01

    Fibroblast growth factor receptor 4 (FGFR4) is a member of the FGFR family of receptor tyrosine kinases, and plays important roles in a variety of biological functions such as cell proliferation, differentiation, migration, angiogenesis, tissue repair, and tumorigenesis. The human FGFRs share a high degree of sequence homology between themselves, as well as with their murine homologs. Consequently, it has been suggested that it may be difficult to prepare monoclonal antibodies (MAbs) that are specific for the individual receptor types. In this communication, we report on the development and characterization of a panel of anti-human FGFR4 MAbs that were generated in mice using a rapid immunization protocol. Using a modified rapid immunization at multiple sites (RIMMS) protocol with the soluble extracellular domain of human FGFR4 (FGFR4-ECD), the immunized mice developed high levels of polyclonal IgG to the immunogen within 13 days of the first immunization. The lymph node cells isolated from the immunized animals were then fused with mouse myeloma cells for hybridoma generation. Use of an efficient hybridoma cloning protocol in combination with an ELISA screening procedure allowed for early identification of stable hybridomas secreting antihuman FGFR4 IgG. Several identified MAbs specifically reacted with the FGFR4 protein without binding to the other human isoforms (FGFR1, FGFR2, and FGFR3). As evaluated by BIAcore analysis, most anti-FGFR4 MAbs displayed high affinities (8.6 x 10(8) approximately 3.9 x 10(10) M) to FGFR4. Furthermore, these MAbs were able to bind to FGFR4 expressed on human breast tumor cell lines MDA-MB-361 and MDA-MB-453. Taken together, the results demonstrate that the RIMMS strategy is an effective approach for generating class-switched, high-affinity MAbs in mice to evolutionarily conserved proteins such as human FGFR4. These MAbs may be useful tools for further investigation of the biological functions and pathological roles of human FGFR4.

  7. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys1[S

    PubMed Central

    Gusarova, Viktoria; Alexa, Corey A.; Wang, Yan; Rafique, Ashique; Kim, Jee Hae; Buckler, David; Mintah, Ivory J.; Shihanian, Lisa M.; Cohen, Jonathan C.; Hobbs, Helen H.; Xin, Yurong; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Gromada, Jesper

    2015-01-01

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating protein synthesized exclusively in the liver that inhibits LPL and endothelial lipase (EL), enzymes that hydrolyze TGs and phospholipids in plasma lipoproteins. Here we describe the development and testing of a fully human monoclonal antibody (REGN1500) that binds ANGPTL3 with high affinity. REGN1500 reversed ANGPTL3-induced inhibition of LPL activity in vitro. Intravenous administration of REGN1500 to normolipidemic C57Bl/6 mice increased LPL activity and decreased plasma TG levels by ≥50%. Chronic administration of REGN1500 to dyslipidemic C57Bl/6 mice for 8 weeks reduced circulating plasma levels of TG, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C) without any changes in liver, adipose, or heart TG contents. Studies in EL knockout mice revealed that REGN1500 reduced serum HDL-C through an EL-dependent mechanism. Finally, administration of a single dose of REGN1500 to dyslipidemic cynomolgus monkeys caused a rapid and pronounced decrease in plasma TG, nonHDL-C, and HDL-C. REGN1500 normalized plasma TG levels even in monkeys with a baseline plasma TG greater than 400 mg/dl. Collectively, these data demonstrate that neutralization of ANGPTL3 using REGN1500 reduces plasma lipids in dyslipidemic mice and monkeys, and thus provides a potential therapeutic agent for treatment of patients with hyperlipidemia. PMID:25964512

  8. Production and characterization of monoclonal antibodies to a pilus colonization factor (colonization factor antigen III) of human enterotoxigenic Escherichia coli.

    PubMed Central

    Honda, T; Wetprasit, N; Arita, M; Miwatani, T

    1989-01-01

    Three monoclonal antibodies (MAbs) to a pilus colonization factor (colonization factor antigen III [CFA/III]) of human enterotoxigenic Escherichia coli (ETEC) were developed and characterized. All of the MAbs isolated belonged to the immunoglobulin G2a subclass. The specificity of these MAbs for CFA/III pili was demonstrated by the immunogold-labeling technique. The presence of more than one epitope in CFA/III pili was suggested. One of the three MAbs appears to recognize a polymeric conformational epitope(s) of CFA/III. CFA/III antigenicity distinct from that of other pilus colonization factors of ETEC was demonstrated by both a bacterial agglutination test and a sandwich enzyme-linked immunosorbent assay using the MAbs. Of the 100 strains of ETEC isolated from persons with traveler's diarrhea, 8% were found to carry CFA/III pili. Two enzyme-linked immunosorbent assay systems which could detect as little as several or 50 ng of CFA/III per ml were developed. Images PMID:2572553

  9. Absolute quantitation of host cell proteins in recombinant human monoclonal antibodies with an automated CZE-ESI-MS/MS system.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Linkous, Travis; Kernaghan, Dawn; McGivney, James B; Dovichi, Norman J

    2014-05-01

    We report the first use of CZE for absolute characterization of host cell proteins (HCPs) in recombinant human monoclonal antibodies. An electrokinetically pumped nanoelectrospray interface was used to couple CZE with a tandem mass spectrometer. Three isotopic-labeled peptides (LSFDKDAMVAR, VDIVENQAMDTR, and LVSDEMVVELIEK) were synthesized by direct incorporation of an isotope-labeled lysine or arginine. The heavy-labeled peptides were spiked in the HCP digests at known concentrations. After CZE-ESI-MS/MS analysis, the peaks of native and isotopic-labeled peptides were extracted with mass tolerance ≤ 5 ppm from the electropherograms, and the ratios of peak area between native and isotopic-labeled peptides pairs were calculated. Calibration curves (the ratios of peak area versus spiked peptide amount) with R(2) values of 0.999, 0.997, and 0.999 were obtained for the three HCP peptides, and the absolute amounts of the three proteins present were determined to be at the picomole level in a 20 μg sample of digested HCPs. The target proteins were present at the 7-30 ppt level in the purified HCP samples.

  10. Itolizumab - a humanized anti-CD6 monoclonal antibody with a better side effects profile for the treatment of psoriasis.

    PubMed

    Menon, Roshni; David, Brinda G

    2015-01-01

    Management of psoriasis is a challenge to the treating physician. The chronic inflammatory state of psoriasis with exacerbations and remissions necessitate "on-and-off" treatment schedules. The safety profiles of drugs and tolerability issues for patients are important factors to be considered during treatment. Various biological agents targeting T-cells and the inflammatory cytokines are available for systemic treatment of psoriasis. However, major causes of concern while using these drugs are risk of susceptibility to infection and development of anti-drug antibodies, which will affect the pharmacokinetic properties, efficacy, and safety profile of the drug. Itolizumab, a humanized anti-CD6 monoclonal antibody, is a new molecule that acts by immunomodulating the CD6 molecule. CD6 is a co-stimulatory molecule required for optimal T-cell stimulation by the antigen-presenting cells. This step is crucial in T-cell proliferation to form Th1 and Th17 cells, which play a major role in the pathogenesis of psoriasis. This article deals with the properties of Itolizumab and its role in the treatment of psoriasis. Based on the available published data, Itolizumab seems to have a better adverse effects profile and at the same time comparatively less efficacy when compared to other biological agents available for treating psoriasis. Larger studies with longer duration are required to clearly depict the long-term side effects profile.

  11. Monoclonal Antibody against Angiotensin-Converting Enzyme: Its Use as a Marker for Murine, Bovine, and Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Auerbach, R.; Alby, L.; Grieves, J.; Joseph, J.; Lindgren, C.; Morrissey, L. W.; Sidky, Y. A.; Tu, M.; Watt, S. L.

    1982-12-01

    A monoclonal antibody has been prepared against rat angiotensin-converting enzyme (ACE). By selection for antibody binding to endothelial cells of bovine rather than rat origin we have obtained a reagent that has broad cross-species binding properties and that can at the same time serve as a useful marker for the surface of endothelial cells. The IgM-producing clone that we have established, α -ACE 3.1.1, has been grown in ascites form to yield ascites fluid that binds selectively to immobilized ACE at a >1:10,000 dilution. By use of enzyme-linked immunosorbent assays, immunofluorescence histology, and flow cytometry, we have demonstrated the presence of ACE on endothelial cells of murine, bovine, and human origin. By means of a fluorescence-activated cell sorter (FACS-IV) we have been able to selectively isolate viable endothelial cells from a mixture of endothelial cells and fibroblasts. We believe the antibody will be useful not only for the selection and in vitro cultivation of endothelial cells but also as a tool for the identification and pharmacological study of ACE.

  12. Immunoreactivity of anti-streptococcal monoclonal antibodies to human heart valves. Evidence for multiple cross-reactive epitopes.

    PubMed Central

    Gulizia, J. M.; Cunningham, M. W.; McManus, B. M.

    1991-01-01

    Association of group A streptococci with acute rheumatic fever and valvular heart disease is well established; however the basis of valve injury remains unclear. In this study, anti-streptococcal monoclonal antibodies (MAbs) cross-reactive with myocardium were reacted with sections from 22 rheumatic valves, nine normal, five endocarditic, one 'floppy,' and one Marfan valve. In immunohistochemical studies, MAb reactivity was observed with cardiac myocytes, smooth muscle cells, cell surface and cytoplasm of endothelial cells lining valves, and valvular interstitial cells. Endothelial basement membrane and elastin fibrils reacted with the MAbs, whereas collagen was unreactive. Similar reactivity was seen with sera from acute rheumatic fever patients. The anti-streptococcal MAbs reacted with intravalvular myosin and vimentin in Western blots, and purified elastin competitively inhibited the binding of the anti-streptococcal MAbs to whole group A streptococci. The data show that human heart valves have numerous sites of immunoreactivity with anti-streptococcal MAbs and acute rheumatic fever sera of potential importance in the pathogenesis of rheumatic valvular injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:1704188

  13. Human Monoclonal Antibody Fragments Binding to Insulin-like Growth Factors 1 and 2 with Picomolar Affinity

    PubMed Central

    Zhao, Qi; Feng, Yang; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2011-01-01

    The type 1 insulin-like growth factor receptor (IGF1R) and its ligands (IGF1 and IGF2) have been implicated in a variety of physiological processes and in diseases such as cancer. In addition to IGF1R, IGF2 also activates the insulin receptor (IR) isoform A and therefore antibodies against IGF2 can inhibit cell proliferation mediated by the signaling through both IGF1R and IR triggered by IGF2. We identified a new human monoclonal antibody (mAb), m708.2, which bound to IGF1 and IGF2 but not to insulin. m708.2 potently inhibited signal transduction mediated by the interaction of IGF1 or IGF2 with the IGF1R and IGF2 with the IR. It also inhibited the growth of the breast cancer cell line MCF-7. An affinity-matured derivative of m708.2, m708.5, bound to IGF1 with equilibrium dissociation constant, KD = 200 pM and to IGF2 with KD = 60 pM. m708.5 inhibited signal transduction mediated by IGF1 and IGF2 and cancer cell growth more potently than m708.2. These results suggest that m708.5 could have potential as a candidate therapeutic for cancers driven by the IGF1,2 interactions with IGF1R and IR. PMID:21750218

  14. HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues.

    PubMed Central

    Tsukada, T.; McNutt, M. A.; Ross, R.; Gown, A. M.

    1987-01-01

    Monoclonal antibody HHF35 has previously been characterized biochemically as recognizing isotypes of actin (alpha and gamma) which are specific to muscle cells. In this study, the authors have investigated the normal and pathologic tissue distribution of HHF35-positive cells using the avidin-biotin immunoperoxidase method on methacarn-fixed, paraffin-embedded sections of human tissue. In addition to muscle tissues (smooth, skeletal, and cardiac) the antibody localizes to myoepithelium, as well as most of the capsular cells of several parenchymal organs, including liver, kidney, and spleen, with extension of the latter cells into the splenic trabeculaes. In pathologic tissues, the antibody localizes to cells, identified by some investigators as "myofibroblasts," in the stroma of certain tumors, within hyperplastic fibrous tissue responses ("fibromatoses") such as Dupuytren's contracture, and within fibrotic lung tissue. HHF35 also localizes to cells that proliferate within the intima in lesions of atherosclerosis and to a unique population of reactive mesothelial and submesothelial cells. Among tumors, it is positive only on leiomyomas, leiomyosarcomas, and rhabdomyosarcomas, and negative on all nonmuscle sarcomas. This antibody thus shows great potential utility as a diagnostic reagent in various pathologic conditions, most especially in the diagnosis of tumors of muscle origin. Images Figure 1 Figure 2 p392-a Figure 5 Figure 6 Figure 7 Figure 8 p397-a p398-a Figure 13 Figure 14 PMID:3555106

  15. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling

    PubMed Central

    Shabani, Mahdi; Bayat, Ali Ahmad; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Hojjat-Farsangi, Mohammad; Ulivieri, Cristina; Amirghofran, Zahra; Baldari, Cosima Tatiana; Shokri, Fazel

    2014-01-01

    B-cell antigen receptor (BCR) signalling and its regulation through negative and positive regulators are critical for balancing B-cell response and function. Human Fc receptor like-2 (FCRL2), a member of the newly identified FCRL family, could influence B-cell signalling due to possession of both immunoreceptor tyrosine-based activation and inhibitory motifs (ITAM and ITIM). Since the natural ligand of FCRL2 has not been identified, we generated FCRL2-specific monoclonal antibodies (mAbs) and employed them to investigate the influence of FCRL2 stimulation on BCR signalling in an FCRL2-expressing B-cell line. Two anti-FCRL2 mAb-producing hybridoma clones (5A7-E7 and 3D8-G8) were selected. None of the mAbs displayed any cross-reactivity with the other members of the FCRL family including recombinant FCRL1, -3, -4 and -5, as tested by FACS and ELISA techniques. Engagement of the FCRL2 by these mAbs resulted in significant inhibition of BCR signalling mediators such as calcium mobilization and phosphorylation of the mitogen-activated protein kinases Erk, p38 and Jnk. These findings indicate that the FCRL2 ITIM motifs are functional and the anti-FCRL2 mAbs may mimic the natural ligand of FCRL2 by induction of inhibitory signals in B cells. PMID:24797767

  16. A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus

    PubMed Central

    Wu, Ying; Cho, MyungSam; Shore, David; Song, Manki; Choi, JungAh; Jiang, Tao; Deng, Yong-Qiang; Bourgeois, Melissa; Almli, Lynn; Yang, Hua; Chen, Li-Mei; Shi, Yi; Qi, Jianxu; Li, An; Yi, Kye Sook; Chang, MinSeok; Bae, Jin Soo; Lee, HyunJoo; Shin, JiYoung; Stevens, James; Hong, SeoungSuh; Qin, Cheng-Feng; Gao, George F.; Chang, Shin Jae; Donis, Ruben O.

    2015-01-01

    Effective annual influenza vaccination requires frequent changes in vaccine composition due to both antigenic shift for different subtype hemagglutinins (HAs) and antigenic drift in a particular HA. Here we present a broadly neutralizing human monoclonal antibody with an unusual binding modality. The antibody, designated CT149, was isolated from convalescent patients infected with pandemic H1N1 in 2009. CT149 is found to neutralize all tested group 2 and some group 1 influenza A viruses by inhibiting low pH-induced, HA-mediated membrane fusion. It promotes killing of infected cells by Fc-mediated antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. X-ray crystallographic data reveal that CT149 binds primarily to the fusion domain in HA2, and the light chain is also largely involved in binding. The epitope recognized by this antibody comprises amino-acid residues from two adjacent protomers of HA. This binding characteristic of CT149 will provide more information to support the design of more potent influenza vaccines. PMID:26196962

  17. Retinoblastoma protein in human breast carcinoma: immunohistochemical study using a new monoclonal antibody effective on routinely processed tissues.

    PubMed

    Anderson, J J; Tiniakos, D G; McIntosh, G G; Autzen, P; Henry, J A; Thomas, M D; Reed, J; Horne, G M; Lennard, T W; Angus, B; Horne, C H

    1996-09-01

    Cyclic phosphorylation/dephosphorylation of the retinoblastoma gene product (pRB) has been found to play a central role in the progression of the normal cell cycle, through modulation of the activity of the E2F family of transcription factors. Mutations of the retinoblastoma gene have been described in a wide variety of human malignancies including carcinomas of the breast. The present investigation reports the production and application of a new monoclonal antibody in an immunohistochemical study of pRB expression in 233 primary breast carcinomas, allowing an assessment of the contribution made by this tumour suppressor gene to tumour development and progression. Overall, there was loss of pRB expression in 21 per cent of breast tumours. Although high-grade tumours were found to lack detectable pRB more frequently than low-grade tumours, the difference did not prove statistically significant. In addition, pRB immunostaining was not related significantly to relapse or survival. No significant correlations were observed between apparent loss of pRB and tumour size, parity, patient lymph-node status, p53, c-erbB-2, c-jun, EGFR or steroid hormone receptor expression. Preliminary findings, however, did suggest a relationship between pRB expression and response to endocrine therapy.

  18. Protein A radio-assay of H-Y antigen on human leukocytes using mouse and rat antisera and monoclonal antibodies.

    PubMed

    Savikurki, H; Andersson, L C; Wachtel, S S; de la Chapelle, A

    1983-01-01

    The presence of H-Y antigen on human leukocytes was investigated using a protein A radio-assay. H-Y antigen could be demonstrated on male cells using either conventional H-Y antisera produced in mice and rats, or monoclonal H-Y antibodies. With mouse antiserum and IgG-type monoclonal antibody the reaction was male-specific using a single antibody. The reaction obtained with rat antiserum was enhanced by the application of a second antibody (rabbit anti-mouse IgG). This technique provides a rapid, simple, objective, and semiquantitative method for the determination of cellular H-Y antigen, the results being expressed as radioactivity bound to the test cells and thus being independent of human observation. It requires only 10-20 ml of blood and small quantities of antiserum or antibody.

  19. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    SciTech Connect

    Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu; Sugiyama, Kazuo; Sawada, Jun-ichi; Saito, Yoshiro; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  20. [Inhibition of invasion and multiplication of Toxoplasma gondii in human colonic epithelial cells by a monoclonal antibody against protein SAG2].

    PubMed

    Osorio, J C; Sánchez, R M; Iraola, R C; Pérez, J S

    2001-01-01

    By an bromodeoxyuridine (BrdU) incorporation assay, it was proved hat an IgG 1 subclass, murine monoclonal antibody to surface protein SAG2 of Toxoplasma gondii is capable of reducing the invasion and multiplication of the parasites in highly differentiated mucine secretory HT29-18N2 line cells from a human colon adenocarcinoma. This result shows the importance of surface protein SAG2 of T.gondii in invasion and further multiplication of parasites in the host cell.

  1. Detection of kappa and lambda light chain monoclonal proteins in human serum: automated immunoassay versus immunofixation electrophoresis.

    PubMed

    Jaskowski, Troy D; Litwin, Christine M; Hill, Harry R

    2006-02-01

    Recently, turbidimetric immunoassays for detecting and quantifying kappa and lambda free light chains (FLC) have become available and are promoted as being more sensitive than immunofixation electrophoresis (IFE) in detecting FLC monoclonal proteins. In this study, we assessed the ability of these turbidimetric assays to detect serum monoclonal proteins involving both free and heavy-chain-bound kappa and lambda light chains compared to standard immunofixation electrophoresis. Sera demonstrating a restricted band of protein migration (other than a definite M spike) by serum protein electrophoresis (SPE), which may represent early monoclonal proteins, were also examined. When compared to IFE, percent agreement, sensitivity, and specificity for the kappa-FLC and lambda-FLC were 94.6, 72.9, and 99.5% and 98.5, 91.4, and 99.7%, respectively, in detecting monoclonal proteins involving free and heavy-chain-bound light chains. The majority of sera (73.7%) demonstrating a restricted band of protein migration on SPE demonstrated abnormal IFE patterns suggestive of multiple myeloma or monoclonal gammopathy of unknown significance, but gave normal kappa/lambda FLC ratios using the turbidimetric immunoassays. In conclusion, the kappa and lambda FLC assays are significantly less sensitive (72.9 to 91.4%) than IFE, but specific in detecting serum monoclonal proteins. Moreover, the kappa/lambda ratio has little value in routine screening since the majority of sera with abnormal IFE patterns had normal kappa/lambda FLC ratios.

  2. Human cartilage chitinase 3-like protein 2: cloning, expression, and production of polyclonal and monoclonal antibodies for osteoarthritis detection and identification of potential binding partners.

    PubMed

    Ranok, Araya; Khunkaewla, Panida; Suginta, Wipa

    2013-10-01

    Human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39) is a member of family-18 glycosyl hydrolases that lacks chitinase activity. YKL-39 is known as a potential marker for the activation of chondrocytes and the progression of osteoarthritis. In this study, we cloned and expressed a functional form of human YKL-39 in the bacterial system. The Escherichia coli expressed YKL-30 was used as immugen for production of anti YKL-39 polyclonal and monoclonal antibodies. Both antibody types were highly selective, reacting only with YKL-39. Isotype mapping identified two hybridoma clones (so called clones 6H11 and 8H3) to be IgM isotype. Dot blot assay showed that the monoclonal antibody was strongly active with the synovial fluid of an osteoarthritis patient, human monocyte, and T lymphocyte cell lines. Database search for protein binding partners gave high hits with several glycoproteins that play particular roles in cartilage tissue scaffolding, connective tissue formation, and cell-cell interactions. In conclusion, anti YKL-39 polyclonal and monoclonal antibodies were raised and tested to be suitable for immunological applications, such as the investigation of the YKL-39 regulating pathway and the development of an immunosensing tool for sensitive detection of cartilage tissue destruction.

  3. A protein-conjugate approach to develop a monoclonal antibody-based antigen detection test for the diagnosis of human brucellosis.

    PubMed

    Patra, Kailash P; Saito, Mayuko; Atluri, Vidya L; Rolán, Hortensia G; Young, Briana; Kerrinnes, Tobias; Smits, Henk; Ricaldi, Jessica N; Gotuzzo, Eduardo; Gilman, Robert H; Tsolis, Renee M; Vinetz, Joseph M

    2014-06-01

    Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10) of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8) used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases.

  4. Definition of glomerular antigens by monoclonal antibodies produced against a human glomerular membrane fraction.

    PubMed

    Neale, T J; Callus, M S; Donovan, L C; Baird, H

    1990-10-01

    Experimental animal models of glomerulonephritis (GN) produced by direct antibody binding to non-basement membrane glomerular capillary wall antigens do not to date have human parallels. To examine the potential for this form of humoral glomerular injury in man, we sought to define discrete human non-GBM glomerular antigenic targets using hybridoma technology. Mice were immunised intraperitoneally with 20-100 micrograms of a human glomerular membrane fraction (HGMF). Six fusions have yielded 12 stable reagents defined by positive glomerular indirect immunofluorescence (IF) and microELISA using HGMF as the screening antigen. Subclass analysis of ascitic McAbs indicated several IgG1, one IgG2b, and three IgM reagents. Distinctive IF patterns of reactivity with epithelial, endothelial or mesangial structures have been observed, with or without peritubular capillary, tubular basement membrane and vessel wall reactivity. Seven normal non-renal human organs and the kidneys of rat, rabbit and sheep have shown patterns characteristic of each individual McAb, restricted to human or with species cross reactivity. To partially characterise McAb-reactive antigens, detergent-solubilised renal cortex and collagenase-solubilised GBM (CS-GBM) extracts have been probed by immunoblot. A unique McAb 7-5Q, reactive with glomerular and tubular epithelial structures, binds major bands of approximately 107 KD and 93 KD in detergent solubilised cortex and a single band of similar size by immunoprecipitation (110 KD). 5-3A (a human-restricted linear-reacting McAb) binds bands of 20-200 KD (major band 58 KD) in CS-GBM. In conclusion, distinct species-restricted and more broadly disposed glomerular epitopes are definable in man by McAbs and are potential targets for humoral injury. Purification of these antigens will allow assay for circulating putative nephritogenic auto-antibody and potentially, McAbs may be useful in screening urine for evidence of occult structural renal disease.

  5. Human Monoclonal Antibody 81.39a Effectively Neutralizes Emerging Influenza A Viruses of Group 1 and 2 Hemagglutinins

    PubMed Central

    Marjuki, Henju; Mishin, Vasiliy P.; Chai, Ning; Tan, Man-Wah; Newton, Elizabeth M.; Tegeris, John; Erlandson, Karl; Willis, Melissa; Jones, Joyce; Davis, Todd; Stevens, James

    2016-01-01

    ABSTRACT The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC50) of <0.01 to 4.9 μg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 μg/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 μg/ml; they shared the substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel

  6. Human Monoclonal Antibodies against Clostridium difficile Toxins A and B Inhibit Inflammatory and Histologic Responses to the Toxins in Human Colon and Peripheral Blood Monocytes

    PubMed Central

    Koon, Hon Wai; Shih, David Q.; Hing, Tressia C.; Yoo, Jun Hwan; Ho, Samantha; Chen, Xinhua; Kelly, Ciarán P.; Targan, Stephan R.

    2013-01-01

    Clostridium difficile infection (CDI) is a common and debilitating nosocomial infection with high morbidity and mortality. C. difficile mediates diarrhea and colitis by releasing two toxins, toxin A and toxin B. Since both toxins stimulate proinflammatory signaling pathways in human colonocytes and both are involved in the pathophysiology of CDI, neutralization of toxin A and B activities may represent an important therapeutic approach against CDI. Recent studies indicated that human monoclonal antibodies (MAbs) against toxins A and B reduce their cytotoxic and secretory activities and prevent CDI in hamsters. Moreover, anti-toxin A and anti-toxin B MAbs together with antibiotics also effectively reduced recurrent CDI in humans. However, whether these MAbs neutralize toxin A- and toxin B-associated immune responses in human colonic mucosa or human peripheral blood monocyte cells (PBMCs) has never been examined. We used fresh human colonic biopsy specimens and peripheral blood monocytes to evaluate the effects of these antibodies against toxin A- and B-associated cytokine release, proinflammatory signaling, and histologic damage. Incubation of anti-toxin A (MK3415) or anti-toxin B (MK6072) MAbs with human PBMCs significantly inhibited toxin A- and toxin B-mediated tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) expression. MK3415 and MK6072 also diminished toxin A- and toxin B-mediated NF-κB p65 phosphorylation in human monocytes, respectively, and significantly reduced toxin A- and B-induced TNF-α and IL-1β expression as well as histologic damage in human colonic explants. Our results underline the effectiveness of MK3415 and MK6072 in blocking C. difficile toxin A- and toxin B-mediated inflammatory responses and histologic damage. PMID:23629713

  7. The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation.

    PubMed Central

    Moreno, C; Mehlert, A; Lamb, J

    1988-01-01

    Lipoarabinomannan from Mycobacterium tuberculosis was able to inhibit antigen induced T cell proliferation of human CD4+ T cell clones specific for influenza virus. The inhibitory effect was also present when peripheral human T cells were stimulated with crude mycobacterial antigen extracts. Non-specific T cell stimulation, i.e. IL-2, PHA and anti-CD3 antibodies coupled to beads, was not affected. The inhibitory property was also found when arabinomannan and arabinogalactan of mycobacterial origin were tested but not with other unrelated polysaccharides used as controls. The effect appears to be related to the processing of the antigen by the antigen-presenting cells, since it was evident when T cell clones were stimulated with whole virus, whereas stimulation with a synthetic peptide containing the relevant epitope was not inhibitable. PMID:3147152

  8. Anti-human fibroblast growth factor-21 monoclonal antibody preparation, characterization and analysis of in vitro bioactivity

    PubMed Central

    Ding, Liangjun; Hao, Zhichao; Yuan, Qingyan; Xu, Pengfei; Yu, Yinhang; Li, Deshan

    2016-01-01

    Human fibroblast growth factor 21 (hFGF-21) is involved in numerous metabolic processes and elevated hFGF-21 levels are associated with many metabolic diseases. However, the role hFGF-21 serves in the metabolic system is not fully understood. A humanized anti-hFGF-21 monoclonal antibody (mAb) would provide a novel method for further investigations into the role hFGF-21 serves in the metabolic system and related diseases, which may reveal therapeutic targets for future treatment of these diseases. The present study aimed to prepare an anti-hFGF-21 mAb, followed by identification of its characteristics and bioactivity in vitro. The results of the present study identified that the anti-hFGF-21 mAb (clone 2D8) produced had good specificity, had an immunoglobulin isotype of IgG2b and a titer of 1:1.024×106. hFGF-21 was screened for epitopes using fluorescence-activated cell sorting, which revealed a specific 15 amino acid sequence (YQSEAHGLPLHLPGN) that the anti-hFGF-21 mAb recognized. In vitro bioactivity of anti-hFGF-21 was determined using a glucose uptake assay and by measuring the expression of glucose transporter 1 (GLUT1) messenger RNA (mRNA) in 3T3-L1 adipocytes. This revealed that hFGF-21-dependent glucose uptake and GLUT1 mRNA expression were negatively correlated with increasing levels of the anti-hFGF-21 mAb tested, and that hFGF-21 activity could be overcome by increasing concentrations of the mAb, demonstrating that the mAb has hFGF-21-neutralizing activity in vitro. PMID:27882173

  9. Antigenic features of human follicle stimulating hormone delineated by monoclonal antibodies and construction of an immunoradiomometric assay

    SciTech Connect

    Berger, P.; Panmoung, W.; Khaschabi, D.; Mayregger, B.; Wick, G.

    1988-11-01

    The characterization of human (h) FSH with 181 monoclonal antibodies (MCA) allowed the elucidation of its antigenic topography. One- and two-site, limited as well as excess reagent type radioimmuno- and enzymoimmunoassays revealed three main categories of MCA molecular binding specificities; two thirds of all antibodies were directed against the alpha-subunit and one fourth toward the beta-chain, and less than one tenth recognized the conformationally (c) intact holohormone. With high frequency immunization schedules these specificities were shifted toward a higher proportion of beta-MCA. On the basis of intra- and interspecies cross-reaction studies as well as epitope contiguity analyses by sandwich assays, the three main categories could be further subdivided into nine epitopes: 1) five epitopes associated with the alpha-subunit, two of which were suprisingly shared by other species, and two being iodination sensitive, 2) two evolutionary conserved structures on the beta-subunit, adjacent to each other, and 3) two c-determinants, one of these present also on hTSH. The epitopes were arranged in three major antigenic domains, which seems to be a common homologous construction principle of the four human glycoprotein hormones: a central domain, consisting of three identically arranged alpha- and similarly located c-epitopes, is flanked by a single spatially distinct domain on each subunit. The establishment of an epitope map was followed by the construction of an immunoradiometric assay with a sensitivity of 0.25 ng hFSH/ml and an apparent cross-reactivity vs. hLH, hTSH, and hCG of less than 1%.

  10. Anti-human HB-EGF monoclonal antibodies inhibiting ectodomain shedding of HB-EGF and diphtheria toxin binding.

    PubMed

    Hamaoka, Miki; Chinen, Ichino; Murata, Takuya; Takashima, Seiji; Iwamoto, Ryo; Mekada, Eisuke

    2010-07-01

    HB-EGF is a member of the EGF family of growth factors that bind and activate the EGF receptor. HB-EGF is synthesized as a membrane-anchored protein (proHB-EGF), and then proteolytically cleaved, resulting in the mitogenically active soluble form. ProHB-EGF functions as the receptor for the diphtheria toxin (DT). HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Monoclonal antibodies (mAbs) specific for HB-EGF could be an important tool in HB-EGF research. However, few such mAbs have been established to date. In this study, we newly generated seven clones of hybridoma-derived mAbs by immunizing HB-EGF null mice with recombinant human HB-EGF protein. All mAbs specifically bound to human HB-EGF but not to mouse HB-EGF. Epitope mapping analysis showed that most of the mAbs recognized the EGF-like domain. Although none of the newly isolated mAbs directly inhibited the mitogenic activity of HB-EGF for EGFR-expressing cells, some strongly inhibited DT-binding. Interestingly, some of the mAbs efficiently inhibited ectodomain shedding of proHB-EGF, and consequently prevented the cell growth of the EGFR-expressing cells in a co-culture system with proHB-EGF-expressing cells. Hence, these new anti-HB-EGF mAbs may advance clinical as well as basic research on HB-EGF.

  11. Monoclonal Antibodies.

    PubMed

    Geskin, Larisa J

    2015-10-01

    Use of monoclonal antibodies (mAbs) has revolutionized cancer therapy. Approaches targeting specific cellular targets on the malignant cells and in tumor microenvironment have been proved to be successful in hematologic malignancies, including cutaneous lymphomas. mAb-based therapy for cutaneous T-cell lymphoma has demonstrated high response rates and a favorable toxicity profile in clinical trials. Several antibodies and antibody-based conjugates are approved for use in clinical practice, and many more are in ongoing and planned clinical trials. In addition, these safe and effective drugs can be used as pillars for sequential therapies in a rational stepwise manner.

  12. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1

    PubMed Central

    Maskus, Dominika J.; Królik, Michał; Bethke, Susanne; Spiegel, Holger; Kapelski, Stephanie; Seidel, Melanie; Addai-Mensah, Otchere; Reimann, Andreas; Klockenbring, Torsten; Barth, Stefan; Fischer, Rainer; Fendel, Rolf

    2016-01-01

    Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106–135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml–37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications. PMID:28000709

  13. Characterization of fertilization-blocking monoclonal antibody 1G12 with human sperm-immobilizing activity

    PubMed Central

    KOMORI, S; KAMEDA, K; SAKATA, K; HASEGAWA, A; TOJI, H; TSUJI, Y; SHIBAHARA, H; KOYAMA, K; ISOJIMA, S

    1997-01-01

    A mouse hybridoma (1G12) producing sperm-immobilizing MoAb to human sperm was established and characterized in order to study the antigens relevant to sperm immobilization by antibodies. MoAb 1G12 had strong sperm-immobilizing and agglutinating activities and also showed a fertilization-blocking activity on in vitro fertilization tests. The antibody absorption experiments showed that MoAb 1G12 reacted not only to ejaculated sperm but also human seminal plasma, suggesting that the corresponding antigen might be a sperm coating antigen. The MoAb also reacted with peripheral blood lymphocytes. In histochemical studies, the epithelia of corpus epididymis were most strongly stained. Ejaculated sperm were stained with a granular pattern for their entire surface by immunofluorescence. MoAb 1G12 recognized polymorphic glycoproteins of 15–25 kD in the ejaculated sperm extract in Western blot analysis. After deglycosilation of the sperm extract, only a single staining band of under 15 kD was detected by MoAb 1G12. This suggests that the antigen epitope recognized by MoAb 1G12 might be a peptide of the core portion of the glycoprotein. MoAb 1G12 might be a useful tool for studying the mechanism of egg–sperm interaction, and also be applied to identifying the corresponding antigen by using gene technology. PMID:9328135

  14. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1.

    PubMed

    Maskus, Dominika J; Królik, Michał; Bethke, Susanne; Spiegel, Holger; Kapelski, Stephanie; Seidel, Melanie; Addai-Mensah, Otchere; Reimann, Andreas; Klockenbring, Torsten; Barth, Stefan; Fischer, Rainer; Fendel, Rolf

    2016-12-21

    Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.

  15. A monoclonal antibody against the human SUMO-1 protein obtained by immunization with recombinant protein and CpG-DNA-liposome complex.

    PubMed

    Kim, Dongbum; Lee, Joo Young; Song, Dae-Geun; Kwon, Sanghoon; Lee, Younghee; Pan, Cheol-Ho; Kwon, Hyung-Joo

    2013-10-01

    Post-translational modification regulated by conjugation of a small ubiquitin-like modifier (SUMO) is involved in various cellular processes. In this study, we expressed and purified recombinant human SUMO-1 (hSUMO-1). BALB/c mice were immunized with a complex of hSUMO-1 protein and Lipoplex(O) to produce hSUMO-1-specific antibodies. Using conventional hybridoma technology, we obtained four hybridoma clones derived from the mouse with the highest antibody titer against hSUMO-1. Based on Western blot analysis, our hSUMO-1 monoclonal antibody specifically recognizes hSUMO-1, but not other SUMO proteins. These results support that the anti-hSUMO-1 monoclonal antibody produced with the aid of Lipoplex(O) adjuvant is specific and that Lipoplex(O) is useful for development of monoclonal antibodies against recombinant protein. In addition, we analyzed human tissues to examine the distribution of hSUMO-1. Higher expression of hSUMO-1 was detected in normal adrenal gland, esophagus, pancreas, liver, stomach, kidney, and uterus than in corresponding cancer tissues, suggesting a tumor suppressive function of hSUMO-1.

  16. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies.

    PubMed

    Avery, Lindsay B; Wang, Mengmeng; Kavosi, Mania S; Joyce, Alison; Kurz, Jeffrey C; Fan, Yao-Yun; Dowty, Martin E; Zhang, Minlei; Zhang, Yiqun; Cheng, Aili; Hua, Fei; Jones, Hannah M; Neubert, Hendrik; Polzer, Robert J; O'Hara, Denise M

    2016-01-01

    Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r(2) = 0.83, r = 0.91, p < 0.01) better than NHP (r(2) = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic.

  17. A Synthetic Glycopeptide Vaccine for the Induction of a Monoclonal Antibody that Differentiates between Normal and Tumor Mammary Cells and Enables the Diagnosis of Human Pancreatic Cancer.

    PubMed

    Palitzsch, Björn; Gaidzik, Nikola; Stergiou, Natascha; Stahn, Sonja; Hartmann, Sebastian; Gerlitzki, Bastian; Teusch, Nicole; Flemming, Peer; Schmitt, Edgar; Kunz, Horst

    2016-02-18

    In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor-associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor-associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor-associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1-glycopeptide vaccines and analyzed their structure-activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.

  18. Study of rat kidney transamidinase structure and regulation with monoclonal antibodies and the purification and characterization of human kidney transamidinase

    SciTech Connect

    Gross, M.D.

    1985-01-01

    The isolation of monoclonal antibodies to transamidinase made possible the development of an immunosorbent inhibition assay for transamidinase protein using a /sup 125/I-labeled monoclonal antibody. This assay is a more direct measurement of transamidinase protein than the determination of the amount of polyclonal antibody required to precipitate the transamidinase activities. Rats were fed diets supplemented with creatine and/or glycine, and the amounts of transamidinase protein were determined with the assay using the monoclonal antibody. The transamidinase activities of kidneys from the rats fed the various supplemented diets ranged from 10 to 40% of the control values, whereas, the amounts of transamidinase protein were, in all instances no lower than 66% of the control values. Purified homogeneous rat kidney transamidinase and rat kidney supernatants were subjected to isoelectric focussing and four to five fractions of the enzyme were obtained. Polyclonal antibodies, but not the monoclonal antibodies were found by Western blotting experiments to recognize all the forms of the enzyme obtained by the isoelectric focussing. The author concluded that the monoclonal antibodies recognized forms of the enzyme that changed very little in amount, relative to the alterations in enzyme activities, when rats were fed a diet containing creatine.

  19. High avidity chimeric monoclonal antibodies against the extracellular domains of human aquaporin‐4 competing with the neuromyelitis optica autoantibody, NMO‐IgG

    PubMed Central

    Miyazaki‐Komine, Kaori; Takai, Yoshiki; Huang, Ping; Kusano‐Arai, Osamu; Iwanari, Hiroko; Misu, Tatsuro; Koda, Katsushi; Mitomo, Katsuyuki; Sakihama, Toshiko; Toyama, Yoshiaki; Fujihara, Kazuo; Hamakubo, Takao; Yasui, Masato

    2015-01-01

    Background and Purpose Most of the cases of neuromyelitis optica (NMO) are characterized by the presence of an autoantibody, NMO‐IgG, which recognizes the extracellular domains of the water channel, aquaporin‐4. Binding of NMO‐IgG to aquaporin‐4 expressed in end‐feet of astrocytes leads to complement‐dependent disruption of astrocytes followed by demyelination. One therapeutic option for NMO is to prevent the binding of NMO‐IgG to aquaporin‐4, using high‐avidity, non‐pathogenic–chimeric, monoclonal antibodies to this water channel. We describe here the development of such antibodies. Experimental Approach cDNAs encoding variable regions of heavy and light chains of monoclonal antibodies against the extracellular domains of human aquaporin‐4 were cloned from hybridoma total RNA and fused to those encoding constant regions of human IgG1 and Igκ respectively. Then mammalian expression vectors were constructed to establish stable cell lines secreting mature chimeric antibodies. Key Results Original monoclonal antibodies showed high avidity binding to human aquaporin‐4, as determined by ELISA. Live imaging using Alexa‐Fluor‐555‐labelled antibodies revealed that the antibody D15107 more rapidly bound to cells expressing human aquaporin‐4 than others and strongly enhanced endocytosis of this water channel, while D12092 also bound rapidly to human aquaporin‐4 but enhanced endocytosis to a lesser degree. Chimeric D15107 prevented complement‐dependent cytotoxicity induced by NMO‐IgG from patient sera in vitro. Conclusions and Implications We have established non‐pathogenic, high‐avidity, chimeric antibodies against the extracellular domains of human aquaporin‐4, which provide a novel therapeutic option for preventing the progress and recurrence of NMO/NMO spectrum disorders. PMID:26398585

  20. Identification of the Single Immunodominant Region of the Native Human CC Chemokine Receptor 6 Recognized by Mouse Monoclonal Antibodies.

    PubMed

    Dorgham, Karim; Dejou, Cécile; Piesse, Christophe; Gorochov, Guy; Pène, Jérôme; Yssel, Hans

    2016-01-01

    Chemokines and their receptors play an important role in cell trafficking and recruitment. The CCR6 chemokine receptor, selectively expressed on leukocyte populations, has been shown to play a deleterious role in the pathogenesis of various chronic inflammatory diseases and, as such, may constitute a prime target in the development of immunotherapeutic treatment. However, to date no neutralizing mouse monoclonal antibodies (mAbs) specific for this chemokine receptor have been reported, whereas information on small molecules capable of interfering with the interaction of CCR6 and its ligands is scant. Here, we report the failure to generate neutralizing mouse mAbs specific for human (hu)CCR6. Immunization of mice with peptides mimicking extracellular domains, potentially involved in CCR6 function, failed to induce Abs reactive with the native receptor. Although the use of NIH-3T3 cells expressing huCCR6 resulted in the isolation of mAbs specific for this receptor, they were not able to block the interaction between huCCR6 and huCCL20. Investigation of the anti-huCCR6 mAbs generated in the present study, as well as those commercially available, show that all mAbs invariably recognize a unique, non-neutralizing, immunodominant region in the first part of its N-terminal domain. Together, these results indicate that the generation of potential neutralizing anti-huCCR6 mAbs in the mouse is unlikely to succeed and that alternative techniques, such as the use of other animal species for immunization, might constitute a better approach to generate such a potentially therapeutic tool for the treatment of inflammatory disease.

  1. Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis.

    PubMed

    Zheng, Ji Yun; Tan, Heng Liang; Matsudaira, Paul Thomas; Choo, Andre

    2017-03-01

    Antibody-mediated cell killing has significantly facilitated the elimination of undesired cells in therapeutic applications. Besides the well-known Fc-dependent mechanisms, pathways of antibody-induced apoptosis were also extensively studied. However, with fewer studies reporting the ability of antibodies to evoke an alternative form of programmed cell death, oncosis, the molecular mechanism of antibody-mediated oncosis remains underinvestigated. In this study, a monoclonal antibody (mAb), TAG-A1 (A1), was generated to selectively kill residual undifferentiated human embryonic stem cells (hESC) so as to prevent teratoma formation upon transplantation of hESC-derived products. We revealed that A1 induces hESC death via oncosis. Aided with high-resolution scanning electron microscopy (SEM), we uncovered nanoscale morphological changes in A1-induced hESC oncosis, as well as A1 distribution on hESC surface. A1 induces hESC oncosis via binding-initiated signaling cascade, most likely by ligating receptors on surface microvilli. The ability to evoke excess reactive oxygen species (ROS) production via the Nox2 isoform of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is critical in the cell death pathway. Excess ROS production occurs downstream of microvilli degradation and homotypic adhesion, but upstream of actin reorganization, plasma membrane damage and mitochondrial membrane permeabilization. To our knowledge, this is the first mechanistic model of mAb-induced oncosis on hESC revealing a previously unrecognized role for NAPDH oxidase-derived ROS in mediating oncotic hESC death. These findings in the cell death pathway may potentially be exploited to improve the efficiency of A1 in eliminating undifferentiated hESC and to provide insights into the study of other mAb-induced cell death.

  2. Development of Monoclonal Antibodies to Human Microsomal Epoxide Hydrolase and Analysis of “Preneoplastic Antigen”-Like Molecules

    PubMed Central

    Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu; Sugiyama, Kazuo; Sawada, Jun-ichi; Saito, Yoshiro; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-01-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one, anti-C-terminal; one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. PMID:22310175

  3. Human polyreactive IgM monoclonal antibodies with blocking activity against self-reactive IgG.

    PubMed

    Melero, J; Tarragó, D; Núñez-Roldán, A; Sánchez, B

    1997-04-01

    Natural IgM antibodies have been found to be involved in the control of IgG reactivity in normal serum. The authors investigated the blocking activity of four human IgM monoclonal antibodies (BY-2, BY-7, BY-10 and IRM-7) derived from B-cells from blood samples of three renal dialysis patients, which had shown multispecific properties similar to those observed for natural polyreactive autoantibodies. To achieve this, competitive inhibition assays were performed with these MoAbs on the binding of IgG purified from a healthy control, three patients with SLE, and two patients with autoimmune thyroiditis, to histone, dsDNA, RNP and thyroglobulin. MoAbs inhibited binding of self-reactive IgG to histone and dsDNA, but not to thyroglobulin or RNP, of natural and active or inactive phase disease-associated autoreactive IgG. The inhibitory effect of the MoAbs was mediated by V-region dependent interactions with autoreactive IgG, as shown by the ability of these MoAbs to block the binding of F(ab')2 fragments of autoreactive IgG to antigens (histone and dsDNA). The blocking of autoantibody activity was dose-dependent with maximal inhibition occurring at a specific molar ratio between the patient's IgG and a given MoAb. In contrast, MoAbs did not inhibit binding of IgG alloantibodies present in the sera of four polytransfused renal dialysis patients to target antigens on the surface of different cells. These results support the concept of a functional idiotypic network regulating autoimmune responses, and suggest that the IgM MoAbs under study may be natural polyreactive antibodies belonging to the physiological network of autoantibodies with highly connected V-regions, capable of binding and functionally neutralizing V-regions of natural and pathologic autoantibodies.

  4. Two distinct antigen systems in human B lymphocytes: identification of cell surface and intracellular antigens using monoclonal antibodies.

    PubMed Central

    Ishii, Y; Takami, T; Yuasa, H; Takei, T; Kikuchi, K

    1984-01-01

    Two distinct antigen systems (L26 and L27) specifically expressed in human B lymphocytes were identified using TB2-2B3 (2B3) and T3-5B3 (5B3) monoclonal antibodies, respectively. Whereas L26 antigen defined by 2B3 were rarely expressed on the surface of B cells but abundant in the cytoplasm, 127 antigens detected by 5B3 was clearly expressed on the cell surface. These two antigens appeared to be restricted in their expression to B cells, as they were found in most B cells but not other cell types including thymocytes, T cells, monocytes and granulocytes. Functional studies demonstrated that L27 was more easily lost from B cells after activation with pokeweed mitogen than was L26. Likewise, plasma cell myeloma, as well as normal plasma cells, was devoid of both L26 and L27, whereas immunoblastic sarcoma of B cell type expressed L26 but not L27. These two antigens co-existed in the same B cell lines including Epstein-Barr virus transformed B cell lines, B cell type acute lymphatic leukaemia (B-ALL) cell line, Burkitt's lymphoma cell lines and myeloma cell lines, but pre-B and common ALL cell lines were entirely negative for both L26 and L27. Immunoprecipitation studies showed that L26 consisted of at least two polypeptide chains with molecular weights of 30K and 33K daltons, which were clearly distinct from HLA-DR antigens. The antigen L27 is presently under study. Images Fig. 2 Fig. 3 PMID:6332692

  5. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design.

  6. Evaluating the conformation of recombinant domain I of β(2)-glycoprotein I and its interaction with human monoclonal antibodies.

    PubMed

    Pericleous, Charis; Miles, Jennifer; Esposito, Diego; Garza-Garcia, Acely; Driscoll, Paul C; Lambrianides, Anastasia; Latchman, David; Isenberg, David; Rahman, Anisur; Ioannou, Yiannis; Giles, Ian

    2011-10-01

    Pathogenic antiphospholipid antibodies (aPL) cause the antiphospholipid syndrome (APS) by interacting with domain I (DI) of beta-2-glycoprotein I (β(2)GPI). The aPL/β(2)GPI complex then exerts pathogenic effects on target cells. We previously described periplasmic bacterial expression of native and mutated variants of DI, and reported the presence of immunodominant epitopes at positions 8-9 (D8/D9) and position 39 (R39). Mutations at these positions strongly influenced the ability of recombinant DI to bind patient-derived IgG aPL and to inhibit pathogenic effects of these aPL in a mouse model of APS. We now describe an improved cytoplasmic bacterial expression system allowing higher yield of DI. We demonstrate that the nuclear magnetic resonance (NMR) spectra of a (15)N,(13)C-isotope-labelled sample of the recombinant DI protein exhibit properties consistent with the structure of DI in crystal structure of intact β(2)GPI. Mutations at D8/D9 and R39 had limited impact on the NMR spectrum of DI indicating maintenance of the overall fold of the DI domain. We investigated interactions between five variants of DI and ten monoclonal human IgG antibodies, all derived from the IgG aPL antibody IS4 by sequence manipulation and in vitro expression. Arginine residues at positions 100 and 100g in IS4V(H) CDR3 play a particularly important role in binding to DI, but this is unlikely to be due to electrostatic interactions with negatively charged amino acids on DI. Both the strength of binding to DI and the ability to discriminate different DI variants varies between the different IgG antibodies tested. There was no simple relationship between these binding properties and antibody pathogenicity.

  7. Identification of the Single Immunodominant Region of the Native Human CC Chemokine Receptor 6 Recognized by Mouse Monoclonal Antibodies

    PubMed Central

    Dorgham, Karim; Dejou, Cécile; Piesse, Christophe; Gorochov, Guy; Pène, Jérôme

    2016-01-01

    Chemokines and their receptors play an important role in cell trafficking and recruitment. The CCR6 chemokine receptor, selectively expressed on leukocyte populations, has been shown to play a deleterious role in the pathogenesis of various chronic inflammatory diseases and, as such, may constitute a prime target in the development of immunotherapeutic treatment. However, to date no neutralizing mouse monoclonal antibodies (mAbs) specific for this chemokine receptor have been reported, whereas information on small molecules capable of interfering with the interaction of CCR6 and its ligands is scant. Here, we report the failure to generate neutralizing mouse mAbs specific for human (hu)CCR6. Immunization of mice with peptides mimicking extracellular domains, potentially involved in CCR6 function, failed to induce Abs reactive with the native receptor. Although the use of NIH-3T3 cells expressing huCCR6 resulted in the isolation of mAbs specific for this receptor, they were not able to block the interaction between huCCR6 and huCCL20. Investigation of the anti-huCCR6 mAbs generated in the present study, as well as those commercially available, show that all mAbs invariably recognize a unique, non-neutralizing, immunodominant region in the first part of its N-terminal domain. Together, these results indicate that the generation of potential neutralizing anti-huCCR6 mAbs in the mouse is unlikely to succeed and that alternative techniques, such as the use of other animal species for immunization, might constitute a better approach to generate such a potentially therapeutic tool for the treatment of inflammatory disease. PMID:27336468

  8. A model-based meta-analysis of monoclonal antibody pharmacokinetics to guide optimal first-in-human study design.

    PubMed

    Davda, Jasmine P; Dodds, Michael G; Gibbs, Megan A; Wisdom, Wendy; Gibbs, John

    2014-01-01

    The objectives of this retrospective analysis were (1) to characterize the population pharmacokinetics (popPK) of four different monoclonal antibodies (mAbs) in a combined analysis of individual data collected during first-in-human (FIH) studies and (2) to provide a scientific rationale for prospective design of FIH studies with mAbs. The data set was composed of 171 subjects contributing a total of 2716 mAb serum concentrations, following intravenous (IV) and subcutaneous (SC) doses. mAb PK was described by an open 2-compartment model with first-order elimination from the central compartment and a depot compartment with first-order absorption. Parameter values obtained from the popPK model were further used to generate optimal sampling times for a single dose study. A robust fit to the combined data from four mAbs was obtained using the 2-compartment model. Population parameter estimates for systemic clearance and central volume of distribution were 0.20 L/day and 3.6 L with intersubject variability of 31% and 34%, respectively. The random residual error was 14%. Differences (> 2-fold) in PK parameters were not apparent across mAbs. Rich designs (22 samples/subject), minimal designs for popPK (5 samples/subject), and optimal designs for non-compartmental analysis (NCA) and popPK (10 samples/subject) were examined by stochastic simulation and estimation. Single-dose PK studies for linear mAbs executed using the optimal designs are expected to yield high-quality model estimates, and accurate capture of NCA estimations. This model-based meta-analysis has determined typical popPK values for four mAbs with linear elimination and enabled prospective optimization of FIH study designs, potentially improving the efficiency of FIH studies for this class of therapeutics.

  9. Energy of adhesion of human T cells to adsorption layers of monoclonal antibodies measured by a film trapping technique.

    PubMed Central

    Ivanov, I B; Hadjiiski, A; Denkov, N D; Gurkov, T D; Kralchevsky, P A; Koyasu, S

    1998-01-01

    A novel method for studying the interaction of biological cells with interfaces (e.g., adsorption monolayers of antibodies) is developed. The method is called the film trapping technique because the cell is trapped within an aqueous film of equilibrium thickness smaller than the cell diameter. A liquid film of uneven thickness is formed around the trapped cell. When observed in reflected monochromatic light, this film exhibits an interference pattern of concentric bright and dark fringes. From the radii of the fringes one can restore the shape of interfaces and the cell. Furthermore, one can calculate the adhesive energy between the cell membrane and the aqueous film surface (which is covered by a layer of adsorbed proteins and/or specific ligands), as well as the disjoining pressure, representing the force of interaction per unit area of the latter film. The method is applied to two human T cell lines: Jurkat and its T cell receptor negative (TCR-) derivative. The interaction of these cells with monolayers of three different monoclonal antibodies adsorbed at a water-air interface is studied. The results show that the adhesive energy is considerable (above 0.5 mJ/m2) when the adsorption monolayer contains antibodies acting as specific ligands for the receptors expressed on the cell surface. In contrast, the adhesive energy is close to zero in the absence of such a specific ligand-receptor interaction. In principle, the method can be applied to the study of the interaction of a variety of biological cells (B cells, natural killer cells, red blood cells, etc.) with adsorption monolayers of various biologically active molecules. In particular, film trapping provides a tool for the gentle micromanipulation of cells and for monitoring of processes (say the activation of a T lymphocyte) occurring at the single-cell level. PMID:9649417

  10. A broadly neutralizing human monoclonal antibody is effective against H7N9

    PubMed Central

    Tharakaraman, Kannan; Subramanian, Vidya; Viswanathan, Karthik; Sloan, Susan; Yen, Hui-Ling; Barnard, Dale L.; Leung, Y. H. Connie; Szretter, Kristy J.; Koch, Tyree J.; Delaney, James C.; Babcock, Gregory J.; Wogan, Gerald N.; Sasisekharan, Ram; Shriver, Zachary

    2015-01-01

    Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (−24 h) or double-dose (−12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (−12 h) combined with oseltamivir at 50 mg/kg (−12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains. PMID:26283346

  11. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants.

    PubMed

    Ma, Julian K-C; Drossard, Jürgen; Lewis, David; Altmann, Friedrich; Boyle, Julia; Christou, Paul; Cole, Tom; Dale, Philip; van Dolleweerd, Craig J; Isitt, Valerie; Katinger, Dietmar; Lobedan, Martin; Mertens, Hubert; Paul, Mathew J; Rademacher, Thomas; Sack, Markus; Hundleby, Penelope A C; Stiegler, Gabriela; Stoger, Eva; Twyman, Richard M; Vcelar, Brigitta; Fischer, Rainer

    2015-10-01

    Although plant biotechnology has been widely investigated for the production of clinical-grade monoclonal antibodies, no antibody products derived from transgenic plants have yet been approved by pharmaceutical regulators for clinical testing. In the Pharma-Planta project, the HIV-neutralizing human monoclonal antibody 2G12 was expressed in transgenic tobacco (Nicotiana tabacum). The scientific, technical and regulatory demands of good manufacturing practice (GMP) were addressed by comprehensive molecular characterization of the transgene locus, confirmation of genetic and phenotypic stability over several generations of transgenic plants, and by establishing standard operating procedures for the creation of a master seed bank, plant cultivation, harvest, initial processing, downstream processing and purification. The project developed specifications for the plant-derived antibody (P2G12) as an active pharmaceutical ingredient (API) based on (i) the guidelines for the manufacture of monoclonal antibodies in cell culture systems; (ii) the draft European Medicines Agency Points to Consider document on quality requirements for APIs produced in transgenic plants; and (iii) de novo guidelines developed with European national regulators. From the resulting process, a GMP manufacturing authorization was issued by the competent authority in Germany for transgenic plant-derived monoclonal antibodies for use in a phase I clinical evaluation. Following preclinical evaluation and ethical approval, a clinical trial application was accepted by the UK national pharmaceutical regulator. A first-in-human, double-blind, placebo-controlled, randomized, dose-escalation phase I safety study of a single vaginal administration of P2G12 was carried out in healthy female subjects. The successful completion of the clinical trial marks a significant milestone in the commercial development of plant-derived pharmaceutical proteins.

  12. Establishment and characterization of monoclonal and polyclonal antibodies against human intestinal fatty acid-binding protein (I-FABP) using synthetic regional peptides and recombinant I-FABP.

    PubMed

    Kajiura, Satoshi; Yashiki, Tetsuya; Funaoka, Hiroyuki; Ohkaru, Yasuhiko; Nishikura, Ken; Kanda, Tatsuo; Ajioka, Yoichi; Igarashi, Michihiro; Hatakeyama, Katsuyoshi; Fujii, Hiroshi

    2008-01-01

    We have succeeded in raising highly specific anti-human intestinal fatty acid-binding protein (I-FABP) monoclonal antibodies by immunizing animals with three synthetic regional peptides, i.e., the amino terminal (RP-1: N-acetylated 1-19-cysteine), middle portion (RP-2: cysteinyl-91-107) and carboxylic terminal (RP-3: cysteinyl-121-131) regions of human I-FABP, and the whole I-FABP molecule as antigens. We also raised a polyclonal antibody by immunizing with a recombinant (r) I-FABP. To ascertain the specificity of these antibodies for human I-FABP, the immunological reactivity of each was examined by a binding assay using rI-FABP, partially purified native I-FABP and related proteins such as liver-type (L)-FABP, heart-type (H)-FABP, as well as the regional peptides as reactants, and by Western blot analysis. In addition, the expression and distribution of I-FABP in the human gastrointestinal tract were investigated by an immunohistochemical technique using a carboxylic terminal region-specific monoclonal antibody, 8F9, and a polyclonal antibody, DN-R2. Our results indicated that both the monoclonal and polyclonal antibodies established in this study were highly specific for I-FABP, but not for L-FABP and H-FABP. Especially, the monoclonal antibodies raised against the regional peptides, showed regional specificity for the I-FABP molecule. Immunoreactivity of I-FABP was demonstrated in the mucosal epithelium of the jejunum and ileum by immunohistochemical staining, and the immunoreactivity was based on the presence of the whole I-FABP molecule but not the presence of any precursors or degradation products containing a carboxylic terminal fragment. It is concluded that some of these monoclonal and polyclonal antibodies, such as 8F9, 4205, and DN-R2, will be suitable for use in research on the immunochemistry and clinical chemistry of I-FABP because those antibodies can recognize both types of native and denatured I-FABP. In order to detect I-FABP in blood samples, it

  13. Recognition of N-glycoforms in human chorionic gonadotropin by monoclonal antibodies and their interaction motifs.

    PubMed

    Li, Daoyuan; Zhang, Ping; Li, Fei; Chi, Lequan; Zhu, Deyu; Zhang, Qunye; Chi, Lianli

    2015-09-11

    The glycosylation of human chorionic gonadotropin (hCG) plays an important role in reproductive tumors. Detecting hCG N-glycosylation alteration may significantly improve the diagnostic accuracy and sensitivity of related cancers. However, developing an immunoassay directly against the N-linked oligosaccharides is unlikely because of the heterogeneity and low immunogenicity of carbohydrates. Here, we report a hydrogen/deuterium exchange and MS approach to investigate the effect of N-glycosylation on the binding of antibodies against different hCG glycoforms. Hyperglycosylated hCG was purified from the urine of invasive mole patients, and the structure of its N-linked oligosaccharides was confirmed to be more branched by MS. The binding kinetics of the anti-hCG antibodies MCA329 and MCA1024 against hCG and hyperglycosylated hCG were compared using biolayer interferometry. The binding affinity of MCA1024 changed significantly in response to the alteration of hCG N-linked oligosaccharides. Hydrogen/deuterium exchange-MS reveals that the peptide β65-83 of the hCG β subunit is the epitope for MCA1024. Site-specific N-glycosylation analysis suggests that N-linked oligosaccharides at Asn-13 and Asn-30 on the β subunit affect the binding affinity of MCA1024. These results prove that some antibodies are sensitive to the structural change of N-linked oligosaccharides, whereas others are not affected by N-glycosylation. It is promising to improve glycoprotein biomarker-based cancer diagnostics by developing combined immunoassays that can determine the level of protein and measure the degree of N-glycosylation simultaneously.

  14. Anti-metastatic effect of the TM4SF5-specific peptide vaccine and humanized monoclonal antibody on colon cancer in a mouse lung metastasis model

    PubMed Central

    Park, Byoung Kwon; Park, Sangkyu; Ha, Ji-Hee; Kim, Te Ha; Gautam, Avishekh; Kim, Jung Nam; Lee, Su In; Park, Han-Bum; Kim, Yong-Sung; Kwon, Hyung-Joo; Lee, Younghee

    2016-01-01

    Transmembrane 4 superfamily member 5 protein (TM4SF5) is a potential therapeutic target for hepatocellular carcinoma (HCC) and colon cancer. In a previous study, we demonstrated the prophylactic and therapeutic effects of a TM4SF5-specific peptide vaccine and monoclonal antibody in HCC and colon cancer in a mouse model. Here, we designed a cyclic peptide targeting TM4SF5. Cyclic peptide-specific antibodies were produced in mice after immunization with a complex of the peptide, CpG-DNA, and liposomes. Intravenous injection of the CT-26 mouse colon cancer cell line into mice induced tumors in the lung. Immunization with the peptide vaccine improved the survival rate and reduced the growth of lung tumors. We established a monoclonal antibody specific to the cyclic TM4SF5-based peptide and humanized the antibody sequence by complementarity determining region-grafting. The humanized antibody was reactive to the cyclic peptide and TM4SF5 protein. Treatment of CT-26 cells with the humanized antibody reduced cell motility in vitro. Furthermore, direct injection of the humanized anti-TM4SF5 antibody in vivo reduced growth of lung tumors in mouse metastasis model. Therefore, we conclude that the immunization with the cyclic peptide vaccine and injection of the TM4SF5-specifc humanized antibody have an anti-metastatic effect against colon cancer in mice. Importantly, the humanized antibody may serve as a starting platform for further development and application in clinical settings. PMID:27816969

  15. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro.

    PubMed

    Larsen, R H; Akabani, G; Welsh, P; Zalutsky, M R

    1998-02-01

    The cytotoxicity of alpha-particle-emitting endoradiotherapeutic compounds is of increasing interest because clinical evaluation of these potential therapeutic agents is commencing. Astatine-211 is a radionuclide with a 7.2-h half-life that emits 5.87 and 7.45 MeV alpha particles. In the present work, we have investigated the in vitro cytotoxicity of 211At-labeled chimeric monoclonal antibodies (mAbs) in monolayers of D-247 MG human glioma cells and SK-MEL-28 human melanoma cells. The mAbs studied were 81C6, reactive with the extracellular matrix antigen tenascin, Mel-14, directed against the cell membrane antigen proteoglycan chondroitin sulfate, and a nonspecific control mAb, TPS3.2. Cell uptake increased as a function of activity concentration after a 1-h exposure to the 211At-labeled mAbs. The retention of activity was also measured to calculate cumulative activity associated with the cells and the medium. The clonogenic survival as a function of activity concentration was linear in all cases with no detectable shoulder. Microdosimetric analyses were performed based on measured cell geometry, cumulative activity and Monte Carlo transport of alpha particles. Using 18 kBq/ml activity concentration and 1 h of incubation, a two to five times higher activity bound to the microcolonies was found for the specific mAbs compared to the nonspecific mAb. These calculations indicated that a survival fraction of 0.37 was achieved with 0.24-0.28 Gy for D-247 MG cells and 0.27-0.29 Gy for SK-MEL-28 cells. The microdosimetric cell sensitivity, z0, for D-247 MG cells was significantly lower than for SK-MEL-28 cells (0.08 compared to 0.15 Gy). For both cell lines, reduction in survival to 0.37 required an average of only 1-2 alpha-particle hits to the cell nucleus.

  16. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types

    PubMed Central

    1989-01-01

    A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non- lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those

  17. Monoclonal antibody 1.6.1 against human MPL receptor allows HSC enrichment of CB and BM CD34(+)CD38(-) populations.

    PubMed

    Petit Cocault, Laurence; Fleury, Maud; Clay, Denis; Larghero, Jérôme; Vanneaux, Valérie; Souyri, Michèle

    2016-04-01

    Thrombopoietin (TPO) and its receptor Mpl (CD110) play a crucial role in the regulation of hematopoietic stem cells (HSCs). Functional study of Mpl-expressing HSCs has, however, been hampered by the lack of efficient monoclonal antibodies, explaining the very few data available on Mpl(+) HSCs during human embryonic development and after birth. Investigating the main monoclonal antibodies used so far to sort CD110(+) cells from cord blood (CB) and adult bone marrow (BM), we found that only the recent monoclonal antibody 1.6.1 engineered by Immunex Corporation was specific. Using in vitro functional assays, we found that this antibody can be used to sort a CD34(+)CD38(-)CD110(+) population enriched in hematopoietic progenitor stem cells, both in CB and in adult BM. In vivo injection into NSG mice further indicated that the CB CD34(+)CD38(-)CD110(+) population is highly enriched in HSCs compared with both CD34(+)CD38(-)CD110(-) and CD34(+)CD38(-) populations. Together our results validate MAb1.6.1 as an important tool, which has so far been lacking, in the HSC field.

  18. Therapy of B-cell malignancies by anti–HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways

    PubMed Central

    Gupta, Pankaj; Chen, Xiaochuan; Cardillo, Thomas M.; Furman, Richard R.; Chen, Susan; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    A humanized IgG4 anti–HLA-DR monoclonal antibody (IMMU-114), engineered to avoid side effects associated with complement activation, was examined for binding and cytotoxicity on leukemia, lymphoma, and multiple myeloma cell lines and chronic lymphocytic leukemia (CLL) patient specimens, followed by evaluation of the effects of IMMU-114 on extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. HLA-DR was expressed on the majority of these cells at markedly higher levels than CD20, CD22, and CD74. IMMU-114 was toxic to mantle cell lymphoma, CLL, acute lymphoblastic leukemia, hairy cell leukemia, non-Hodgkin lymphoma (including rituximab-resistant), and multiple myeloma cell lines, and also patient CLL cells. IMMU-114 induced disease-free survival in tumor-bearing SCID mice with early-stage disease and in models that are relatively resistant to anti-CD20 monoclonal antibodies. Despite positive staining, acute myelogenous leukemic cells were not killed by IMMU-114. The ability of IMMU-114 to induce activation of ERK and JNK signaling correlated with cytotoxicity and differentiates the mechanism of action of IMMU-114 from monoclonal antibodies against CD20 and CD74. Thus, antigen expression is not sufficient for cytotoxicity; antibody-induced hyperactivation of ERK and JNK mitogen activated protein kinase signaling pathways are also required. PMID:20101022

  19. Thirteen-week Intravenous Toxicity Study of a Novel Humanized Anti-Human Death Receptor 5 Monoclonal Antibody, CS-1008, in Cynomolgus Monkeys

    PubMed Central

    Tanaka, Kohji; Sugiura, Tomomi; Koyama, Kumiko; Nakamura, Takahiro; Kamimura, Yasuhiro; Takasaki, Wataru; Manabe, Sunao

    2010-01-01

    CS-1008, a humanized monoclonal antibody that is agonistic to human death receptor 5, was intravenously administered to cynomolgus monkeys twice a week for 13 weeks at 3 different dose levels (5, 15 and 42 mg/kg) in order to evaluate its potential toxicity. A control group received phosphate buffered saline containing 0.01% polysorbate 80. Each of the 4 groups consisted of 3 male and 3 female cynomolgus monkeys. No animal in any group died during the dosing period. No toxic changes in clinical signs, food consumption, body weight, electrocardiography, ophthalmology, urinalysis, hematology, blood chemistry, gross pathology, organ weights or histopathology were noted in any group during the dosing period. In the toxicokinetic analysis, the values for the maximum concentration of CS-1008 in plasma and the area under the curve generally increased with increasing dose. No clear differences in the toxicokinetic parameters or profiles were observed between the sexes. Development of anti-CS-1008 antibodies was not detected in any sample. The no-observed adverse-effect level (NOAEL) of CS-1008 in cynomolgus monkeys under the conditions of this study was concluded to be 42 mg/kg in both sexes, when administered intravenously twice a week for 13 weeks. This study supports the development of CS-1008 as a therapeutic biopharmaceutical. PMID:22272006

  20. Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Agrawal, Anurodh Shankar; Ying, Tianlei; Tao, Xinrong; Garron, Tania; Algaissi, Abdullah; Wang, Yanping; Wang, Lili; Peng, Bi-Hung; Jiang, Shibo; Dimitrov, Dimiter S.; Tseng, Chien-Te K.

    2016-01-01

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) has repeatedly caused outbreaks in the Arabian Peninsula. To date, no approved medical countermeasures (MCM) are available to combat MERS-CoV infections. Several neutralizing human monoclonal antibodies (mAbs), including m336, a germline-like human mAb, have been chosen as promising MCM for MERS-CoV. However, their clinical development has been hindered by the lack of a robust animal model that recapitulate the morbidity and mortality of human infections. We assessed the prophylactic and therapeutic efficacy of m336 by using well-characterized transgenic mice shown to be highly sensitive to MERS-CoV infection and disease. We found that mice treated with m336 prior to or post lethal MERS-CoV challenging were fully protected, compared to control mice which sufferered from profound weight loss and uniform death within days after infection. Taken together, these results support further development of m336 and other human monoclonal antibodies as potential therapeutics for MERS-CoV infection. PMID:27538452

  1. Nonclinical safety of mavrilimumab, an anti-GMCSF receptor alpha monoclonal antibody, in cynomolgus monkeys: Relevance for human safety

    SciTech Connect

    Ryan, Patricia C.; Sleeman, Matthew A.; Rebelatto, Marlon; Wang, Bing; Lu, Hong; Chen, Xiaomin; Wu, Chi-Yuan; Hinrichs, Mary Jane; Roskos, Lorin; Towers, Heidi; McKeever, Kathleen; Dixit, Rakesh

    2014-09-01

    Mavrilimumab (CAM-3001) is an investigational human IgG4 monoclonal antibody (MAb) targeting GM-CSF receptor alpha which is currently being developed for the treatment of RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. To support clinical development, the nonclinical safety of mavrilimumab was evaluated in several studies with cynomolgus monkeys as the pharmacologically relevant species. Comprehensive toxicity parameters were assessed in each study, and treatment duration ranged from 4 to 26 weeks. Mavrilimumab has an acceptable safety profile in monkeys with no changes in any parameters other than microscopic findings in lung. In several studies, minimal accumulation of foamy alveolar macrophages was observed. This finding was only seen in studies of at least 11 weeks duration, was reversible following a dose-free recovery period and was considered non-adverse. At higher dose levels (≥ 30 mg/kg/week), in a 26-week repeat-IV dose study, the presence of lung foreign material, cholesterol clefts, and granulomatous inflammation was also observed in a few animals and was considered adverse. The dose- and time-related accumulation of foamy macrophages in lung following exposure to mavrilimumab observed in several NHP studies was expected based upon the known role of GM-CSFRα signaling in the function of alveolar macrophages. Overall, a clean no-observed-adverse-effect-level (NOAEL) without any effects in lung was established and provided adequate clinical safety margins. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress. - Highlights: • Mavrilimumab is a MAB targeting GM-CSFRα being developed for RA therapy. • Mavrilimumab has an acceptable safety profile in cynomolgus monkeys.

  2. Generation of human hybridomas producing migration inhibitory factor (MIF) and of murine hybridomas secreting monoclonal antibodies to human MIF.

    PubMed

    Weiser, W Y; Remold, H G; David, J R

    1985-01-01

    Human T-cell hybridomas were established by hybridization of concanavalin A (Con A)-stimulated human peripheral blood T lymphocytes with cells from a 6-thioguanine-resistant, aminopterin-sensitive mutant line designated CEM-WH4, derived from the continuously growing human T cell line, CEM. High levels of MIF activity were demonstrated in the supernatants of two hybridoma lines, T-CEMA and T-CEMB but not of CEM-WH4 when stimulated with phorbol myristate acetate and phytohemagglutinin. In comparison, MIF derived from Con A-stimulated peripheral blood mononuclear cells showed 100 times less activity. Upon isoelectrofocusing, MIF activity of T-CEMB was found exclusively between pH 4.6 and 5.3 whereas MIF derived from T-CEMA showed heterogeneity with a major peak of MIF recovered at pH 4.6-5.3 and a minor peak at pH 2.4-3.3. These molecules, however, were all found to have an apparent MW of 68,000 and were resistant to trypsin. Most of these characteristics are in accordance with second day pH 3- and pH 5-MIF derived from peripheral blood mononuclear cells. When spleen cells from BALB/c mice immunized with T-CEMB-MIF were used to fuse with NS-1 mouse myeloma cells, nine hybridomas secreting antibodies to human MIF were obtained. Clone D112 which demonstrated the highest MIF-neutralizing activity was found to neutralize MIF derived from T-CEMA, peripheral blood mononuclear cells, and a T cell line, Mo.

  3. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

    PubMed

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW<15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70% drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90%. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88% when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95% with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival between the treated and the control groups (P<0.0001). Based on histology analyses, no evidence of renal inflammation, apoptosis or necrosis was obtained. In conclusion, these data highlight the importance of the amino acid composition of the nanobody's C-terminus, as it has a predominant effect on kidney retention. Moreover, we show successful nanobody-based targeted radionuclide therapy in a xenograft model and highlight the potential of radiolabeled nanobodies as a valuable adjuvant therapy candidate for treatment of minimal residual and metastatic disease.

  4. The synthesis of multifunctional nanoparticles conjugated with anti-Her2 affibody and monomethylauristatin E

    NASA Astrophysics Data System (ADS)

    Pala, Katarzyna; Jakimowicz, Piotr; Cyranka-Czaja, Anna; Otlewski, Jacek

    2015-04-01

    Conjugation of bioactive xenobiotics with innert particles often improves their efficacy and/or specificity. In this work we designed superparamagnetic ferric oxide nanoparticles (NPs) conjugated with a strong cytotoxic drug, monomethylauristatin E (MMAE), and evaluated their potential against cancer cells. Cytotoxicity tests showed that the conjugate was at least twice as toxic as the free drug. We then studied the cytotoxic potential of the conjugate at an elevated temperature achieved due to the superparamagnetic properties of the NPs, finding no enhancement of cytotoxicity in comparison with that at 37 °C. Next, multifunctional NPs containing MMAE and a targeting agent were synthesized. The targeting agent was the ZHer2:342 affibody specific to Her2 receptor. The selectivity and effectiveness of the conjugates was evaluated using SK-BR3 (Her2-positive) and U-87 MG (a negative control) cell lines. The multifunctional NPs selectively decrease of the viability of the SK-BR3 cells, showing their specificity towards cells overexpressing the Her2 receptor.

  5. Recombinant production and characterization of human anti-influenza virus monoclonal antibodies identified from hybridomas fused with human lymphocytes.

    PubMed

    Misaki, Ryo; Fukura, Natsuko; Kajiura, Hiroyuki; Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Sasaki, Tadahiro; Momota, Masatoshi; Ono, Ken-Ichiro; Ohashi, Takao; Ikuta, Kazuyoshi; Fujiyama, Kazuhito

    2016-09-01

    In previous studies, hybridomas producing human immunoglobulin G, the antibodies 5E4 and 5A7 against influenza A and B virus were established using a novel human lymphocyte fusion partner, SPYMEG. In the present study, we succeeded in achieving the recombinant production and secretion of 5E4 and 5A7 in Chinese hamster ovary cells. Our N-glycan analysis by intact-mass detection and liquid chromatography mass spectrometry showed that recombinant 5E4 and 5A7 have one N-glycan and the typical mammalian-type N-glycan structures similar to those in hybridomas. However, the glycan distribution was slightly different among these antibodies. The amount of high-mannose-type structures was under 10% of the total N-glycans of recombinant 5E4 and 5A7, compared to 20% of the 5E4 and 5A7 produced in hybridomas. The amount of galactosylated N-glycans was increased in recombinants. Approximately 80% of the N-glycans of all antibodies was fucosylated, and no sialylated N-glycan was found. Recombinant 5E4 and 5A7 neutralized pandemic influenza A virus specifically, and influenza B virus broadly, quite similar to the 5E4 and 5A7 produced in hybridomas, respectively. Here we demonstrated that recombinants of antibodies identified from hybridomas fused with SPYMEG have normal N-glycans and that their neutralizing activities bear comparison with those of the original antibodies.

  6. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    PubMed

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  7. Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: A potential therapeutic treatment

    SciTech Connect

    Taylor, R.P.; Sutherland, W.M.; Reist, C.J.; Webb, D.J.; Wright, E.L.; Labuguen, R.H. )

    1991-04-15

    The authors prepared bispecific, cross-linked monoclonal antibodies (heteropolymers) with specificity for both targeted antigens and the human erythrocyte (RBC) complement receptor. These heteropolymers facilitate binding of target antigens (human IgG and dinitrophenylated bovine {gamma} globulin) to human RBCs under conditions that either allow or preclude complement activation. Radioimmuno-assay analyses of this binding agree well with the number of complement receptors per RBC. In vitro whole-blood model experiments indicate heteropolymer-facilitated binding of antigens to RBCs is rapid and stable at 37C. It may be possible to extend these prototype experiments to the in vivo situation and use heteropolymer-attached RBCs for the safe and rapid binding, neutralization, and removal from the circulation of pathogenic antigens associated with infectious disease.

  8. Expression of Ia-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation.

    PubMed Central

    Pober, J S; Gimbrone, M A

    1982-01-01

    The expression of Ia-like antigens by cultured human endothelial cells has been investigated by means of monoclonal antibody binding to intact cells and by immunoprecipitation of radioiodinated membrane proteins. Primary growing and confluent cultures of human umbilical vein endothelium express little, if any, detectable Ia-like antigens under standard culture conditions. However, treatment of primary cultures with the lectin phytohemagglutinin induces the expression of Ia-like antigens. This action of the lectin uniformly affects all the endothelial cells in a culture, does not depend on cell division, and is associated with a cell shape change. The data presented in this report provide unequivocal serological and biochemical demonstration of Ia-like antigens on human vascular endothelial cells. The fact that the expression of Ia-like antigens by endothelium can be induced may have important implications for organ transplantation and for regulation of the immunological response. Images PMID:6815654

  9. Use of Heteropolymeric Monoclonal Antibodies to Attach Antigens to the C3b Receptor of Human Erythrocytes: A Potential Therapeutic Treatment

    NASA Astrophysics Data System (ADS)

    Taylor, Ronald P.; Sutherland, William M.; Reist, Craig J.; Webb, Donna J.; Wright, Eleanor L.; Labuguen, Ronald H.

    1991-04-01

    We have prepared bispecific, cross-linked monoclonal antibodies (heteropolymers) with specificity for both targeted antigens and the human erythrocyte (RBC) complement receptor. These heteropolymers facilitate binding of target antigens (human IgG and dinitrophenylated bovine γ globulin) to human RBCs under conditions that either allow or preclude complement activation. Quantitative analyses of this binding agree well with the number of complement receptors per RBC. In vitro "whole-blood" model experiments indicate heteropolymer-facilitated binding of antigens to RBCs is rapid and stable at 37^circC. It may be possible to extend these prototype experiments to the in vivo situation and use heteropolymer-attached RBCs for the safe and rapid binding, neutralization, and removal from the circulation of pathogenic antigens associated with infectious disease.

  10. Plasma pharmacokinetics and biological activity of a human immunodeficiency virus type 1 neutralizing human monoclonal antibody, F105, in cynomolgus monkeys.

    PubMed

    Cavacini, L A; Power, J; Emes, C L; Mace, K; Treacy, G; Posner, M R

    1994-05-01

    The IgG1 kappa human monoclonal antibody (HMab), F105 reacts with a discontinuous epitope on the CD4 binding site (CD4BS) of human immunodeficiency virus type 1 (HIV-1)/gp120 and has broad neutralizing activity. F105 HMab (60 mg/kg bolus) was administered intravenously to four monkeys and serum was collected at intervals to determine pharmacokinetics in a primate model. Average serum F105 concentrations, as determined by enzyme-linked immunosorbent assay, were analyzed with MINSQ software using a two-compartment, first-order model. The half-life for the alpha phase of the distribution curve is 6.7 h and for the beta elimination phase, 9.6 days. The volume of distribution is 0.65 L/kg and the rate of clearance 2 ml/kg/h. Serum levels of 1.3-1.6 mg/ml of F105 were maintained for 24 h. When monkey serum from day 15 postdose was tested, total serum F105 was 230 +/- 79 micrograms/ml and was immunoreactive with cells infected with the MN and IIIB strains of HIV-1 as determined by flow cytometry. Binding activity was identical to that obtained with stock F105 HMab. Identical neutralizing activity between the injected and uninjected antibody was also observed. Thus, serum neutralizing titers (90%) of 1:2000 at peak and 1:30 at day 15 postdose for MN virus were observed. These data indicate that high in vivo levels of HMab F105 can be attained by single bolus administration with full retention of biological activity. Of importance, levels of antibody necessary for effective neutralization can be achieved and maintained.

  11. A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo.

    PubMed

    Ebert, Tim; Smith, Sharon; Pancari, Greg; Clark, Desmond; Hampton, Richard; Secore, Susan; Towne, Victoria; Fan, Hongxia; Wang, Xin-Min; Wu, Xiaoqing; Ernst, Robin; Harvey, Barrett R; Finnefrock, Adam C; Wang, Fubao; Tan, Charles; Durr, Eberhard; Cope, Leslie; Anderson, Annaliesa; An, Zhiqiang; McNeely, Tessie

    2010-01-01

    A fully human monoclonal antibody (CS-D7, IgG1) specific for the iron regulated surface determinant B (IsdB) of Staphylococcus aureus was isolated from the Cambridge Antibody Technology (CAT) scFv antibody library. As compared to previously described IsdB specific murine monoclonals, CS-D7 has a unique, non-overlapping binding site on IsdB, and exhibits increased in vivo activity. The antibody recognizes a conformational epitope spanning amino acids 50 to 285 and has a binding affinity of 340 (± 75) pM for IsdB. CS-D7 bound to a wide variety of S. aureus strains, but not to an isdB deletion mutant. The antibody mediated opsonophagocytic (OP) killing in vitro and mediated significant protection in vivo. In a murine lethal sepsis model, the antibody conferred protection from death when dosed prior to challenge, but not when dosed after challenge. Importantly, in a central venous catheter (CVC) model in rats, the antibody reduced bacteremia and prevented colonization of indwelling catheters. Protection was observed when rats were dosed with CS-D7 prior to challenge as well as post challenge. IsdB is currently being investigated for clinical efficacy against S. aureus infection, and the activity of this human IsdB specific antibody supplements the growing body of evidence to support targeting this antigen for vaccine development.

  12. Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors.

    PubMed

    Scott, A M; Geleick, D; Rubira, M; Clarke, K; Nice, E C; Smyth, F E; Stockert, E; Richards, E C; Carr, F J; Harris, W J; Armour, K L; Rood, J; Kypridis, A; Kronina, V; Murphy, R; Lee, F T; Liu, Z; Kitamura, K; Ritter, G; Laughton, K; Hoffman, E; Burgess, A W; Old, L J

    2000-06-15

    The Lewis Y (Ley) antigen is a blood group-related antigen that is expressed in a high proportion of epithelial cancers (including breast, colon, ovary, and lung cancer) and is an attractive target for monoclonal antibody-directed therapy. The murine monoclonal 3S193 (IgG3) was generated in BALB/c mice by immunization with Ley-expressing cells of the MCF-7 breast carcinoma cell-line. The murine 3S193 showed high specificity for Ley in ELISA tests with synthetic Ley and Ley-containing glycoproteins and glycolipids and also reacted strongly in rosetting assays and cytotoxic tests with Ley-expressing cells. We generated a humanized form of the murine 3S193 antibody by linking cDNA sequences encoding the variable region of murine 3S913 with frameworks of the human KOL heavy chain and REI K chain. The genes for the humanized 3S193 monoclonal antibody IgG1 were transfected into mouse myeloma NS0 cells and cloned for the establishment of high antibody-producing colonies. Humanized 3S193 antibody was subsequently produced through in vitro culture and under good manufacturing practice conditions using hollow-fiber bioreactors. The purified humanized 3S193 (hu3S193) was subsequently characterized and validated for use in preliminary immunotherapy investigations. hu3S193 reacted specifically with Ley antigen, with similar avidity to the murine form. hu3S193 demonstrated potent immune effector function, with higher antibody-dependent cell-mediated cytotoxicity than its murine counterpart and potent complement-dependent cytotoxicity (ED50, 1.0 microg/ml). The in vivo immunotherapeutic potential of hu3S193 was assessed in a human breast xenograft model using MCF-7, Ley-positive cells. Six i.v. doses of up to 1 mg of hu3S193 were administered to animals bearing established tumors (120-130 mm3) with no significant effect on tumor growth. In contrast, in an MCF-7 xenograft preventive model, a 1-mg hu3S193 dosage schedule was able to significantly slow tumor growth compared with

  13. Epitope Mapping of Ibalizumab, a Humanized Anti-CD4 Monoclonal Antibody with Anti-HIV-1 Activity in Infected Patients▿

    PubMed Central

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D.

    2010-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell. PMID:20463063

  14. Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients.

    PubMed

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D

    2010-07-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.

  15. A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge.

    PubMed

    Mett, Vadim; Chichester, Jessica A; Stewart, Michelle L; Musiychuk, Konstantin; Bi, Hong; Reifsnyder, Carolyn J; Hull, Anna K; Albrecht, Mark T; Goldman, Stanley; Baillie, Les W J; Yusibov, Vidadi

    2011-01-01

    The health and economic burden of infectious diseases in general and bioterrorism in particular necessitate the development of medical countermeasures. One proven approach to reduce the disease burden and spread of pathogen is treatment with monoclonal antibodies (mAb). mAbs can prevent or reduce severity of the disease by variety of mechanisms, including neutralizing pathogen growth, limiting its spread from infected to adjacent cells, or by inhibiting biological activity of toxins, such as anthrax lethal toxin. Here, we report the production of glycosylated (pp-mAb (PA) ) and non-glycosylated (pp-mAb (PANG) ) versions of a plant-derived mAb directed against protective antigen (PA) of Bacillus anthracis in Nicotiana benthamiana plants using agroinfiltration. Both forms of the antibody were able to neutralize anthrax lethal toxin activity in vitro and protect mice against an intraperitoneal challenge with spores of B. anthracis Sterne strain. A single 180 µg intraperitoneal dose of pp-mAb (PA) or pp-mAb (PANG) provided 90% and 100% survival, respectively. When tested in non-human primates, pp-mAb (PANG) was demonstrated to be superior to pp-mAb (PA) in that it had a significantly longer terminal half-life and conferred 100% protection against a lethal dose of aerosolized anthrax spore challenge after a single 5 mg/kg intravenous dose compared to a 40% survival rate conferred by pp-mAb (PA) . This study demonstrates the potential of a plant-produced non-glycosylated antibody as a useful tool for the treatment of inhalation anthrax.

  16. [The test system to identify mucin MUC1 in human blood serum using the technique of immune-enzyme analysis based on monoclonal antibody ICO25].

    PubMed

    Karmakova, T A; Vorontsova, M S; Skripnik, V V; Bezborodova, O A; Iakubovskaia, R I

    2012-02-01

    On the basis of genuine mouse monoclonal antibody ICO25 the test system IEA ICO25 was developed and standardized to quantitative detect tumor-associated antigen, mucin1 in human blood serum in format of inhibitory immune-enzyme analysis. The analytic characteristics of test-system correspond to the standards applied to immune-enzyme diagnostic kits. The results of identification of MUC1 in blood serum of healthy donors and female patients with breast pathology using IEA ICO25 fully correlate with the data concerning the detection of antigen CA15-3 using certified commercial kits. The test system IEA ICO25 can be used to detect MUC1 in human blood serum for research purpose.

  17. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  18. Binding specificities of eight monoclonal antibodies to human glycophorin A - studies with M/sup c/M, and M/sub k/En(UK) variant human erythrocytes and M- and MN/sup V/-type chimpanzee erythrocytes

    SciTech Connect

    Bigbee, W.L.; Langlois, R.G.; Vanderlaan, M.; Jensen, R.H.

    1984-12-01

    Four newly derived mouse monoclonal antibodies to human glycophorin A are described. Three of these antibodies bind preferentially to the N form of glycophorin A; the fourth recognizes a shared determinant of the M and N forms. All four antibodies are directed toward the 39 amino acid, amino-terminal portion of the protein, and the N-specific antibodies require for binding the presence of N-acetyl-neuraminic acid on the glycosidically linked oligosaccharides. Cross-reaction of the N-specific antibodies to homozygous MM erythrocytes appears to result from binding to glycophorin B. In addition, these antibodies together with four previously reported glycophorin monoclonal antibodies, including two that specifically recognize the M form of glycophorin A, were tested for binding to M/sup c/M and M/sup k/En(UK) variant human erythrocytes. Results obtained for five of the six M- or N-specific monoclonal antibodies point to the general immunodominance of the amino-terminal serine-leucine polymorphism and the requirement for sialic acid. The epitopes for all three N-specific monoclonal antibodies include the amino terminal leucine that occurs in the N form of glycophorin A and may also include the glutamic acid that occurs at position five. Their studies support the proposed Lepore-type glycophorin A-B hybrid gene rearrangement for the En(UK) allele found in the English En(a-) family. The data also confirm the expression of the M-like glycoprotein on chimpanzee erythrocytes and the presence of a human glycophorin B-like antigen on the MN/sup V/-type cells.

  19. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    SciTech Connect

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  20. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents.

    PubMed

    Liu, Dong; Tseng, Mandy; Epstein, Linda F; Green, Lydia; Chan, Brian; Soriano, Brian; Lim, Desiree; Pan, Oscar; Murawsky, Christopher M; King, Chadwick T; Moyer, Bryan D

    2016-01-01

    Identification of small and large molecule pain therapeutics that target the genetically validated voltage-gated sodium channel Na V1.7 is a challenging endeavor under vigorous pursuit. The monoclonal antibody SVmab1 was recently published to bind the Na V1.7 DII voltage sensor domain and block human Na V1.7 sodium currents in heterologous cells. We produced purified SVmab1 protein based on publically available sequence information, and evaluated its activity in a battery of binding and functional assays. Herein, we report that our recombinant SVmAb1 does not bind peptide immunogen or purified Na V1.7 DII voltage sensor domain via ELISA, and does not bind Na V1.7 in live HEK293, U-2 OS, and CHO-K1 cells via FACS. Whole cell manual patch clamp electrophysiology protocols interrogating diverse Na V1.7 gating states in HEK293 cells, revealed that recombinant SVmab1 does not block Na V1.7 currents to an extent greater than observed with an isotype matched control antibody. Collectively, our results show that recombinant SVmab1 monoclonal antibody does not bind Na V1.7 target sequences or specifically inhibit Na V1.7 current.

  1. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    SciTech Connect

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  2. Monoclonal antibodies against human immunodeficiency virus (HIV) type 2 core proteins: cross-reactivity with HIV type 1 and simian immunodeficiency virus.

    PubMed

    Minassian, A A; Kalyanaraman, V S; Gallo, R C; Popovic, M

    1988-09-01

    Four mouse monoclonal antibodies were developed after immunization with one human immunodeficiency virus (HIV) type 2 isolate and were tested for reactivity with different HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates in an immunofluorescence assay and by immunological blot analysis. One of them, an anti-capsid (p24) antibody, called R1C7, reacted with all HIV-1, HIV-2, and SIV isolates tested, thus identifying an epitope shared by all HIV and SIV. Another anti-capsid antibody, named A4F6, reacted with three HIV-2 isolates (HIV-2NIH-Z, LAV-2Rod, and LK001 ST9), some SIV isolates (STLV-IIIAGM, SIV-251, and SIV-309), but no HIV-1 isolates. Two anti-matrix (p16) antibodies, named R5C4 and R5F6, reacted strongly only with the HIV-2 isolates. The use of these monoclonal antibodies for rapid discrimination and identification of acquired immunodeficiency syndrome-related retroviruses is discussed.

  3. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents

    PubMed Central

    Liu, Dong; Tseng, Mandy; Epstein, Linda F.; Green, Lydia; Chan, Brian; Soriano, Brian; Lim, Desiree; Pan, Oscar; Murawsky, Christopher M.; King, Chadwick T.; Moyer, Bryan D.

    2016-01-01

    Identification of small and large molecule pain therapeutics that target the genetically validated voltage-gated sodium channel Na V1.7 is a challenging endeavor under vigorous pursuit. The monoclonal antibody SVmab1 was recently published to bind the Na V1.7 DII voltage sensor domain and block human Na V1.7 sodium currents in heterologous cells. We produced purified SVmab1 protein based on publically available sequence information, and evaluated its activity in a battery of binding and functional assays. Herein, we report that our recombinant SVmAb1 does not bind peptide immunogen or purified Na V1.7 DII voltage sensor domain via ELISA, and does not bind Na V1.7 in live HEK293, U-2 OS, and CHO-K1 cells via FACS. Whole cell manual patch clamp electrophysiology protocols interrogating diverse Na V1.7 gating states in HEK293 cells, revealed that recombinant SVmab1 does not block Na V1.7 currents to an extent greater than observed with an isotype matched control antibody. Collectively, our results show that recombinant SVmab1 monoclonal antibody does not bind Na V1.7 target sequences or specifically inhibit Na V1.7 current. PMID:27990272

  4. Suppression of human cytochrome P450 aromatase activity by monoclonal and recombinant antibody fragments and identification of a stable antigenic complex.

    PubMed

    Lala, Puloma; Higashiyama, Tadayoshi; Erman, Mary; Griswold, Jennifer; Wagner, Traci; Osawa, Yoshio; Ghosh, Debashis

    2004-03-01

    Human cytochrome P450 aromatase (P450arom) is responsible for biosynthesis of estrogens from androgens. Monoclonal antibody MAb3-2C2 to P450arom specifically binds to a conformational epitope and suppresses the enzyme activity in a dose-dependent manner. The crystal structure of the Fab fragment of MAb3-2C2 has been used to engineer a recombinant single chain antibody fragment (scFv) and a homodimeric variable domain of the light chain (VL(2)). These recombinant antibody fragments have been expressed in Escherichia coli and purified. Here, we show that the recombinant scFv suppresses P450arom activity with an IC(50) value similar to that of natural MAb3-2C2 F(ab')(2). The recombinant VL(2) also exhibits dose-dependent suppression of the P450arom activity, but at a reduced level, demonstrating that the homodimer is unable to fully mimic the complementarity determining region (CDR) of a variable heavy chain (VH)-VL heterodimer. We prepare and purify a stable complex of P450arom with MAb3-2C2 F(ab')(2) and show that the complex migrates and precipitates as a single molecular assembly. Efforts to crystallize P450arom for structure-function studies have yielded small single crystals. Our results suggest that formation of stable complexes with fragments of the monoclonal antibody could provide an alternative method for crystallization of P450arom.

  5. Identification of a monoclonal antibody against the leptin receptor that acts as an antagonist and blocks human monocyte and T cell activation.

    PubMed

    Fazeli, Mehdi; Zarkesh-Esfahani, Hamid; Wu, Zida; Maamra, Mabrouka; Bidlingmaier, Martin; Pockley, A Graham; Watson, Philip; Matarese, Giuseppe; Strasburger, Christian J; Ross, Richard J M

    2006-05-30

    Nutritional status has a major impact on the immune response and this is in part mediated by leptin, a pro-inflammatory cytokine. Preliminary data suggest that antagonism of leptin may offer a therapeutic approach for the treatment of some inflammatory disorders. We have tested monoclonal antibodies (mAbs) to the human leptin receptor (ObR) for antagonist activity using a leptin signalling bioassay. We identified a mAb, 9F8, which demonstrated dose-dependent antagonist activity in the leptin bioassay. Specificity of the mAb for ObR was confirmed using a plate binding assay. The 9F8 mAb displaced leptin binding to human ObR and enzymatically generated Fab fragments of 9F8 retained antagonist activity. Therefore the Fab fragment of 9F8 was cloned and recombinant 9F8 Fab (rFab) was purified from E. coli periplasmic fraction using a C-terminal His tag. Purified 9F8 rFab bound to human ObR and exhibited leptin antagonist activity. In vitro studies demonstrated that the 9F8 mAb inhibited leptin induced TNF-alpha production from human monocytes and anti-CD3 mAb induced proliferation of human T cells in PBMC culture. In conclusion, this study has identified a mAb to the human leptin receptor which inhibits leptin signalling and acts as a leptin antagonist in vitro.

  6. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    SciTech Connect

    Pan, Yang; Sasaki, Tadahiro; Du, Anariwa; and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  7. Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3.

    PubMed Central

    Printseva OYu; Peclo, M. M.; Gown, A. M.

    1992-01-01

    The specificity of monoclonal antibody 10F3, generated to smooth muscle cells isolated from fetal human aorta, has been further explored in a series of biological, biochemical, and immunocytochemical studies. In the first assay, it was found that 10F3 could inhibit aggregation of phytohemagglutinin (PHA)-induced lymphocytes in a manner comparable to that of antibody RR1/1, an anti-intercellular adhesion molecule 1 (ICAM-1) monoclonal antibody. In immunoprecipitation experiments followed by one-dimensional gel electrophoresis, both 10F3 and RR1/1 immunoprecipitated 90 kd proteins, with results suggesting that the two antibodies recognized different epitopes of the same molecule. A series of immunocytochemical studies on human atherosclerotic lesions was performed; using single-labeling techniques, 10F3-positive cells were found in the vessel wall and in lesions of virtually all specimens of fatty streaks and fibrous plaques. Using double-labeling techniques, 10F3-positive macrophages and 10F3-positive smooth muscle cells were found; however, there were also a significant number of non-smooth muscle, nonmacrophage 10F3-positive cells. These studies demonstrate that 10F3 identifies ICAM-1, and that this protein is expressed on a variety of cell types in human atherosclerotic lesions. ICAM-1 may represent a developmentally regulated protein that is expressed in fetal but not adult mesenchymal cells, but can be re-expressed in pathologic processes such as atherosclerosis. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1348606

  8. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL.

    PubMed

    Chang, De-Kuan; Kurella, Vinodh B; Biswas, Subhabrata; Avnir, Yuval; Sui, Jianhua; Wang, Xueqian; Sun, Jiusong; Wang, Yanyan; Panditrao, Madhura; Peterson, Eric; Tallarico, Aimee; Fernandes, Stacey; Goodall, Margaret; Zhu, Quan; Brown, Jennifer R; Jefferis, Roy; Marasco, Wayne A

    2016-01-01

    In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.

  9. Isoelectric focusing-affinity immunoblot analysis of mouse monoclonal antibodies to the four human IgG subclasses

    NASA Technical Reports Server (NTRS)

    Hamilton, Robert G.; Roebber, Marianne; Rodkey, L. Scott; Reimer, Charles B.

    1987-01-01

    Isoelectric focusing (IEF)/affinity immunoblotting and enzyme-linked immunosorbent assay (ELISA) were used for parallel analysis of murine monoclonal antihuman IgG-subclass antisera (MoAbs). Coomassie Blue-stained protein bands in the pH region 5.5-8.0 were shown to be murine IgG by direct blotting onto nitrocellulose followed by detection with conjugated antimouse IgG. Use of IgG myeloma antigen-coated nitrocellulose in the IEF-affinity immunoblot allowed detection of the charge microheterogeneity of MoAbs. The MoAb group contained one to five major dense bands flanked by up to four minor fainter bands, all with pIs ranging from 6.1 to 7.8. Semiquantitative estimates of binding specificity in the IEF-affinity blot compared well with cross-reactivity data obtained from a quantitative ELISA.

  10. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    PubMed Central

    Manetta, Joseph; Bina, Holly; Ryan, Paul; Fox, Niles; Witcher, Derrick R; Kikly, Kristine

    2014-01-01

    B-cell activating factor (BAFF) is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. PMID:25258549

  11. Humanization of an anti-CD34 monoclonal antibody by complementarity-determining region grafting based on computer-assisted molecular modelling.

    PubMed

    Hou, Sheng; Li, Bohua; Wang, Ling; Qian, Weizhu; Zhang, Dapeng; Hong, Xueyu; Wang, Hao; Guo, Yajun

    2008-07-01

    4C8 is a new mouse anti-human CD34 monoclonal antibody (mAb), which recognizes class II CD34 epitopes and can be used for clinical hematopoietic stem/progenitor cell selection. In an attempt to improve its safety profiles, we have developed a humanized antibody of 4C8 by complementarity-determining region (CDR) grafting method in this study. Using a molecular model of 4C8 built by computer-assisted homology modelling, framework region (FR) residues of potential importance to the antigen binding were identified. A humanized version of 4C8, denoted as h4C8, was generated by transferring these key murine FR residues onto a human antibody framework that was selected based on homology to the mouse antibody framework, together with the mouse CDR residues. The resultant humanized antibody was shown to possess antigen-binding affinity and specificity similar to that of the original murine antibody, suggesting that it might be an alternative to mouse anti-CD34 antibodies routinely used clinically.

  12. Detection of superficial zone protein in human and animal body fluids by cross-species monoclonal antibodies specific to superficial zone protein.

    PubMed

    Su, J L; Schumacher, B L; Lindley, K M; Soloveychik, V; Burkhart, W; Triantafillou, J A; Kuettner, K; Schmid, T

    2001-06-01

    In this report we describe the purification of human superficial zone protein (SZP), the generation of cross-species monoclonal antibodies (MAbs) and the detection of this protein in human and animal body fluids. Human SZPs, used as immunizing antigens, were purified either from culture media of human cartilage organ cultures or from human synovial fluids. The immunizing antigens were mixed with RIBI adjuvant in one of three forms: nonmodified SZP, superficial zone protein-keyhole limpet hemocyanin conjugate (SZP-KLH), or a mixture of superficial zone protein and hyaluronic acid (SZP-HA). A panel of MAbs including GW4.23, S6.79, S13.52, S13.233, and S17.109 were generated and characterized. Monoclonal antibody (MAb) S6.79, an IgG2b with K(D) 3.14 x 10(-9) M from SZP-KLH immunization, is of particular interest. It reacts strongly to a large molecular weight form of SZP in both enzyme-linked immunosorbent assay (ELISA) and Western blotting. It stains the most superficial layer of articular cartilage in immunohistochemistry, whereas the middle and deep zones of cartilage are not stained. When MAb S6.79 was applied to Western blots of human body fluids, a strong 345-kDa band was detected in samples of synovial fluid and weaker bands of similar size were detected in samples of plasma and serum. MAb S6.79 also showed cross-species immunoreactivity with SZP in samples of synovial fluids harvested from bovine, dog, guinea pig, and rabbit, as demonstrated by Western blotting and antibody absorption experiments. This cross-species MAb will be a useful tool in human and animal model studies for monitoring SZP levels and tissue distribution. It may help define the roles of SZP in normal articular joints and may be of diagnostic or prognostic value for the measurement of SZP in pathological conditions such as osteoarthritis, rheumatoid arthritis, and camptodactyly-arthropathy-coxa vara-pericarditis.

  13. Structural Analysis of Human and Macaque Monoclonal Antibodies 2909 and 2.5B: Implications for the Configuration of the Quaternary Neutralizing Epitope of HIV-1 gp120

    SciTech Connect

    B Spurrier; J Sampson; M Totrov; H Li; T ONeal; C Williams; J Robinson; M Gorny; S Zolla-Pazner; X Kong

    2011-12-31

    The quaternary neutralizing epitope (QNE) of HIV-1 gp120 is preferentially expressed on the trimeric envelope spikes of intact HIV virions, and QNE-specific monoclonal antibodies (mAbs) potently neutralize HIV-1. Here, we present the crystal structures of the Fabs of human mAb 2909 and macaque mAb 2.5B. Both mAbs have long beta hairpin CDR H3 regions >20 {angstrom} in length that are each situated at the center of their respective antigen-binding sites. Computational analysis showed that the paratopes include the whole CDR H3, while additional CDR residues form shallow binding pockets. Structural modeling suggests a way to understand the configuration of QNEs and the antigen-antibody interaction for QNE mAbs. Our data will be useful in designing immunogens that may elicit potent neutralizing QNE Abs.

  14. Recombinant Human Respiratory Syncytial Virus (RSV) Monoclonal Antibody Fab is Effective Therapeutically when Introduced Directly into the Lungs of RSV-Infected Mice

    NASA Astrophysics Data System (ADS)

    Crowe, James E., Jr.; Murphy, Brian R.; Chanock, Robert M.; Williamson, R. Anthony; Barbas, Carlos F., III; Burton, Dennis R.

    1994-02-01

    Previously, recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fabs were generated by antigen selection from random combinatorial libraries displayed at the tip of filamentous phage. Two such Fabs, which exhibited high binding affinity for RSV F glycoprotein (a major protective antigen), were evaluated for therapeutic efficacy in infected mice just before or at the time of peak virus replication in the lungs. Fab 19, which neutralized RSV infectivity with high efficiency in tissue culture, was effective therapeutically when delivered directly into the lungs by intranasal instillation under anesthesia. In contrast, RSV Fab 126, which failed to neutralize virus in cell culture, did not exhibit a therapeutic effect under these conditions. The amount of Fab 19 required to effect a 5000- to 12,000-fold reduction in titer of RSV in the lungs within 24 hr was rather small. In four separate experiments, a single instillation of 12.9-50 μg of RSV Fab 19 was sufficient to achieve such a reduction in pulmonary virus in a 25g mouse. The use of Fabs instead of the whole immunoglobulin molecules from which they are derived reduced the protein content of a therapeutic dose. This is important because the protein load that can be delivered effectively into the lungs is limited. The therapeutic effect of a single treatment with Fab 19 was not sustained, so that a rebound in pulmonary virus titer occurred on the 2nd day after treatment. This rebound in pulmonary RSV titer could be prevented by treating infected mice with a single dose of Fab 19 daily for 3 days. These observations suggest that human monoclonal Fabs grown in Escherichia coli may prove useful in the treatment of serious RSV disease as well as diseases caused by other viruses where replication in vivo is limited primarily to the lumenal lining of the respiratory tract.

  15. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    SciTech Connect

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Yasugi, Mayo; Ono, Ken-ichiro; and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  16. Detection of cell surface and intracellular antigens by human monoclonal antibodies. Hybrid cell lines derived from lymphocytes of patients with malignant melanoma

    PubMed Central

    1983-01-01

    This study represents an initial attempt to analyze the humoral immune reactions of patients with malignant melanoma by hybridoma methodology. Using lymphocytes from regional lymph nodes, peripheral blood and tumor infiltrates, 158 fusions were performed with SKO-007 (human myeloma line), LICR-LON-HMy2 (LICR-2), GM 4672 (human lymphoblastoid lines), or NS-1 (mouse myeloma line). Fusion of lymph node lymphocytes with NS-1 resulted in a 3-4 times higher frequency of clones than fusion with LICR-2, and a 10 times higher frequency than fusion with SKO-007 or GM 4672. In the case of peripheral blood lymphocytes, fusion with NS-1 gave greater than 25 times higher frequency of clones than fusion with LICR-2 or SKO-007. Production of human mu, gamma, or alpha heavy chains was detected in 50-80% of wells containing growing clones, and the levels of immunoglobulin ranged from 0.3 micrograms to 40 micrograms/ml. NS-1-derived clones could be easily subcultured, while LICR-2 and SKO-007 clones grew more slowly on subculturing. In this study, Ig secretion appeared to be a more stable property of LICR-2- derived clones than NS-1-derived clones. A panel of 20 human cancer cell lines was used to screen 771 Ig-secreting cultures for antibody to cell surface or intracellular antigens. Reactivity with cell surface antigens was found infrequently (6 cultures), whereas reactivity with intracellular antigens was more common (27 cultures). A new cell surface antigen with properties of a glycolipid was defined with an IgM monoclonal antibody secreted by a tetraploid cell derived from a fusion of LICR-2 with lymphocytes from the axillary lymph node of a patient with melanoma. The hybrid cell line has been subcloned four times and secretes 5 micrograms IgM/ml. The antigen detected by this IgM antibody was found on 5 of 23 melanoma cell lines and 12 of 30 epithelial cancer cell lines. No reactions were found with 11 cultures derived from normal cells. Stable cell lines secreting human

  17. Human estrogen receptor beta-specific monoclonal antibodies: characterization and use in studies of estrogen receptor beta protein expression in reproductive tissues.

    PubMed

    Choi, I; Ko, C; Park-Sarge, O K; Nie, R; Hess, R A; Graves, C; Katzenellenbogen, B S

    2001-07-05

    Investigation of the role of the second, more recently described estrogen receptor, denoted ERbeta, will be critical in understanding the molecular mechanisms underlying tissue-specific gene regulation by estrogens. Expression of ERbeta in a variety of tissues has been examined predominantly at the mRNA level, and there is little information regarding the cellular localization and size of the endogenous ERbeta protein, due, in part, to the limited availability of human ERbeta-specific antibodies. Thus, our aim was to generate specific antibodies to human ERbeta and use them to determine the tissue-specific distribution and size(s) of the ERbeta protein. To this end, we have cloned three different hybridoma cell lines that produce monoclonal antibodies specific for the hormone-binding domain of human ERbeta. The antibodies, made in mice against human ERbeta amino acids 256-505 (hormone binding domain lacking the F domain), are designated CFK-E12 (E12), CMK-A9 (A9) and CWK-F12 (F12) and were determined to be the IgG gamma1 isotype for E12, and IgG gamma2b for A9 and F12. All three monoclonal antibodies could be used to detect in vitro translated, baculovirus expressed, and cell transfected and expressed ERbeta protein by Western blot analyses, and all failed to detect ERalpha. A9 and F12 were able to immunoprecipitate efficiently the native form of ERbeta protein in the presence and absence of estradiol. Epitope mapping studies indicate that the E12 and F12 antibodies recognize overlapping peptide sequences in the N-terminal region of the hormone-binding domain, a region that is highly conserved among species. Immunocytochemical studies with these antibodies reveal nuclear-specific localization of the ERbeta protein in granulosa cells of the rat ovary. Nuclear ERbeta is also specifically localized in epithelial and some stromal cells of mouse and rat epididymis. Western blot analysis with protein extracts from ovarian granulosa cells of human, rat, mouse, and pig

  18. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5

    PubMed Central

    Xia, Lin; Xian, Yangfei; Wang, Daning; Chen, Yuanzhi; Huang, Xiaofen; Bi, Xingjian; Yu, Hai; Fu, Zheng; Liu, Xinlin; Li, Shaowei; An, Zhiqiang; Luo, Wenxin; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr135 and Val141 on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection. PMID:26750243

  19. Antiglycopeptide Mouse Monoclonal Antibody LpMab-21 Exerts Antitumor Activity Against Human Podoplanin Through Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity.

    PubMed

    Kato, Yukinari; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Uchida, Hiroaki; Tahara, Hideaki; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Honma, Ryusuke; Takagi, Michiaki; Ogasawara, Satoshi; Murata, Takeshi; Kaneko, Mika K

    2017-02-01

    The interaction between podoplanin (PDPN) and C-type lectin-like receptor 2 (CLEC-2) is involved in tumor malignancy. We have established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-21, one of the mouse antipodoplanin mAbs, is of the IgG2a subclass, and its minimum epitope was determined to be Thr76-Arg79 of the human podoplanin. Importantly, sialic acid is linked to Thr76; therefore, LpMab-21 is an antiglycopeptide mAb (GpMab). In this study, we investigated whether LpMab-21 shows antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cell lines in vitro and also studied its antitumor activities using a xenograft model. LpMab-21 showed high ADCC and CDC activities against not only podoplanin-expressing Chinese hamster ovary cells but also LN319 glioblastoma cells and PC-10 lung cancer cells, both of which endogenously express podoplanin. Furthermore, LpMab-21 decreased tumor growth in vivo, indicating that LpMab-21 could be useful for antibody therapy against human podoplanin-expressing cancers.

  20. Immunogenic and antigenic epitopes of immunoglobulins I. Cross-reactivity of murine monoclonal antibodies to human IgG with the immunoglobulins of certain animal species.

    PubMed Central

    Jefferis, R; Lowe, J; Ling, N R; Porter, P; Senior, S

    1982-01-01

    Antibody-producing hybridoma clones have been isolated following immunization of mice with human IgG. Twenty-five monoclonal antibodies (nine anti-C gamma 3, fourteen anti-C gamma 2, one anit-kappa and one anti-lambda) were selected for study of their cross-reactivity with the IgG of fifteen mammalian species and chicken immunoglobulin. Each antibody exhibited a unique reaction profile suggesting that human IgG expresses a very large repertoire of immunogenic epitopes. Whilst some antibodies showed a very restricted cross-reactivity profile for others a very wide reactivity profile was observed-including two clones producing autoantibodies. Antibodies demonstrating cross-reactivity between human Fc gamma and 7S chicken immunoglobulin allow its definitive assignment as a homologue of human IgG. Four clones demonstrated specificity for bovine IgG subclass gamma 1 and gamma 2 and the degree of reactivity allows their application to qualitative and quantitative assay systems. These studies suggest new perspectives for the characterization of immunoglobulins and the standardization of anti-immunoglobulin reagents. PMID:6173313

  1. Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site

    PubMed Central

    Smith, Scott A.; Nivarthi, Usha K.; de Alwis, Ruklanthi; Kose, Nurgun; Sapparapu, Gopal; Bombardi, Robin; Kahle, Kristen M.; Pfaff, Jennifer M.; Lieberman, Sherri; Doranz, Benjamin J.

    2015-01-01

    ABSTRACT The proposed antibody-dependent enhancement (ADE) mechanism for severe dengue virus (DENV) disease suggests that non-neutralizing serotype cross-reactive antibodies generated during a primary infection facilitate entry into Fc receptor bearing cells during secondary infection, resulting in enhanced viral replication and severe disease. One group of cross-reactive antibodies that contributes considerably to this serum profile target the premembrane (prM) protein. We report here the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) obtained from subjects following primary DENV serotype 1, 2, or 3 or secondary natural DENV infections or following primary DENV serotype 1 live attenuated virus vaccination to determine the antigenic landscape on the prM protein that is recognized by human antibodies. We isolated 25 prM-reactive human MAbs, encoded by diverse antibody-variable genes. Competition-binding studies revealed that all of the antibodies bound to a single major antigenic site on prM. Alanine scanning-based shotgun mutagenesis epitope mapping studies revealed diverse patterns of fine specificity of various clones, suggesting that different antibodies use varied binding poses to recognize several overlapping epitopes within the immunodominant site. Several of the antibodies interacted with epitopes on both prM and E protein residues. Despite the diverse genetic origins of the antibodies and differences in the fine specificity of their epitopes, each of these prM-reactive antibodies was capable of enhancing the DENV infection of Fc receptor-bearing cells. IMPORTANCE Antibodies may play a critical role in the pathogenesis of enhanced DENV infection and disease during secondary infections. A substantial proportion of enhancing antibodies generated in response to natural dengue infection are directed toward the prM protein. The fine specificity of human prM antibodies is not understood. Here, we isolated a panel of dengue pr

  2. Monoclonal antibodies in the treatment of cancer

    SciTech Connect

    Dillman, R.O.

    1984-01-01

    Potential uses of monoclonal antibodies in anti-cancer treatment include passive serotherapy, radioisotope conjugates, toxin-linked conjugates, and chemotherapy-monoclonal antibody conjugates. The bases for these applications have been founded in research with heterologous antisera, and in some cases with monoclonal antibodies in animal tumor models. Human trials with passive serotherapy have already begun in both hematopoietic and solid tumor malignancies. Promising results have been reported in cutaneous T cell lymphoma with anti-T cell monoclonal antibody, and in nodular lymphoma with anti-idiotype monoclonal antibody. Radioisotope conjugate work appears promising for imaging in both animals and humans, and this work will lay the foundation for possible therapeutic application of radio-immunotherapy. Toxin-linked conjugates are promising in vitro and may have application in autologous bone marrow transplantation. Research with chemotherapy conjugates is also underway. Preliminary results suggest that murine monoclonal antibodies will be well tolerated clinically except in the setting of circulating cells which bear the target antigen, where rapid infusions may be associated with intolerable side effects. In certain diseases, production of endogenous anti-mouse antibodies may also limit application. Advances in the technology for human-human hybridoma production may help solve some of these problems. 132 references.

  3. Simultaneous ligation of CD5 and CD28 with monoclonal antibodies restores impaired immunostimulatory function in human renal cell carcinoma.

    PubMed

    Siebels, M; Meyer, G; Habicht, A; Meuer, S C; Moebius, U

    2001-10-01

    Tumor cells, including renal cell carcinoma (RCC) cells, do not effectively stimulate T lymphocyte responses against specific antigens presented on their surface. Reasons for this low immunogenicity may include low or absent expression of MHC class I and/or class II molecules, as well as accessory and costimulatory molecules. We used tumor cell pretreatment with cytokines, together with monoclonal antibodies (mAbs) directed at receptors for costimulatory molecules, to render RCC cells immunostimulatory. Interferon-gamma or tumor necrosis factor-alpha pretreatment enhanced expression of MHC class I and class II molecules, as well as CD54, but had only minimal effects on T cell activation. A CD28 mAb, or an even more effective combination of CD28 and CD5 mAb, induced strong primary proliferative responses of allogeneic resting T lymphocytes. Cytokine pretreatment further augmented this T cell response in vitro and allowed T cell expansion and establishment of T cell lines. Stimulation of T cells with autologous RCC cells resulted in a similar T cell activation but with the expansion of cytolytic T cells directed at autologous MHC class II molecules. These experiments demonstrate that cytokines combined with costimulatory mAbs are useful for increasing the immunogenicity of tumor cells. They also indicate. however, that autologous MHC class II expression on tumor cells, together with strong costimulation, may lead to the activation of autoreactive T cells.

  4. Interaction of a Monoclonal Antibody to Glycoprotein IV (CD36) with Human Platelets and its Effect on Platelet Function.

    PubMed

    Legrand, C; Pidard, D; Beiso, P; Tenza, D; Edelman, L

    1991-01-01

    FA6-152, a monoclonal antibody to platelet membrane glycoprotein IV (CP IV), was used to quantify the expression of this glycoprotein on platelets, as well as to evaluate its role in platelet aggregation. On resting platelets, 19 400 ± 7700 molecules of the (125)I-labelled IgC could bind per platelet (n = 20). Binding was not modified following stimulation of the platelets with ADP (10 µmol/l) or thrombin (0.1 U/ml). Fab fragments prepared from the antibody by papain digestion also bound to the platelet surface in a saturable manner. Both the intact IgC and its Fab fragments were found to inhibit platelet aggregation and secretion induced by ADP or collagen in platelet-rich plasma and by thrombin in platelet suspensions. Under nonstirred conditions, whereby the release reaction was only minimally affected, the antibody markedly inhibited thrombin-induced surface expression of α-granule thrombospondin (TSP), whereas it did not alter the concomitant expression of α-granule fibrinogen. In addition, electron microscopy revealed a predominant distribution of TSP and T;P IV on pseudopodia and between adherent cells on thrombin-stimulated platelets. These findings thus support the hypothesis that the interaction of TSP with GP IV on the platelet surface is required for an optimal platelet aggregation/secretion process to occur.

  5. The synergistic effect of humanized monoclonal antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) and chemotherapy.

    PubMed

    Sui, Ping; Cao, Hongxin; Meng, Long; Hu, Pingping; Ma, Honghai; Du, Jiajun

    2014-01-01

    IGF-1R, an important member of the IGF signaling system, is a plasma-membrane-bound receptor composed of two α-subunits and two β-subunits. IGF-1R has been revealed to play a pivotal role in cancer cell proliferation, differentiation, apoptosis and phenotype transformation, resulting uncontrolled tumor-cell growth. During the last decades, IGF-1R monoclonal antibody combined with chemotherapeutic agents as a novel cancer treatment approach has shown synergistic effect in cancer treatment in some preclinical and clinical trials. Prolonged progression-free survival rate, objective response rate and stable disease were shown in some sorts of cancer patients compared to those implemented traditional standard chemotherapy. However, not all related clinical trials demonstrated expected promising outcomes. Most treatment-related adverse events in those studies are mild and manageable. The most frequently happened side effect is hyperglycemia in majorities of combined cancer therapy studies. Herein, we summarized the recent online and published literatures concerning the safety, tolerability, anti-tumor activity and adverse events of this novel strategy. Besides, this work attempts to provide convincible evidence to warrant further investigation to identify prognostic biomarkers on neoplasm.

  6. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases.

    PubMed

    Irani, Vashti; Guy, Andrew J; Andrew, Dean; Beeson, James G; Ramsland, Paul A; Richards, Jack S

    2015-10-01

    Monoclonal antibodies are being developed as therapeutics to complement drugs and vaccines or to fill the gap where no drugs or vaccines exist. These therapeutic antibodies (ThAb) may be especially important for infectious diseases in which there is antibiotic resistance, toxin-mediated pathogenesis, or for emerging pathogens. The unique structure of antibodies determines the specific nature of the effector function, so when developing ThAb, the desired effector functions need to be considered and integrated into the design and development processes to ensure maximum efficacy and safety. Antibody subclass is a critical consideration, but it is noteworthy that almost all ThAb that are licenced or currently in development utilise an IgG1 backbone. This review outlines the major structural properties that vary across subclasses, how these properties affect functional immunity, and discusses the various approaches used to study subclass responses to infectious diseases. We also review the factors associated with the selection of antibody subclasses when designing ThAb and highlight circumstances where different subclass properties might be beneficial when applied to particular infectious diseases. These approaches are critical to the future design of ThAb and to the study of naturally-acquired and vaccine-induced immunity.

  7. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314.

    PubMed

    Kircheis, Ralf; Halanek, Nicole; Koller, Iris; Jost, Wolfgang; Schuster, Manfred; Gorr, Gilbert; Hajszan, Klaus; Nechansky, Andreas

    2012-01-01

    A major limitation to the application of therapeutic monoclonal antibodies (mAbs) is their reduced in vivo efficacy compared with the high efficacy measured in vitro. Effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) are dramatically reduced in vivo by the presence of high amounts of endogenous IgG in the serum. Recent studies have shown that modification of the glycosylation moieties attached to the Fc part of the mAb can enhance binding affinity to FcγRIIIα receptors on natural killer cells and thus may counteract the reduced in vivo efficacy. In the present study, a humanized IgG1/κ monoclonal antibody recognizing the tumor-associated carbohydrate antigen Lewis Y was stably produced in a moss expression system that allows glyco-engineering. The glyco-modified mAb (designated MB314) showed a highly homogeneous N-glycosylation pattern lacking core-fucose. A side-by-side comparison to its parental counterpart produced in conventional mammalian cell-culture (MB311, formerly known as IGN311) by fluorescence-activated cell sorting analysis confirmed that the target specificity of MB314 is similar to that of MB311. In contrast, ADCC effector function of MB314 was increased up to 40-fold whereas complement dependent cytotoxicity activity was decreased 5-fold. Notably, a release of immunostimulatory cytokines, including interferon γ, monocyte chemotactic protein-1 (MCP-1), interleukin-6 and tumor necrosis factor (TNF) was particularly induced with the glyco-modified antibody. TNF release was associated with CD14 (+) cells, indicating activation of monocytes.

  8. Human anti-varicella-zoster virus (VZV) recombinant monoclonal antibody produced after Zostavax immunization recognizes the gH/gL complex and neutralizes VZV infection.

    PubMed

    Birlea, Marius; Owens, Gregory P; Eshleman, Emily M; Ritchie, Alanna; Traktinskiy, Igor; Bos, Nathan; Seitz, Scott; Azarkh, Yevgeniy; Mahalingam, Ravi; Gilden, Don; Cohrs, Randall J

    2013-01-01

    Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.

  9. Growth suppression of human hepatocellular carcinoma xenografts by a monoclonal antibody CH12 directed to epidermal growth factor receptor variant III.

    PubMed

    Jiang, Hua; Wang, Huamao; Tan, Zhonghua; Hu, Suwen; Wang, Hai; Shi, Bizhi; Yang, Lin; Li, Peiyong; Gu, Jianren; Wang, Hongyang; Li, Zonghai

    2011-02-18

    Human hepatocellular carcinoma (HCC) is considered difficult to cure because it is resistant to radio- and chemotherapy and has a high recurrence rate after curative liver resection. Epidermal growth factor receptor variant III (EGFRvIII) has been reported to express in HCC tissues and cell lines. This article describes the efficacy of an anti-EGFRvIII monoclonal antibody (mAb CH12) in the treatment of HCC xenografts with EGFRvIII expression and the underlying mechanism of EGFRvIII as an oncogene in HCC. The results demonstrated that CH12 bound preferentially to EGFRvIII with a dissociation constant (K(d)) of 1.346 nm/liter. In addition, CH12 induces strong antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in Huh7-EGFRvIII (with exogenous expression of EGFRvIII) and SMMC-7721 (with endogenous expression of EGFRvIII) cells. Notably, CH12 significantly inhibited the growth of Huh7-EGFRvIII and SMMC-7721 xenografts in vivo with a growth inhibition ratio much higher than C225, a U. S. Food and Drug Administration-approved anti-EGFR antibody. Treatment of the two HCC xenografts with CH12 significantly suppressed tumor proliferation and angiogenesis. Mechanistically, in vivo treatment with CH12 reduced the phosphorylation of constitutively active EGFRvIII, Akt, and ERK. Down-regulation of the apoptotic protectors Bcl-x(L), Bcl-2, and the cell cycle regulator cyclin D1, as well as up-regulation of the cell-cycle inhibitor p27, were also observed after in vivo CH12 treatment. Collectively, these results indicate that the monoclonal antibody CH12 is a promising therapeutic agent for HCC with EGFRvIII expression.

  10. Growth Suppression of Human Hepatocellular Carcinoma Xenografts by a Monoclonal Antibody CH12 Directed to Epidermal Growth Factor Receptor Variant III*

    PubMed Central

    Jiang, Hua; Wang, Huamao; Tan, Zhonghua; Hu, Suwen; Wang, Hai; Shi, Bizhi; Yang, Lin; Li, Peiyong; Gu, Jianren; Wang, Hongyang; Li, Zonghai

    2011-01-01

    Human hepatocellular carcinoma (HCC) is considered difficult to cure because it is resistant to radio- and chemotherapy and has a high recurrence rate after curative liver resection. Epidermal growth factor receptor variant III (EGFRvIII) has been reported to express in HCC tissues and cell lines. This article describes the efficacy of an anti-EGFRvIII monoclonal antibody (mAb CH12) in the treatment of HCC xenografts with EGFRvIII expression and the underlying mechanism of EGFRvIII as an oncogene in HCC. The results demonstrated that CH12 bound preferentially to EGFRvIII with a dissociation constant (Kd) of 1.346 nm/liter. In addition, CH12 induces strong antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in Huh7-EGFRvIII (with exogenous expression of EGFRvIII) and SMMC-7721 (with endogenous expression of EGFRvIII) cells. Notably, CH12 significantly inhibited the growth of Huh7-EGFRvIII and SMMC-7721 xenografts in vivo with a growth inhibition ratio much higher than C225, a U. S. Food and Drug Administration-approved anti-EGFR antibody. Treatment of the two HCC xenografts with CH12 significantly suppressed tumor proliferation and angiogenesis. Mechanistically, in vivo treatment with CH12 reduced the phosphorylation of constitutively active EGFRvIII, Akt, and ERK. Down-regulation of the apoptotic protectors Bcl-xL, Bcl-2, and the cell cycle regulator cyclin D1, as well as up-regulation of the cell-cycle inhibitor p27, were also observed after in vivo CH12 treatment. Collectively, these results indicate that the monoclonal antibody CH12 is a promising therapeutic agent for HCC with EGFRvIII expression. PMID:21163950

  11. Use of monoclonal antibodies for the identification of Leishmania spp. isolated from humans and wild rodents in the State of Campeche, Mexico.

    PubMed

    Canto-Lara, S B; Van Wynsberghe, N R; Vargas-González, A; Ojeda-Farfán, F F; Andrade-Narváez, F J

    1999-01-01

    The genus Leishmania includes 30 described species which infect a wide variety of mammalian hosts. The precise identification of leishmanial parasites at the species level is very important in order to determine whether an organism, causing the disease in a given area, is of the same biotype as that found in suspected mammalian reservoirs. The objectives of the present study were (1) to identify leishmanial parasites isolated from humans and wild rodents from the State of Campeche, an endemic focus of localized cutaneous leishmaniasis (LCL) in southern Mexico, using an indirect immunofluorescent assay (IFA) with monoclonal antibodies (Mabs); and (2) to determine if the parasites of the two types of hosts were of the same biotype. All the wild rodents (six Ototylomys phyllotis, eight Oryzomys melanotis, five Peromyscus yucatanicus and two Sigmodon hispidus) and 96% (24/25) of the human isolates were identified as Leishmania (L.) mexicana confirming that this specific LCL focus is a wild zoonosis. The presence of one human isolate of L. (Viannia) braziliensis in the State of Campeche, confirmed the importance of an accurate taxonomic identification at species level.

  12. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties.

    PubMed

    Verma, Bhavna; Hawkins, Oriana E; Neethling, Francisca A; Caseltine, Shannon L; Largo, Sherly R; Hildebrand, William H; Weidanz, Jon A

    2010-04-01

    The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.

  13. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology.

    PubMed

    Siegel, D L; Chang, T Y; Russell, S L; Bunya, V Y

    1997-08-07

    A method is described for the isolation of filamentous phage-displayed human monoclonal antibodies directed at unpurifiable cell surface-expressed molecules. To optimize the capture of antigen-specific phage and minimize the binding of irrelevant phage antibodies, a simultaneous positive and negative selection strategy is employed. Cells bearing the antigen of interest are pre-coated with magnetic beads and diluted into an excess of unmodified antigen-negative cells. Following incubation of the cell admixture with a Fab/phage library, the antigen-positive cell population is retrieved using magnetically-activated cell sorting and antigen-specific Fab/phage are eluted and propagated in bacterial culture. Utilizing this protocol with magnetically-labeled Rh(D)-positive and excess unlabeled Rh(D)-negative human red blood cells and a Fab/phage library constructed from human peripheral blood lymphocytes, dozens of unique clinically-useful gamma 1 kappa and gamma 1 lambda anti-Rh(D) antibodies were isolated from a single alloimmunized individual. This cell-surface selection method is readily adaptable for use in other systems, such as for the identification of putative tumor-specific antigens and provides a rapid (< 1 month), high-yield approach for isolating self-replicative antibody reagents directed at novel or conformationally-dependent cell-surface epitopes.

  14. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model.

    PubMed

    Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey; Damon, Inger; Smith, Scott K; Yu, Fujuan; Sebrell, Andrew; Emerson, Suzanne; Cohen, Gary; Eisenberg, Roselyn J; Gorshkova, Inna; Schuck, Peter; Satterfield, William; Moss, Bernard; Purcell, Robert

    2007-09-01

    Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.

  15. Cross-reactivity between Candida albicans and human ovarian carcinoma as revealed by monoclonal antibodies PA10F and C6.

    PubMed Central

    Schneider, J.; Moragues, D.; Martínez, N.; Romero, H.; Jimenez, E.; Pontón, J.

    1998-01-01

    Summary Antibodies against Candida albicans antigenic determinants have been reported to cross-react with human tumour cells. We have found that two monoclonal antibodies, C6 and PA1OF, developed at our laboratory against C. albicans antigenic determinants, cross-react with human ovarian cancer on Western blots and immunohistochemistry. We have subsequently used one of them, PA10OF, to test by means of immunohistochemistry a series of 37 human ovarian carcinomas. Out of 37 tumours, 25 (67.6%) expressed the antigen recognized by PA1OF. The reactivity, however, was concentrated on the subgroup of particularly aggressive, invasive carcinomas in advanced stages of the disease (19 out of 24 positive), whereas the antigen was expressed significantly less (P=0.0007) in the subgroup of much less aggressive stage I tumours of low malignant potential, also called borderline carcinomas (2 out of 13 positive). This cross-reactivity between C. albicans and ovarian carcinoma seems to be attributable to a common antigenic determinant related to tumour aggressiveness. Images Figure 1 Figure 2 Figure 3 PMID:9528850

  16. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    PubMed

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  17. Generation, characterization and preclinical studies of a human anti-L1CAM monoclonal antibody that cross-reacts with rodent L1CAM

    PubMed Central

    Cho, Seulki; Park, Insoo; Kim, Haejung; Jeong, Mun Sik; Lim, Mooney; Lee, Eung Suk; Kim, Jin Hong; Kim, Semi; Hong, Hyo Jeong

    2016-01-01

    ABSTRACT L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent. PMID:26785809

  18. Racially restricted contribution of immunoglobulin Fcγ and Fcγ receptor genotypes to humoral immunity to human epidermal growth factor receptor 2 in breast cancer.

    PubMed

    Pandey, J P; Namboodiri, A M; Kistner-Griffin, E; Iwasaki, M; Kasuga, Y; Hamada, G S; Tsugane, S

    2013-03-01

    Tumour-associated antigen human epidermal growth factor receptor 2 (HER2) is over-expressed in 25-30% of breast cancer patients and is associated with poor prognosis. Naturally occurring anti-HER2 antibody responses have been described in patients with HER2 over-expressing tumours. There is significant interindividual variability in antibody responsiveness, but the host genetic factors responsible for this variability are poorly understood. The aim of the present investigation was to determine whether immunoglobulin genetic markers [GM (genetic determinants of γ chains)] and Fcγ receptor (FcγR) alleles contribute to the magnitude of natural antibody responsiveness to HER2 in patients with breast cancer. A total of 855 breast cancer patients from Japan and Brazil were genotyped for several GM and FcγR alleles. They were also characterized for immunoglobulin (Ig)G antibodies to HER2. In white subjects (n = 263), GM 23-carriers had higher levels of anti-HER2 antibodies than non-carriers of this allele (p = 0·004). At the GM 5/21 locus, the homozygotes for the GM 5 allele had higher levels of anti-HER2 antibodies than the other two genotypes (P = 0·0067). In black subjects (n = 42), FcγRIIa-histidine/histidine homozygotes and FcγRIIIa-phenylalanine/valine heterozygotes were associated with high antibody responses (P = 0·0071 and 0·0275, respectively). FcγR genotypes in white subjects and GM genotypes in black subjects were not associated with anti-HER2 antibody responses. No significant associations were found in other study groups. These racially restricted contributions of GM and FcγR genotypes to humoral immunity to HER2 have potential implications for immunotherapy of breast cancer.

  19. AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis

    PubMed Central

    Yano, Tomoya; Takeda, Hiroyuki; Uematsu, Atsushi; Yamanaka, Satoshi; Nomura, Shunsuke; Nemoto, Keiichirou; Iwasaki, Takahiro; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2016-01-01

    Polypeptide tag technology is widely used for protein detection and affinity purification. It consists of two fundamental elements: a peptide sequence and a binder which specifically binds to the peptide tag. In many tag systems, antibodies have been used as binder due to their high affinity and specificity. Recently, we obtained clone Ra48, a high-affinity rabbit monoclonal antibody (mAb) against dopamine receptor D1 (DRD1). Here, we report a novel tag system composed of Ra48 antibody and its epitope sequence. Using a deletion assay, we identified EEAAGIARP in the C-terminal region of DRD1 as the minimal epitope of Ra48 mAb, and we named this sequence the “AGIA” tag, based on its central sequence. The tag sequence does not include the four amino acids, Ser, Thr, Tyr, or Lys, which are susceptible to post-translational modification. We demonstrated performance of this new tag system in biochemical and cell biology applications. SPR analysis demonstrated that the affinity of the Ra48 mAb to the AGIA tag was 4.90 × 10−9 M. AGIA tag showed remarkably high sensitivity and specificity in immunoblotting. A number of AGIA-fused proteins overexpressed in animal and plant cells were detected by anti-AGIA antibody in immunoblotting and immunostaining with low background, and were immunoprecipitated efficiently. Furthermore, a single amino acid substitution of the second Glu to Asp (AGIA/E2D) enabled competitive dissociation of AGIA/E2D-tagged protein by adding wild-type AGIA peptide. It enabled one-step purification of AGIA/E2D-tagged recombinant proteins by peptide competition under physiological conditions. The sensitivity and specificity of the AGIA system makes it suitable for use in multiple methods for protein analysis. PMID:27271343

  20. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. [An acute monoclonal gammopathy?].

    PubMed

    Presle, Alexandra; Bertocchio, Jean-Philippe; Schneider, Nathalie; Maquart, François-Xavier; Ramont, Laurent; Oudart, Jean-Baptiste

    2015-01-01

    Serum protein electrophoresis is commonly used in case of acute or chronic renal failure. It can lead to the etiologic diagnosis by detecting monoclonal gammopathies which are frequently complicated by renal failure, such as cast nephropathy, Randall's disease or amyloidosis, or to explore an associated inflammatory syndrome. We report the occurrence of two monoclonal components in a patient without any monoclonal component 10 days earlier. The sudden appearance of these two monoclonal components associated to the context of sepsis of urinary origin suggested the diagnosis of transient monoclonal gammopathy. This hypothesis was confirmed by monitoring serum protein electrophoresis that showed a gradual decrease of these two monoclonal components few weeks after the resolution of the infectious disease. The main etiological factors of transient monoclonal gammopathies are infectious or autoimmune diseases. In this context, it is important to delay the achievement of serum protein electrophoresis after the acute episode, in order to avoid to falsely conclude to hematologic malignancy diagnosis. This can prevent costly biological examinations of these transient monoclonal gammopathies and invasive procedures like bone marrow examination.

  2. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies.

    PubMed

    Lousberg, Laurence; Collignon, Joëlle; Jerusalem, Guy

    2016-11-01

    In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC.

  3. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies

    PubMed Central

    Lousberg, Laurence; Collignon, Joëlle; Jerusalem, Guy

    2016-01-01

    In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC. PMID:27800032

  4. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein.

    PubMed

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V; Xia, Di

    2016-08-01

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space group P1), with unit-cell parameters a = 40.67, b = 44.91, c = 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  5. Application of four anti-human interferon-alpha monoclonal antibodies for immunoassay and comparative analysis of natural interferon-alpha mixtures

    SciTech Connect

    Andersson, G.; Lundgren, E.; Ekre, H.P. )

    1991-02-01

    Four different mouse monoclonal antibodies to human interferon-alpha (IFN-alpha) were evaluated for application in quantitative and comparative analysis of natural IFN-alpha mixtures. Binding to IFN-alpha subtypes in solution revealed individual reactivity patterns. These patterns changed if the IFN-alpha molecules were immobilized either passively to a surface or bound by another antibody. Also, substitution of a single amino acid in IFN-alpha 2 affected the binding, apparently by altering the conformation. Isoelectric focusing of three natural IFN-alpha preparations from different sources, followed by immunoblotting, resulted in individual patterns with each of the four mAbs and also demonstrated variation in the composition of the IFN-alpha preparations. None of the mAbs was subtype specific, but by combining the different mAbs, and also applying polyclonal anti-human IFN-alpha antibodies, it was possible to design sensitive sandwich ELISAs with broad or more limited IFN-alpha subtype specificity.

  6. In vitro and in vivo properties of a fully human IgG1 monoclonal antibody that combats multidrug resistant Pseudomonas aeruginosa.

    PubMed

    Adawi, Azmi; Bisignano, Carlo; Genovese, Tiziana; Filocamo, Angela; Khouri-Assi, Camellia; Neville, Anat; Feuerstein, Giora Z; Cuzzocrea, Salvatore; Neville, Lewis F

    2012-09-01

    The development of an anti-bacterial drug in the form of a monoclonal antibody (mAb) targeting an exposed virulence factor, represents an innovative therapeutic strategy. Consequently, a fully human IgG1 mAb (LST-007) targeting Pseudomonas aeruginosa (PA) flagellin type b was recombinantly expressed and characterized in vitro and in an infection model driven by a multidrug resistant (MDR) PA strain. LST-007 demonstrated a highly specific binding towards whole PA bacteria harboring flagellin type b and its recombinant counterpart, with a K(D) of 7.4x10(-10) M. In bioactivity assays, LST-007 or titers of Cmax sera derived from pharmacokinetic studies, markedly attenuated PA motility in an equipotent manner. In vivo, parenteral LST-007 (20 mg/kg) given as a single or double-dosing paradigm post-infection, afforded survival (up to 75% at Day 7) in a lethal model of pneumonia driven by the intratracheal (i.t.) instillation of an LD(80) of the MDR PA isolate. This protective effect was markedly superior to that of imipenem (30% survival at Day 7) and totally devoid with an irrelevant, human isotype mAb. These data lay credence that LST-007 may be a valuable adjunct to the limited list of anti-bacterials that can tackle MDR PA strains, thereby warranting its continued development for eventual clinical evaluation.

  7. A new phosphoglycerolipid, 'phosphatidylglucose', found in human cord red cells by multi-reactive monoclonal anti-i cold agglutinin, mAb GL-1/GL-2.

    PubMed

    Nagatsuka, Y; Kasama, T; Ohashi, Y; Uzawa, J; Ono, Y; Shimizu, K; Hirabayashi, Y

    2001-05-25

    Cord red cell membranes express many differentiation-related molecules. To study such molecules, we have established human cell lines, termed GL-1 and GL-2, by the Epstein-Barr virus transformation method, both of which produce monoclonal anti-i cold agglutinin [Y. Nagatsuka et al., Immunol. Lett. 46 (1995) 93-100]. Thin layer chromatography immunoblotting analysis revealed that these antibodies had broad specificities reacting with a variety of glycolipid antigens. Of the immunoreactive lipid antigens, a new phosphoglycerolipid containing glucose from human cord red cells was found. The isolated lipid was unstable to alkaline hydrolysis and contained glucose as a sole sugar. Secondary ion mass spectrum-collision-induced dissociation mass spectrometric analysis of this lipid gave the main molecular ion peak at m/z 885 corresponding to phosphatidylhexose. This antigen was susceptible to phospholipases A2, C and D but resistant to phosphatidylinositol-specific phospholipase C. Two-dimensional nuclear magnetic resonance spectroscopy confirmed that glucose is linked to the sn-glycerol 3-phosphate residue with a beta-anomeric configuration. Based upon these combined results, we identified this lipid as phosphatidyl-beta-D-glucose. This is the first report showing the presence of the glucosylated glycerophospholipid in mammalian sources.

  8. Selective chromosomal damage and cytotoxicity of sup 125 I-labeled monoclonal antibody 17-1a in human cancer cells

    SciTech Connect

    Woo, D.V.; Li, D.; Mattis, J.A.; Steplewski, Z. )

    1989-06-01

    A monoclonal antibody, 17-1a, which reacts with antigen expressed in human colon cancers was radiolabeled in high specific activity with {sup 125}I. The combination of the antibody and this radionuclide was observed to elicit specific cellular damage after being internalized into cells of the SW1116 human colon cancer cell line. The degree of internalization was quantitatively measured and found to increase over time to 49% after a 48-h incubation period. During this period, significant chromosome aberrations were observed in the SW1116 cell line due to the Auger electrons of {sup 125}I. This damage was not observed using Na{sup 125}I, a nonimmunoreactive radiolabeled antibody, or cells which did not contain the requisite antigen. The number of chromosomal aberrations increased with increasing radioactive concentration of {sup 125}I-17-1a. The nuclear damage resulted in specific cellular cytotoxicity and decreased cell survival of SW1116 cells exposed to various concentrations of {sup 125}I-17-1a.

  9. Development and characterization of anti-glycopeptide monoclonal antibodies against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN.

    PubMed

    Kaneko, Mika K; Nakamura, Takuro; Honma, Ryusuke; Ogasawara, Satoshi; Fujii, Yuki; Abe, Shinji; Takagi, Michiaki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Human podoplanin (hPDPN), which binds to C-type lectin-like receptor-2 (CLEC-2), is involved in platelet aggregation and cancer metastasis. The expression of hPDPN in cancer cells or cancer-associated fibroblasts indicates poor prognosis. Human lymphatic endothelial cells, lung-type I alveolar cells, and renal glomerular epithelial cells express hPDPN. Although numerous monoclonal antibodies (mAbs) against hPDPN are available, they recognize peptide epitopes of hPDPN. Here, we generated a novel anti-hPDPN mAb, LpMab-21. To characterize the hPDPN epitope recognized by the LpMab-21, we established glycan-deficient CHO-S and HEK-293T cell lines, using the CRISPR/Cas9 or TALEN. Flow cytometric analysis revealed that the minimum hPDPN epitope, in which sialic acid is linked to Thr76, recognized by LpMab-21 is Thr76-Arg79. LpMab-21 detected hPDPN expression in glioblastoma, oral squamous carcinoma, and seminoma cells as well as in normal lymphatic endothelial cells. However, LpMab-21 did not react with renal glomerular epithelial cells or lung type I alveolar cells, indicating that sialylation of hPDPN Thr76 is cell-type-specific. LpMab-21 combined with other anti-hPDPN antibodies that recognize different epitopes may therefore be useful for determining the physiological function of sialylated hPDPN.

  10. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6- pyruvylated-D-galactose

    PubMed Central

    1980-01-01

    Two human IgM myeloma proteins, IgMWEA and IgMMAY, were found to react with agar and Klebsiella polysaccharides that contain pyruvylated D- galactose (DGal). Quantitative precipitin data and precipitin inhibition studies with methyl alpha- and beta-glycosides of 4,6- pyruvylated-D-galactose showed their combining sites to be different, although each was directed against the pyruvylated-D-Gal, one reacting most specifically with Klebsiella polysaccharides with terminal nonreducing beta-linked 2,4 pyruvylated-D-Gal, whereas the other reacted equally well with Klebsiella polysaccharides that contain 3,4 beta-linked and 4,6 alpha-linked terminal nonreducing pyruvylated-DGal. Inhibition studies showed that both sites are directed toward one of the two space isomers of 3,4- or 4,6-pyruvylated DGal, the form in which the methyl group of the pyruvate is equatorial, or endo, and its carboxyl group axial, or exo, to the plane of the acetal ring. Coprecipitation studies showed the combining site of IgMWEA to be located on an (Fab')2 fragment and not on the (Fc)5mu fragment. The monoclonal peak in the serum of IgMMAY was specifically precipitated by Klebsiella polysaccharide. Myeloma proteins with specificities of this type may occur with reasonable frequency in humans and may be a consequence of clonal expansion from inapparent infection, carrier states, or disease produced by various Klebsiella organisms. PMID:6158553

  11. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    SciTech Connect

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  12. Mapping of an autoreactive epitope within glutamate decarboxylase using a diabetes-associated human monoclonal autoantibody and an epitope cDNA library.

    PubMed

    Richter, W; Northemann, W; Müller, M; Böhm, B O

    1996-04-01

    Glutamate decarboxylase (GAD65) is a major autoantigen in insulin-dependent diabetes (IDDM) and the neurological disorder Stiff-Man-Syndrome (SMS). We derived a human monoclonal autoantibody (MICA 2) from peripheral blood of a patient newly diagnosed with IDDM, which reacted with GAD65 in Western blots. This indicated that a linear epitope is recognized by MICA 2. Using an epitope cDNA library we mapped the MICA 2 epitope to a contiguous stretch of 26 amino acids (506-531) in the C-terminus of GAD65. Neither blocking experiments with synthetic peptides nor analysis of overlapping decapeptides expressed as fusion proteins allowed us to further narrow down the epitope to the typical size of linear epitopes of 6-8 amino acids. We suggest that a miniconformational epitope provided by amino acids 506-531 is recognized by MICA 2, which withstands SDS gel electrophoresis without destruction or partially refolds during the Western blot procedure. A sequence homology with human heat shock protein 60 (HSP60) maps to this region of GAD65 but no cross-reactivity of MICA 2 with HSP60 occurred. Our data demonstrate that reactivity of an antibody in Western blots does not necessarily define a classic linear epitope of 6-8 amino acids and describe a new autoreactive epitope in GAD65 different from those reported for sera from patients with SMS.

  13. Rationale for the development of IMC-3G3, a fully human immunoglobulin G subclass 1 monoclonal antibody targeting the platelet-derived growth factor receptor alpha.

    PubMed

    Shah, Gaurav D; Loizos, Nick; Youssoufian, Hagop; Schwartz, Jonathan D; Rowinsky, Eric K

    2010-02-15

    A large body of evidence suggests that the platelet-derived growth factor (PDGF) family and associated receptors are potential targets in oncology therapeutic development because of their critical roles in the proliferation and survival of various cancers and in the regulation and growth of the tumor stroma and blood vessels. Several small molecules that nonspecifically target the PDGF signaling axis are in current use or development as anticancer therapies. However, for the majority of these agents, PDGF and its receptors are neither the primary targets nor the principal mediators of anticancer activity. IMC-3G3, a fully human monoclonal antibody of the immunoglobulin G subclass 1, specifically binds to the human PDGF receptor alpha (PDGFRalpha) with high affinity and blocks PDGF ligand binding and PDGFRalpha activation. The results of preclinical studies and the frequent expression of PDGFRalpha in many types of cancer and in cancer-associated stroma support a rationale for the clinical development of IMC-3G3. Currently, IMC-3G3 is being evaluated in early clinical development for patients with several types of solid malignancies.

  14. Prophylactic and therapeutic effects of a humanized monoclonal antibody against the IL-2 receptor (DACLIZUMAB) on collagen-induced arthritis (CIA) in rhesus monkeys

    PubMed Central

    Brok, H P M; Tekoppele, J M; Hakimi, J; Kerwin, J A; Nijenhuis, E M; De Groot, C W; Bontrop, R E; ‘T Hart, B A

    2001-01-01

    CIA in the rhesus monkey is an autoimmune-based polyarthritis with inflammation and erosion of synovial joints that shares various features with human rheumatoid arthritis (RA). The close phylogenetic relationship between man and rhesus monkey makes the model very suitable for preclinical safety and efficacy testing of new therapeutics with exclusive reactivity in primates. In this study we have investigated the prophylactic and therapeutic effects of a humanized monoclonal antibody (Daclizumab) against the α-chain of the IL-2 receptor (CD25). When Daclizumab treatment was started well after immunization but before the expected onset of CIA a significant reduction of joint-inflammation and joint-erosion was observed. A therapeutic treatment, initiated as soon as the first clinical signs of CIA were observed, proved also effective since joint-degradation was abrogated. The results of this study indicate that Daclizumab has clinical potential for the treatment of RA during periods of active inflammation and suppression of the destruction of the joint tissues. PMID:11359452

  15. Prophylactic and Therapeutic Efficacy of a Fully Human Immunoglobulin G1 Monoclonal Antibody to Pseudomonas aeruginosa Alginate in Murine Keratitis Infection▿

    PubMed Central

    Zaidi, Tanweer; Pier, Gerald B.

    2008-01-01

    Treatment of ulcerative keratitis due to Pseudomonas aeruginosa is difficult, time-consuming, and uncomfortable owing to the need for the frequent application of antibiotic drops to the infected corneal surface. We examined here whether a fully human immunoglobulin G1 monoclonal antibody (MAb) specific to the conserved alginate surface polysaccharide of P. aeruginosa could mediate protective immunity against typically nonmucoid strains isolated from human cases of keratitis. MAb F429 effectively opsonized alginate-positive, but not alginate-negative, nonmucoid strains in conjunction with phagocytes and complement. Prophylactic administration of MAb F429 18 h prior to infection with two clinical isolates significantly reduced bacterial levels in the eye and the associated corneal pathology. Along similar lines, systemic intraperitoneal injection, as well as topical application of the MAb onto the infected eye, starting 8 h postinfection in both experimental protocols resulted in significant reductions in bacteria in the eye, as well as minimizing pathological damage to the cornea. These findings indicate that MAb F429 could be useful as an additional therapeutic component for the treatment of P. aeruginosa keratitis. PMID:18644881

  16. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354

    SciTech Connect

    Kaufmann, Bärbel; Vogt, Matthew R.; Goudsmit, Jaap; Holdaway, Heather A.; Aksyuk, Anastasia A.; Chipman, Paul R.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G.

    2010-11-15

    Many flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy. The outer glycoprotein shell of a mature WNV particle is formed by 30 rafts of three homodimers of the viral surface protein E. CR4354 binds to a discontinuous epitope formed by protein segments from two neighboring E molecules, but does not cause any detectable structural disturbance on the viral surface. The epitope occurs at two independent positions within an icosahedral asymmetric unit, resulting in 120 binding sites on the viral surface. The cross-linking of the six E monomers within one raft by four CR4354 Fab fragments suggests that the antibody neutralizes WNV by blocking the pH-induced rearrangement of the E protein required for virus fusion with the endosomal membrane.

  17. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses.

    PubMed

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S; Daidoji, Tomo; Nakaya, Takaaki; Ono, Ken-ichiro; Okuno, Yoshinobu; Ikuta, Kazuyoshi; Watanabe, Yohei

    2014-07-18

    Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  18. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design.

  19. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells.

    PubMed

    Ying, Jin; Tsujii, Masahiko; Kondo, Jumpei; Hayashi, Yoshito; Kato, Motohiko; Akasaka, Tomofumi; Inoue, Takuta; Shiraishi, Eri; Inoue, Tahahiro; Hiyama, Satoshi; Tsujii, Yoshiki; Maekawa, Akira; Kawai, Shoichiro; Fujinaga, Tetsuji; Araki, Maekawa; Shinzaki, Shinichiro; Watabe, Kenji; Nishida, Tsutomu; Iijima, Hideki; Takehara, Tetsuo

    2015-04-01

    Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3

  20. Enzyme-linked immunosorbent assay for human insulin-like growth factor-I using monoclonal and polyclonal antibodies with defined epitope recognition.

    PubMed

    Tamura, K; Kobayashi, M; Suzuki, S; Ishii, Y; Koyama, S; Yamada, H; Hashimoto, K; Niwa, M; Shibayama, F

    1990-05-01

    Monoclonal antibodies (McAb) and polyclonal antibodies (PcAb) against human insulin-like growth factor-I (somatomedin C; hIGF-I) were produced. Using these two antibodies, an enzyme-linked immunosorbent assay (ELISA) system for hIGF-I was established. The ELISA system was able to detect hIGF-I at a range of 1-25 micrograms/l, compared with the range of 1-50 micrograms/l detected by radioimmunoassay (RIA). Human IGF-II and human insulin could not be recognized in this system. The plasma concentrations of IGF-I found using the ELISA agreed well with those found using RIA after conventional Sep-Pak C18 cartridge pretreatment. Epitopes of hIGF-I to McAb and PcAb were investigated by enzymatic digestion of hIGF-I followed by comparing the affinity of the antibodies to the peptides obtained proteolytically. The epitope to McAb was found to be a peptide containing Leu10-Val11-Asp12 (epitope 2). Five epitopes to PcAb containing the following key fragments were identified: a conformational structure formed by the disulphide bonds between Cys6 and Cys48, and between Cys47 and Cys52 (epitope 1), Leu10-Val11-Asp12 (epitope 2), Val17-Cys18-Gly19-Asp20 (epitope 3), Arg21-Gly22-Phe23-Tyr24 (epitope 4) and Lys68-Ser69-Ala70 (epitope 5). Of these, the peptide containing epitope 5 showed the highest affinity to PcAb. The results indicated that our ELISA system combined recognition by epitope 2 of McAb and recognition by epitope 5 of PcAb to obtain its good specificity.

  1. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds.

  2. Accelerating Influenza Research: Vaccines, Antivirals, Immunomodulators and Monoclonal Antibodies. The Manufacture of a New Wild-Type H3N2 Virus for the Human Viral Challenge Model

    PubMed Central

    Fullen, Daniel J.; Noulin, Nicolas; Catchpole, Andrew; Fathi, Hosnieh; Murray, Edward J.; Mann, Alex; Eze, Kingsley; Balaratnam, Ganesh; Borley, Daryl W.; Gilbert, Anthony; Lambkin-Williams, Rob

    2016-01-01

    Background Influenza and its associated diseases are a major cause of morbidity and mortality. The United States Advisory Committee on Immunization Practices recommends influenza vaccination for everyone over 6 months of age. The failure of the flu vaccine in 2014–2015 demonstrates the need for a model that allows the rapid development of novel antivirals, universal/intra-seasonal vaccines, immunomodulators, monoclonal antibodies and other novel treatments. To this end we manufactured a new H3N2 influenza virus in compliance with Good Manufacturing Practice for use in the Human Viral Challenge Model. Methods and Strain Selection We chose an H3N2 influenza subtype, rather than H1N1, given that this strain has the most substantial impact in terms of morbidity or mortality annually as described by the Centre for Disease Control. We first subjected the virus batch to rigorous adventitious agent testing, confirmed the virus to be wild-type by Sanger sequencing and determined the virus titres appropriate for human use via the established ferret model. We built on our previous experience with other H3N2 and H1N1 viruses to develop this unique model. Human Challenge and Conclusions We conducted an initial safety and characterisation study in healthy adult volunteers, utilising our unique clinical quarantine facility in London, UK. In this study we demonstrated this new influenza (H3N2) challenge virus to be both safe and pathogenic with an appropriate level of disease in volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we established the minimum infectious titre required to achieve reproducible disease whilst ensuring a sensitive model that can be translated to design of subsequent field based studies. Trial Registration ClinicalTrials.gov NCT02525055 PMID:26761707

  3. Systematic evaluation of monoclonal antibodies and immunoassays for the detection of Interferon-γ and Interleukin-2 in old and new world non-human primates.

    PubMed

    Höglind, Ankie; Areström, Irene; Ehrnfelt, Cecilia; Masjedi, Khosro; Zuber, Bartek; Giavedoni, Luis; Ahlborg, Niklas

    2017-02-01

    Non-human primates (NHP) provide important animal models for studies on immune responses to infections and vaccines. When assessing cellular immunity in NHP, cytokines are almost exclusively analyzed utilizing cross-reactive anti-human antibodies. The functionality of antibodies has to be empirically established for each assay/application as well as NHP species. A rational approach was employed to identify monoclonal antibodies (mAb) cross-reactive with many NHP species. Panels of new and established mAbs against human Interferon (IFN)-γ and Interleukin (IL)-2 were assessed for reactivity with eukaryotically expressed recombinant IFN-γ and IL-2, respectively, from Old (rhesus, cynomolgus and pigtail macaques, African green monkey, sooty mangabey and baboon) and New World NHP (Ma's night monkey, squirrel monkey and common marmoset). Pan-reactive mAbs, recognizing cytokines from all NHP species, were further analyzed in capture assays and flow cytometry with NHP peripheral blood mononuclear cells (PBMC). Pan-reactive mAb pairs for IFN-γ well as IL-2 were identified and used in ELISA to measure IFN-γ and IL-2, respectively, in Old and New World NHP PBMC supernatants. The same mAb pairs displayed high functionality in ELISpot and FluoroSpot for the measurement of antigen-specific IFN-γ and IL-2 responses using cynomolgus PBMC. Functionality of pan-reactive mAbs in flow cytometry was also verified with cynomolgus PBMC. The development of well-defined immunoassays functional with a panel of NHP species facilitates improved analyses of cellular immunity and enables inclusion in multiplex cytokine assays intended for a variety of NHP.

  4. A whole blood in vitro cytokine release assay with aqueous monoclonal antibody presentation for the prediction of therapeutic protein induced cytokine release syndrome in humans.

    PubMed

    Wolf, Babette; Morgan, Hannah; Krieg, Jennifer; Gani, Zaahira; Milicov, Adriana; Warncke, Max; Brennan, Frank; Jones, Stewart; Sims, Jennifer; Kiessling, Andrea

    2012-12-01

    The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats. We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation. We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ - a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine

  5. Cytotoxic effector cell granules recognized by the monoclonal antibody TIA-1 are present in CD8+ lymphocytes in lymph nodes of human immunodeficiency virus-1-infected patients.

    PubMed Central

    Tenner-Racz, K.; Racz, P.; Thomé, C.; Meyer, C. G.; Anderson, P. J.; Schlossman, S. F.; Letvin, N. L.

    1993-01-01

    A novel monoclonal antibody (mAB) TIA-1, which recognizes a 15-kd granule-associated protein of cytotoxic T lymphocytes and natural killer cells, has been applied to sections of lymph nodes with human immunodeficiency virus (HIV)-induced lymphadenopathy (follicular hyperplasia and lymphocyte depletion). The protein recognized by this mAB induces apoptosis in permeabilized lymphocytes in vitro. While this mAB reacted with approximately 46% of paracortical CD8+ cells in control nodes, it reacted with 75% of such cells in HIV-induced follicular hyperplasia. Germinal centers of the control nodes contained few TIA-1 + cells; in follicular hyperplasia caused by HIV-1, almost all germinal center CD8+ cells were TIA-1 +. Both in the control nodes and in HIV-induced follicular hyperplasia the majority of TIA-1 + cells coexpressed CD45R0. A marked loss of CD8+TIA-1+ cells was seen in lymphocyte-depleted nodes of patients with AIDS. The loss of these cytotoxic T lymphocytes may have a significant impact on the progression of the disease. Images Figure 1 Figure 2 Figure 3 PMID:8506945

  6. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200.

    PubMed

    Lindegren, Sture; Andrade, Luciana N S; Bäck, Tom; Machado, Camila Maria L; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics.

  7. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200

    PubMed Central

    Lindegren, Sture; Andrade, Luciana N. S.; Bäck, Tom; Machado, Camila Maria L.; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B.; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics. PMID:25970341

  8. A new monoclonal antibody (KB61) recognizing a novel antigen which is selectively expressed on a subpopulation of human B lymphocytes.

    PubMed Central

    Pulford, K; Ralfkiaer, E; MacDonald, S M; Erber, W N; Falini, B; Gatter, K C; Mason, D Y

    1986-01-01

    The present paper describes a new monoclonal antibody (KB61) raised against hairy cell leukaemia cells. Antibody KB61 recognizes a molecule of approximately 40,000 molecular weight on human B cells. It reacts with B lymphocytes in the peripheral blood, in primary lymphoid follicles, in the mantle zone of secondary follicles, in interfollicular areas and in splenic marginal zone areas. However, germinal centre lymphoid cells do not express the antigen recognized by antibody KB61. The antibody shows limited reactivity outside the lymphoid system, i.e. polymorphs, tissue macrophages endothelial cells in the hepatic sinusoids. Antibody KB61 discriminates between different types of B-cell malignancies, reacting with the neoplastic cells in hairy cell leukaemia, chronic lymphocytic leukaemia (of B-cell type), prolymphocytic leukaemia and centrocytic lymphoma, but not with acute lymphoblastic leukaemia, germinal centre-derived lymphomas (other than centrocytic), Burkitt's lymphoma and lymphoblastic lymphoma. Antibody KB61 may be of value in the study of B-cell subpopulations and in the differential diagnosis of B-cell neoplasms. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3484721

  9. Use of monoclonal antibodies to a human cytotoxin for its isolation and for examining the self-induction of resistance to this protein.

    PubMed Central

    Hahn, T; Toker, L; Budilovsky, S; Aderka, D; Eshhar, Z; Wallach, D

    1985-01-01

    Crude preparations of cytotoxins (CTXs) produced by human peripheral blood mononuclear cells exert a marked cytotoxic effect when applied to cells in the presence of cycloheximide but in its absence can induce resistance to cytotoxicity. To examine the relationship between these cytotoxic and protective activities, we attempted to fully dissociate the CTX from the other proteins secreted by mononuclear cells. Mice injected with preparations of the cytokines secreted by peripheral blood mononuclear cells developed significant titers of serum antibodies to CTX(s). Splenocytes of such immunized mice were fused with NSO myeloma cells; a few among the resulting hybridoma cells secreted CTX-binding antibodies. Immunoadsorbents constructed with a monoclonal antibody produced by one of these hybridomas were used to purify to homogeneity a CTX (Mr approximately 17,500) from crude preparations of cytokines, by a single adsorption and elution cycle. Purified CTX was cytotoxic in the presence of cycloheximide but in its absence induced resistance to cytotoxicity; this resistance was manifested by decreased vulnerability to CTX in a subsequent incubation in the presence of cycloheximide. We conclude that CTX itself can induce certain changes in cells, which are reflected in resistance to its own cytotoxic effect. Images PMID:3889916

  10. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.

    PubMed Central

    Gagnon, C; White, D; Huitorel, P; Cosson, J

    1994-01-01

    To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes. Images PMID:7841521

  11. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation.

    PubMed

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C; Calder, Lesley J; Melero, José A

    2014-07-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV_F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV_F, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV_F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule.

  12. Itolizumab – a humanized anti-CD6 monoclonal antibody with a better side effects profile for the treatment of psoriasis

    PubMed Central

    Menon, Roshni; David, Brinda G

    2015-01-01

    Management of psoriasis is a challenge to the treating physician. The chronic inflammatory state of psoriasis with exacerbations and remissions necessitate “on-and-off” treatment schedules. The safety profiles of drugs and tolerability issues for patients are important factors to be considered during treatment. Various biological agents targeting T-cells and the inflammatory cytokines are available for systemic treatment of psoriasis. However, major causes of concern while using these drugs are risk of susceptibility to infection and development of anti-drug antibodies, which will affect the pharmacokinetic properties, efficacy, and safety profile of the drug. Itolizumab, a humanized anti-CD6 monoclonal antibody, is a new molecule that acts by immunomodulating the CD6 molecule. CD6 is a co-stimulatory molecule required for optimal T-cell stimulation by the antigen-presenting cells. This step is crucial in T-cell proliferation to form Th1 and Th17 cells, which play a major role in the pathogenesis of psoriasis. This article deals with the properties of Itolizumab and its role in the treatment of psoriasis. Based on the available published data, Itolizumab seems to have a better adverse effects profile and at the same time comparatively less efficacy when compared to other biological agents available for treating psoriasis. Larger studies with longer duration are required to clearly depict the long-term side effects profile. PMID:25945063

  13. Epitope mapping of rat neutralizing monoclonal antibody against human immunodeficiency virus type-1 by a phage peptide library: comparison with ELISA using synthetic peptides.

    PubMed

    Ichiyama, K; Ishikawa, D; Tanaka, Y; Kashiwa, T; Koyanagi, Y; Handa, S; Yamashita, A; Fukushi, M; Yamamoto, N; Taki, T

    1999-01-01

    We generated a rat monoclonal antibody (mAb W#10) with the ability to neutralize human immunodeficiency virus type 1IIIB (HIV-1IIIB) infection. The epitope recognized by mAb W#10 was defined as R-I-Q-R-G-P-G by enzyme-linked immunosorbent assay (ELISA) with the use of synthetic peptides. The filamentous phage clones displaying random 15-amino-acid peptides on the amino terminus of the pIII coat protein reacting with mAb W#10 were identified with affinity and immunological selection procedures. Thirteen out of 16 selected phage clones contained the G-X-G-R-X-F sequence in the coat protein region representing significant homology to a part of conserved G-P-G-R-A-F sequence in the V3 loop of various HIV-1 strains. In addition, the phage clones included the G-X-G sequence in the sequence detected by synthetic peptides as the recognition site. The selected phage clones were stained by mAb W#10 specifically and were able to compete with mAb binding to cells expressing viral antigens.

  14. Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding

    PubMed Central

    Shanker, Sreejesh; Prasad, B. V. Venkataram; Atmar, Robert L.; Estes, Mary K.; Crowe, James E.

    2016-01-01

    Noroviruses (NoV) are the most common cause of non-bacterial acute gastroenteritis and cause local outbreaks of illness, especially in confined situations. Despite being identified four decades ago, the correlates of protection against norovirus gastroenteritis are still being elucidated. Recent studies have shown an association of protection with NoV-specific serum histo-blood group antigen-blocking antibody and with serum IgA in patients vaccinated with NoV VLPs. Here, we describe the isolation and characterization of human monoclonal IgG and IgA antibodies against a GI.I NoV, Norwalk virus (NV). A higher proportion of the IgA antibodies blocked NV VLP binding to glycans than did IgG antibodies. We generated isotype-switched variants of IgG and IgA antibodies to study the effects of the constant domain on blocking and binding activities. The IgA form of antibodies appears to be more potent than the IgG form in blocking norovirus binding to histo-blood group antigens. These studies suggest a unique role for IgA antibodies in protection from NoV infections by blocking attachment to cell receptors. PMID:27355511

  15. Early, anti-immunoglobulin induced events prior to Na+-K+ pump activation: an analysis in a monoclonal human B-lymphoma cell population.

    PubMed

    Heikkilä, R; Iversen, J G; Godal, T

    1983-10-01

    Events following F(ab)2 anti-delta immunoglobulin stimulation of monoclonal (leukemic) human B cells prior to Na+-K+ pump activation were investigated in vitro. This pump activation, measured by ouabain-sensitive 86Rb+ uptake, appeared susceptible to the phospholipid-interacting drugs tetracaine and quinacrine, to the antioxydant nordihydroguaiaretic acid (NDGA), and to the calmodulin antagonist trifluoperazine, while much less susceptible to the methylation inhibitor-3-deazaadenosine. The Ca++ ionophore A 23187 appeared to induce pump activation in a way similar to anti-delta, as it was susceptible to the same drugs and as anti-delta had no additional stimulating effect on A 23187-stimulated cells. However, whereas the anti-delta-induced activations appeared independent of the extracellular Ca++ activity, [Ca++]e, the activation by A 23187 was potentiated by addition of the Ca++ chelator ethyleneglycol-bis (beta-aminoethyl ether) N, N'-tetracetic acid (EGTA). Estimations by fluorescent chelator method (quin 2) showed anti-delta to increase the intracellular Ca++ activity, [Ca++]i both in the absence and presence of EGTA. A 23187 increased [Ca++]i strongly in Ca++ medium, but was weaker, more similar to the anti-delta response, in EGTA medium. It is suggested that Na+-K+ pump activation after anti-Ig stimulation in B cells may follow Ca++ mobilization from internal stores. The trifluoperazine susceptibility suggests that calmodulin regulation is involved.

  16. A neutralizing monoclonal antibody previously mapped exclusively on human immunodeficiency virus type 1 gp41 recognizes an epitope in p17 sharing the core sequence IEEE.

    PubMed Central

    Buratti, E; Tisminetzky, S G; D'Agaro, P; Baralle, F E

    1997-01-01

    We report here that a human immunodeficiency virus type 1 (HIV-1)-specific neutralizing monoclonal antibody (MAb 1575) mapped to the conserved putative intracellular region from amino acid residues 735 to 752 (735-752 region) of gp41 also recognizes a region in an extracellular portion of p17. Both epitopes have a core recognition sequence (IEEE) in a nonhomologous context. The IEEE motif found in HIV-1 p17 is located in a region known as HGP-30 (residues 86 to 115) which has been previously associated with virus neutralization, cytotoxic T lymphocyte activity, and mother-to-child transmission. An analysis of available gp41 and p17 sequences demonstrates that in these regions both IEEE sequences are highly conserved in different HIV-1 clades. The presence of the IEEE epitope in p17 allows us to explain some unexpected neutralizing characteristics of MAb 1575. In addition, the gp41 735-752 region has been previously reported both in intra- and extracellular locations. Our results suggest that the extracellular location was the result of cross-reactivity with p17. PMID:9032383

  17. Safety, Pharmacokinetic, and Functional Effects of the Nogo-A Monoclonal Antibody in Amyotrophic Lateral Sclerosis: A Randomized, First-In-Human Clinical Trial

    PubMed Central

    Meininger, Vincent; Pradat, Pierre-François; Corse, Andrea; Al-Sarraj, Safa; Rix Brooks, Benjamin; Caress, James B.; Cudkowicz, Merit; Kolb, Stephen J.; Lange, Dale; Leigh, P. Nigel; Meyer, Thomas; Milleri, Stefano; Morrison, Karen E.; Orrell, Richard W.; Peters, Gary; Rothstein, Jeffrey D.; Shefner, Jeremy; Lavrov, Arseniy; Williams, Nicola; Overend, Phil; Price, Jeffrey; Bates, Stewart; Bullman, Jonathan; Krull, David; Berges, Alienor; Abila, Bams; Meno-Tetang, Guy; Wurthner, Jens

    2014-01-01

    The neurite outgrowth inhibitor, Nogo-A, has been shown to be overexpressed in skeletal muscle in amyotrophic lateral sclerosis (ALS); it is both a potential biomarker and therapeutic target. We performed a double-blind, two-part, dose-escalation study, in subjects with ALS, assessing safety, pharmacokinetics (PK) and functional effects of ozanezumab, a humanized monoclonal antibody against Nogo-A. In Part 1, 40 subjects were randomized (3∶1) to receive single dose intravenous ozanezumab (0.01, 0.1, 1, 5, or 15 mg/kg) or placebo. In Part 2, 36 subjects were randomized (3∶1) to receive two repeat doses of intravenous ozanezumab (0.5, 2.5, or 15 mg/kg) or placebo, approximately 4 weeks apart. The primary endpoints were safety and tolerability (adverse events [AEs], vital signs, electrocardiogram (ECG), and clinical laboratory tests). Secondary endpoints included PK, immunogenicity, functional endpoints (clinical and electrophysiological), and biomarker parameters. Overall, ozanezumab treatment (0.01–15 mg/kg) was well tolerated. The overall incidence of AEs in the repeat dose 2.5 mg/kg and 15 mg/kg ozanezumab groups was higher than in the repeat dose placebo group and repeat dose 0.5 mg/kg ozanezumab group. The majority were considered not related to study drug by the investigators. Six serious AEs were reported in three subjects receiving ozanezumab; none were considered related to study drug. No study drug-related patterns were identified for ECG, laboratory, or vital signs parameters. One subject (repeat dose 15 mg/kg ozanezumab) showed a weak, positive anti-ozanezumab-antibody result. PK results were generally consistent with monoclonal antibody treatments. No apparent treatment effects were observed for functional endpoints or muscle biomarkers. Immunohistochemical staining showed dose-dependent co-localization of ozanezumab with Nogo-A in skeletal muscle. In conclusion, single and repeat dose ozanezumab treatment was well tolerated and demonstrated co

  18. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  19. The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies.

    PubMed

    Hogarth, P Mark; Anania, Jessica C; Wines, Bruce D

    2014-01-01

    Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.

  20. A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies.

    PubMed

    Furlong, Michael T; Ouyang, Zheng; Wu, Steven; Tamura, James; Olah, Timothy; Tymiak, Adrienne; Jemal, Mohammed

    2012-08-01

    For the development of human antibody Fc (fraction crystallizable) region-containing therapeutic protein candidates, which can be either monoclonal antibodies (mAbs) or pharmacologically active proteins/peptides fused to the Fc region of human Immunoglobulin G (IgG), reliable quantification of these proteins in animal pharmacokinetic study plasma samples is critical. LC-MS/MS has emerged as a promising assay platform for this purpose. LC-MS/MS assays used for bioanalysis of human antibody Fc region-containing therapeutic protein candidates frequently rely upon quantification of a 'signature' surrogate peptide whose sequence is unique to the protein analyte of interest. One drawback of the signature peptide approach is that a new LC-MS/MS assay must be developed for each new human Fc region-containing therapeutic protein. To address this issue, we propose an alternative 'universal surrogate peptide' approach for the quantification of human antibody Fc region-containing therapeutic protein candidates in plasma samples from all nonclinical species. A single surrogate tryptic peptide was identified in the Fc region of most human antibody Fc-containing therapeutic protein candidates. An LC-MS-MS method based upon this peptide was shown to be capable of supporting bioanalysis of a diversity of human Fc region-containing therapeutic protein candidates in plasma samples of all commonly used animal species.

  1. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice.

    PubMed

    Sugyo, Aya; Tsuji, Atsushi B; Sudo, Hitomi; Nomura, Fumiko; Satoh, Hirokazu; Koizumi, Mitsuru; Kurosawa, Gene; Kurosawa, Yoshikazu; Saga, Tsuneo

    2017-03-01

    Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.

  2. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  3. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20.

    PubMed

    Teeling, Jessica L; Mackus, Wendy J M; Wiegman, Luus J J M; van den Brakel, Jeroen H N; Beers, Stephen A; French, Ruth R; van Meerten, Tom; Ebeling, Saskia; Vink, Tom; Slootstra, Jerry W; Parren, Paul W H I; Glennie, Martin J; van de Winkel, Jan G J

    2006-07-01

    We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.

  4. Homology of the NH2-terminal amino acid sequences of the heavy and light chains of human monoclonal lupus autoantibodies containing the dominant 16/6 idiotype.

    PubMed Central

    Atkinson, P M; Lampman, G W; Furie, B C; Naparstek, Y; Schwartz, R S; Stollar, B D; Furie, B

    1985-01-01

    The NH2-terminal amino acid sequences have been determined by automated Edman degradation for the heavy and light chains of five monoclonal IgM anti-DNA autoantibodies that were produced by human-human hybridomas derived from lymphocytes of two patients with systemic lupus erythematosus. Four of the antibodies were closely related to the idiotype system 16/6, whereas the fifth antibody was unrelated idiotypically. The light chains of the 16/6 idiotype-positive autoantibodies (HF2-1/13b, HF2-1/17, HF2-18/2, and HF3-16/6) had identical amino acid sequences from residues 1 to 40. Their framework structures were characteristic of VKI light chains. The light chain of the 16/6 idiotype-negative autoantibody HF6-21/28 was characteristic of the VKII subgroup. The heavy chains of the 16/6 idiotype-positive autoantibodies had nearly identical amino acid sequences from residues 1 to 40. The framework structures were characteristic of the VHIII subgroup. In contrast, the GM4672 fusion partner of the hybridoma produced small quantities of an IgG with a VHI heavy chain and a VKI light chain. The heavy chains of the lupus autoantibodies and the light chains of those autoantibodies that were idiotypically related to the 16/6 system had marked sequence homology with WEA, a Waldenstrom IgM that binds to Klebsiella polysaccharides and expresses the 16/6 idiotype. These results indicate a striking homology in the amino termini of the heavy and light chains of the lupus autoantibodies studied and suggest that the V regions of the heavy and light chains of the 16/6 idiotype-positive DNA-binding lupus auto-antibodies are each encoded by a single germ line gene. PMID:3921567

  5. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor.

    PubMed

    Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric K-W; Sumbria, Rachita K; Pardridge, William M

    2013-05-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [(125) I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein.

  6. Immunoscintigraphic detection of venous thrombosis of the lower extremities by means of human antifibrin monoclonal antibodies labeled with sup 111 In

    SciTech Connect

    Lusiani, L.; Zanco, P.; Visona, A.; Breggion, G.; Pagnan, A.; Ferlin, G. )

    1989-07-01

    A new monoclonal antibody specific for the beta-chain of human fibrin (C22A) and labeled with 111In has been obtained and successfully used in rabbits and dogs for the in vivo detection of venous thrombosis. Studies in humans are currently ongoing. In order to assess the diagnostic value of 111In-antifibrin for the detection of venous thrombosis of the lower extremities, the authors investigated 25 consecutive patients. Ten patients had clinical and instrumental (contrast phlebography and duplex scanning) evidence of acute deep venous thrombosis (DVT), 3 had a long-standing DVT with relapsing episodes of swelling and pain, 5 had superficial venous thrombosis, and the remaining 7 had no signs of thrombosis at all. Twenty patients were being treated with heparin. All patients received 111In-antifibrin at the dose of 74 MBq IV and were scanned with a large field of view gamma camera coupled with a high-energy, parallel-hole collimator at 30 minutes and three, six, and twenty-four hours postinjection. Only the persistence of an abnormal uptake at twenty-four hours confirmed by two observers at visual inspection was considered as positive. A positive result was obtained in 9 of 10 DVT patients (90% sensitivity) and in all SVT patients. The single DVT patient with a negative 111In-antifibrin test had the longest interval between scintigraphy and onset of symptoms (fifty-five days). Thus, the age of thrombi represented a substantial limitation for the test. A false-positive result was obtained in a single SVT patient, in whom also a deep involvement, unconfirmed by phlebography, was suspected (91.6% specificity).

  7. Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library.

    PubMed

    Geiser, M; Schultz, D; Le Cardinal, A; Voshol, H; García-Echeverría, C

    1999-02-15

    To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoproteins in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2-23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

  8. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults.

    PubMed

    Jacobson, Jeffrey M; Kuritzkes, Daniel R; Godofsky, Eliot; DeJesus, Edwin; Larson, Jeffrey A; Weinheimer, Steven P; Lewis, Stanley T

    2009-02-01

    Ibalizumab (formerly TNX-355) is a humanized monoclonal antibody that binds CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1), and inhibits the viral entry process. A phase lb multidose study of the safety, pharmacokinetics, and antiviral activity of ibalizumab was conducted with 22 HIV-1-infected patients. Nineteen patients were randomized to receive either 10 mg/kg of body weight weekly (arm A) or a 10-mg/kg loading dose followed by 6 mg/kg every 2 weeks (arm B) intravenously for 9 weeks. Three patients were assigned to receive 25 mg/kg every 2 weeks for five doses (arm C). During the study, the patients re