Science.gov

Sample records for humic substances society

  1. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  2. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  3. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  4. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  5. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  6. Preparative isolation of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1981-01-01

    A useful procedure has been developed which utilizes adsorption chromatography followed by size-exclusion chromatography, hydrogen saturation by ion exchange, and lypholization to obtain low-ash aqueous humic substances. The preparative concentration of aquatic humic substances is done by multiple reconcentration procedures even though initial concentrations of aqueous humus may be less than 25 ??g/L. The procedure yields concentration factors of 25 000 times for both humic and fulvic acid in water.

  7. Selected pioneering works on humus in soils and sediments during the 20th century: A retrospective look from the International Humic Substances Society view

    NASA Astrophysics Data System (ADS)

    Feller, Christian; Brossard, Michel; Chen, Yona; Landa, Edward R.; Trichet, Jean

    Organic matter in general, and humic substances (HS) in particular, are involved in many processes in soils, sediments, rocks and natural waters. These include rock weathering, plant nutrition, pH buffering, trace metal mobility and toxicity, bioavailability, degradation and transport of hydrophobic organic chemicals, formation of disinfection by-products during water treatment, heterotrophic production in blackwater ecosystems and, more generally, the global carbon cycle. Before the 1970s, natural organic matter of different ecosystem pools ( i.e., soils, sediments, and natural waters) was often studied in isolation, although many similarities exist between them. This is particularly so for HS. In this historical context, a need appeared at the international level for bringing together environmental chemists, soil scientists, hydrologists, and geologists who were interested in HS to provide a forum for the exchange of ideas, to standardize analytical procedures and agree on definitions of HS. The International Humic Substances Society (IHSS) was founded in Denver, Colorado (USA) in 1981 with several objectives among them “to bring together scientists in the coal, soil, and water sciences with interests in humic substances” (home page of the IHSS web site: http://ihss.gatech.edu/ihss2/index.html). This paper presents selected pioneering works on humus in soils and sediments during the 20th century with a special focus on the links between the studies of soil HS and the formation, during early diagenesis, of the precursors of kerogens. Temporal coverage includes key contributions preceding the founding of the IHSS, and a brief history of the organization is presented.

  8. Molecular size of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Wershaw, R. L.; Malcolm, R.L.; Pinckney, D.J.

    1982-01-01

    Aquatic humic substances, which account for 30 to 50% of the organic carbon in water, are a principal component of aquatic organic matter. The molecular size of aquatic humic substances, determined by small-angle X-ray scattering, varies from 4.7 to 33 A?? in their radius of gyration, corresponding to a molecular weight range of 500 to greater than 10,000. The aquatic fulvic acid fraction contains substances with molecular weights ranging from 500 to 2000 and is monodisperse, whereas the aquatic humic acid fraction contains substances with molecular weights ranging from 1000 to greater than 10,000 and is generally polydisperse. ?? 1982.

  9. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  10. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction

    SciTech Connect

    Mobed, J.J.; Hemmingsen, S.L.; Autry, J.L.; Mcgown, L.B.

    1996-10-01

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to discriminate between soil-derived and aquatic-derived IHSS humic substances and between humic and fulvic acids derived from the same source (soil or aquatic). Ionic strength in the range of 0-1 M KCl and humic substance concentration in the range 5-100 mg/L had little effect on the fluorescence spectral characteristics of the humic substances, while pH had significant effects as expected. Absorbance correction was shown to be essential for accurate representation and comparison of the EEMs of the humic substances at high concentrations. 16 refs., 5 figs., 3 tabs.

  11. Humic substance formation during wastewater infiltration

    SciTech Connect

    Siegrist, R.L. ); Hildmann-Smed, R.; Filip, Z.K. , Langen . Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. . Centre for Soil and Environmental Research)

    1991-01-01

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  12. Activated carbon adsorption of humic substances

    SciTech Connect

    Lee, M.C.

    1981-08-01

    Activated carbon pore-size distribution is an important parameter relative to the carbon's capacity for adsorbing humic substances. The effect of coagulation on adsorption should also be examined wherever granular activated carbon is to be used following coagulation. Experimental investigations using a commercial humic acid and a fulvic acid extracted from peat, and a number of commercial activated carbons, several of which were coal-based, are reported.

  13. Unique properties of humic substances from sapropel

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. A.; Mityukov, A. S.; Kryukov, L. N.; Yaroshevich, G. S.

    2017-04-01

    Sapropel from inland Russian water reservoirs is becoming a popular raw material for medicinal purposes, production of sorbents, organomineral fertilizers, and food supplements. A comparative study of the granulometric and biological properties of humic substances obtained from sapropel in a typical way and using ultrasonic treatment of the relevant reaction masses was performed at the Institute of Limnology of the Russian Academy of Sciences. It is shown that the humic substances of sapropel with an increased content of nanoparticles used as veterinary preparations lead to a significant economic effect without using imported preparations.

  14. On the nature of humic substances

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-12-01

    It is argued that the isolation of low-molecular-weight compounds from humic substances does not prove their supramolecular nature, because small molecules can be sorbed on macromolecules by interacting with them due to noncovalent bonds. The relative mobility of molecular segments in humic substances has been proposed to be used as a criterion for the discrimination between the humic substances of supraand macromolecular nature. The macromolecules are characterized by mobility of their segments, whereas supramolecular systems have stiff structure. This difference between macroand supramolecules results in different behaviors of the matrices (gels) formed from them in the processes of segregation. In the macromolecules, the formations of a new phase appearing at the segregation (microphase separation) are of nano size, at least in one dimension. They are incapable of moving within the matrix and form a well-known, limited set of systems. In the supramolecular matrices, the new-phase formations should have higher mobility and ability to move within the matrix with the formation of particles and zones of not only nano, but also micro sizes, as well as a significantly larger set of systems, including fractal configurations. The experimental electron microscopic study of the humic matrices of soil gels shows that the new-phase formations in the matrix of humic substances have not only nano, but also micro sizes and are capable of moving within the matrix, which confirms the supramolecular nature of humic substances. The proposed method has allowed generalizing the supraand macromolecular approaches, because macromolecules can enter into the composition of supramolecular systems. It is no less important that the behavior of HSs can be perceived as the behavior of stiff impenetrable particles that may compose the structures of different types and sizes.

  15. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  16. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Spectroscopy for Characterization of Humic Substances

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and fluorescence spectroscopy have been used in natural organic matter (NOM) studies. In this study, we characterized five fulvic acids, six humic acids and two unprocessed NOM samples obtained from the International Humic Substances Society (IHSS) using these two ana...

  17. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  18. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  19. Involvement of humic substances in regrowth.

    PubMed

    Camper, Anne K

    2004-05-01

    There appear to be interactions in the distribution system that complicate the ability to use AOC/BDOC as an independent assessment of regrowth potential. Two such complications are the limitation of the assays themselves and the potential interaction between the organic carbon concentration with the presence of disinfectants and pipe materials. To address these interactions, a series of experiments spanning several years have been conducted in model distribution systems at the Center for Biofilm Engineering (CBE) using soil-derived humics. When compared to easily utilized organics, humic substances supported the same order of magnitude of biofilm organisms. As carbon concentration was increased from 500 to 1000 to 2000 ppb, there was no increase in growth rate of the organisms, suggesting zero-order kinetics. If the system was chlorinated, there was less biomass, but growth rates were higher. In the presence of corrosion products, humic-fed systems supported more organisms than a control system fed biologically treated water. When free chlorine was maintained at a residual of about 0.2 mg/l, biofilm numbers on the surfaces were reduced. Phosphate alone did not result in fewer bacteria, while a combination of chorine and phosphate had the best results (lowest biofilm numbers). Adjustment to pH 9 was not effective. Recently completed work compared increasing levels of humic substances in the presence of free chlorine and monochloramine on biofilm growth on a number of surfaces (PVC, epoxy, cement, ductile iron). As the concentration of humic substances was increased from 0, 0.5 to 2 mg/l, there was an increase in biofilm numbers on all surfaces. This effect was the most pronounced on iron surfaces. These results illustrate that carbon compounds not measured by the BDOC or AOC tests may profoundly influence biofilm numbers. In addition, iron surfaces are at much higher risk for elevated biofilm counts in the presence of humic substances, even if disinfection is

  20. NMR diffusion analysis of surfactant-humic substance interactions.

    PubMed

    Otto, William H; Britten, Danny J; Larive, Cynthia K

    2003-05-15

    Surfactants can be introduced into the environment through wastewater or by direct contamination. Understanding the fate and transport of surfactants in the environment is important in assessing their role as pollutants. Humic substances are complex heterogeneous mixtures of decomposition products of natural organic materials. They are environmentally important because they are known to solubilize and transport organic pollutants. Therefore humic substances are likely to affect the environmental fate of surfactants. Diffusion coefficients measured with pulsed-field gradient nuclear magnetic resonance spectroscopy are used in this study to examine the intermolecular interactions of the surfactants sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in the presence of various humic substances. These results indicate that humic substances enhance the aggregation of SDS prior to micellization with a more pronounced effect observed for the more hydrophobic humic materials. The positively charged surfactant CTAB forms stable ion pairs with the humic substances.

  1. Tritium Enrichment in the Hydration Sphere of Humic Substances

    SciTech Connect

    Wierczinski, Birgit; Muellen, Guenther; Tuerler, Andreas

    2005-07-15

    Humic and fulvic acid can be combined under the term 'humic substances' and are natural substances with a complex structure. The structural details are not known, however, due to the functional groups present in these compounds the formation of hydrogen bonds is easily attained. Several humic substances were investigated for their potential use as compounds, which are applicable for tritium enrichment from aqueous solution. For comparison a simple compound, malonic acid, representing only few functional groups was investigated. The experiments were performed using a cryosublimation apparatus, which was run well below equilibrium vapor pressure to avoid any isotope fractionation of HTO and H{sub 2}O. A higher enrichment factor was found for natural humic acid compared to fulvic acid, however, no enrichment could be found for a synthetic humic acid and malonic acid. Interpretation of the results is difficult since no detailed information on the chemical structure of humic substances is known.

  2. Humic substances isolated from surface sediments: analytical characteristics

    SciTech Connect

    Schultz, D.M.; Miller, R.E.

    1986-01-01

    The elemental composition and infrared spectra of humic and fulvic acids isolated from Mid-Atlantic Continental Shelf and Slope surface sediments indicated relatively hydrogen-rich humic substance. The stable carbon isotopic ratios of the humic and fulvic acids range from -21.2 to -23.8 per mil with an average of -22.4 per mil. Pyrolysis-gas chromatographic patterns of humic acids and protokerogens showed longer carbon-chain length which are indicative of gas-condensate-to-oil prone, hydrogen-rich organic components. These humic substances are believed to be derived from a marine organic source and may be precursors in the formation of Type II kerogens. A succession of fulvic acid to humic acid to protokerogen is a possible evolutionary pathway for a portion of the protokerogens identified in this study.

  3. Photochemical aspects related to humic substances

    SciTech Connect

    Frimmel, F.H. )

    1994-01-01

    Dissolved humic substances (HS) show yellow color and relatively strong absorption in the UV range [a(254 nm) ca. 0.04 cm[sup [minus]1] for c(DOC) = 1 mg/L]. This is the basis for photochemical reactions in the photic zone of aquatic systems and in water treatment using IV sources. Even though understanding the mechanisms involved in the energy transfer and the resulting reactions is hampered by the poorly defined structure of HS, reliable information has been gathered on some typical aspects of their photochemistry. The luminescence of HS can be influenced and partly quenched by molecular interactions with other water constituents (e.g., heavy metals and organic micropollutants). The presence of oxygen may lead to the sensitized production of singlet oxygen (O[sub 2]), that can react specifically with substances containing diene structures or low valent sulfur. Because of the presence of these structures in HS, humic molecules will also react with the sensitized products. As a consequence, their biological, chemical, and physical properties are influenced. In addition, HS have a significant impact on the photochemical treatment of organic micropollutants in water. This has to be kept in mind when using photochemical steps for water treatment. The results from model experiments reflecting the conditions in surface water and in water treatment are given and discussed. In the presence of H[sub 2]O[sub 2], irradiation led to a transformation and partial degradation of HS. The rate of photochemical degradation of pesticides (e.g., atrazine) was decreased in the presence of HS. Fe and Mn quenched the luminescence. From this, a decrease of excited states of HS for sensitizing reactions can be deduced. The results suggest the manyfold and significant influences of HS on the photochemistry of aquatic systems. 66 refs., 9 figs., 7 tabs.

  4. Humic substances biological activity at the plant-soil interface

    PubMed Central

    Trevisan, Sara; Francioso, Ornella; Nardi, Serenella

    2010-01-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  5. Molecular structure in soil humic substances: The new view

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison

    2005-04-21

    A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.

  6. Humic substances. Part 2: Interactions with organisms.

    PubMed

    Steinberg, Christian E W; Meinelt, Thomas; Timofeyev, Maxim A; Bittner, Michal; Menzel, Ralph

    2008-03-01

    Freshwater bodies which chemistry is dominated by dissolved humic substances (HS) seem to be the major type on Earth, due to huge non-calcareous geological formations in the Northern Hemisphere and in the tropics. Based on the paradigm of the inertness of being organic, direct interactions of dissolved HS with freshwater organisms are mostly neglected. However, dissolved organic carbon, the majority of which being HS, are natural environmental chemicals and should therefore directly interact with organisms. Major results that widened our perspective on humic substance ecology come from experiments with the compost nematode, Caenorhabditis elegans, which behaved contradictorily to textbook knowledge and provoked an in-depth re-consideration of some paradigms. To overcome old paradigms on HS and their potential interactions with organisms, we reviewed recent international literature, as well as 'grey' literature. We also include results from own ongoing studies. This review focuses on direct interactions of dissolved HS with freshwater organisms and disregards indirect effects, such as under-water light quenching. Instead we show with some macrophyte and algal species that HS adversely interfere with photosynthesis and growth, whereby closely related algal species show different response patterns. In addition to this, HS suppress cyanobacteria more than eukaryotic algae. Quinones in the HS appear to be the effective structure. Furthermore, HS can modulate the offspring numbers in the nematode C. elegans and cause feminization of fish and amphibians--they possess hormone-like properties. The ecological consequences of this potential remain obscure at present. HS also have the potential to act as chemical attractants as shown with C. elegans and exert a mild chemical stress upon aquatic organisms in many ways: induction of molecular chaperons (stress proteins), induction and modulation of biotransformation and anti-oxidant enzymes. Furthermore, they produce an

  7. Effects of diaphragm discharge in water solutions containing humic substances

    NASA Astrophysics Data System (ADS)

    Halamova, Ivana; Stara, Zdenka; Krcma, Frantisek

    2010-01-01

    Preliminary results of research focused on the applications of DC diaphragm discharge in water solutions containing humic substances are presented in this paper. Diaphragm discharge investigated by this work was created in the reactor using constant DC high voltage up to 2 kV that gave the total input power from 100 to 200 W. Presented work investigated decomposition of humic substances by the electric discharge in the dependence of discharge conditions (electrode polarity) as well as solution properties (electrolyte kind, pH). Especially substantial effect of pH on humic acid decomposition has been observed when acidic conditions stimulated the degradation process. Absorption spectroscopy in UV-VIS region together with fluorescence spectroscopy has been used for the detection of changes in humic solutions. Index of humification was calculated from obtained fluorescence spectra and a significant decrease of aromatic components in the humic mixture was determined during the discharge treatment.

  8. DBP formation of aquatic humic substances

    USGS Publications Warehouse

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  9. Organic Sulfur Associated with Aquatic Humic Substances

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Vairavamurthy, M. A.; Ravichandran, M.

    2003-12-01

    This study examines the speciation and reactivity of organic sulfur associated with dissolved organic matter isolated from a variety of freshwater environments and the Pacific Ocean. The isolates, which included aquatic humic substances, were obtained using XAD resins and exhibited a wide range of elemental compositions, aromatic carbon contents, and molecular weights. Organic sulfur contents for the samples ranged from 0.4% to 1.9% of the atomic composition and were strongly dependent on the redox chemistry of the environments whence the samples originated, especially with regard to potential interactions with sulfide in sulfate reducing environments. The speciation of the sulfur associated with these samples was investigated using X-ray adsorption near edge spectroscopy (XANES). The samples, all obtained from oxic environments, contained reduced sulfur moieties. Reduced sulfur content (thiophene, organic sulfides and thiols) ranged from 22-70%. In general, humic acid fractions were found to have the largest percentage of reduced sulfur, followed by the fulvic acid and hydrophobic acid fractions. Hydrophilic fractions of the DOC contained a large percentage of oxidized organic sulfur (sulfonate and sulfate moieties). To assess the significance of reduced S content on interactions with soft metals, an environmentally significant process, the binding strength and binding capacity of Hg with organic matter isolated from the Florida Everglades were determined using equilibrium dialysis ligand exchange. Based on elemental analyses and XANES, the DOM sample from the Everglades used in our binding experiments had a reduced-S content of approximately 1.0%. Very strong interactions (KDOM' = 1023.2+/-0.5 L kg-1) were observed at Hg/DOM ratios below approximately 1 μ g Hg per mg DOM. Only a small fraction (approximately 2%) of the reduced-S groups were involved with the strongest interactions between Hg and DOM, suggesting that the binding of Hg to DOM under natural

  10. Sources of sedimentary humic substances: vascular plant debris

    NASA Astrophysics Data System (ADS)

    Ertel, John R.; Hedges, John I.

    1985-10-01

    A modern Washington continental shelf sediment was fractionated densimetrically using either an organic solvent, CBrCl 3, or aqueous ZnCl 2. The resulting low density materials (<2.06 g/ml) account for only 1% of the sediment mass but contain 25% of the sedimentary organic carbon and 53% of the lignin. The C/N ratios (30-40) and lignin phenol yields ( Λ = 8) and compositions indicate that the low density materials are essentially pure vascular plant debris which is slightly enriched in woody ( versus nonwoody) tissues compared to the bulk sediment. The low density materials yield approximately one-third of their organic carbon as humic substances and contribute 23% and 14% of the total sedimentary humic and fulvic acids, respectively. Assuming that the lignin remaining in the sedimentary fraction is also contained in plant fragments that yield similar levels of humic substances, then 50% and 30% of the total humic and fulvic acids, respectively, arise directly from plant debris. Base-extraction of fresh and naturally degraded vascular plant materials reveals that significant levels of humic and fulvic acids are obtained using classical extraction techniques. Approximately 1-2% of the carbon from fresh woods and 10-25% from leaves and bark were isolated as humic acids and 2-4 times those levels as fulvic acids. A highly degraded hardwood yielded up to 44% of its carbon as humic and fulvic acids. The humic acids from fresh plants are generally enriched in lignin components relative to carbohydrates and recognizable biochemicals account for up to 50% of the total carbon. Humic and fulvic acids extracted directly from sedimentary plant debris could be responsible for a major fraction of the biochemical component of humic substances.

  11. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer.

    PubMed

    Porras, Jazmín; Fernández, Jhon J; Torres-Palma, Ricardo A; Richard, Claire

    2014-02-18

    The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet-visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300-450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances.

  12. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  13. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  14. Mechanisms of humic substances degradation by fungi

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  15. The disruption of Daphnia magna sodium metabolism by humic substances: mechanism of action and effect of humic substance source.

    PubMed

    Glover, Chris N; Wood, Chris M

    2005-01-01

    Humic substances have important functions in aquatic systems. While these roles are primarily indirect, influencing the physicochemical environment, recent evidence suggests these materials may also have direct biological actions. This study investigated the mechanism by which humic substances perturb sodium metabolism in a freshwater invertebrate, the water flea Daphnia magna. Aldrich humic acid (AHA) stimulated the maximal rate of whole-body sodium influx (Jmax) when experimental pH was 6 and water calcium content was 0.5 mM. This effect persisted at pH 8 and 1 mM calcium but not at pH 8 in the absence of calcium. An indirect action of AHA on apical transporter activity was proposed to explain this effect. At pH 4 AHA promoted a linear sodium uptake kinetic relationship, attributed to altered membrane permeability due to enhanced membrane binding of humic substances at low pH. In contrast, a real-world natural organic matter sample had no consistent action on sodium influx, suggesting that impacts on sodium metabolism may be limited to commercially available humic materials. These findings question the applicability of commercially available humic substances for laboratory investigations and have significant implications for the study of environmental metal toxicity.

  16. Hormonelike effects of humic substances on fish, amphibians, and invertebrates.

    PubMed

    Steinberg, Christian E W; Höss, Sebastian; Kloas, Werner; Lutz, Ilka; Meinelt, Thomas; Pflugmacher, Stephan; Wiegand, Claudia

    2004-08-01

    Humic substances comprise the majority of organic matter in freshwater ecosystems and were thought to be inert or refractory, except for photolytic degradation. However, evidence is increasing that humic substances interact with aquatic organisms similarly to weak anthropogenic chemicals with nonspecific and specific effects. One specific effect is a hormonelike effect, namely, modulation of the number of offspring, which was first described with the nematode Caenorhabditis elegans. Yet a hormonelike effect is not restricted to only the nematode. With the ornamental swordtail fish, Xiphophorus helleri, and the South African clawed frog, Xenopus laevis, we present phenomenological evidence that slight feminization occurred when these vertebrate species were exposed to a synthetic humic substance, a condensation product of polyphenols. The slight feminization was dose dependent. Copyright 2004 Wiley Periodicals, Inc.

  17. Effects of aluminum-induced aggregation on the fluorescence of humic substances

    SciTech Connect

    Sharpless, C.M.; McGown, L.B.

    1999-09-15

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data were treated with a model for nonspherical particles. While aggregates of aquatic humic acids appear in the fluorescence signal at both short and long excitation wavelengths, aggregates of terrestrial humic acids are detected only at the long Wavelength. Furthermore, the results indicate that emission obtained at longer excitation wavelengths is representative of smaller particles. At pH 4, the aquatic humic acids appear to exist in an extended conformation, whereas the terrestrial humic acids show less extension. The size and shape of the fluorescent particles display a complex dependence on Al concentration. Both enhancement and quenching of fluorescence are observed in the total luminescence spectra upon Al addition. However, quenching is shown to be the result of decreased humic acid concentration due to precipitation by Al rather than photophysical processes.

  18. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  19. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  20. TCE adsorption by GAC preloaded with humic substances

    SciTech Connect

    Kilduff, J.E.; Karanfil, T.; Weber, W.J. Jr.

    1998-05-01

    Adsorption of trichloroethylene (TCE) by activated carbon preloaded with humic and fulvic acids was studied under several conditions in completely mixed batch systems. The authors investigated how molecular weight and molecular-weight distribution of preloaded humic substances affected subsequent adsorption of TCE. The capacity of carbon to adsorb TCE was most greatly reduced in carbon that was preloaded with humic acid components having molecular weights less than about 1,400 g/mol as polystyrene sulfonate. The adsorption capacity was greatly reduced in carbon that was preloaded with whole humic mixtures in which lower molecular weights predominated. The energy distributions of adsorbent indicate that preloaded compounds preferentially occupy high-energy sites, making them inaccessible to subsequently encountered TCE.

  1. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  2. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  3. Application of a membrane model to the sorptive interactions of humic substances.

    PubMed Central

    Wershaw, R L

    1989-01-01

    Humic substances, the dark-colored, natural organic polyelectrolytes that are found in practically all soils, sediments, and natural water, strongly interact with both inorganic and organic pollutants. Inorganic cationic species generally undergo complexation reactions with humic substances. The binding of cations, such as cupric ions, by humic substances often markedly reduces their toxicity to aquatic organisms. Some inorganic anionic species, in the presence of metal ions, are sorbed by humic substances. In these instances the metal ions appear to form bridges between the humic substances and the anions. Several different types of interactions take place between organic compounds and humic materials. Hydrophobic organic species partition into either insoluble or soluble humic substances. The insoluble humic substances will remove hydrophobic organic compounds from the aqueous phase, thereby rendering them less mobile. However, soluble humic substances will solubilize hydrophobic organics, increasing their mobility. Other types of interactions between humic substances and organic compounds, such as adsorption and ion exchange, also have been observed. These various interactions between humic substances and pollutants are important in governing their fate and movement in natural water systems, and, for this reason, a detailed understanding of the mechanisms of the interaction is important. A recently developed membrane model of the structure of humic substances is described; this model enables one to better understand the physical-chemical properties of these materials. Images FIGURE 2. FIGURE 3. PMID:2533555

  4. Modeling ion binding to humic substances: elastic polyelectrolyte network model.

    PubMed

    Orsetti, Silvia; Andrade, Estela M; Molina, Fernando V

    2010-03-02

    A new model for the electrostatic contribution to ion binding to humic substances is proposed and applied to published data for proton binding to fulvic and humic acids. The elastic polyelectrolyte network model treats humic substance particles as composed by two parts, an external one directly in contact with the solution, and an internal part or gel fraction which is considered, from a statistical point of view, as a charged polymer network swelled by the electrolyte solution, in the framework of the Flory polymer network theory. The electrostatic effect is given by a Donnan-like potential, which can be regarded as an average value over the gel fraction of the humic particle. The gel fraction expands as the pH and humic charge are increased, determining the Donnan potential and consequently the ion activity inside the gel. The model was fitted to published experimental data with good agreement. The model predictions are discussed, and the behavior suggests, for some cases, the presence of a transition between closed and open structures attributed to the presence, at low pH, of intramolecular hydrogen bonds which are removed as the carboxylic sites become deprotonated.

  5. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  6. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules

    SciTech Connect

    Conte, P.; Piccolo, A.

    1999-05-15

    The characteristics and quantity of humic substances greatly affects the environmental fate of organic pollutants in soils and natural waters. The authors studied the conformational changes of humic and fulvic acids of different chemical nature by high-pressure size-exclusion chromatography (HPSEC) after dissolution in mobile phases differing in composition but constant in ionic strength. Modification of a neutral mobile phase by addition of methanol, hydrochloric acid, and acetic acid produced, in the order, a progressive decrease in molecular size. Size diminishing was shown by increasingly larger elution volumes at a refractive index detector and by concomitant reductions of peaks absorbance at a UV-vis detector. The decrease of molecular absorptivity (the phenomenon of hypochromism) proved that size reduction of dissolved humic substances was due more to disruption of an only apparent high-molecular-size arrangement into several smaller molecular associations than to coiling down of a macromolecular structure. The most significant conformational changes occurred in acidic mobile phases where hydrogen bondings formation was induced, suggesting that the large and easily disruptable humic conformation was held together predominantly by weak hydrophobic forces.

  7. Leonardite-derived humic substances are great adsorbents for cadmium.

    PubMed

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Wang, Hailong

    2017-08-18

    Adsorption is an important mechanism to immobilize cadmium (Cd) in soil, for which humic substances have a potential. However, commercial humic substances are either very acidic (pH = 2) or alkaline/Na(+)-enriched, making them less suitable for use in acid and saline soils. Here, we used leonardite to produce humic adsorbents HA (pH = 4.02), Ca-HA (pH = 10.9), and Ca-CPAM-HA (pH = 9.62) by using HCl, CaCl2, or CaCl2-polyacrylamide as a flocculant. Their elemental compositions, acidity, and spectroscopic properties were determined, and their Cd adsorption characteristics were assessed by batch kinetic and thermodynamic experiments at environmentally relevant concentrations. Further, HA was mixed with Cd-contaminated soils and incubated for a month to assess its effect on Cd immobilization. Good fitting of kinetic adsorption data into pseudo-second-order model, together with FTIR spectroscopic data, suggested the chemisorption mechanism by forming Cd(II)-carboxyl complexes. The maximum adsorption capacity derived from the Langmuir equation was 129, 114, and 110 mg Cd(II)/g for HA, Ca-HA, and Ca-CPAM-HA, respectively. These values are almost the same on carbon-normalized basis. HA reduced acetic acid extractable Cd by 31% or more. Besides their high propensity for Cd adsorption, humic adsorbents are inexpensive, safe, and beneficial to soil quality.

  8. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  9. Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances.

    PubMed

    Wang, Ren-Qi; Gutierrez, Leonardo; Choon, Ng Siu; Croué, Jean-Philippe

    2015-01-01

    A hydrophilic interaction liquid chromatography (HILIC) method was developed to measure the composition of humic substances from river, reservoir, and treated wastewater based on their physicochemical properties. The current method fractionates the humic substances into four well-defined groups based on parallel analyses with a neutral and a cationic HILIC column, using mobile phases of varied compositions and pH. The results indicate that: (i) the proportion of carboxylic acids in the humic substances from terrestrial origins is less than half of that from treated wastewater (Jeddah, KSA), (ii) a higher content of basic compounds was observed in the humic substances from treated wastewater and Ribou Reservoir (Cholet, France) than in the sample from Loire River (France), (iii) a higher percentage of hydrophobic macromolecules were found in the humic substances from Loire River than in the other samples, and (iv) humic substances of treated wastewater contained less ionic neutral compounds (i.e., pKa 5-9) than the waters from terrestrial origins. The physicochemical property disparity amongst the compounds in each humic substances sample was also evaluated. The humic substances from the lightly humic Loire river displayed the highest disparity, whereas the highly humic Suwannee river (Georgia, USA) showed the most homogeneous humic substances. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Removal of humic substances from water by brown coal sorbents

    SciTech Connect

    E.V. Veprikova; A.V. Rudkovskii; M.L. Shchipko

    2007-12-15

    Brown coal sorption materials with high activity toward humic substances were prepared using a larger scale laboratory unit with a spouted-bed system. The effect of thermal treatment conditions on the sorption properties of these materials was studied. It was found that the sorption activity of the resulting samples toward humates was closely related to the limiting sorption volume of the materials with respect to benzene.

  11. Complexation of copper by aquatic humic substances from different environments

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.

    1983-01-01

    The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.

  12. Some effects of ozonation of humic substances in drinking water

    NASA Astrophysics Data System (ADS)

    Hongve, Dag; Lund, Vidar; Åkesson, Gunvor; Becher, Georg

    Ozonation is employed as a method for removal of colour due to humic substances in drinking water. We have examined some effects of ozonation of humic water in the laboratory. Ozonation reduced colour by 80% but had little influence on the DOC concentration and only moderate effect on the UV absorbance at 254 nm. High-performance size-exclusion chromatography (HPSEC) showed that the content of high-molecular-weight substances was reduced while a nearly corresponding amount of low-molecular-weight compounds was produced. The produced substances have acidic properties, are uncoloured and do not absorb UV light at 254 nm. Ozonation also led to higher BOD values. The formed low-molecular-weight compounds were consumed by microorganisms. In the original humic water sample the microbial degradation affected only high-molecular-weight compounds. The higher content of biodegradable organic compounds in ozonated drinking water is probably responsible for accelerated growth of bacteria and production of sludge in the distribution systems of a Norwegian waterwork. The obtained colour reduction seems to be temporary, since the colour of ozonated water increases under the influence of microorganisms.

  13. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  14. [Study of humic substance transformation in phosphatic soil in terms of nucleophilicity and electrophilicity].

    PubMed

    Kudeiarova, A Iu

    2006-01-01

    The applicability of the nucleophilicity/electrophilicity concept to the explanation of mechanisms of formation and transformation of humic substances was considered. Sequential time changes in the structure and properties of humic substances in phosphatic soil have been revealed. Different elemental composition of humic and fulvic acids at different stages of humus transformation was due to different patterns of electron density distribution in phosphorus-modified fragments of humic molecules. The important role of metals and phosphorus in realization of different pathways of humic substance transformation was demonstrated.

  15. Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Liu, Congqiang; Guo, Jianyang; Fu, Pingqing; Li, Wen; Xing, Baoshan

    2008-01-01

    Carbamazepine is a popular drug that has been detected in natural environments, but little is known about its biogeochemical cycling, influencing factors, and eco-environmental effects in aquatic ecosystems. Interaction between carbamazepine and humic substances, including fulvic and humic acids, was studied using three-dimensional excitation-emission matrix fluorescence spectroscopy and synchronous-scan fluorescence spectroscopy. The intrinsic fluorescence of humic substances was quenched on the addition of carbamazepine, and static quenching was the primary mechanism. The binding parameters on their interaction, including the conditional binding constants (log K) and binding capacities (C(L)), were estimated by the Ryan-Weber nonlinear theory equation. Log K ranged from 3.41 to 5.04 L/mol at 25 degrees C and pH 7.0. The influence of pH on the complexation and the competition between carbamazepine and Cu(II) for fluorescence-binding sites also were discussed. The present results would be helpful in understanding the fate and biogeochemical cycling of other pharmaceuticals and personal care products in aquatic ecosystems.

  16. AhR-mediated and antiestrogenic activity of humic substances.

    PubMed

    Janosek, J; Bittner, M; Hilscherová, K; Bláha, L; Giesy, J P; Holoubek, I

    2007-04-01

    Humic substances (HS) were for decades regarded as inert in the ecosystems with respect to their possible toxicity. However, HS have been recently shown to elicit various adverse effects generally attributed to xenobiotics. In our study, we used MVLN and H4IIE-luc cell lines stably transfected with luciferase gene under control of estrogen receptor (ER) and Ah receptor (AhR; receptor connected with so-called dioxin-like toxicity) for assessment of anti/estrogenic and AhR-mediated effects of 12 commercially available humic substances. Out of those, five humic acids were shown to induce AhR-mediated activity with relative potencies related to TCDD 2.6 x 10(-8)-7.4 x 10(-8). Organic extracts of HS solutions also elicited high activities what means that lipophilic molecules are responsible for a great part of effect. However, relatively high activity remaining in extracted solution suggests also presence of polar AhR-agonists. Contribution of persistent organic compounds to the observed effects was ruled out by H(2)SO(4) treatment. Eight out of twelve HS elicited significant antiestrogenic effects with IC(50) ranging from 40 to 164 mg l(-1). The possible explanations of the antiestrogenic effect include sorption of 17-beta-estradiol (E2) on HS, changes in membrane permeability for E2 or another specific mechanism.

  17. Interactions of Tc(IV) with humic substances

    SciTech Connect

    Boggs, M. A.; Minton, Travis; Lomasney, Samuel; Islam, Mohammed; Dong, Wenming; Gu, Baohua; Wall, Nathalie

    2011-01-01

    To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)20. Binding constants were found to be 6.8 and between 3.9 and 4.3, for log 1, 1,1 and log 1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 M to 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, while TcO(OH)20 and TcO(OH)2-HA are the major species, in the pH 6-8 range.

  18. Formation of Humic Substances in Weathered MSWI Bottom Ash

    PubMed Central

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  19. Characterization of humic substances: implications for trihalomethane formation.

    PubMed

    Uyguner, Ceyda Senem; Hellriegel, Christine; Otto, William; Larive, Cynthia K

    2004-03-01

    Humic substances are precursors of carcinogenic trihalomethanes (THMs) formed during disinfection by chlorination in water treatment processes. In an effort to understand the relationship between trihalomethane formation potential (THMFP) and physicochemical properties of humic substances, UV-visible absorbance, fluorescence in emission and synchronous scan modes, and NMR spectra were measured for several aquatic fulvic and humic acids. For comparison, a soil fulvic acid was also examined using these methods. The feasibility of the gradient modified spin-echo (GOSE) NMR experiment to selectively measure singlet resonances arising from isolated protons was examined. In addition, diffusion coefficients were measured for DMSO solutions of the fulvic acids using BPPLED and GOSE-edited pulse sequences. Although none of the methods tested produced results that correlated with THMFP, the GOSE intensities determined for different regions of the NMR spectra did reflect the relative abundance of different types of functional groups produced by lignin oxidation. In addition, the GOSE-edited diffusion results suggest that the isolated protons, those most reactive to chlorination, are more likely contained in the larger molecular weight fractions of fulvic acids.

  20. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    SciTech Connect

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-12-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a biologically determined partition coefficient K{sub DOC}. The authors observed significant linear relationships between K{sub DOC} and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons as determined by {sup 13}C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K{sub DOC} with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, their results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  1. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  2. Influence of preozonation on the adsorptivity of humic substances onto activated carbon.

    PubMed

    Rodríguez, Francisco J; García-Valverde, María

    2016-11-01

    This research aims to study the influence of preozonation on the adsorptivity of humic substances onto activated carbon, which are usual stages in drinking water treatment. Three different types of humic substances were used in this study: natural fulvic and humic acids extracted from the Úzquiza Reservoir (Burgos, Spain) and a commercially supplied humic acid. The fractionation of the humic substances by ultrafiltration showed a very different molecular weight (MW) distribution for them: the lowest fraction of <1 kDa comprises the vast majority of the fulvic acids (around 86 %), whereas the main fraction for the commercial humic acids was the highest one of >30 kDa (around 40 %). The natural humic acids show an intermediate distribution between the two aforementioned humic substances. The 1-5-kDa fraction turned out to be the most reactive toward trihalomethane formation for the commercial humic acids. The adsorptive capacity of activated carbon for the humic substances was in the following order: natural fulvic acids > natural humic acids > commercial humic acids. The most adsorbable fraction was that of <1 kDa for the fulvic acids, whereas the 5-10-kDa fraction was the most adsorbable for both humic acids. Preozonation changes the MW distribution of the humic substances, decreasing the abundance of the high MW fractions and generating smaller molecules within the low to medium MW range. Adsorption isotherms show that preozonation has a beneficial effect on the adsorptivity of the commercial humic acids onto activated carbon, whereas no appreciable effect was observed for the case of the fulvic acids.

  3. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  4. Comparison of structural features of dissolved organic matter isolated from rainwater with those of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Santos, P.; Santos, E.; Duarte, A.

    2012-04-01

    The complexity of rainwater dissolved organic matter (DOM), a large percentage of which remains uncharacterized, has made difficult to determine the role of rainwater DOM in regional and global carbon budgets. Recent studies have focused on determining the structural characteristics of the bulk DOM in rainwater, reporting the prevalence of DOM with characteristics resembling those of natural humic substances due to its polyacidic nature. However, it is important to investigate the structural features of humic-like DOM isolated from rainwater and to evaluate whether such features differ from those found in aquatic humic substances, namely in what concerns the relative content of aliphacity and aromaticity. In this work, rainwater samples were collected for about one year, in Aveiro (Portugal). Humic-like DOM was extracted from rainwater by a procedure based on adsorption onto DAX-8 resin. The International Humic Substance Society (IHSS) (http://www.ihss.gatech.edu) operationally defined dissolved humic substances (HSs) on the base of adsorption onto a XAD-8 like resin. The isolation and extraction procedure adopted in the present work for the extraction of DOM from rainwater was slightly modified from the procedure recommended by the IHSS as suggested by Santos et al. (2009). Then, humic-like DOM isolated from rainwater was analysed by 1H NMR spectroscopy. Due to the small amounts of DOM extracted from rainwater, the DOM fractions extracted from rainwater samples were combined for each sampling season, and the 1H NMR results were compared between seasons and also with spectra of aquatic humic substances from available literature. Similar structural characteristics were observed for extracted DOM from the different seasons: high content of aliphatic structures, of hydroxy and alkoxy groups, of carbonyl groups and unsaturated carbon atoms, and low content in aromatic structures when compared with aliphatic structures. Moreover, results suggest that the DOM extracted

  5. Cu(II) retention on a humic substance.

    PubMed

    Alvarez-Puebla, R A; Valenzuela-Calahorro, C; Garrido, J J

    2004-02-01

    Humic substances (HS) are macromolecular products derived from a physical, chemical, and microbiological process called "humification." These substances play an important role in the mobility and bioavailability of nutrients and contaminants in the environment. Adsorption isotherms provide a macroscopic view of the retention phenomena. However, complementary techniques are needed in order to study the retention mechanism. The application of the classical models and some modern ones, based on humic substances chemistry, do not accurately describe these adsorption data. The aim of this paper is to model isotherms and combine adsorption data with spectroscopy and microscopy techniques to study the Cu(II) retention on a HS. The adsorption isotherms shape varies significantly with the solution pH from L-type (pH 2-6) to S-type (pH 8). FTIR shows that, when pH is 2 the retention of Cu(II), as [Cu(H(2)O)(6)](2+), is the preferred retention mechanism. The quantity of Cu(II) retained as [Cu(OH)(H(2)O)(6)](+) rises, as pH increases. At pH 4, Cu(II) begins to precipitate, which is the preferred mechanism at pH 8.02. The presence of HS has a great influence on the precipitation process of Cu(II), giving rise to amorphous precipitates. As it is shown by SEM-XRF, Cu(II) distributes heterogeneously on HS surface and accumulates on the humic phases. The presence of different anions (chloride and nitrate) slightly modifies the HS behavior as cation exchanger. When Cl(-) ions are present, part of the Cu(II) form [CuCl(4)](2-), which is stable in solution due to its negative charge; when the anion present is NO(3)(-) the formed complex, [CuNO(3)](+), is retained on the HS.

  6. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.

    PubMed

    Zhou, Shungui; Xu, Jielong; Yang, Guiqin; Zhuang, Li

    2014-04-01

    Iron oxides and humic substances (humics) have substantial effects on biochemical processes, such as methanogenesis, due to their redox reactivity and ubiquitous presence. This study aimed to investigate how methanogenesis is affected by the common occurrence of these compounds, which has not been considered to date. The experiment was conducted with anoxic paddy soil microcosms receiving a humics surrogate compound (anthraquinone-2,6-disulfonate, AQDS) and three iron(III) oxides (ferrihydrite, hematite, and magnetite) differing in crystallinity and conductivity. Ferrihydrite suppressed methanogenesis, whereas AQDS, hematite, and magnetite facilitated methanogenesis. CH4 production in co-occurring ferrihydrite + AQDS, hematite + AQDS, and magnetite + AQDS cultures was 4.1, 1.3, and 0.9 times greater than the corresponding cultures without AQDS, respectively. Syntrophic cooperation between Geobacter and Methanosarcina occurred in the methanogenesis-facilitated cultures. Experimental results suggested that the conductive characteristics of iron(III) oxides was an important factor determining the methanogenic response to the co-occurrence of iron(III) oxides and humics in anaerobic paddy soil. This work indicated that the type of iron(III) oxides may significantly affect carbon cycling under anoxic conditions in natural wetlands. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation.

    PubMed

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2014-04-01

    The main objective of this work (Part II) is to evaluate the usefulness of fluorescence techniques to monitor structural changes in humic substances produced by the ozonation treatment, using all the current fluorescence techniques: Emission scan fluorescence (ESF), synchronous fluorescence spectroscopy (SFS), total luminescence spectroscopy (TLS or EEM) through the use of both 2-D contour maps and 3-D plots, fluorescence index and the λ0.5 parameter. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SUFA, Suwannee River Humic Acid Standard: SUHA and Nordic Reservoir Fulvic Acid Reference: NOFA) and the other one was a commercial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: ALHA). The lowest ozone dosage tested (0.25mg O3/mg TOC) caused no appreciable change in the different types of fluorescence spectra under study, therefore the structural change produced in the humic macromolecules may be considered of little significance. Concerning EEM and synchronous spectra, the two natural fulvic acids (SUFA and NOFA) showed a decrease in fluorescence intensity as ozone dosage increased, but the natural humic acid (SUHA) showed a different behaviour: an initial increase in fluorescence intensity at medium ozone dosages (1.5 mg O3/mg TOC) followed by an intensity decrease for the higher ozone dose (7.5 mg O3/mg TOC). Regarding synchronous spectra, the moderate dosage of 1.5 mg O3/mg TOC led to an increase in the fluorescence of the protein-like peak at λsyn=285 nm for the natural humic substances. The results obtained for the fluorescence index and λ0.5 may suggest that the greatest degradation of aromatic structures within the humic macromolecule occurs at high ozone dosages, whereas the predominant effect at moderate dosages would be the break-up of the humic macromolecule into lower molecular weight

  8. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    PubMed

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  9. Cloud formation of particles containing humic-like substances

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Sorjamaa, R.; Peräniemi, A.; Raatikainen, T.; Laaksonen, A.

    2006-05-01

    Humic like substances (HULIS) are a class of compounds that are suspected to have an effect on cloud droplet activation properties of atmospheric aerosols because they decrease the surface tension of aqueous solutions quite efficiently. Surface active organic compounds have a tendency of concentrating on the surfaces of liquid droplets. If the total amount of surface active compound is small enough, partitioning of the substance on the surface depletes it from the droplet interior, decreasing the Raoult effect and increasing the Kelvin effect. Thus, the surface partitioning causes an increase of the critical supersaturation (Köhler curve maximum), and the effect gets stronger with decreasing size of the cloud condensation nucleus. In this study, the effects of HULIS on the activation of cloud droplets was studied by cloud parcel model calculations. Model results indicate that if the surface partitioning is not taken into account, the number of activated droplets can be highly overestimated. The simulations were made using particles containing 10-80% mass fraction of HULIS, while the remaining fraction of the particle was ammonium sulfate. The calculations indicated that the surface tension effects of humic-like compounds on the cloud activation become significant only when the weight fraction of the organics is very high. In contrast, if the surface partitioning is not taken into account, already a small weight fraction of organics will lead to significant increase in number of cloud droplets.

  10. Determination of humic substances in seawater by electrochemistry (mechanisms)

    SciTech Connect

    Quentel, F.; Madec, C.; Courtot-Coupez, J.

    1987-01-01

    A new method for the measurement of the concentration of humic substances (HS) in seawater is described. The peak obtained by differential cathodic sweep voltammetry after HS adsorption in the presence of traces of molybdenum(VI) can be used for quantitative determination. Measurements using various electrochemical techniques, alternating current polarography, cyclic voltammetry, and adsorptive differential pulse voltammetry, would indicate that the film adsorbed onto the electrode is the result of the adsorption of the organic substance in a first step followed in a subsequent step by the formation of a surface complex (Mo(VI)-HS)/sub ads/ rather than the direct adsorption of the dissolved complex. The electrochemical mechanism corresponds to a one-electron reduction of the adsorbed (Mo(VI)-HS)/sub ads/complex to the corresponding (Mo(V)-HS)/sub ads/ complex. 15 references, 6 figures.

  11. The uniqueness of humic substances in each of soil, stream and marine environments

    USGS Publications Warehouse

    Malcolm, R.L.

    1990-01-01

    Definitive compositional differences are shown to exist for both fulvic acids and humic acids from soil, stream and marine environments by five different methods (1H and 13C NMR spectroscopy, 14C age and ?? 13C isotopic analyses, amino acid analyses and pyrolysis-mass spectrometry). Definitive differences are also found between fulvic acids and humic acids within each environment. These differences among humic substances from various sources are more readily discerned because the method employed for the isolation of humic substances from all environments excludes most of the non-humic components and results in more purified humic isolates from water and soils. The major compositional aspects of fulvic acids and humic acids which determine the observed characteristic differences in each environment are the amounts and compositions of saccharide, phenolic, methoxyl, aromatic, hydrocarbon, amino acid and nitrogen moieties.

  12. Pyrolysis of Active Fraction of Humic Substances-Based Binder for Iron Ore Pelletizing

    NASA Astrophysics Data System (ADS)

    Han, Guihong; Zhang, Duo; Huang, Yanfang; Liu, Lulu; Chai, Wencui; Jiang, Tao

    The authors have developed a series of humic substances-based binders for iron ore pelletizing. This work was to gather information for the further industry application of humic substances-based binders in the field of iron ore oxidized pellets production. Pyrolysis of humic substances as the active fraction in the binders and its effects on fired hematite pellets was investigated in this study. Pyrolysis product of humic substances was focusing on four main gases (CO2, CO, H2and CxHy). The results demonstrated that effect of O2/N2atmosphere on weight loss of humic substances is obvious above 600 °C. Instantaneous concentration of gas products is increased with increasing pyrolysis temperature. Weight percentage of CO2 is increased obviously with increasing O2 concentration, while those of CO and H2 decreasing.

  13. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.).

    PubMed

    Schiavon, Michela; Pizzeghello, Diego; Muscolo, Adele; Vaccaro, Silvia; Francioso, Ornella; Nardi, Serenella

    2010-06-01

    A high molecular weight humic fraction (>3,500 Da) was characterized chemically by DRIFT and 1H NMR spectroscopy, and was applied to Zea mays L. plants to evaluate its effect on phenylpropanoid metabolism. The activity and gene expression of phenylalanine (tyrosine) ammonia-lyase (PAL/TAL), and the concentrations of phenolics and their amino acid precursors phenylalanine and tyrosine were assayed. Maximum induction of PAL/TAL activity and expression was obtained when the concentration of added humic substance was 1 mg C/l hydroponic solution. Phenylalanine and tyrosine significantly decreased (-16% and -22%, respectively), and phenolic compounds increased in treated plants. The effects of the humic substance could be ascribed partly to indoleacetic acid (27 nmol/mg C) in the humic fraction. Our results suggest that this humic fraction induces changes in phenylpropanoid metabolism. This is the first study that shows a relationship between humic substances and the phenylpropanoid pathway.

  14. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins.

    PubMed

    Brevet, Julien; Claret, Francis; Reiller, Pascal E

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu(3+) at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components tau(1) and tau(2) are in the same order of magnitude for all the samples, i.e., 40 (7)F(2) transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu(3+) (lambda(max) = 615.4 nm), and the humic samples share almost the same lambda(max) approximately 614.5 nm. The main differences between the samples reside in a shoulder around lambda approximately 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around lambda approximately 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I(612.5)/I(614.7) = 1.1, KFA

  15. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins

    NASA Astrophysics Data System (ADS)

    Brevet, Julien; Claret, Francis; Reiller, Pascal E.

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu 3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D 0 → 7F 2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu 3+ ( λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/ I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/ I614.7 = 1.2-1.3, whilst the LHA

  16. The contribution of humic substances to the acidity of colored natural waters

    USGS Publications Warehouse

    Oliver, B.G.; Thurman, E.M.; Malcolm, R.L.

    1983-01-01

    An operationally defined carboxyl content of humic substances extracted from rivers, streams, lakes, wetlands, and groundwaters throughout the United States and Canada is reported. Despite the diversity of the samples, only small variations were observed in this humic carboxyl content. The dissociation behavior of two combined fulvic/humic acid extracts was studied and it was found that the dissociation of the humics varied in a predictable manner with pH. Using a carboxyl content of 10 ??eq/ mg humic organic carbon, and mass action quotient calculated from sample pH, the ionic balances of three highly colored Nova Scotia rivers were estimated. ?? 1983.

  17. Reaction of vanadate with aquatic humic substances: An ESR and {sup 51}V NMR study

    SciTech Connect

    Lu, Xi.; Johnson, W.D.; Hook, J.

    1998-08-01

    Electron spin resonance (ESR) spectroscopy and {sup 51}V nuclear magnetic resonance (NMR) spectroscopy have been used to study the interaction of vanadate with aqueous solutions of humic substances (HS) at different pH values and at different concentrations. Under acidic pH conditions, ESR spectra show that humic substances reduce vanadium(V) to vanadium(IV) without further reduction to vanadium(III). The reduced vanadium(IV) ion is bound to oxygen donor atoms, probably at carboxylic acid sites in the humic substances. {sup 51}V NMR spectra show that the VO{sub 2}{sup +} cation is immediately reduced and that the decavanadate cation decomposes to the VO{sub 2}{sup +} cation prior to reduction. The overall rate of reduction depends on both concentration and pH. There is no reduction above pH 6, which suggests that the standard reduction potential of humic substances is about +0.65 V. Near pH 7, vanadate is stabilized by binding to humic substances. As the concentration of humic substances increases, the total vanadium NMR signal intensity decreases. This is due to the quadrupolar nature of the {sup 51}V nucleus that, when bound to humic substances, is invisible in NMR measurements. Quantitative models applied to intensity changes show that the vanadate monomer forms HS0V(V) complexes. The formation equilibrium constant is estimated to be 108 M{sup {minus}1}. At pH above 9, NMR signals appear at {minus}623.6 and at {minus}763.2 ppm when humic substances are added to vanadate solution. The intensities of the signals increase with increasing pH and with increasing concentration of humic substances. These signals appear to be associated with peroxyvanadate anions, which are not bound to humic substances.

  18. Effect of soil invertebrates on the formation of humic substances under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Frouz, J.; Li, X.; Brune, A.; Pizl, V.; Abakumov, E. V.

    2011-08-01

    The complete polymerization of phenols and proteins (one of the processes involved in the formation of humic substances) was explained. It was shown that fly ( Bibio marci) larvae and earthworms ( Aporrectodea caliginosa) participate in the complete polymerization of phenols and proteins. In a laboratory experiment, invertebrates participated in the degradation of organic matter and the synthesis of humic substances, which was proved in experiments with 14C-labeled phenols and proteins. The same organic substances (phenols and proteins) without the impact of invertebrates were used as the control substances. The distributions of the 14C isotope in alkaline extracts separated by solubility in acids (humic and fulvic acids) was compared to those of the control substances. The portion of the 14C isotope in the humic acids in the excrements of Bibio marci was higher than that in the control substances. The content of 14C-labeled humic substances in the excrements of the earthworm Aporrectodea caliginosa exceeded the control values only in the experiment with proteins. When clay material was added to the organic substances, the portion of the 14C isotope in the humic acids increased in both experiments with phenols and proteins. When these substrates passed through the digestive tracts of the invertebrates, the polymerization of organic substances and the inclusion of proteins and phenols into humic acids occurred.

  19. Response of humic-reducing microorganisms to the redox properties of humic substance during composting.

    PubMed

    Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng

    2017-09-16

    Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    NASA Astrophysics Data System (ADS)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    Humic substances (HS) are a ubiquitous, recalcitrant, and diverse class of compounds arising from degradation and condensation of plant and microbial biopolymers. Many bacteria oxidize hydroquinones within humic substances to their quinone analogs, providing electrons for respiratory processes such as nitrate reduction. Microbial hydroquinone oxidation contributes to the redox state of HS and supports denitrification, which may be of import to agricultural soils where nitrate retention is critical and HS are prevalent. Most probable number counts were performed on soils collected from a Nebraska farm, with the model humic hydroquinone 2,6- anthrahydroquinone disulfonate (AHDS) serving as an electron donor and nitrate as the electron acceptor. Results indicated that AHDS oxidizing, nitrate reducing bacteria were present in soils from bluegrass fields (104 cells/g) and aspen groves (106 cells/g), as well as in plots of corn (106 cells/g), and soybean treated (106 cells/g) and un-treated (105 cells/g) with pig slurry. These results demonstrate that microorganisms participating in the proposed metabolism are prevalent within agricultural soils. Upflow glass columns were constructed, containing a support matrix of glass beads amended with 10% w/w soil from the corn plot previously mentioned. All columns were subjected to a continual flow of phosphate-buffered water amended with sodium nitrate. Above the point source for nitrate injection, phosphate-buffered water containing electron donor treatments were continually injected. The impacts of electron donor treatments (no donor, oxidized HS, reduced HS, and acetate) on denitrification and other geochemical parameters were observed. Column studies were able to resolve effects of electron donor treatment both spatially as a function of distance from the injection point source, and temporally, as a function of time of donor treatment. Four sample ports in each column were routinely analyzed for concentrations of nitrate

  1. XANES studies of oxidation states of sulfur in aquatic and soil humic substances

    SciTech Connect

    Xia, K.; Weesner, F.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Skyllberg, U.L.

    1998-09-01

    Sulfur K-edge x-ray absorption near-edge structure spectroscopy (XANES) was used to identify multiple organic S oxidation states in aquatic and soil humic substances. The XANES results suggest that S in humic substances exists in four major oxidation groups similar to sulfate ester, sulfonate, sulfoxide, and thiol-sulfide. Thiol S cannot be separated from sulfide X and must be considered as a single thiol-sulfide peak. The second derivative spectra suggest the existence of thiophene and sulfone S. The relative quantities of each major S form in humic samples were estimated based on the integrated cross section of each s {r_arrow} p transition peak corresponding to different S oxidation states in the S K-edge XANES spectra. The XANES results of the four humic samples used in this study appear to reflect the environmental settings where the humic substances originally formed. The percentage of the most reduced organic S (thiol-sulfide and possibly thiophene) in humic substances follows the sequence:aquatic samples > organic soil sample > mineral soil sample. The percentage of most oxidized S (sulfate group) was the greatest in the humic substance from a mineral soil and the lowest in the aquatic humic substances.

  2. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  3. Production of humic substances through coal-solubilizing bacteria

    PubMed Central

    Valero, Nelson; Gómez, Liliana; Pantoja, Manuel; Ramírez, Ramiro

    2014-01-01

    In this paper, the production of humic substances (HS) through the bacterial solubilization of low rank coal (LRC) was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA) obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O), IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L−1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils. PMID:25477925

  4. Natural carbon-based dots from humic substances

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-05-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics.

  5. Humic substance-enhanced ultrafiltration for removal of cobalt.

    PubMed

    Kim, Ho-Jeong; Baek, Kitae; Kim, Bo-Kyong; Yang, Ji-Won

    2005-06-30

    It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metal ions or radionuclides effectively. However, the complexing agent, surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents instead of synthetic chemicals. The HS are sorts of natural organic matters and their functional groups such as carboxyl and phenyl groups can bind with the cation and form complexes. The effects of HS concentration and pH on the removal of cobalt were investigated. At the HS concentration of 3g/L and pH of 6, over 95% of cobalt was removed by regenerated cellulose membrane with molecular weight cut-off (MWCO) of 3000. As the HS concentration increased, the removal of cobalt was also enhanced because of the increase in binding sites (functional groups). The removal of cobalt increased from 72.5% to 97.5% as pH increased from 4 to 8 at the HS concentration of 3g/L. It resulted from the more deprotonation of functional groups in humic acid at higher pH.

  6. Natural carbon-based dots from humic substances

    PubMed Central

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-01-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics. PMID:25944302

  7. Identifying trends for understanding the role of humic substances in the environmental behavior of radionuclides

    SciTech Connect

    Czerwinski, K.R.; Buckau, G.

    1999-07-01

    Humic substances are expected to have a major role in the environmental speciation of radionuclides. If the speciation of the radionuclide humic complex can be adequately modeled, predictions of its fate and transport may be possible. Additionally, humic substances have been shown to adsorb to a variety of mineral surfaces. The humic coated surfaces also interact with aqueous radionuclides, complicating environmental behavior. Studies indicate the importance of pH, ionic strength, and humic substance concentration in understanding the impact of humic substances on radionuclide speciation. However, values obtained to describe complexation or sorption vary and are difficult to compare and incorporate into existing geochemical codes due to variations in humic complexation models or concepts. This obscures intercomparison and the utility of the resulting values. This work shows results based on different concepts can be evaluated with the charge neutralization model, yielding similar stability constant values. The consistent stability constants found with the charge neutralization model can be used for intercomparison and identification of behavioral trends. A speciation calculation of a contaminated site using identified trends between humic and fulvic acid are given. The results yield good agreement between calculation and environmental observations. Laboratory experiments validate the identified trend. Comparisons between aquatic and sorb humic acid are presented and similarities useful for modeling are given.

  8. Effects of humic substances on fluorometric DNA quantification and DNA hybridization.

    PubMed

    Bachoon, D S; Otero, E; Hodson, R E

    2001-10-01

    DNA extracts from sediment and water samples are often contaminated with coextracted humic-like impurities. Estuarine humic substances and vascular plant extract were used to evaluate the effect of the presence of such impurities on DNA hybridization and quantification. The presence of humic substances and vascular plant extract interfered with the fluorometric measurement of DNA concentration using Hoechst dye H33258 and PicoGreen reagent. Quantification of DNA amended with humic substances (20-80 ng/microl) using the Hoechst dye assay was more reliable than with PicoGreen reagent. A simple procedure was developed to improve the accuracy for determining the DNA concentration in the presence of humic substances. In samples containing up to 80 ng/microl of humic acids, the fluorescence of the samples were measured twice: first without Hoechst dye to ascertain any fluorescence from impurities in the DNA sample, followed with Hoechst dye addition to obtain the total sample fluorescence. The fluorescence of the Hoechst dye-DNA complex was calculated by subtracting the fluorescence of the impurities from the fluorescence of the sample. Vascular plant extract and humic substances reduced the binding of DNA onto the nylon membrane. Low amounts (<2.0 microg) of humic substances derived from estuarine waters did not affect the binding of 100 ng of target DNA to nylon membranes. DNA samples containing 1.0 microg of humic substances performed well in DNA hybridizations with DIG-labeled oliogonucleotide and chromosomal probes. Therefore, we suggest that DNA samples containing low concentrations of humic substances (<20 ng/microl) could be used in quantitative membrane hybridization without further purification.

  9. Soil humic substances hinder the propagation of prions

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    capacity of clay minerals; however the contribution of soil organic components in adsorption has so far been neglected, as they represent a minor soil fraction on a weight basis. Among organic molecules, humic substances (HSs) are natural polyanions that result among the most reactive compounds in the soil and possess the largest specific surface area. Humic substances make up a large portion of the dark matter in humus and consist of heterogeneous mixtures of transformed biomolecules exhibiting a supramolecular structure. HSs are classified as humic acids (HAs), which are soluble only in alkaline solutions, and fulvic acids (FAs), which are soluble in both alkaline and acid solutions. The amphiphilic characteristics confer to HAs and FAs great versatility to interact with xenobiotics and reasonably also with prion proteins and/or prions too, leading to the formation of adducts with peculiar chemical and biophysical characteristics, thus affecting the transport, fixation and toxicity of prion. Results from our chemical, biophysical and biochemical investigation will be presented and results on anti-prion activity exerted by HAs and FAs will be provided, thus suggesting that amendment of contaminated soil with humic substances could be a strategy to contrast prion diffusion.

  10. Dynamic structure of humic substances: rare earth elements as a fingerprint.

    PubMed

    Pédrot, Mathieu; Dia, Aline; Davranche, Mélanie

    2010-05-15

    Whereas humic substances are known to play a key role in controlling metal speciation and trace element mobility within soils and waters, the understanding of their structure is still unclear and remains a matter of debate. Several models of humic substance structure have been proposed, where humic substances were composed of either: (i) macromolecular polyelectrolytes that can form molecular aggregates or (ii) supramolecular assemblies (molecular aggregates) of small molecules without macromolecular character, joined together by weak attraction forces. This experimental study was designed and dedicated: (i) to follow the size of organic molecules versus ionic strength or pH by the combined means of ultrafiltration and aromaticity data and rare earth element (REE) fingerprinting, and (ii) to investigate the pH and ionic strength effect on the distribution of associated rare earth elements in soil solution. This study supports the presence of supramolecular associations of small molecules and probably the presence of macromolecules in the bulk dissolved organic matter. By contrast to ionic strength, pH appeared to be the major parameter playing on the stability of the humic substance structure. Humic substances displayed dynamic structures, which evolved with regard to pH. Low pH led to a destabilization of the humic substance conformation. This destabilization had an impact on the trace element distribution in soil solution, as assessed by REE data, and conversely, the destabilization degree of humic substances seemed to be influenced by the metal ion charge. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substances.

    PubMed

    Hur, Jin; Schlautman, Mark A

    2004-11-15

    Changes in pyrene binding by dissolved and mineral-associated humic substances (HS) due to HS adsorptive fractionation processes were examined in model environmental systems using purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). For PAHA, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions (Koc(res)) were different from the original dissolved PAHA Koc value (Koc(orig)) prior to contact with the mineral suspensions. A strong positive correlation between pyrene log Koc(res) and log weight-average molecular weight (MWw) for residual PAHA fractions was observed, which was relatively independent of the specific mineral adsorbent used and hypothesized fractionation processes. A strong positive correlation between log Koc(ads) and log MWw was also found for PAHA fractions adsorbed to kaolinite at low mass fraction organic carbon levels, although the relationship was statistically different from the one found with residual PAHA fractions. The same trends and correlations found for PAHA were not observed with SRFA, suggesting that the impacts of HS adsorptive fractionation on changes in hydrophobic organic contaminants binding are also influenced by the source and other biogeochemical characteristics of HS.

  12. Radiolabelling of humic substances with (14)C by azo coupling [(14)C]phenyldiazonium ions.

    PubMed

    Mansel, A; Kupsch, H

    2007-07-01

    For the first time, natural and synthetic humic substances were radiolabelled by azo coupling [U-(14)C]phenyldiazonium ions onto the aromatic fragments of their macromolecules under mild reaction conditions. The radiolabelling procedure was optimized with respect to pH, reaction temperature and the molar ratio of the humic substance to the labelling compound. The labelled humic substances were purified by precipitation or ultrafiltration. The chemical yields were in the range between 23% and 95%, and the specific radioactivities varied between 68 and 206MBq (14)C per gram of the humic substance, depending on the origin of the humic substance and the purification method. With the (14)C-labelled humic compounds thus obtained, we were able to detect humic substances at concentrations as low as 5microg/L. These radiolabelled compounds can be used in long-term studies because, according to size exclusion chromatography data, there are no signs of their decomposition even after 5 months of storage.

  13. Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions

    USDA-ARS?s Scientific Manuscript database

    Most models of soil humic substances include a substantial component of aromatic carbon (C) either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. Here we report that most of the aromatic C in the clay fraction of three stud...

  14. Draft genome sequence of a subarctic humic substance-degrading pseudomonad.

    PubMed

    Park, Ha Ju; Shin, Seung Chul; Kim, Dockyu

    2013-01-01

    The Pseudomonas sp. PAMC 26793 was isolated because of its high ability to degrade humic acids from a subarctic grassland in Alaska. We sequenced the PAMC 26793 genome to discover the genes for degradation of natural humic substances and to provide further information for the degradation process of soil bacteria in a low-temperature environment.

  15. Draft Genome Sequence of a Subarctic Humic Substance-Degrading Pseudomonad

    PubMed Central

    Park, Ha Ju; Shin, Seung Chul

    2013-01-01

    The Pseudomonas sp. PAMC 26793 was isolated because of its high ability to degrade humic acids from a subarctic grassland in Alaska. We sequenced the PAMC 26793 genome to discover the genes for degradation of natural humic substances and to provide further information for the degradation process of soil bacteria in a low-temperature environment. PMID:23405349

  16. [Study of vibrational spectra of humic substance in soils from the three Gorges Reservoir Area].

    PubMed

    Hu, Xue-Bin; Ji, Fang-Ying; Li, Si; Zhou, Guang-Ming; Yu, Dan-Ni; Tan, Xue-Mei; Yang, Da-Cheng; Yu, Bing

    2010-05-01

    The six typical different parts of soils and sediments along the bank of the Three Gorges Reservoir Area (TGRA) were collected, and the humic substance isolated from the six parts of the soils and sediments' samples was separated to humic acid and fulvic acid, purified, and characterized with the combination of the Raman and IR vibrational spectroscopic technologies after cool-dried separation; through assigning the vibrational peaks in each part of the Raman and IR spectra of each sample part, the vibrational characteristics of the structures and the groups that belonged to the molecules of the humic acids and the fulvic acids in the soils and sediments of the TGRA were obtained; the changing features of the groups and structures in the humic acid and the fulvic aicd's molecules from the different soils and sediments in the TGRA were discussed with the environmental impact factors such as soil humic degree, the conditions of different soils conference, using and/or cultivating models and water level fluctuations. From the experimental results, the vibrations about C-O, C-C, and poly-hydrogen bonds dominate in the structures and the groups of each part' humic substance; the active vibration numbers in the upstream are more than in the downstream; the soil's humic degree has great effect on the formation of the humic substances' structures in soil's humic substance; the soil used as agricultural cultivating mode showed higher humic degrees in the upstream parts of the TGRA. The effect of the water level's fluctuation on the formation of the humic acid and fulvic aicd in the sediments of the TGRA is not obvious in the short time.

  17. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The simultaneous modelling of metal ion and humic substance transport in column experiments.

    PubMed

    Bryan, Nick D; Barlow, Jenny; Warwick, Peter; Stephens, Sarah; Higgo, Jenny J W; Griffin, David

    2005-03-01

    Pulsed column experiments using Co, fulvic acid and porous sediment packing, along with up/down-flooding experiments using Eu, humic acid and intact sandstone blocks have been performed. The elution of metal and humic and their distribution along the sandstone columns have been measured. A mixed equilibrium and kinetic coupled chemical transport model has been used to simulate the results. In both cases, one exchangeable and one non-exchangeable component have been used to simulate the interaction of metal and humic substance. For the pulsed experiments, a simple equilibrium approach was used to model humic sorption, while a two component, kinetic model was required for the sandstone columns.

  19. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.

    PubMed

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2016-01-15

    The main objective of this work is to conduct a comprehensive structural characterization of humic substances using the following experimental techniques: FTIR, 1H NMR and several UV–Vis parameters (Specific UV Absorbance at 254 nm or SUVA254, SUVA280, A400, the absorbance ratios A210/254, A250/365, A254/203, A254/436, A265/465, A270/400, A280/350, A465/665, the Absorbance Slope Index (ASI), the spectral slopes S275–295, S350–400 and the slope ratio SR). These UV–Vis parameters have also been correlated with key properties of humic substances such as aromaticity, molecular weight (MW) and trihalomethane formation potential (THMFP). An additional objective of this work is also to evaluate the usefulness of these techniques to monitor structural changes in humic substances produced by the ozonation treatment. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SRFA, Suwannee River Humic Acid Standard: SRHA and Nordic Reservoir Fulvic Acid Reference: NLFA) and the other one was a terrestrial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: AHA). The UV–Vis parameters showing the best correlations with aromaticity in this study were SUVA254, SUVA280, A280/A350 ratio and A250/A364 ratio. The best correlations with molecular weight were for SUVA254, SUVA280 and A280/A350 ratio. Finally, in the case of the THMFP it was STHMFP-per mol HS the parameter showing good correlations with most of the UV–Vis parameters studied (especially with A280/A350 ratio, A265/A465 ratio and A270/A400 ratio) whereas STHMFP-per mg C showed poor correlations in most cases. On the whole, the UV–Vis parameter showing the best results was A280/A350 ratio as it showed excellent correlations for the three properties studied (aromaticity, MW and THMFP). A decrease in aromaticity following ozonation of humic substances can

  20. Reconnaissance samplings and characterization of aquatic humic substances at the Yuma Desalting Test Facility, Arizona

    USGS Publications Warehouse

    Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.

    1981-01-01

    Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)

  1. Effects of extracellular polymeric and humic substances on chlorpyrifos bioavailability to Chironomus riparius.

    PubMed

    Lundqvist, Anna; Bertilsson, Stefan; Goedkoop, Willem

    2010-04-01

    The role of sediment organic matter quality and quantity for chlorpyrifos bioavailability was studied in experiments with Chironomus riparius larvae and with four types of organic matter; (1) commercially available extracellular polymeric substances (EPS), (2) EPS produced by sediment microbes, (3) commercially available humic substances and, (4) humic substances extracted from a boreal lake. The effects of each type of organic matter were assessed at three concentrations. We used a (14)C-tracer approach to quantify uptake of chlorpyrifos in the larvae, and the partitioning of the insecticide within the microcosm. Carbon-normalised larval uptake was reduced both by EPS and humic substances. However, the reduction in uptake was much greater for EPS than for humic substances: uptake was reduced by 94 and 88% for commercial and complex EPS, and by 59 and 57% for commercial and complex humic substances, respectively. We also found differences in chlorpyrifos uptake, and sediment concentrations between treatments with commercially available and complex polymers, suggesting that minor differences in the quality of relatively simple organic molecules can affect contaminant behaviour in ecotoxicological studies. Passive uptake in dead controls was 40% of that in living larvae. Therefore, both passive and digestive uptake were important processes for chlorpyrifos uptake by larvae. Our results show that both EPS and humic substances affect chlorpyrifos bioavailability to sediment biota negatively and contribute to the understanding of the processes that regulate organic contaminant bioavailability in aquatic environments.

  2. CAPILLARY ELECTROPHORESIS IN THE ANALYSIS OF HUMIC SUBSTANCES FACTS AND ARTIFACTS

    EPA Science Inventory

    Humic substances, extracted as mixtures from soil and surface waters according to their solubility in acids and bases, are relatively high-molecular-mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits. The degree of ionization of their phenolic and carb...

  3. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors

    SciTech Connect

    Nakayasu, Ken; Sasaki, Keiko; Tanaka, Shunitz; Nakamura, Hiroshi ); Fukushima, Masami )

    1999-06-01

    Hexavalent chromium (Cr[VI]) is reduced by dissolved organic carbons (DOCs) such as humic substances, tannic acid (TA), and gallic acid (GA). The kinetic constants and the resulting chemical species after the reduction were compared with each other. The kinetic constants for GA and TA, which are model precursors of humic substances, were two to three orders of magnitude larger than those for the humic substances when these kinetic constants were expressed as a function of the molar concentration of the reductive functional group (F[sub red]) in various DOCs. After the reduction of Cr(VI), the percentages of the species complexed with GA and TA were higher than those with the humic substances. This appears to be due to the formation of high molecular weight compounds by polymerization during the reduction of Cr(VI) and complexation of Cr(III) with the polymerized compounds. The UV-vis spectrophotometric data and gel permeation chromatography support this view.

  4. CAPILLARY ELECTROPHORESIS IN THE ANALYSIS OF HUMIC SUBSTANCES FACTS AND ARTIFACTS

    EPA Science Inventory

    Humic substances, extracted as mixtures from soil and surface waters according to their solubility in acids and bases, are relatively high-molecular-mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits. The degree of ionization of their phenolic and carb...

  5. The Presence of Humic Substances and DNA in RNA Extracts Affects Hybridization Results

    PubMed Central

    Alm, Elizabeth Wheeler; Zheng, Dandan; Raskin, Lutgarde

    2000-01-01

    RNA extracts obtained from environmental samples are frequently contaminated with coextracted humic substances and DNA. It was demonstrated that the response in rRNA-targeted oligonucleotide probe hybridizations decreased as the concentrations of humic substances and DNA in RNA extracts increased. The decrease in hybridization signal in the presence of humic substances appeared to be due to saturation of the hybridization membrane with humic substances, resulting in a lower amount of target rRNA bound to the membrane. The decrease in hybridization response in the presence of low amounts of DNA may be the result of reduced rRNA target accessibility. The presence of high amounts of DNA in RNA extracts resulted in membrane saturation. Consistent with the observations for DNA contamination, the addition of poly(A) to RNA extracts, a common practice used to prepare RNA dilutions for membrane blotting, also reduced hybridization signals, likely because of reduced target accessibility and membrane saturation effects. PMID:11010915

  6. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  7. River-derived humic substances as iron chelators in seawater.

    PubMed

    Krachler, Regina; Krachler, Rudolf F; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K

    2015-08-20

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on (59)Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  8. Iodine in drinking water in Denmark is bound in humic substances.

    PubMed

    Andersen, Stig; Petersen, Steffen B; Laurberg, Peter

    2002-11-01

    The iodine intake level is important for the occurrence of thyroid disorders in a population. We have previously found that iodine in drinking water is related to iodine excretion but whether iodine is present as iodide or bound in other molecules remains unknown. We measured iodine in drinking water from 22 locations in Denmark. Six locations were selected by iodine content for further tap water analysis (Skagen 140 micro g/l, Samsoe 56 micro g/l, Nykoebing S. 50 micro g/l, Nakskov 40 micro g/l, Ringsted 38 micro g/l, Copenhagen 19 micro g/l). HPLC size exclusion before (Skagen) and after (all sites) freeze drying and measurement of absorbance (280 nm) and iodine in fractions, and fluorescence spectroscopy of bulk organic matter in Skagen drinking water. Iodine content was unaltered after 3 Years (P=0.2). All samples contained organic molecules with characteristics similar to humic substances. Most iodine eluted with humic substances (Skagen 99%, Ringsted 98%, Nykoebing S. 90%, Copenhagen 90%, Samsoe 75%, Nakskov 40%). Changing pH and ionic strength and preincubation with iodide indicated that iodine was bound in humic substances. Humic substances may affect thyroid function but differ with geology. Geological and geochemical data agree with tap water humic substances having been released from marine deposits. Iodine is abundant in the marine environment and marine deposits are particularly rich in iodine. Correlation analysis (r=0.85, P=0.03) conform to iodine in drinking water, suggesting marine humic substances at the source rock. Iodine in Danish drinking water varied considerably. In drinking water with a high iodine content, the iodine mainly eluted with humic substances derived from marine source rock. We hypothesize that iodine in drinking water in general suggests coexisting humic substances of marine origin.

  9. Humic substances modify accumulation but not biotransformation of pyrene in salmon yolk-sac fry.

    PubMed

    Honkanen, J O; Wiegand, C; Kukkonen, J V K

    2008-01-31

    Humic substances may influence the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in aquatic environment. Relatively little is known how humic substances affect the biotransformation of PAHs in aquatic animals. Here we report how two different types of humic substances affected the accumulation of pyrene, a four-ringed PAH, to yolk-sac fry of landlocked salmon (Salmo salar m. sebago). The accumulation of pyrene to yolk-sac fry tissues was inversely related to humic substance concentration in a short term (72h) exposure. However, the biotransformation of pyrene was not affected by humic substances. Pyrene or humic substances did not induce CYP1A activity in yolk-sac fry tissues contrasting to beta-naphthoflavone, which was used as a positive control. Yolk-sac fry were capable to biotransform pyrene to phase I (1-hydroxypyrene) and phase II (pyrene-1-sulphate) products. Interestingly, glucuronide conjugate (i.e. pyrene-1-glucuronide) was not present in yolk-sac fry tissues. The concentration of parent pyrene and 1-hydroxypyrene remained the same throughout the experiment but the concentration of pyrene-1-sulphate more than doubled from 24 to 72h. This finding suggests that salmon yolk-sac fry are not capable to excrete phase II biotransformation products or the excretion is very slow. Further, this could indicate that early life stage toxicity of many CYP1A inducing compounds is related to accumulation of phase II conjugates in fry tissues.

  10. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.

    PubMed

    Kanaparthi, Dheeraj; Conrad, Ralf

    2015-05-01

    Nitrate-dependent iron oxidation was discovered in 1996 and has been reported from various environments ever since. To date, despite the widespread nature of this process, all attempts to cultivate chemolithoautotrophic nitrate-dependent iron oxidizers have been unsuccessful. The present study was focused on understanding the influence of natural chelating agents of iron, like humic substances, on the culturability, activity, and enumeration, of these microorganisms. Pure culture studies conducted with Thiobacillus denitrificans showed a constant increase in cell mass with a corresponding nitrate-dependent iron oxidation activity only when Fe(II) was provided together with humic substances, compared to no growth in control incubations without humic substances. The presence of a relatively strong chelating agent, such as EDTA, inhibited the growth of Thiobacillus denitrificans. It was concluded that complex formation between humic substances and iron was required for chemolithoautotrophic nitrate-dependent iron oxidation. Most probable number enumerations showed that numbers of chemolithoautotrophic nitrate-dependent iron-oxidizing bacteria were one to three orders of magnitude higher in the presence of humic substances compared to media without. Similar results were obtained when potential nitrate-dependent iron oxidation activity was determined in soil samples. In summary, this study showed that humic substances significantly enhanced the growth and activity of autotrophic nitrate-dependent iron-oxidizing microorganisms, probably by chelation of iron. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.

    PubMed

    Vindedahl, Amanda M; Stemig, Melissa S; Arnold, William A; Penn, R Lee

    2016-02-02

    Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible.

  12. Sorption of U(VI) onto an artificial humic substance-kaolinite-associate.

    PubMed

    Sachs, S; Bernhard, G

    2008-08-01

    An artificial humic substance-kaolinite-associate (HSKA) was synthesized as a model substance for natural clays containing organic matter in clay formations, soils, and sediments. The U(VI) sorption onto this model substance was studied in batch experiments as a function of pH and compared to the U(VI) sorption onto kaolinite in absence and presence of separately added humic acid (HA). The HSKA has a TOC content of 4.9 mg g(-1). It was found that the humic matter associated with kaolinite exhibits an immobilizing as well as an mobilizing effect on U(VI). Between pH 3 and 5, humic matter causes an increase of the U(VI) sorption onto kaolinite, whereas at pH above 5 the release of humic matter from the associate into the solution and the formation of dissolved uranyl humate complexes reduces the U(VI) sorption. The U(VI) sorption onto the synthetic HSKA differs from that of U(VI) in the system U(VI)/HA/kaolinite with comparable amounts of separately added HA. Separately added HA causes a stronger mobilizing effect on U(VI) than humic matter present in HSKA. This can be attributed to structural and functional dissimilarities of the humic substances.

  13. Multidimensional fluorescence studies of the phenolic content of dissolved organic carbon in humic substances.

    PubMed

    Pagano, Todd; Ross, Annemarie D; Chiarelli, Joseph; Kenny, Jonathan E

    2012-03-01

    Indicators suggest that the amount of dissolved organic carbon (DOC) in natural waters may be increasing. Climate change has been proposed as a potential contributor to the trend, and under such a mechanism, the phenolic content of DOC may also be increasing. This study explores the assessment of the phenolic character of DOC using multidimensional fluorescence spectroscopy as a more convenient alternative to traditional wet chemistry methods. Parallel factor analysis (PARAFAC) is applied to fluorescence excitation emission matrices (EEMs) of humic samples to analyze inherent phenolic content. The PARAFAC results are correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method reveals that the phenolic content of five International Humic Substance Society (IHSS) samples varies from approximately 5.2 to 22 ppm Tannic Acid Equivalents (TAE). A four-component PARAFAC fit is applied to the EEMs of the IHSS sample dataset and it is determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C2, C3, and C4 have the highest probability of containing phenolic groups. The results show the potential for PARAFAC analysis of multidimensional fluorescence data for monitoring the phenolic content of DOC. This journal is © The Royal Society of Chemistry 2012

  14. Complexation of arsenate with humic substance in water extract of compost.

    PubMed

    Lin, Haw-Tarn; Wang, M C; Li, Gwo-Chen

    2004-09-01

    The interactions of environmental toxicants with organic substances affect the speciation and dynamics, and subsequent toxicity, mobility, and fate of toxicants in the environment. For the purpose of understanding the complexation of As(V) with humic substances, arsenate-containing solutions with As concentrations from 1 to 8 mgl(-1) were prepared to react with the water extract of compost (WEC). All the reaction systems including the control were incubated for 48 h at 25 degrees C. The complexation of As(V) with humic substance was examined by dialysis and ion exchange techniques. From 30% to 51% of added As(V) reacted with organic substance in WEC to form an As-metal-organic complex. This was verified as a hydrophobic organic fraction after separation of As-metal-organic complex fraction from the hydrophilic fraction by XAD-8 resin. The complex substance was also identified as a humic substance by the method of proton binding formation function determination. This suggests that cations, such as Ca and Mg, and especially Fe, Al, and Mn act in cation bridging in the complexation of As(V) with humic substance. The role of metals in the complexation of As(V) with humic substance in terrestrial and especially aquatic environments thus merits close attention.

  15. Hygroscopic growth of atmospheric and model humic-like substances

    NASA Astrophysics Data System (ADS)

    Dinar, E.; Taraniuk, I.; Graber, E. R.; Anttila, T.; Mentel, T. F.; Rudich, Y.

    2007-03-01

    The hygroscopic growth (HG) of humic-like substances (HULIS) extracted from smoke and pollution aerosol particles and of Suwannee River fulvic acid (SRFA, bulk and fractions of different molecular weight) was measured by humidity tandem differential mobility analyzer (H-TDMA). By characterizing physical and chemical parameters such as molecular weight, elemental composition, and surface tension, we test the effect of these parameters on particle interactions with water vapor. For molecular weight-fractionated SRFA fractions, the growth factor at 90% relative humidity was generally inversely proportional to the molecular weight. HULIS extracts from ambient particles are more hygroscopic than all the SRFA fractions and exhibit different hygroscopic properties depending on their origin and residence time in the atmosphere. The results point out some dissimilarities between SRFA and aerosol-derived HULIS. The cloud condensation nuclei (CCN) behavior of the studied materials was predicted on the basis of hygroscopic growth using a recently introduced approach of Kreidenweis et al. (2005) and compared to CCN activity measurements on the same samples (Dinar et al., 2006). It is found that the computational approach (Kreidenweis et al., 2005) works reasonably well for SRFA fractions but is limited in use for the HULIS extracts from aerosol particles. The difficulties arise from uncertainties associated with HG measurements at high relative humidity, which leads to large errors in the predicted CCN activity.

  16. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity.

  17. Investigating the mechanism of phenol photooxidation by humic substances.

    PubMed

    Golanoski, Kelli S; Fang, Shuo; Del Vecchio, Rossana; Blough, Neil V

    2012-04-03

    To probe the mechanism of the photosensitized loss of phenols by humic substances (HS), the dependence of the initial rate of 2,4,6-trimethylphenol (TMP) loss (R(TMP)) on dioxygen concentration was examined both for a variety of untreated as well as borohydride-reduced HS and C(18) extracts from the Delaware Bay and Mid-Atlantic Bight. R(TMP) was inversely proportional to dioxygen concentration at [O(2)] > 50 μM, a dependence consistent with reaction with triplet excited states, but not with (1)O(2) or RO(2). Modeling the dependence of R(TMP) on [O(2)] provided rate constants for TMP reaction, O(2) quenching, and lifetimes compatible with a triplet intermediate. Borohydride reduction significantly reduced TMP loss, supporting the role of aromatic ketone triplets in this process. However, for most samples, the incomplete loss of sensitization following borohydride reduction, as well as the inverse dependence of R(TMP) on [O(2)] for these samples, suggests that there remains another class of oxidizing triplet sensitizer, perhaps quinones.

  18. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  19. Supporting the process of removing humic substances on activated carbon.

    PubMed

    Olesiak, Paulina; Stępniak, Longina

    2014-01-01

    This study is focused on biosorption process used in water treatment. The process has a number of advantages and a lot of research has been done into its intensification by means of ultrasonic modification of solutions. The study carried out by the authors leads to the conclusion that sonication of organic solutions allows for extension of the time of operation of carbon beds. For the analysis of the results obtained during the sorption of humic substances (HS) from the solution dependencies UV/UV₀ or DOC/DOC₀ were used. In comparative studies the effectiveness of sorption and sonosorption (UV/UV₀) shows that the share of ultrasounds (US) is beneficial for extension of time deposit, both at a flow rate HS solution equal to 1 m/h and 5 m/h. Analysis of the US impact sorption on HS sorption in a biological fluidized bed, both prepared from biopreparat and the activated sludge confirms the higher efficiency compared to sonobiosorption than biosorption. These results confirm the degree of reduction UV₂₅₄/UV₀ and DOC/DOC₀ for the same processes. EMS index also confirms the improvement of HSbiodegradation by sludge microorganisms.

  20. Humic substance formation via the oxidative weathering of coal

    SciTech Connect

    Chang, S.; Berner, R.A.

    1998-10-01

    Oxidative weathering of sedimentary organic matter in the Earth`s surficial environment is one of the major processes in the geochemical carbon cycle on geological time scales. It has been assumed in most geochemical models that there is complete oxidation of sedimentary organic matter only to CO{sub 2}. However, studies have shown that humic substances can be produced via the oxidation of coal. The authors have determined the aqueous oxidation kinetics of pyrite-free bituminous coal at 24 and 50 C by using a dual-cell flow-through method. At 24 C, dissolved carbon is removed from the coal-water system mainly in the form of CO{sub 2} and is equivalent to 30--50% of the consumed oxygen. The remaining 50--70% of the consumed oxygen is retained on the coal surface in the form of insoluble organic oxidation products. Formation of greater proportions of dissolved organic oxidation products is expected under natural conditions where water-rock contact time is much longer than in the authors` experiments. FTIR analysis indicates marked increases in carbonyl groups for coal oxidized in oxygenated water at 50 C. Both dissolution of the solid oxidation products and the oxygen consumption rate should be accelerated by an increase in pH.

  1. Covalent binding of aniline to humic substances and whole soil organic matter

    SciTech Connect

    Thorn, K.A.; Goldenberg, W.S.; Younger, S.J.

    1995-12-31

    Aromatic amines enter the environment from the chemical or microbial degradation of dyes, explosives, and the acylanilide, phenylcarbamate, and phenylurea classes of herbicides. One possible fate of aromatic amines in soils is covalent binding to naturally occurring organic matter. The binding of {sup 15}N-labelled aniline to the fulvic and humic acids extracted from an Elliot silt loam soil with and without catalysis by peroxidase or birnessite has been examined by a combination of liquid and solid state {sup 15}N NMR. In the absence of catalysts, aniline undergoes a complex series of nucleophilic addition reactions with the carbonyl functionality of the humic substances to form both heterocyclic and nonheterocyclic condensation products. In the presence of the catalysts, aniline undergoes free radical coupling reactions together with nucleophilic addition reactions with the humic substances. Reaction of aniline with the whole soil most closely resembled the noncatalyzed reactions with the humic substances, as determined by solid state {sup 15}N NMR.

  2. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal

  3. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique.

    PubMed

    Kirishima, Akira; Ohnishi, Takashi; Sato, Nobuaki; Tochiyama, Osamu

    2009-07-15

    The phenolic-group capacities of five humic substances, such as, the Aldrich humic acid, the humic and fulvic acids extracted from a soil, the humic and fulvic acids extracted from a peat have been precisely determined by the non-aqueous potentiometric titration technique. The titration by KOH in the mixed solvent of DMSO:2-propanol:water=80:19.3:0.7 at [K(+)]=0.02 M enabled to measure the potential change in a wide range of pOH (=-log[OH(-)]), and thus to determine the capacities of phenolic groups which could not be precisely determined in the aqueous titration. The results of the titration revealed that the mean protonation constants of the phenolic groups were nearly the same for all humic substances and close to that of phenol in the same medium, indicating that each phenolic-group in the humic substances is rather isolated and is not electronically affected by other affecting groups in the humic macromolecule.

  4. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds

    SciTech Connect

    Murphy, E.M.; Zachara, J.M.; Smith, S.C. )

    1990-10-01

    The sorption of three hydrophobic organic compounds (HOC) was investigated on hematite and kaolinite that had been coated with natural humic substances over a mass percent carbon range of 0.01-0.5%. Increasing quantities of sorbed humic substances increased the sorption of HOC. Anthracene, the most hydrophobic HOC, showed the greatest sorption enhancement, while the most aromatic coating, peat humic acid, was the strongest sorbent. Depending on the type of humic acid coating and the mineral substrate, the experimental K{sub oc} values were either higher or lower than those predicted by the K{sub ow}. The sorptivity of a given humic acid for HOC was not the same on kaolinite and hematite, suggesting that the orientation and structure of the humic substance on the mineral may affect the surface area of the organic phase and the accessibility of hydrophobic domains that control HOC sorptivity. Sorption isotherms for HOC on the humic-coated mineral substrates were nonlinear, implying that the sorption phenomenon was adsorption onto rather than partitioning into the surface organic phase.

  5. Humic substances interfere with phosphate removal by Lanthanum modified clay in controlling eutrophication.

    PubMed

    Lürling, Miquel; Waajen, Guido; van Oosterhout, Frank

    2014-05-01

    The lanthanum (La) modified bentonite Phoslock(®) has been proposed as dephosphatisation technique aiming at removing Filterable Reactive Phosphorus (FRP) from the water and blocking the release of FRP from the sediment. In the modified clay La is expected the active ingredient. We conducted controlled laboratory experiments to measure the FRP removal by Phoslock(®) in the presence and absence of humic substances, as La complexation with humic substances might lower the effectiveness of La (Phoslock(®)) to bind FRP. The results of our study support the hypothesis that the presence of humic substances can interfere with the FRP removal by the La-modified bentonite. Both a short-term (1 d) and long-term (42 d) experiment were in agreement with predictions derived from chemical equilibrium modelling and showed lower FRP removal in presence of humic substances. This implies that in DOC-rich inland waters the applicability of exclusively Phoslock(®) as FRP binder should be met critically. In addition, we observed a strong increase of filterable La in presence of humic substances reaching in a week more than 270 μg La l(-1) that would infer a violation of the Dutch La standard for surface water, which is 10.1 μg La l(-1). Hence, humic substances are an important factor that should be given attention when considering chemical FRP inactivation as they might play a substantial role in lowering the efficacy of metal-based FRP-sorbents, which makes measurements of humic substances (DOC) as well as controlled experiments vital.

  6. Binding of ciprofloxacin by humic substances: a molecular dynamics study.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2010-01-01

    A comprehensive assessment of the potential impacts of antimicrobials released into the environment requires an understanding of their sequestration by natural particles. Of particular interest are the strong interactions of antimicrobials with natural organic matter (NOM), which are believed to reduce their bioavailability, retard their abiotic and biotic degradation, and facilitate their persistence in soils and aquatic sediments. Molecular dynamics (MD) relaxation studies of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), interacting with a model humic substance (HS) in a hydrated environment, were performed to elucidate the mechanisms of these interactions. Specifically, a zwitterionic Cipro molecule, the predominant species at circumneutral pH, was reacted either with protonated HS or deprotonated HS bearing Ca, Mg, or Fe(II) cations. The HS underwent conformational changes through rearrangements of its hydrophobic and hydrophilic regions and disruption of its intramolecular H-bonds to facilitate favorable intermolecular H-bonding interactions with Cipro. Complexation of the metal cations with HS carboxylates appeared to impede binding of the positively charged amino group of Cipro with these negatively charged HS complexation sites. On the other hand, an outer-sphere complex between Cipro and the HS-bound cation led to ternary Cipro-metal-HS complexes in the case of Mg-HS and Fe(II)-HS, but no such bridging interaction occurred with Ca-HS. The results suggested that the ionic potential (valence/ionic radius) of the divalent cation may be a determining factor in the formation of the ternary complex, with high ionic potential favoring the bridging interaction. Environ. Toxicol. Chem. 2010;29:90-98. (c) 2009 SETAC.

  7. Humic substances-mediated microbial reductive dehalogenation of triclosan

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  8. Humic substances in drinking water and the epidemiology of thyroid disease.

    PubMed

    Laurberg, Peter; Andersen, Stig; Pedersen, Inge Bülow; Ovesen, Lars; Knudsen, Nils

    2003-01-01

    Thyroid diseases are common in all populations but the type and frequency depends on environmental factors. In Denmark geographical differences in iodine intake are caused by different iodine contents of drinking water, which varies from < 1 to 139 microg iodine per litre. Comparative epidemiologic studies have demonstrated considerable differences in type and occurrence of thyroid disease with more goitre and hyperthyroidism in Aalborg with water iodine content around 5 microg/L, and more hypothyroidism in Copenhagen with water iodine around 20 microg/L. In Denmark, iodine in ground water is bound in humic substances, which have probably leached from marine sediments in the aquifers. Interestingly, humic substances in water from other parts of the world have goitrogenic properties, especially humic substances from coal and shale. Humic substances are heterogeneous mixtures of naturally occurring molecules, produced by decomposition of plant and animal tissues. The effect of humic substances in drinking water on the epidemiology of thyroid disease probably depends on the source of aquifer sediments.

  9. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    PubMed

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Arsenic and Humic Substances in Alluvial Aquifers of Bangladesh and Taiwan: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Reza, A.; Jean, J.; Lee, M.

    2007-12-01

    Humic substances in groundwater samples from the arsenicosis area in Bangladesh, northern Taiwan and the Blackfoot disease (BFD) area in southwestern Taiwan were characterized by Fluorescence Spectroscopy (FS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. As, Mn, Fe, Sr, Se levels in these groundwaters were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Major ions and selected water parameters including pH, electrical conductivity (EC), oxidation reduction potential (ORP), and dissolved oxygen (DO) were also determined. Groundwater As concentration ranges from 1.4 to 140 μg/L in the alluvial aquifers located in the Chapai-Nawabganj district of Bangladesh. As levels in groundwater ranges from 0.5 to 560 μg/L in the Ilan Plain of northern Taiwan. Geothermal waters in the Beitou hot springs contain high concentrations of inorganic As (up to 3,975 μg/L); geothermal activity is likely responsible for the significant discharge of arsenic to the downstream Kwandu Plain. As levels in the BFD area of southwestern Taiwan ranges from 25 μg/L to 967 μg/L. Interestingly, groundwater arsenic in the BFD area of southwestern Taiwan correlates positively with strong fluorescence (maximum relative fluorescence intensity upto 495) and the content of humic substances. In contrast, As-rich groundwaters from Chapai-Nawabganj district of Bangladesh and northern part of Taiwan generally have relatively low content of humic substances with weak fluorescence (maximum relative fluorescence intensity upto 65 and 121, respectively). Moreover, results of FTIR analysis show that humic substances extracted from water samples of the Taiwan BFD area contain phenolic and amines groups of humic substances, which tend to form organo-metal complexes with As and other trace elements. High levels of As and humic substances probably play a critical role in causing the Black foot disease in Chia-Nan plain of southwestern Taiwan.

  11. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    NASA Astrophysics Data System (ADS)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  12. Complexation of transuranic ions by humic substances: Application of laboratory results to the natural system

    SciTech Connect

    Czerwinski, K.; Kim, J.

    1997-12-31

    Environmental investigations show transuranic ions sorb to humic substances. The resulting species are often mobile and are expected to be important vectors in the migration of transuranic ions in natural systems. However, these environmental studies yield no quantitative data useful for modeling. Laboratory complexation experiments with transuranic ions and humic substances generate thermodynamic data required for complexation modeling. The data presented in this work are based on the metal ion charge neutralization model, which is briefly described. When a consistent complexation model is used, similar results are obtained from different experimental conditions, techniques, and laboratories. Trivalent transuranic ions (Cm(III), Am(III)) have been extensively studied with respect to pH, ionic strength, origin of humic acid, and mixed species formation. The complexation of Np(V) has been examined over a large pH and metal ion concentration range with different humic acids. Some data does exist on the complexation ion concentration range with different humic acids. Some data does exist on the complexation of plutonium with humic acid, however further work is needed. Calculations on the Gorleben aquifer system using the thermodynamic data are presented. Critical information lacking from the thermodynamic database is identified. 55 refs., 2 figs., 3 tabs.

  13. Arsenic Redox Transformation as a Consequence of Microbial Reduction of Ferric Iron Oxides and Humic Substances

    NASA Astrophysics Data System (ADS)

    Amstaetter, K.; Jiang, J.; Navarro, L.; Kappler, A.

    2005-12-01

    The toxic metalloid arsenic represents a significant drinking water contamination in particular in countries such as Bangladesh or Vietnam. In these countries millions of people are directly affected by toxic concentrations of arsenic in drinking water. At neutral pH, arsenate (As(V)), present in anionic form as (H2AsO4)- and (HAsO4)2- (pK1 = 2.2, pK2 = 7.0) is mostly adsorbed to iron(III) and aluminum oxide surfaces. In contrast, arsenite (As(III)), present at neutral pH as uncharged species (H3AsO3, pK1 = 9.2), adsorbs less strongly to aluminum oxides and is assumed to be the more mobile form of arsenic. Natural organic matter (humic substances) was shown to complex As(V) and As(III); in some cases even redox reactions of humic substances with arsenic species were described. Increased As-concentrations in drinking water were suggested to result either from reduction of As(V) to As(III) or from dissolution of iron(III) oxides which leads to the release of adsorbed arsenic. However, the mechanisms leading to mobilization of arsenic are still under debate and the role of humic substances for the mobilization of arsenic is unclear. Fe(III) oxides as well as redox-active natural organic matter (humic substances) can be reduced enzymatically by a variety of microorganisms. Microbial Fe(III) reduction produces Fe(II) that can adsorb to the Fe(III) mineral surface and thus becomes a better reductant. Microbial reduction of humic substances produces reduced humic substances. Both surface-adsorbed Fe(II) and reduced humic substances represent reactive intermediates that potentially can undergo further redox reactions. Here we present recent data on redox transformation of arsenic by both reactive intermediates. Arsenic redox transformation by reactive iron species and reactive humic substances is of particular interest because i) As(III) is more mobile and more toxic than As(V) and ii) in arsenic contaminated areas the presence of arsenic often correlates with the presence

  14. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes.

    PubMed

    Jung, A-V; Frochot, C; Villieras, F; Lartiges, B S; Parant, S; Viriot, M-L; Bersillon, J-L

    2010-06-01

    The direct and indirect interaction mechanisms of pyrene with: (i) various molecular weight fractions of a synthetic humic-like substance (SyHA) and (ii) extracts of natural humic acids (NHA) from Moselle River suspended matter were investigated using quenching fluorescence and surface tension measurements. Humic materials were characterized in a previous study. The Stern-Volmer associative constants were determined from the quenching technique. Surface tension measurements revealed an increase in surface activity as a function of concentration for each humic fraction independently of the pyrene presence in solution, even during the formation of humic micelles. The results obtained suggest the possibility of specific intermolecular interactions occurring during pyrene entrapment within humic acids. In addition, we show that molecular weight, aliphatic chains (especially those containing nitrogen groups) and number of acidic groups are determinant characteristics for pollutant entrapment capacity at concentrations below the critical micellar concentration (CMC) of humic substances. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Order of functionality loss during photodegradation of aquatic humic substances

    USGS Publications Warehouse

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  16. The Effect of Humic Substances on the Production Rate of Alkyl Nitrates in Seawater

    NASA Astrophysics Data System (ADS)

    Heiss, E. M.; Dahl, E. E.

    2008-12-01

    Alkyl nitrates are produced photochemically in seawater by the reaction of organic peroxy radicals and nitric oxide (ROO + NO). Dissolved organic matter (DOM) is a source of organic peroxy radicals in seawater, but it is unclear as to which fraction of DOM is important for alkyl nitrate formation. Dissolved humics may be important to alkyl nitrate production. The production rates of C1-C3 alkyl nitrates were observed in 0.2 μm filtered open ocean seawater as a function of nitrite concentration. The net production rates of methyl, ethyl, isopropyl, and n-propyl nitrate increased with increasing nitrite concentrations. Suwannee River humics were added to seawater samples and the net production rates of alkyl nitrates were determined. The production rate of ethyl nitrate increased at nitrite concentrations above 20 μM nitrite by a factor of ~5 with the addition of humic substances. The addition of humic substances to the water samples also resulted in an increase in the ratio of isopropyl nitrate production to ethyl nitrate production by a factor of ~3 compared to nitrite only additions. The ratio of isopropyl to ethyl nitrate production with additional humics is also greater than production rates determined using open ocean water in previous studies. The ratios of methyl nitrate and n-propyl nitrate production to ethyl nitrate production did not change significantly. The minimal change in alkyl nitrate production rates at nitrite concentrations below 20 μM indicates that NO may be the limiting reactant in this particular water sample. The effect of the humics at high nitrite concentrations shows that organic peroxy radicals are an important reactant in the production of alkyl nitrates. The difference between production rate patterns with the addition of humics compared to the nitrite only incubations indicate that humics are not the only source of organic peroxy radicals affecting open ocean water alkyl nitrate formation.

  17. Formation and loss of humic substances during decomposition in a pine forest floor

    USGS Publications Warehouse

    Qualls, R.G.; Takiyama, A.; Wershaw, R. L.

    2003-01-01

    Since twice as much C is sequestered in soils as is contained in the atmosphere, the factors controlling the decomposition rate of soil C are important to the assessment of the effects of climatic change. The formation of chemically resistant humic substances might be an important process controlling recycling of CO2 to the atmosphere. Our objectives were to measure the rate of formation and loss of humic substances during 13 yr of litter decomposition. We placed nets on the floor of a white pine (Pinus strobus) forest to separate each annual layer of litter for 13 yr and measured humic substance concentration using NaOH extraction followed by chromatographic fractionation. The humic acid fraction increased from 2.1% of the C in litterfall to 15.7% after 1 yr. On a grams per square meter (g m-2) basis the humic substance fraction increased during the first year and then declined, with a half decay time (t1/2) of 5.1 yr, which was significantly slower than the bulk litter (t1/2 = 3.9 yr). The carboxylic C concentration estimated from 13C nuclear magnetic resonance (NMR) increased in the litter over time, though total mass of carboxylic acid C in the forest floor also declined over the 13-yr period (t1/2 = 4.6 yr). While humic substances in the forest floor decomposed at a somewhat slower rate than bulk litter during Years 1 to 13, they decomposed much faster than has been calculated from 14C dating of the refractory fraction of organic matter in the mineral soil.

  18. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    NASA Astrophysics Data System (ADS)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  19. Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, S.; Song, X. Y.; Wang, N.; Li, C. X.; Wang, W.; Zhang, J. J.

    2014-11-01

    Humic substances (HS) play an important role in soil fertility and carbon sequestration in soil. The structural characteristics of soil HS, extracted from two natural soils and a laboratory-incubated soil, were investigated by conventional beamline-based Fourier transform infrared radiation (CB-FTIR), a common FTIR technique based on a conventional thermal source, and synchrotron radiation-based (SR-FTIR) spectroscopy. The relative area of absorbance peaks that appeared at 2930, 2860, 1711, and 1635 cm-1 were calculated to make a comparison of the absorbance intensities. The absorption of aromatic functional groups of HS was stronger in SR-FTIR spectroscopy than in CB-FTIR spectroscopy. Compared with humic acid extracted with a 0.1 mol/l Na4P2O7 solution, the level of aliphaticity in humic acid extracted with a 0.1 mol/l NaOH solution was higher. The aliphaticity of humin associated with clay (HMc) was higher than that of humin associated with iron (HMi). These results suggest that SR-FTIR spectroscopy is a useful and nondestructive technique to study the structural characteristics of soil humic substances. Sequential extraction of soil humic substances with NaOH and Na4P2O7 solutions may be helpful in providing additional information in cases where differences in the material obtained from different extraction solutions occur. The aliphaticity and complexity of HMc were higher than those of HMi.

  20. Effect of humic substance photoalteration on lead bioavailability to freshwater microalgae.

    PubMed

    Spierings, Julian; Worms, Isabelle A M; Miéville, Pascal; Slaveykova, Vera I

    2011-04-15

    The present study provides results on the influence of humic substance (HS) photoalteration on lead availability to the freshwater microalga Chlorella kesslerii . The evolution of the free lead-ion concentrations measured by the ion exchange technique [Pb](IET) and intracellular lead contents was explored in the presence of Suwannee River humic (SRHA) and fulvic (SRFA) acids, as well as Aldrich humic acid (AHA) exposed at increasing radiance doses under a solar simulator. Modifications of HS characteristics highly relevant to Pb complexation and accumulation of HS to algal surfaces, including Fourier transform infrared spectroscopy, were followed. It was demonstrated that simulated sunlight exposure of HS increased [Pb](IET) in the medium for SRFA and SRHA, but had no effect for AHA. No clear relationship was observed between the changes in free lead-ion concentrations and intracellular content in alga for all studied HS, suggesting that HS photodegradation products also exhibit Pb complexation properties, and that direct interactions between HS and alga are affected. Indeed, photoalteration of humic substances reduced the adsorption of HS to the algal surface; the effect was more pronounced for SRFA and AHA and less significant for SRHA. The bioavailability results were consistent with the characterization of the phototransformation of humic substances: Pb speciation changes followed the modification of the relative abundance of the carboxylic groups and their molecular environment, while the reduced HS adsorption to the alga correlated with losses of the double bond abundance and aromaticity.

  1. Dissolution and Mobilization of Uranium in a Reduced Sediment by Natural Humic Substances under Anaerobic Conditions

    SciTech Connect

    Gu, Baohua; Luo, Wensui

    2009-01-01

    Biological reduction and precipitation of uranium (U) has been proposed as a remedial option for immobilizing uranium at contaminated sites, but the long-term stability and mobility of uranium remain a concern because it is neither removed nor destroyed. In this study, the dissolution and mobilization of reduced and oxidized forms of uranium [U(IV) and U(VI)] by natural humic substances were investigated in batch and column flow systems using a bioreduced sediment containing both U(IV) and U(VI). The addition of humic substances significantly increased the dissolution of U(IV) under anaerobic conditions. Humic acid (HA) was found to be more effective than fulvic acid (FA) in dissolving U(IV) in either 1 mM KCl or KHCO3 background solution. However, more U(VI) was dissolved in 1 mM KHCO3 than in 1 mM KCl background electrolytes. The HA also was found to be more effective than FA in mobilizing uranium under reducing and column flow conditions, although an accumulative amount of eluted U(VI) and U(IV) was relatively low (<60 g) after leaching with ~97 pore volumes of the humic solution in 1 mM KHCO3. These observations suggest that natural humic substances could potentially influence the long-term stability of bioreduced U(IV) even under strong reducing environments.

  2. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Influence of humic substances on plant-microbes interactions in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  4. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  5. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  6. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  7. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  8. Biodegradation of RDX by Stimulating Humic Substance- and Fe(III) - Reduction

    DTIC Science & Technology

    2007-06-19

    prior to analysis . RDX and its metabolites, MNX, DNX and hexahydro-1,3,5-trinitroso-1,3,5- triazine (TNX), and HMX and its metabolite, 1-NO-HMX, were...8 VIII. Materials and Methods ...Mulch Humic Substance Extraction Method ............................................................................ 16 Military Smoke Dye Suspensions

  9. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  10. [Influence of humic substance in solids on CODMn of the Yellow River].

    PubMed

    Meng, Li-hong; Xia, Xing-hui

    2004-11-01

    Experiments were carried out to study the influence of humic substance in solids (Loess soil) on CODMn in the Yellow River. Several significant results were abtained from the study: (1) The total CODMn of water sample including liquid and solid phases increased significantly with the increase of solid content; The CODMn of liquid phase of water sample under pre-treatment with acid (LPWSPC) also increased significantly with the increase of solid content while that without pre-treatment did not increased significantly. (2) With the increasing of solid content, the total BOD5 of water sample increased much slower than the total CODMn and the CODMn of LPWSPC. (3) The humic substances with the content of 0.76% in solids (Loess soil) contributed greatly to the total CODMn of water sample. When the solid contents were 7.5 g/L and 15.0 g/L, the humic substances in solids accounted for 15.9% and 21.7% of the total CODMn of water sample, respectively. (4) When solid contents were 7.5 g/L and 15.0 g/L, fulvic acid,one of the main compositions of humic substance contributed to 23.6% and 50.6% of the CODMn of LPWSPC, respectively. Since the fulvic acid can hardly be biologically oxidized under natural conditions, the CODMn of LPWSPC in water quality monitoring exaggerates the oxygen-consuming organic contamination of the Yellow River.

  11. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  12. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  13. Humic substances and nitrogen-containing compounds from low rank brown coals

    SciTech Connect

    Demirbas, A.; Kar, Y.; Deveci, H.

    2006-03-15

    Coal is one of the sources of nitrogen-containing compounds (NCCs). Recovery of NCCs from brown coals in high yield was carried out from tars of stepwise semicoking of brown coals. Humic acids have been shown to contain many types of nitrogen compounds. Humic acids are thought to be complex aromatic macromolecules with amino acids, amino sugars, peptides, and aliphatic compounds that are involved in the linkages between the aromatic groups. Humic acids extracted from peats, brown coals, and lignites, are characterized using different techniques. Humic substances (HSs) have several known benefits to agriculture. The properties of humic substances vary from source to source, because they are heterogeneous mixtures of biochemical degradation products from plant and animal residues, and synthesis activities of microorganisms. HSs have been considered to be a significant floculant in surface water filtration plants for the production of drinking water as well as the processing of water. HSs are produced from chemical and biological degradation of plant and animal residues and from synthetic activities of microorganisms.

  14. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms.

    PubMed

    Cervantes, Francisco J; de Bok, Frank A M; Duong-Dac, Tuan; Stams, Alfons J M; Lettinga, Gatze; Field, Jim A

    2002-01-01

    Physiologically distinct anaerobic microorganisms were explored for their ability to oxidize different substrates with humic acids or the humic analogue, anthraquinone-2,6-disulphonate (AQDS), as a terminal electron acceptor. Most of the microorganisms evaluated including, for example, the halorespiring bacterium, Desulfitobacterium PCE1, the sulphate-reducing bacterium, Desulfovibrio G11 and the methanogenic archaeon, Methanospirillum hungatei JF1, could oxidize hydrogen linked to the reduction of humic acids or AQDS. Desulfitobacterium dehalogenans and Desulfitobacterium PCE1 could also convert lactate to acetate linked to the reduction of humic substances. Humus served as a terminal electron acceptor supporting growth of Desulfitobacterium species, which may explain the recovery of these microorganisms from organic rich environments in which the presence of chlorinated pollutants or sulphite is not expected. The results suggest that the ubiquity of humus reduction found in many different environments may be as a result of the increasing number of anaerobic microorganisms, which are known to be able to reduce humic substances.

  15. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions.

    PubMed

    Piccolo, A; Spiteller, M

    2003-11-01

    Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate the average molecular mass of terrestrial humic substances, such as humic (HA) and fulvic (FA) acids from a soil, and humic acid from a lignite (NDL). Their ESI mass spectra, by direct infusion, gave average molecular masses comparable to those previously obtained for aquatic humic materials. The soil HA and FA were further separated in size-fractions by preparative high performance size exclusion chromatography (HPSEC) and analyzed with ESI-MS by both direct infusion and a further on-line analytical HPSEC. Unexpectedly, their average molecular mass was only slightly less than for the bulk sample and, despite different nominal molecular size, did not substantially vary among size-fractions. The values increased significantly (up to around 1200 Da) after on-line analytical HPSEC for the HA bulk sample, at both pH 8 and 4, and for the HA size-fractions when pH was reduced from 8 to 4. It was noticed that HA size-fractions at pH 8 were separated by on-line HPSEC in further peaks showing average masses which progressively increased with elution volume. Furthermore, when the HA and NDL bulk samples were sequentially ultracentrifuged at increasing rotational speed, their supernatants showed mass values which were larger than bulk samples and increased with rotational speed. These variations in mass values indicate that the electrospray ionization is dependent on the composition of the humic molecular mixtures and increases when their heterogeneity is progressively reduced. It is suggested that the dominance of hydrophobic compounds in humic supramolecular associations may inhibit the electrospray ionization of hydrophilic components. Our results show that ESI-MS is reasonably applicable to humic substances only after an extensive reduction of their chemical complexity.

  16. Humic substances as a washing agent for Cd-contaminated soils.

    PubMed

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.

    PubMed

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2012-07-01

    The organic matter-mineral complex plays an important role in regulating the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the authors investigated the microbial bioavailability of phenanthrene (PHE) sorbed on the original and demineralized humic acids (HAs) and humin (HM) that were sequentially extracted from a peat soil. Demineralization treatment dramatically decreased the 720-h mineralized percentage of HM-sorbed PHE from 42.5 ± 2.6% to 3.4 ± 1.3%, whereas the influence of this treatment on the biodegradability of HA-associated PHE was much lower. Degradation kinetics of HA- and HM-sorbed PHE showed that its initial degradation rate was negatively correlated with the aromatic carbon content of humic substances (p<0.05). This was attributed to the strong interactions between PHE and the aromatic components of humic substances, which hampered its release and subsequent biodegradation. The 720-h mineralized percentage of PHE was inversely correlated with the estimated thickness of the organic matter layer at the surfaces of HAs and HMs. Therefore, in a relatively long term, diffusion of PHE within the organic matter layer could be an important factor that may limit the bioavailability of PHE to bacteria. Results of the present study highlight the molecular-scaled mechanisms governing bioavailability of PHE sorbed on humic substances.

  18. Effect of compost amendment on soil organic matter and humic substances

    NASA Astrophysics Data System (ADS)

    Roca-Pérez, L.; Gil, C.; Jurado, M.; Pons, V.; Boluda, R.

    2009-04-01

    Organic soil amendments are increasingly being examined for their potential use to improve soil functions and quality. We studied the effect of compost amendment on soil organic matter (SOM) and humic substances. The study was carried out on Luvic Calcisol in the Valencian Community (East Spain) used as a citrus fruit orchard. Four plots were amended at dose 0, 6, 12 and 36 Mg ha-1 of rice residue and sewage sludge compost. Seven soil samples for each treatment at depths of 0-10 and 10-20 cm were taken in the first seven months after application. Soil characteristics, SOM, mineral nitrogen, total nitrogen, NH4+-N, and fulvic and humic acids were determined. The results demonstrated that the use of organic compost considerably increases SOM, total nitrogen and the humic substances such as the applied dose. The level of humic substances remained without significant variations during the experimental period. The dose of 36 Mg ha-1 proved the most efficient. We would like to thank Spanish government-MICINN for partial funding and support (MIMAN project 4.3-141/2005/3-B and MICINN project CGL2006-09776).

  19. Sorption of metal ions on lignite and the derived humic substances.

    PubMed

    Havelcová, Martina; Mizera, Jirí; Sýkorová, Ivana; Pekar, Miloslav

    2009-01-15

    The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters.

  20. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  1. Draft Genome Sequence of a Humic Substance-Degrading Paenibacillus sp. Isolated from the Subarctic Grasslands at Low Temperature.

    PubMed

    Park, Ha Ju; Kim, Dockyu

    2013-01-01

    The Paenibacillus sp. strain PAMC 26794 was isolated from the tundra grasslands in Alaska for its high ability to degrade humic acids. We sequenced the PAMC 26794 genome to discover the degradative genes for natural humic substances and we propose the degradation pathway(s) of an abundant bacterial group (genus Paenibacillus) that inhabits cold environments.

  2. Draft Genome Sequence of a Humic Substance-Degrading Paenibacillus sp. Isolated from the Subarctic Grasslands at Low Temperature

    PubMed Central

    Park, Ha Ju

    2013-01-01

    The Paenibacillus sp. strain PAMC 26794 was isolated from the tundra grasslands in Alaska for its high ability to degrade humic acids. We sequenced the PAMC 26794 genome to discover the degradative genes for natural humic substances and we propose the degradation pathway(s) of an abundant bacterial group (genus Paenibacillus) that inhabits cold environments. PMID:23409270

  3. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  4. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  5. Description of characteristics of humic substances from different waste materials.

    PubMed

    Unsal, T; Ok, S S

    2001-07-01

    Humic acids (HAs) extracted from different organic wastes have been characterised by chemical methods. The chemical properties of HAs showed differences depending on the source from which they were obtained. The C content in HAs from organic wastes (41.1-63.2%) fluctuated around the C value in soil HA with the exception of composted bark and tobacco dust. Compared with soil HA, the N contents of HAs from sewage sludge and brewery sludge were found much higher than the others. E4:E6 ratios for HAs in organic wastes were generally greater than that for soil HA, which indicated a low degree of condensation and humification. The carboxyl and phenolic-OH group contents ranged 0.51-2.23 and 11.1-20.7 meq g(-1), respectively. High values of carboxyl and phenolic-OH contents indicated that these materials were still within early stages of humification.

  6. Characterization of humic substances by environmental scanning electron microscopy.

    PubMed

    Redwood, Paul S; Lead, Jamie R; Harrison, Roy M; Jones, Ian P; Stoll, Serge

    2005-04-01

    Environmental scanning electron microscopy (ESEM) is a new technique capable of imaging micron and submicron particles. Here, we have applied it to image and quantify natural aquatic organic matter (standard Suwannee River humic acid, SRHA). Uniquely, we have observed the humic aggregate structures as a function of humidity and pH. Large aggregates of tens of micrometers were observed as the dominant material under all conditions, although much smaller material was also observed. Fractal dimensions (D) were calculated between 1.48 and 1.70, although these values were not statistically different under conditions of low humidity. However, D values calculated at high humidities (85%) during the rehydration phase were significantly lower (1.48+/-0.01) than in the initial dehydration phase (1.69+/-0.01). This hysteresis indicated that full rehydration of the HS was either kinetically slow or irreversible after dehydration. Fractal analysis of ESEM images was also performed to probe the change in aggregate structure as a function of pH. Minimum values were calculated at neutral pHs, rising by 0.1-0.2 at both high and low pHs because of a combination of the physical chemistry of HS and the impacts of the drying regime within the ESEM. Thus, ESEM was an important complementary technique to other analytical methods. At present, ESEM cannot be used to image nonperturbed natural samples. However, the method is an ideal method for probing the changes in colloid structure as function of hydration state and has the potential to perform fully quantitative and nonperturbing analysis of colloidal structure.

  7. Condition of copper and organic matter in the soil contaminated with metal remediation of humic substances.

    NASA Astrophysics Data System (ADS)

    Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail

    2017-04-01

    The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of

  8. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  9. Evidence for the interaction of technetium colloids with humic substances by X-ray absorption spectroscopy.

    PubMed

    Maes, A; Geraedts, K; Bruggeman, C; Vancluysen, J; Rossberg, A; Hennig, C

    2004-04-01

    Spectroscopic extended X-ray absorption fine structure (EXAFS) evidence was obtained on the chemical environment of 99Tc(IV) atoms formed upon introduction of TcO4- into four types of laboratory-scale synthetic and natural systems which mimic in situ natural reducing conditions in humic-rich geochemical environments: (a) magnetite/pyrite in synthetic groundwater in the absence of humic substances (HSs), (b) magnetite/pyrite in natural Gorleben groundwater in the presence of HSs, (c) Boom clay sediment mixed with synthetic groundwater, and (d) Gorleben sand mixed with natural Gorleben groundwater. The investigated systems obey to pH 8-9 conditions, and all measured samples show similar EXAFS spectra for Tc, which could be fitted by a hydrated TcO2 x xH2O phase. The results are interpreted as follows: upon introduction of high concentrations (millimolar to micromolar) of TcO4-to chemically reducing environments, small Tc(IV) oxidic polymers are formed, which either may aggregate into larger units (colloids) and finally precipitate or may interact in their polymeric form with (dissolved and immobile) humic substances. This latter type of interaction--Tc(IV) colloid sorption onto HSs--differs significantly from the generally accepted metal--humate complexation and therefore offers new views on the possible reaction pathways of metals and radionuclides in humic-rich environments.

  10. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Windmoeller, C.C.; Wilken, R.D.

    1998-09-01

    The interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg-hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) > 300,000. Successive cation and anion exchange experiments demonstrated that those Hg-ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg{sup 2+} into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water-soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

  11. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterization and quantification of humic substances 2D-Fluorescence by usage of extended size exclusion chromatography.

    PubMed

    Wagner, Martin; Schmidt, Wido; Imhof, Lutz; Grübel, Anika; Jähn, Camilla; Georgi, Denise; Petzoldt, Heike

    2016-04-15

    In this article, two methods for in-depth analysis of humic substances fluorescence are presented. The first one allows the combined analysis of fluorescence excitation-emission matrix (EEM) with chromatography technique. The main issue is the coupling of size exclusion chromatography (SEC) with spectroscopy by the use of an absorption and a fluorescence spectrometer as additional detectors. These allow a detailed characterization of humic substances depending on their molecular size, concentration and optical properties. For the evaluation of the resulting complex data, a model based on non-negative matrix factorization, which is also presented in this article, was developed. From the results of the examined humic substances standards, the second method was developed. It allows the characterization and quantification of humic substances fluorescence of a natural water sample solely on the basis of an excitation-emission matrix. The validation of the model is carried out within the framework of extensive analysis of real water samples.

  13. Comparative study of the efficacy of chemically and biologically extracted humic substances from various materials on the development of Poinsettia.

    NASA Astrophysics Data System (ADS)

    Georgieva, Teodora; Metodieva, Tsvetelina; Again, Nadia; Angelova, Gergana; Popova, Todorka; Chakalov, Konstantin; Savov, Valentin

    2017-04-01

    There is a lot of research proving the positive influence of humic substances on the development of plants in combination with soil isolates such as Pseudomonas and Bacillus. Humic substances obtained by chemical extraction and biosolubilization of various sources of organic materials were tested for their effect on the growth of Poinsettia (Euphorbia pulcherrima) cultivar „Mirat red". The test included the following variants: 1. Humic substances chemically extracted from "Humintech" leonardite (Ht); 2. Humic substances obtained from "Humintech" leonardite by biosolubilization with Pseudomonas putida (Pp) and Bacillus pasteurii (Bp) (Ht Bp Pp); 3. Humic substances chemically extracted from "Sachalin" leonardite; 4. Humic substances obtained from "Sachalin" leonardite by biosolubilization with Pseudomonas putida (Pp) and Bacillus pasteurii (Bp) (Sachalin Bp Pp); 5. Fulvic substances exracted after biosolubilization of "Staniantsy" lignite with Pseudomonas putida (Pp) and Bacillus pasteurii (Bp) (FB Plantagra); 6. Humic substances exracted after biosolubilization of "Staniantsy" lignite with Pseudomonas putida (Pp) and Bacillus pasteurii (Bp) (Lignohumate); 7. Biohumax - commercial product of "Project Studio" EOOD, Varna Bulgaria; 8.Vermicompost inoculated with Pseudomonas putida and Bacillus pasteurii (Strong BG); 9. Control - Nutrient solution (background of nutrition). The test results indicate that as a result of microbial activity active bacterial compounds are probably present in the composition of the extracted humates, thus affecting the formation of red leaves.The application of all tested substances results in red leaves area increase of treated plants compared to the control plants, except the humates chemically extracted from Humintech leonardite. The ration between humic and fulvic acids determines the effect on the treated plants. The biosolubilized preparations contain more fulvic acids. Plants treated with them form up to three times more

  14. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    PubMed

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  15. The influence of humic substance on Cd accumulation of phytostabilizer Athyrium wardii (Hook.) grown in Cd-contaminated soils.

    PubMed

    Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li

    2016-09-01

    The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.

  16. Comparative evaluation of humic substances in oral drug delivery

    PubMed Central

    Mirza, Mohd. Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M.; Iqbal, Z.

    2011-01-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ–HA and CBZ–FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ–HA (1:2) demonstrated better result than any other complex. PMID:25755978

  17. Role of humic substances in the formation of nanosized particles of iron corrosion products

    NASA Astrophysics Data System (ADS)

    Pankratov, D. A.; Anuchina, M. M.

    2017-02-01

    The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid-base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

  18. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  19. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  20. Hydration-influenced sorption of organic compounds by model and atmospheric humic-like substances (HULIS).

    PubMed

    Taraniuk, I; Rudich, Y; Graber, E R

    2009-03-15

    Atmospheric humic-like substances (HULIS) constitute a major fraction of the water soluble organic carbon of aerosol particles. We investigated sorption and desorption of water and two model organic contaminants (toluene and benzyl alcohol) on HULIS and a standard humic substance (Suwannee River fulvic acid; SRFA) under varying relative humidity using a quartz crystal microbalance. Simultaneous sorption of water and benzyl alcohol (capable of specific interactions like hydrogen bonding or charge transfer) on HULIS and SRFA shows significant, humidity-dependent, cooperative sorption at intermediate water activity, as well as a dependence of sorption distribution coefficient on the wetting-drying pathway. In contrast, sorption of toluene (capable of only nonspecific interactions) was humidity-independent. Atmospheric HULIS is thus found to have several sorption features in common with terrestrial and aquatic humic substances and soil organic matter. These features are consistent with the link solvation model (LSM), whereby water assists in cooperative sorption of specifically interacting compounds by the organic matter sorbent, and subsequent changes in sorbent structure result in sorption hysteresis. Sorption of compounds capable of only nonspecific interactions is unaffected by hydration status. Such sorption features can lead to considerable uncertainty in predicting and modeling transport of organic pollutants in the atmosphere.

  1. Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland

    USGS Publications Warehouse

    Watt, B.E.; Malcolm, R.L.; Hayes, M.H.B.; Clark, N.W.E.; Chipman, J.K.

    1996-01-01

    Humic substances are amorphous organic macromolecules responsible for the hue of natural waters. They are also known to be precursors of mutagens formed on chlorination prior to distribution of drinking water. In this study humic substances from the waters of primary streams, from major rivers, and from reservoirs were isolated and fractionated into humic acids (HA), fulvic acids (FA) and XAD-4 acids using columns of XAD-8 and of XAD-4 resins in tandem, and the fractions from the different sources were chlorinated and assayed for mutagenicity. CPMAS 13C NMR spectroscopy showed marked differences in compositions not only between HA, FA, and XAD-4 acids from the same water samples, but also between the same fractions from water samples from different watersheds. There were found to be strong similarities between the fractions from watersheds which had closely related soil types. Aromaticity was greatest in HAs, and lowest in XAD-4 acids, and carboxyl contents and aliphatic character were greatest in the XAD-4 acids. Carbon content decreased in the order HA > FA > XAD-4 acids, and amino acids and neutral sugars contents decreased in the order HA > XAD-4 > FA. Titration data complemented aspects of the NMR data, demonstrating that carboxyl content decreased in the order XAD-4 acids > FA > HA, and indicated that phenolic character was highest in HAs and lowest in the XAD-4 acids. All samples tested gave rise to bacterial mutagens on chlorination. Although the mutagenicities were of the same order of magnitude for the chlorinated humic samples from the different sources, the samples which showed the greatest number of revertant bacterial colonies were from the Thames and Trent, large rivers with humic materials from diverse environments, and relatively high in amino acid contents.

  2. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  3. A comparison of dissolved humic substances from seawater with Amazon River counterparts by sup 13 C-NMR spectrometry

    SciTech Connect

    Hedges, J.I. ); Hatcher, P.G. ); Ertel, J.R. ); Meyers-Schulte, K.J. )

    1992-04-01

    Although dissolved organic matter (DOM) in seawater constitutes one of the major reservoirs of reduced carbon on earth, the biochemical and geographic origins of this material and its hydrophobic humic component remain unclear. Rivers have been suggested as a potentially important source of marine DOM, but this implication has not yet been systematically tested by direct comparisons of the bulk structural characteristics of DOM isolated from representative ocean reservoirs and their major river sources. The authors report here such a comparison and find that dissolved humic substances isolated from surface and deep seawater in the East Equatorial and north Central Pacific are enriched in nitrogen and {sup 13}C and depleted in unsaturated carbon with respect to counterparts from the Amazon River system. Based on these observations, riverine dissolved humic substances appear to comprise a small fraction of seawater humic substances and therefore must be efficiently and rapidly removed from the ocean.

  4. Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes.

    PubMed

    Watanabe, Cláudia Hitomi; Monteiro, Adnivia Santos Costa; Gontijo, Erik Sartori Jeunon; Lira, Vivian Silva; Bueno, Carolina de Castro; Kumar, Nirmal Tej; Fracácio, Renata; Rosa, André Henrique

    2017-05-01

    The release of contaminants in aquatic ecosystems can be influenced by humic acids. In this study, toxicity tests using environmentally relevant concentrations of arsenic and cobalt were conducted both in the presence and absence of aquatic humic substances (AHS) and the fractions of different molecular sizes in the range of (<5, 5-10;10-30; 30-100 and >100kDa) using the microcrustacean Ceriodaphnia dubia. AHS together with arsenic reduced the toxicity, and the toxicity decreased in fractions of larger molecular size AHS. Despite the presence of cobalt, the reduction in toxicity was not observed and that depended on the molecular size of AHS. There was a trend of enhanced toxicity for Co in fractions of larger molecular sizes, opposed to that found for arsenic. Thus, the humic substances alter toxicity of trace elements, and this effect varies depending on the size of the humic substances. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners.

    PubMed

    Han, Young-Soo; Lee, Jai-Young; Miller, Carol J; Franklin, Lance

    2009-05-01

    A detailed characterization was performed on the humic substances present in landfill leachate derived from the older (10-year) and younger (6-month) municipal landfill cells at a site in Inchion, Korea. The characterization focused on the humic and fulvic acid components of the leachate, relying on information gleaned from the UV/visible spectroscopy, molecular weight distribution, and Fourier transform infrared spectroscopy. The effect of the leachates, and specific components of the leachates, on the hydraulic conductivity of a geosynthetic clay liner (GCL), was evaluated. The humic acid extracted from the older leachate was composed primarily of high molecular weight and aromatic compounds, which is typical for humic acids. However, the humic acid extracted from the younger leachate showed characteristics more similar with fulvic acids, indicating that the younger humic acid was at the initial stage of humification. The hydraulic conductivity of the GCLs to the humic and fulvic acids of the older and younger leachate was similar to those permeated with the distilled deionized water (DI). However, the hydraulic conductivity of the samples tested with the raw leachate was more than 200 times the DI value. This fact suggests that cations present in leachate, rather than humic substances, are the key factor in the increase of the permeability.

  6. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.

    PubMed

    Tsang, Daniel C W; Hartley, Neil R

    2014-03-01

    Biodegradable chelating agents ([S,S]-ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) and natural humic substances (lignite-derived, standard, and commercially available humic acids) are potentially useful for enhancing soil remediation of timber treatment sites. This study integrated macroscopic and spectroscopic analyses to assess their influence on the distribution and chemical speciation of the remaining metals as well as their interaction with the soil surface after 48-h washing of a field-contaminated soil. The results demonstrated that EDDS and GLDA were an appealing alternative to non-biodegradable ethylenediamine-tetraacetic acid, but the three humic substances were less effective. As shown by sequential extractions, Cu was primarily extracted from the carbonate fraction while Cr and As extraction resulted from (co-)dissolution of the oxide fraction. As a result, the relative proportion of strongly bound organic matter and residual fractions increased by 7-16 %. However, it was noteworthy that the exchangeable fraction also increased by 5-11 %, signifying that a portion of the remaining metals was destabilized by chelating agents and transformed to be more labile in the treated soil. The X-ray photoelectron spectroscopy spectra confirmed the substantial removal of readily accessible Cu from the soil surface, but Cr maintained its original chemical forms of trivalent chromium oxides and iron-chromium coprecipitates, whereas As remained as arsenic trioxide/pentoxide and copper arsenate precipitates. On the other hand, the absence of characteristic peaks of adsorbed carboxylate groups in the Fourier-transform infrared (FTIR) spectra inferred that the extent of adsorption of chelating agents and humic substances on the bulk soil was insufficient to be characterized by FTIR analysis. These results suggested that attention should be paid to the exchangeable fraction of Cu and oxides/coprecipitates of As prior to possible on

  7. Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states.

    PubMed

    Halladja, Sabrina; Ter Halle, Alexandra; Aguer, Jean-Pierre; Boulkamh, Abdelaziz; Richard, Claire

    2007-09-01

    To probe the reactivity of 2,4,6-trimethylphenol with humic triplet excited states, we investigated its influence on the humic substances-mediated photooxygenation offurfuryl alcohol. Elliott soil humic and fulvic acids were employed for these experiments. When added in the concentration range of 10(-4) - 10(-3) M, 2,4,6-trimethylphenol inhibited furfuryl alcohol photooxygenation to an extent depending on its concentration. The inhibiting effect decreased as the oxygen concentration was increased. By postulating that 2,4,6-trimethylphenol competes with oxygen for reaction with humic triplet excited states and with furfuryl alcohol for reaction with singlet oxygen, we obtained kinetic laws describing the consumption profiles of furfuryl alcohol and 2,4,6-trimethylphenol. Experimental rates of 2,4,6-trimethylphenol and furfuryl alcohol loss could be satisfactorily fitted with 1.09-1.16 for the ratio k2/k3, where k2 and k3 are the reaction rate constants of humic triplet excited states with oxygen and 2,4,6-trimethylphenol, respectively. These types of experiments could be extended to a variety of substrates to measure their reaction rate constants with humic triplet excited states.

  8. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  9. In Situ Formation of Humic-like Substances In Model Cloud Water

    NASA Astrophysics Data System (ADS)

    Gelencsér, A.; Hoffer, A.; Kiss, G.; Tombácz, E.; Blazsó, M.; Bencze, L.

    It is now widely established that humic-like substances (HULIS) are ubiquitous con- stituents in continental fine aerosol. Several studies have confirmed that HULIS are abundant organic species in the aqueous extract of rural, urban and biomass burn- ing aerosol. We have recently suggested that such compounds may be secondary (ternary?) aerosol constituents which are formed in the condensed phase from a vast array of low volatility organic precursors of primary or secondary origin. However, no experimental evidence has ever confirmed that such polymerisation reactions can indeed take place within the limited residence time of the accumulation mode aerosol. Normally, humification processes are generally assumed to take years and require spe- cial microbial environment which is barely available aloft. We studied polymerisation reactions of aromatic hydroxy-acids in the laboratory in solutions modelling the condi- tions prevalent in cloud water. In the solutions OH radicals were generated in Fenton- type reactions. The course of the reaction was monitored by UV-VIS spectrophotom- etry and liquid chromatography. The reaction products were characterised by fluo- rescence spectrometry, liquid chromatography-mass spectrometry and pyrolysis- gas chromatography-mass spectrometry. By monitoring the absorbance of the simulated cloud solution we demonstrated that chemical reactions took place in the solution pro- ducing measurable concentrations of chromophoric substances within the order of a few hours. The recorded UV-VIS spectra of the reaction products were very similar to those which had been observed in aqueous extracts of rural fine aerosol as well as in aqueous solutions of terrestrial humic and fulvic acids. Electrospray-mass spectra of the reaction products revealed that they consisted of an array of molecular species with a continuous molecular weight distribution peaking at a few hundred Dalton. Such spectra were also found to be typical of terrestrial humic and

  10. Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances.

    PubMed

    Quang, Viet Ly; Kim, Hyun-Chul; Maqbool, Tahir; Hur, Jin

    2016-12-01

    Ultrafiltration (UF) membrane fouling caused by terrestrial input of dissolved organic matter (DOM), especially during high flood periods, is poorly understood. In this study, we examined the fouling characteristics of three different terrestrial humic substances (HS) on regenerated cellulose (RC) UF membranes with the pore sizes of 30 k-3 kDa via conventional bulk HS measurements as well as an advanced fluorescence spectroscopy. The fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) identified one protein-like (C1) and three humic-like fluorescent components (C2-C4) from soil and leaf-derived HS. The fate of the different fluorescent components was individually tracked for the UF processes. The higher removal rates were found generally on the order of high molecular weight (HMW) C1 to smaller sized humic-like components (C4 > C3 > C2) regardless of the HS sources, implying the importance of HS molecular sizes on the UF operation. Among the humic-like components, C2 was the most associated with irreversible fouling, while other two humic-like components contributed more to reversible fouling. For soil-derived HS, C4 can be suggested as a good surrogate for membrane fouling, as evidenced by the highest correlation between the removal rates and the total fouling indices among the tested HS variables including conventional bulk parameters. Our study demonstrated a promising application of EEM-PARAFAC for probing membrane fouling of terrestrial DOM, which provided additional insight into the fate of different fluorescent components on the UF processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.

    PubMed

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2007-10-31

    Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.

  12. Influence of biochar addition on the humic substances of composting manures.

    PubMed

    Jindo, Keiji; Sonoki, Tomonori; Matsumoto, Kazuhiro; Canellas, Luciano; Roig, Asunción; Sanchez-Monedero, Miguel A

    2016-03-01

    Application of biochar (10% v/v) to a manure composting matrix was investigated to evaluate its effect on the chemical composition of humic substances during the composting process. The characteristics of the humic acid (HA) and fulvic acid (FA) fractions were analyzed in compost mixtures originating from two different manures (poultry manure (PM) and cow manure (CM)). The C contents of HA and FA from the manure compost/biochar blends (PM+B and CM+B) were higher than those from PM and CM, with an enhanced recalcitrant fraction, as determined by thermogravimetric analysis. Spectroscopic analysis showed that enrichment of aromatic-C and carboxylic-C occurred in the FA fractions of PM+B and CM+B to a greater extent than in PM and CM. Biochar addition into the composting mixture improved the final compost quality, especially for the light humified fraction (FA).

  13. Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions.

    PubMed

    Ping, Lifeng; Luo, Yongming; Wu, Longhua; Qian, Wei; Song, Jing; Christie, Peter

    2006-01-01

    The mobility of phenanthrene (PHE) in soils depends on its sorption and is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0, and 10.0 g kg(-1). PHE desorption of the treated soils was determined at two pH levels (3.0 and 6.0) and temperatures (15 and 25 degrees C). Soil PHE adsorption was related to pH and the type and quantity of added HAs. Humic acid (HA) and fulvic acid (FA) derived from peat had different effects on adsorption of PHE. Adsorption increased at first and then decreased with increasing quantity of exogenous FA. When the soil solution pH (in 0.005 M CaCl(2)) was 4.5 or 3.0, the turning points were 2.5 g FA kg(-1) at pH 3.0 and 5 g FA kg(-1) at pH 4.5. When soil solution pH was 6, the amount of adsorbed PHE was enhanced with increasing exogenous HAs (HA or FA) and amount of adsorption by soil treated with FA was higher than with HA. Adsorption of PHE in the FA treatment at 10.0 g kg(-1) was lower than the controls (untreated soil or treatment with HAs at 0 g kg(-1)) when the soil solution pH was 3.0. This suggests that FA adsorbed by soil was desorbed at low pH and would then increase PHE solubility, and PHE then combined with FA. PHE adsorption was usually higher under lower pH and/or lower temperature conditions. PHE sorption fitted the Freundlich isotherm, indicating that exogenous humic substances influenced adsorption of phenanthrene, which in turn was affected by environmental conditions such as pH and temperature. Thus, exogenous humic substances can be used to control the mobility of soil PAHs under appropriate conditions to decrease PAH contamination.

  14. Influence of humic substances on enhanced remediation of soil polluted by a copper-nickel smelter

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Korneecheva, Mariya; Kupriyanova, Yuliya; Koptsik, Galina

    2017-04-01

    The problem of technogenic contamination through the anthropogenic activity is quite urgent nowadays. Long-term air pollution with sulphur dioxide and heavy metals (HM) by injuring vegetation and inhibition of plant and soil microorganisms growth and activity causes appearance of the barren areas - highly damaged eroded ecosystems requiring remediation. There are a lot of remediation ways, but an appropriate restoration method, which does not expensive, does not demand special technical support and corresponds to the natural conditions of soil development is still open to question. We suggest application of exogenous humic substances as the possible environmentally friendly solution of HM toxicity problem and soil health restoration. Using of humates can result in the improvement of soil properties, localization of contamination by decreasing of HM mobility and bioavailability through binding them in relatively immobile complexes, and in stabilization of organic pool. But practice of scientific society as well as our previous investigations demonstrates ambiguous influence of exogenic humic substances on the behavior of HM depending on origin, doses, molecular weight of organic matter and state of microorganisms. In this research we have provided series of short-term (45 days) experiments dedicated to the evaluation of suitable doses of humates of different origin - coal and peat - inoculated by nitrogen fixers and mycorhizae-forming fungi in comparison with lime and NPK-fertilizer on the properties of contaminated soil and mobility of HM. The object of investigation was Al-Fe-humus abrazems from the vicinity of mining-and-metallurgical integrated work located in the Kola Peninsula, Russia. This soil is characterized by the absence of vegetation, complete loss of the organic horizon in result of the erosion processes, low pH (pH H2O 4.1-5.0), low exchangeable acidity (0.8-1.6 cmolc/kg), and depletion of organic mater (content of total carbon is 0.3-0.5%). The main

  15. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    ERIC Educational Resources Information Center

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  16. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    ERIC Educational Resources Information Center

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  17. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  18. The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis

    SciTech Connect

    Pempkowiak, J.; Kozuch, J. ); Southon, T. )

    1994-01-01

    Laboratory experiments revealed that both concentration and origin of humic substances (HS) influence the accumulation rates of cadmium by the blue mussel Mytilus edulis. In the concentration of humic substances typical of seawater, the increase is about 60% and 100%, respectively, for aquatic and sedimentary humic substances. The phenomenon was attributed to the stimulation of cadmium uptake due to complexing properties of the substances toward cadmium. Complexing capacity of sedimentary humic substances was found to be 0.57 [mu]g/mg HS, that of aquatic substances 0.41 [mu]g/mg HS. Cross Polarization Magic Angle Spinning (CP/MAS) [sup 13]C NMR of the investigated humic substances revealed differences in the spectra at about 175, 100, 55 and 32 ppm. This was attributed to the varying content of oxygen containing functional groups involved in formation of complexes with metal ions. 8 refs., 4 figs., 3 tabs.

  19. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.

    PubMed

    Martínez, Claudia M; Celis, Lourdes B; Cervantes, Francisco J

    2013-11-01

    The present study reports a novel treatment concept combining the redox-mediating capacity of immobilized humic substances with the biodegrading activity of anaerobic sludge for the simultaneous removal of two representative pollutants of textile wastewaters (e.g., phenol and Reactive Red 2 (RR2)) in a high-rate anaerobic reactor. The use of immobilized humic substances (1 g total organic carbon (TOC) L(-1), supported on an anion exchange resin) in an upflow anaerobic sludge blanket (UASB) reactor increased the decolorization efficiency of RR2 (~90 %), extent of phenol oxidation (~75 %), and stability as compared to a control UASB reactor operated without immobilized humic substances, which collapsed after 120 days of dye introduction (50-100 mg L(-1)). Increase in the concentration of immobilized humic substances (2 g TOC L(-1)) further enhanced the stability and efficiency of the UASB reactor. Detection of aniline in the effluent as RR2 reduction product confirmed that reduction of RR2 was the major mechanism of dye removal. This is the first demonstration of immobilized humic substances serving as effective redox mediators for the removal of recalcitrant pollutants from wastewater in a high-rate anaerobic bioreactor. The novel treatment concept could also be applicable to remove a wide variety of contaminants susceptible to redox conversion, which are commonly found in different industrial sectors.

  20. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5.

    PubMed

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-03-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  1. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.

    PubMed

    Fujii, Manabu; Rose, Andrew L; Waite, T David; Omura, Tatsuo

    2010-12-15

    Complexes with terrestrially derived humic substances represent one of the most reactive pools of dissolved Fe in natural waters. In this work, redox kinetics of Fe-humic substance complexes (FeL) in simulated coastal seawater were investigated using chemiluminescence techniques with particular attention given to interactions with dioxygen (O2) and superoxide (O2•-). Although rate constants of FeIIL oxidation by O2 (5.6-52 M-1 · s-1) were 4-5 orders of magnitude less than those for O2•- (6.9-23 × 105 M-1 · s-1),O2 is likely to outcompete O2•- for FeIIL oxidation in coastal seawaters where steady-state O2•- concentrations are generally subnanomolar. Rate constants for FeIIIL reduction by O2•- of 1.8-5.6 × 104 M-1 · s-1 were also determined. From the balance of FeIIL oxidation rates and O2•- -mediated FeIIIL reduction rates, steady-state FeIIL concentrations were estimated to be in the subpicomolar to picomolar range, which is generally lower than measured in situ Fe(II) concentrations under relevant conditions. This suggests that (i) processes other than O2•- -mediated reduction (such as photochemical ligand-to-metal charge transfer) may be responsible for Fe(II) formation, (ii) the in situ ligands differ significantly from the humic substances used in this work, and/ or (iii) the influence of other environmental factors such as pH and temperature on Fe redox kinetics may have to be considered.

  2. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface.

    PubMed

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-08

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of (14)C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth's subsurface.

  3. Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods.

    PubMed

    Hutta, Milan; Góra, Róbert; Halko, Radoslav; Chalányová, Mária

    2011-12-09

    Permanent need to understand nature, structure and properties of humic substances influences also separation methods that are in a wide scope used for fractionation, characterization and analysis of humic substances (HS). At the first glance techniques based on size-exclusion phenomena are the most useful and utilized for relating elution data to the molecular mass distribution of HS, however, with some limitations and exceptions, respectively, in the structural investigation of HS. The second most abundant separation mechanism is reversed-phase based on weak hydrophobic interactions beneficially combined with the step gradients inducing distinct features in rather featureless analytical signal of HS. Relatively great effort is invested to the developments of immobilized-metal affinity chromatography mimicking chelate-forming properties of HS as ligands in the environment. Surprisingly, relatively less attention is given to the ion-ion interactions based ion-exchange chromatography of HS. Chromatographic separation methods play also an important role in the examination of interactions of HS with pesticides. They allow us to determine binding constants and the other data necessary to predict the mobility of chemical pollutants in the environment. HS is frequently adversely acting in analytical procedures as interfering substance, so more detailed information is desired on manifestation of its numerous properties in analytical procedures. The article topic is covered by the review emphasizing advances in the field done in the period of last 10 years from 2000 till 2010. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  5. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    NASA Astrophysics Data System (ADS)

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface.

  6. Applied Technology on Influence of Humic Substances on Fertilizer, Water-use Efficiency and Soil Health

    NASA Astrophysics Data System (ADS)

    Seyedbagheri, Mir

    2017-04-01

    In continuation of over 35 years of on-farm studies on soil organic matter from different humates (functional carbon) and compost, I have documented quantitative improvements in soil health and water-use efficiency. The ability of soil organic matter to bind water has become an important theme for research in past years. Research trials were established to evaluate the efficacy of different commercial functional carbon products derived from Leonardite (highly oxidized lignite) in crop production. In each of these trials, functional carbon (Humic and Fulvic acids) products were used in a randomized complete block design. The use of humic substances creates strong organo-mineral complexes (aggregation), chelation, as well as enhanced buffering capacities. We evaluated data from 3 fields and compared the results. Our observation and field demonstrations indicated there was a marked increase in water retention. Data from humic acid (HA) trials showed that different cropping systems responded differently to different products in relation to yield and quality. The functional carbon products used in the study seemed to enhance fertilizer and water-use efficiency by increasing complexation, chelation and buffering. The consistent use of good quality functional carbons in our replicated plots resulted in a yield increase from 6% to 30% over several decades.

  7. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity.

  8. Spectroscopic in situ examination of interactions of rare earth ions with humic substances.

    PubMed

    Chen, Yao; Fabbricino, Massimiliano; Benedetti, Marc F; Korshin, Gregory V

    2015-01-01

    This study utilized the methods of fluorescence quenching and differential absorbance to probe in situ the extent and the nature of the interactions between rare earth ions (REIs) and humic substances. Experiments were conducted with the standard Suwannee river humic acid (SRHA) in the presence of varying amount of lanthanum, europium and terbium. The data of differential absorbance showed that the mechanism of SRHA-metal complexation was largely the same for all the examined REIs. In all cases several discrete bands whose properties were discerned via numerical decomposition of the differential spectra absorbance were observed. Their nature was examined based on the comparison of the experimental data and those of NICA-Donnan modeling carried out for Eu³⁺. The observed effects suggested that the changes of SRHA absorbance induced by REIs binding are likely to be caused by a bathochromic shift of the absorbance bands associated with such chromophores. The intensity of the Gaussian band with a maximum at 387 nm was observed to be proportional to the total concentration of SRHA-bound REIs. The data obtained in this study demonstrate the existence of complex yet quantifiable changes of the spectroscopic properties of humic species in the presence of REIs and their utility to quantify modes of interactions in such systems.

  9. A method for quantitative analysis of aquatic humic substances in clear water based on carbon concentration.

    PubMed

    Tsuda, Kumiko; Takata, Akihiro; Shirai, Hidekado; Kozaki, Katsutoshi; Fujitake, Nobuhide

    2012-01-01

    Aquatic humic substances (AHSs) are major constituents of dissolved organic matter (DOM) in freshwater, where they perform a number of important ecological and geochemical functions, yet no method exists for quantifying all AHSs. We have developed a method for the quantitative analysis of AHSs based on their carbon concentration. Our approach includes: (1) the development of techniques for clear-water samples with low AHS concentrations, which normally complicate quantification; (2) avoiding carbon contamination in the laboratory; and (3) optimizing the AHS adsorption conditions.

  10. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    PubMed

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results.

  11. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Machekhina, K. I.; Gryaznova, E. N.

    2016-02-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters.

  12. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy.

    PubMed

    Hur, Jin; Jung, Ka-Young; Jung, Young Mee

    2011-04-01

    The spectral responses of a leaf litter derived humic substance (LLHS) and Suwannee River fulvic acid (SRFA) upon ultraviolet (UV) A irradiation were characterized using two-dimensional correlation spectroscopy (2D-COS) based on the absorption and the synchronous fluorescence spectra at different irradiation times. A 12 day irradiation on the humic substances (HS) resulted in higher reduction of the absorbance relative to the dissolved organic carbon concentration, suggesting that aromatic chromophores were preferentially oxidized and/or non UV-absorbing compounds were generated by the photobleaching. Synchronous fluorescence spectra revealed the preferential removal of fulvic-like and humic-like fluorophores and delayed response of protein-like fluorescence upon the irradiation. The spectral features at long wavelengths (>430 nm) appear to be affected by intra-molecular interactions of the individual chromophores associated with shorter wavelengths. Absorption-based 2D-COS demonstrated that there are three types of absorption bands for the two HS, which changed sequentially in the order of 290-400 nm → 200-250 nm → 250-290 nm. In addition, two or three distinctive fluorescence bands in response to the irradiation were identified from 2D-COS. The sequential orders and the associated wavelength bands were possibly explained by the irradiation wavelengths and the differences between direct and indirect photochemical reactions. The interpretation of the 2D-COS results was very consistent with the kinetic rate constants individually calculated at several discrete wavelengths. Our study demonstrated that 2D-COS could be used as a powerful tool in identifying distinctive bands of HS that have dissimilar behavior and the associated sequential orders by visualizing the spectral changes at continuous wavelengths.

  13. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  14. Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates.

    PubMed

    Watanabe, Akira; Moroi, Kunio; Sato, Hiromu; Tsutsuki, Kiyoshi; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf

    2012-08-01

    Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N

    2015-11-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L(-1) reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes.

  16. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  17. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  18. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  19. The protective effect of humic-rich substances on atypical Aeromonas salmonicida subsp. salmonicida infection in common carp (Cyprinus carpio L.).

    PubMed

    Yamin, G; Falk, R; Avtalion, R R; Shoshana, N; Ofek, T; Smirnov, R; Rubenstein, G; van Rijn, J

    2017-05-11

    When challenged with atypical Aeromonas salmonicida subsp. salmonicida, exposure of the common carp (Cyprinus carpio L.) to different humic-rich compounds resulted in a significant reduction in infection rates. Specifically, in fish exposed to (i) humic-rich water and sludge from a recirculating system, (ii) a synthetic humic acid, and (iii) a Leonardite-derived humic-rich extract, infection rates were reduced to 14.9%, 17.0% and 18.8%, respectively, as compared to a 46.8% infection rate in the control treatment. An additional set of experiments was performed to examine the effect of humic-rich components on the growth of the bacterial pathogen. Liquid culture medium supplemented with either humic-rich water from the recirculating system, the synthetic humic acid or the Leonardite humic-rich extract resulted in a growth reduction of 41.1%, 45.2% and 61.6%, respectively, as compared to the growth of the Aeromonas strain in medium devoid of humic substances. Finally, in a third set of experiments it was found that while the innate immune system of the carps was not affected by their exposure to humic-rich substances, their acquired immune system was affected. Fish, immunized against bovine serum albumin, displayed elevated antibody titres as compared to immunized carps which were not exposed to the various sources of humic substances. © 2017 John Wiley & Sons Ltd.

  20. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  1. Remediation of Hydrocarbon-Contaminated Soil by Washing with Novel Chemically Modified Humic Substances.

    PubMed

    García-Díaz, César; Nebbioso, Antonio; Piccolo, Alessandro; Barrera-Cortés, Josefina; Martínez-Palou, Rafael

    2015-11-01

    In this work, humic (HA) and fulvic acid (FA) were chemically modified by esterification and etherification with alkanes under microwave (MW) irradiation to improve their surfactant properties for the remediation of total petroleum hydrocarbons (TPHs)-contaminated soil. Humic acid and FA were evaluated as surfactant for the remediation of soil by means of washing an aged highly TPH-contaminated soil (50,000 mg TPH kg) sampled from a Mexican petrochemical area. The efficiency of chemical modification of HA and FA was increased and accelerated under MW irradiation with respect to that of conventional heating. Results showed that modified HA and FA were able to considerably reduce the contamination of TPH-polluted soils. The best results were obtained with HA modified by esterification with -dodecanol and FA modified with -decanol, which increased the hydrocarbon removal by 24 and 18%, respectively, with respect to amounts removed by the unmodified derivatives. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  3. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    SciTech Connect

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  4. The role of humic substances in the acidification response of soil and water - results of the Humic Lake Acidification Experiment (HUMEX)

    SciTech Connect

    Gjessing, E.T. )

    1994-01-01

    Major results of the Humic Lake Acidification Experiment (HUMEX) are summarized, based on 2 y of pretreatment and 2.5 y of posttreatment data. The major objectives of the HUMEX project are to quantify the role of acid deposition on the properties of humic substances (HS) and the role of humic substances (HS) in the acidification processes that occur in soil and water. The project involves artificial acidification of one half of a divided dystrophic lake and the corresponding catchment. A combination of sulphuric acid and ammonium nitrate has been applied via sprinkler systems, mounted on trees, during precipitation events since 1990. The treatment has resulted in small changes in water quality, including an increase in SO[sub 4], NO[sub 3], and H[sup +] concentrations in the lake water and in the soil water of some of the upper soil horizons, and small changes in the nature of the HS. The results of biological studies show increased toxicity in fish, increase in the phytoplankton primary production, and disappearance of some of the dominating species of zooplankton. Epiphytic growth increased in the treated basin, whereas a group of macrophytes was reduced. Present knowledge of the relationships between chemical changes and biological response is not sufficient to explain the observed changes in biota. 22 refs., 1 fig.

  5. Decreasing toxic and mutagenic activity of soils through the application of humic substances

    NASA Astrophysics Data System (ADS)

    Gorova Alla, I.; Pavlichenko Artem, 2.; Klimkina Iryna, 3.

    2009-04-01

    Based on an example of conditions on mining industry land adjacent to the Dnepr River in the Dnepropetrovsk Region (Ukraine), the ecological quality of the soils was evaluated by cytogenetic methods and, in parallel, the efficiency of using humates obtained from brown coal of the Alexandria deposit was also researched. During an ecological monitoring programme from 1997 to 2007, the genetic characteristics of soils at 12 locations in Dnepropetrovsk, and at 33 locations in four other industrial mining areas in the region, was studied. A theoretical basis for the use of humic substances for blocking the migration paths of ecological toxic-matter within a soil-to-plant system was reasoned, namely that introducing natrium humate into the soil would promote a normalization of the cell division processes and a reduction in the chromosome aberration rate in the root meristem of the biological indicators. Laboratory tests involved growing seeds of an indicator plant (Pisum sativum L.) in the different soils, to some of which humic substances had been added. The data showed evidence that the soils of the region display a rather patchy picture in terms of toxic and mutagen features. This was obvious from the variety of levels on the mitotic index, as well as from the increase of 5 to 24 times the frequency of aberrant chromosomes. Introducing 0.01per cent of a Christecol water solution into a substratum for growing the indicator plant apparently reduced (P<0,01) the level of the chromosome aberrations in the meristem cells of the test material. The mutagenic rates of the soils during the test was reduced by 1.5 to 4 times and, at the same time, a reduction of the soil toxic rates was also observed. The reduction in chromosome aberration levels in the cells of the tested materials for the soils in the different city districts, varied from 2.9 to 12.4 times. Importantly, a reliable reduction in the genetic damage under the influence of humic substances was observed in all test

  6. Influence of fly-ash produced by lignite power station on humic substances in ectohumus horizons of Podzols

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Jerzykiewicz, Maria; Jamroz, Elżbieta; Kocowicz, Andrzej; Dębicka, Magdalena; Ćwieląg-Piasecka, Irmina

    2017-04-01

    Literature on fly-ash influence on the environment report mainly on alkalization effect on vegetation and changes in chemistry of forest floor. As far as now soils were examined only for changes in pH in surface horizons, physical properties and heavy metal solubility. Soil properties strongly depend on soil organic matter content and humic substances properties, thus their modification plays a crucial role in soil forming processes and changes in the environment. From the other side, the alkalization effects on podzolization processes and particularly on humic substances have not been recognized. The aim of this paper was to characterize changes in properties of humic substances in ectohumus horizons of Podzols affected by alkali blown out from fly-ash dumping site of power station Bełchatów, central Poland. The objects of the investigation were Podzols derived from loose quartz sand, developed under pine forest. They surround the dumping site, which was established to store wastes from lignite combustion in Bełchatów power station. The samples were collected from ectohumus horizons in direct vicinity of the dumping site (50 m) as well as in the control area (7.3 km away) in five replications. Determination of elemental composition and spectroscopic analysis (EPR, FT-IR, ICP-OES and UV-Vis) were performed for humic acids, fulvic acids and humines extracted with standard IHSS procedure. An increase of pH in ectohumus horizons caused by the influence of fly-ash leads to change in humic substances structure. Obtained results showed that humic and fulvic acids from fly-ash affected Podzols indicated higher contents of nitrogen and sulphur, as well as higher O/C and lower C/N ratios. This points out a higher degree of their humification. Also EPR analyses of humic acids and humins affected by fly-ash indicated higher metal ions concentrations. However, the increase of Mn and Fe ions concentration did not affect the Fe(III) and Mn(II) band intensities of EPR spectra

  7. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  8. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  9. Electrophoresis and size-exclusion chromatography of humic substances extracted from detritus and soils of different geneses

    NASA Astrophysics Data System (ADS)

    Trubetskaya, O. E.; Trubetskoi, O. A.; Borisov, B. A.; Ganzhara, N. F.

    2008-02-01

    Electrophoresis in 10% polyacrylamide gel in the presence of denaturants and size-exclusion chromatography in Sephadex G-75 in 7 M urea were used for the comparative analysis of humic substances isolated from a typical chernozem, soddy-podzolic soil, and chestnut soil and from the easily decomposable organic matter (plant detritus) contained in these soils. After the electrophoresis, the gel with naturally colored bands of humic substances was further stained with a dye specific for proteins by immersing into a solution containing Coomassie Brilliant Blue R-250 and CuSO4. The electrophoretic and chromatographic analyses showed that humic substances from the soils and the corresponding detritus fractions significantly differed in the intensity of the natural color of the electrophoretic fractions, the molecular-weight distribution, and the color of the electrophoretic fractions colored by the protein-specific dye (which was first discovered in this study). The hypothesis of Tyurin and Aleksandrova suggesting that the transformation of humus sources (plant detritus) into humic substances proceeds in the direction from the high-molecular compounds to the low-molecular compounds was experimentally confirmed.

  10. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  12. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  13. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity.

    PubMed

    Litvin, Valentina A; Minaev, Boris F

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  14. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Litvin, Valentina A.; Minaev, Boris F.

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  15. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  16. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    NASA Astrophysics Data System (ADS)

    Cronan, Christopher S.; Aiken, George R.

    1985-08-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 μeq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon.

  17. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  18. Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands.

    PubMed

    Park, Ha Ju; Kim, Dockyu

    2015-01-01

    Humic substances (HS), an important fraction of soil organic carbon, are distributed widely throughout cold environments. A total of cold-adapted 122 bacterial strains were isolated from 66 Alaska grassland soil samples based on their ability to grow on humic acids (HA), a main fraction of HS, as a carbon and energy source. These isolates were identified based on 16S rRNA gene sequencing, with class Bacilli (79.5%) and γ-Proteobacteria (17.1%) comprising the largest groups. Among them, 45 strains, mainly Paenibacillus (27 strains) and Pseudomonas (15 strains), were selected for further screening. Two strains (Pseudomonas sp. PAMC 26793 and Paenibacillus sp. PAMC 26794) most efficiently degraded HA, but showed significant differences in their ability to grow on various monocyclic aromatics, which are putative degradative metabolites of HS. Fourier transform infrared spectra also showed substantial but different changes in HA chemical structure after incubation with each strain. Gel permeation chromatography demonstrated that depolymerization and polymerization of HA occurred during HS degradation by these newly isolated microbes.

  19. Relationships between humic substance-bound mercury contents and soil properties in subtropical zone.

    PubMed

    Yu, Gui-fen; Wu, Hong-tao; Jiang, Xin; He, Wen-xiang; Qing, Chang-le

    2006-01-01

    The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the contents of HS-Hg in soils. Results showed that HS-Hg ranged from 0.0192 to 0.2051 mg/kg in soils. The two fractions existed in soils as humic acid-bound mercury (HA-Hg) > fulvic acid-bound mercury (FA-Hg) and the ratio of HA-Hg/FA-Hg was 1.61 on the average. Soil organic carbon (OC) and HS favorably determined soil HS-Hg and the two fractions. The mercury source forming HS-Hg derived from soil total mercury and HS-Hg. FA-Hg and HA-Hg served as mercury source for each other. In acidic soils, FA-Hg and HA-Hg consistently rose with the increase of OC, and generally HA-Hg increased more dramatically. Soils with lower pH and lighter texture contained more HS-Hg, particularly fraction of FA-Hg. Among all influencing factors, organic material source showed the strongest effect, followed by other soil properties and soil mercury source.

  20. Humic substance adsorptive fractionation by minerals and its subsequent effects on pyrene sorption isotherms.

    PubMed

    Hur, Jin; Schlautman, Mark A

    2006-01-01

    Changes in the nonlinearity of pyrene sorption isotherms on humic substance (HS)-coated minerals (kaolinite and hematite) due to HS adsorptive fractionation processes were examined in model environmental systems at low mass fraction organic carbon (f(oc)) levels (0.0001-0.0011) using purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). At a constant pH of 7, higher molecular weight (MW) fractions of PAHA were preferentially adsorbed on kaolinite whereas no adsorptive fractionation of PAHA occurred on hematite. At a constant f(oc) level of 0.0005, preferential adsorption of higher MW PAHA fractions on kaolinite was enhanced with increasing pH. Nonlinear pyrene sorption isotherms were observed with the bulk PAHA-coated mineral systems, whereas more linear pyrene sorption isotherms were observed for the PAHA-mineral systems undergoing adsorptive fractionation. Although the degree of isotherm linearity may be affected by pH and/or structural rearrangement of the adsorbed HS fractions on minerals, this study suggests that HS adsorptive fractionation is more important than are changes in pH and f(oc) levels with regard to the resulting pyrene sorption isotherms. Similar effects were not observed with SRFA, suggesting that the impacts of HS adsorptive fractionation on pyrene sorption isotherm nonlinearity are also influenced by the source and other biogeochemical characteristics of HS.

  1. Investigation of humic substance photosensitized reactions via carbon and hydrogen isotope fractionation.

    PubMed

    Zhang, Ning; Schindelka, Janine; Herrmann, Hartmut; George, Christian; Rosell, Mònica; Herrero-Martín, Sara; Klán, Petr; Richnow, Hans H

    2015-01-06

    Humic substances (HS) acting as photosensitizers can generate a variety of reactive species, such as OH radicals and excited triplet states ((3)HS*), promoting the degradation of organic compounds. Here, we apply compound-specific stable isotope analysis (CSIA) to characterize photosensitized mechanisms employing fuel oxygenates, such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE), as probes. In oxygenated aqueous media, Λ (Δδ(2)H/Δδ(13)C) values of 23 ± 3 and 21 ± 3 for ETBE obtained by photosensitization by Pahokee Peat Humic Acid (PPHA) and Suwannee River Fulvic Acid (SRFA), respectively, were in the range typical for H-abstraction by OH radicals generated by photolysis of H2O2 (Λ = 24 ± 2). However, (3)HS* may become a predominant reactive species upon the quenching of OH radicals (Λ = 14 ± 1), and this process can also play a key role in the degradation of ETBE by PPHA photosensitization in deoxygenated media (Λ = 11 ± 1). This is in agreement with a model photosensitization by rose bengal (RB(2-)) in deoxygenated aqueous solutions resulting in one-electron oxidation of ETBE (Λ = 14 ± 1). Our results demonstrate that the use of CSIA could open new avenues for the assessment of photosensitization pathways.

  2. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.

    PubMed

    Wolf, Manfred; Kappler, Andreas; Jiang, Jie; Meckenstock, Rainer U

    2009-08-01

    Humic substances (HS) and quinones can accelerate dissimilatory Fe(III) reduction by electron shuttling between microorganisms and poorly soluble iron(III) (hydr)oxides. The mechanism of electron shuttling for HS is not fully understood, but it is suggested that the most important redox-active components in HS are also quinones. Here we studied the influence of HS and different quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. The aquatic HS used were humic and fulvic acids (HA and FA) isolated from groundwater of a deep aquifer in Gorleben (Niedersachsen, Germany). HA stimulated iron reduction stronger than FA down to total HA concentrations as low as 1 mg/L. The quinones studied showed large differences: some had strong accelerating effects, whereas others showed only small effects, no effects, or even inhibitory effects on the kinetics of iron reduction. We found that the redox potentials of the most active quinones fall in a narrow range of -137 to -225 mV vs NHE at pH 7. These results give evidence that the kinetic of microbial iron reduction mediated by electron shuttles is mainly controlled by thermodynamic parameters, i.e., by the redox potential of the shuttle compound, rather than by the proportion of dissolved vs adsorbed compound.

  3. Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances.

    PubMed

    Marang, Laura; Reiller, Pascal E; Eidner, Sascha; Kumke, Michael U; Benedetti, Marc F

    2008-07-15

    In an area that contains high concentrations of natural organic matter, it is expected that it plays an important role on the behavior of rare earth elements (REE), like europium, and of trivalent actinides. Competitive interactions with H+, inorganic species, major cations, e.g. Ca(II) or Mg(II), could influence these metals transport and bioavailability. Competitive experiments between cations, which can bind differently to humic substances and Eu3+, will bring an improved understanding of the competitive mechanisms. The aim of this study is to acquire data for Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary originated humic acid (Gorleben, Germany). The NICA-Donnan parameters for Ca2+, Cu2+, and Eu3+ obtained from competitive binding experiments using Ca2+ or Cu2+ ion selective electrodes were used to model time-resolved laser fluorescence spectroscopy (TRLFS) measurements. Eu3+ and CU2+ are in direct competition for the same type of sites, whereas Ca2+ has an indirect influence through electrostatic binding.

  4. Lability of heavy metal species in aquatic humic substances characterized by ion exchange with cellulose phosphate.

    PubMed

    Rocha, J C; Toscano, I A; Burba, P

    1997-01-01

    Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.

  5. Ultrafiltration and determination of Zn- and Cu-humic substances complexes stability constants.

    PubMed

    Nifant'eva, T I; Burba, P; Fedorova, O; Shkinev, V M; Spivakov, B Y

    2001-03-16

    This study exhibits that size fractionation of humic substances (HS) and their metal complexes by ultrafiltration is an efficient procedure for simultaneous determination of stability constants. Using sequential-stage ultrafiltration and a radiotracer technique the HS-Cu and HS-Zn complexes studied can gently be size-fractionated and their free metal fractions simply be discriminated. The conditional stability constants Ki obtained for size fractions of these HS metal complexes exhibit a clear molecular size dependence. Accordingly, the highest Ki values (6.6 for Zn and 6.4 for Cu) are found in the HS fractions of >105 kDa. Moreover, the overall stability constants K found for Cu (log K=5.5) and Zn complexes (log K=4.5) of the aquatic HS complexes studied are quite comparable to those reported in the literature.

  6. [Degradation kinetics of ozone oxidation on high concentration of humic substances].

    PubMed

    Zheng, Ke; Zhou, Shao-Qi; Yang, Mei-Mei

    2012-03-01

    Humic substance oxidation (HS) degradation by ozone was kinetically investigated. The effects of O3 dosage, initial pH, temperature and initial concentration of HS were studied. Under the conditions of 3.46 g x h(-1) ozone dosage, 1 000 mg x L(-1) initial HS, 8.0 initial pH and 303 K temperature, the removal efficiencies of HS achieved 89.04% at 30 min. The empirical kinetic equation of ozonation degradation for landfill leachate under the conditions of 1.52-6.10 g x h(-1) ozone dosage, 250-1 000 mg x L(-1) initial HS, 2.0-10.0 initial pH, 283-323 K temperature fitted well with the experimental data (average relative error is 7.62%), with low activation energy E(a) = 1.43 x 10(4)J x mol(-1).

  7. Identifying the key factors that affect the formation of humic substance during different materials composting.

    PubMed

    Wu, Junqiu; Zhao, Yue; Qi, Haishi; Zhao, Xinyu; Yang, Tianxue; Du, Yingqiu; Zhang, Hui; Wei, Zimin

    2017-11-01

    The aim of this work was to identify the factors which can affect humic substance (HS) formation. Composting periods, HS precursors, bacteria communities and environment factors were recognized as the key factors and few studies explored the potential relationships among them. During composting, HS precursors were mainly formed in the heating and thermophilic phases, but HS were polymerized in the cooling and mature phases. Moreover, bacterial species showed similar classification of community structure in the same composting period of different materials. Furthermore, structural equation model showed that NH4(-)-N and NO3(-)-N were the indirect environmental factors for regulating HS formation by the bacteria and precursors as the indirect and direct driver, respectively. Therefore, both environmental factors and HS precursors can be the regulating factors to promote HS formation. Given that, a new staging regulating method had been proposed to improve the amount of HS during different materials composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of salinity effect on quantitative analysis of aquatic humic substances using nonionic DAX-8 resin.

    PubMed

    Kida, Morimaru; Ohtsuka, Toshiyuki; Kato, Taku; Suzuki, Takeshi; Fujitake, Nobuhide

    2016-03-01

    A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity.

  9. Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake.

    PubMed

    Andersen, Stig; Pedersen, Klaus M; Iversen, Finn; Terpling, Steen; Gustenhoff, Peter; Petersen, Steffen B; Laurberg, Peter

    2008-02-01

    Iodine intake is important for thyroid function. Iodine content of natural waters is high in some areas and occurs bound in humic substances. Tap water is a major dietary source but bioavailability of organically bound iodine may be impaired. The objective was to assess if naturally occurring iodine bound in humic substances is bioavailable. Tap water was collected at Randers and Skagen waterworks and spot urine samples were collected from 430 long-term Randers and Skagen dwellers, who filled in a questionnaire. Tap water contained 2 microg/l elemental iodine in Randers and 140 microg/l iodine bound in humic substances in Skagen. Median (25; 75 percentile) urinary iodine excretion among Randers and Skagen dwellers not using iodine-containing supplements was 50 (37; 83) microg/24 h and 177 (137; 219) microg/24 h respectively (P < 0.001). The fraction of samples with iodine below 100 microg/24 h was 85.0 % in Randers and 6.5 % in Skagen (P < 0.001). Use of iodine-containing supplements increased urinary iodine by 60 microg/24 h (P < 0.001). This decreased the number of samples with iodine below 100 microg/24 h to 67.3 % and 5.0 % respectively, but increased the number of samples with iodine above 300 microg/24 h to 2.4 % and 16.1 %. Bioavailability of iodine in humic substances in Skagen tap water was about 85 %. Iodine in natural waters may be elemental or found in humic substances. The fraction available suggests an importance of drinking water supply for population iodine intake, although this may not be adequate to estimate population iodine intake.

  10. Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity.

    PubMed

    Grillo, Renato; Clemente, Zaira; de Oliveira, Jhones Luis; Campos, Estefânia Vangelie Ramos; Chalupe, Victor C; Jonsson, Claudio M; de Lima, Renata; Sanches, Gabriela; Nishisaka, Caroline S; Rosa, André H; Oehlke, Kathleen; Greiner, Ralf; Fraceto, Leonardo F

    2015-04-09

    Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    PubMed

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p < 0.05) except in Liyushan mud volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  12. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  13. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  14. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  15. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils.

    PubMed

    Lehmann, Johannes; Solomon, Dawit; Zhao, Fang-Jie; McGrath, Steve P

    2008-05-15

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  16. A meta-analysis of plant-growth response to humic substance applications

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Tim

    2013-04-01

    Humic substances (HS) are a category of naturally occurring organic compounds that arise from the decomposition and transformation of plant, animal and microbial residues (Maccarthy 2001). The loss of humic material, together with overall reductions in soil organic matter, is of concern because they play important roles in maintaining key soil functions and plant productivity (Lal 2004). Consequently, there is interest in the application of HS-based amendments, often derived from agricultural wastes (e.g composts) to remediate and/or maintain soil health (Quilty and Cattle 2011). In light of the potential benefits of HS, together with their inconsistent performance under field conditions, we sought to quantitatively review the effects of HS on plant growth, by undertaking a meta-analysis of the literature. A total of 390 papers were originally selected from the current literature. A number of criteria were applied to reduce this number to 81, from which the meta-analysis was undertaken. The 81 papers comprised 57 studies presenting data on shoot (or total) dry weight and 39 studies reporting root dry weight. As part of the meta-analysis we attempted: (i) to quantify the magnitude and likelihood of plant growth promotion, in terms of shoot and root biomass, resulting from HS application, (ii) to determine the influence of environmental conditions, plant type, humic substance properties, and the manner of application on plant growth response to HS, (iii) to identify gaps in our understanding of the interaction of HS with plants, and (iv) to provide some general recommendations for the practical use of HS in agronomic systems and suggestions for future work. Some of the key findings from this meta-analysis included: Many papers lack details on HS chemical characteristics The application of HS needs to be tailored to the environmental conditions in which they will be used. The effect of HS on shoot biomass was not only dependent on the source and rate of application

  17. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  18. Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-07-01

    Differences relating to the ability of various types of humic substances (HS) to influence toxicity of pollutants have been reported in the literature, but there still remains a gap in understanding whether various HS will have the same influence on the toxicity of acid mine drainage (AMD). This study investigated differences in the ability of Aldrich humic acid (AHA), Suwannee River humic acid and Suwannee River fulvic acid to decrease toxicity of AMD to the freshwater shrimp (Caridina sp. D). Toxicity tests were conducted over 96 h and used Mount Morgan open pit water as source of AMD and Dee River water as control/diluents. Concentrations of 0-4 % AMD at 0 mg/L HS, 10 mg/L AHA, 10 mg/L Suwannee River humic acid and 10 mg/L Suwannee River fulvic acid were used. Significantly higher survival of shrimp was recorded in the HS treatments compared with the treatment containing no HS. No significant differences were found among HS type. HS considerably increased LC50 values irrespective of type, from 1.29 (0 mg/L HS) to 2.12 % (AHA); 2.19 (Suwannee River humic acid) and 2.22 % (Suwannee River fulvic acid). These results support previous work that HS decrease the toxicity of AMD to freshwater organisms, but with the novel finding that this ability occurs irrespective of HS type. These results increase the stock of knowledge regarding HS and may contribute to a possible remediation option for AMD environments.

  19. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    PubMed

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  20. Stabilization of Nanoparticulate HgS by Thiols and Humic Substances During HgS Precipitation

    NASA Astrophysics Data System (ADS)

    Hsu-Kim, H.; Deonarine, A.

    2008-12-01

    In the aquatic environment mercury has a strong affinity for reduced sulfur-containing ligands such as inorganic sulfides and thiolate functional groups in natural organic matter (NOM). Complexation of aqueous Hg(II) is particularly important because coordination to inorganic sulfide and humic compounds governs Hg(II) speciation (and subsequent bioavailability and mobility) in contaminated water and sediment. The purpose of this study was to explore the potential for NOM-coated HgS nanoparticles in the aquatic environment. HgS precipitation experiments were conducted in the presence of natural organic acids that are prevalent in surface water and sediment porewater. Dynamic light scattering was used to the monitor the size of HgS particles precipitating over time. The results indicated that humic substances decreased growth rates of precipitating HgS particles and stabilized particles with aggregate diameters smaller than 0.2 μm for at least 8 hours. Thiol-containing low molecular weight acids such as cysteine and thioglycolate also decreased growth of HgS particles whereas the hydroxyl-containing acids (serine and glycolate) did not affect particle growth rates. As the humic and thiol concentration increased in solution, growth rates of HgS particles decreased. Growth rates of the aggregates increased in solutions with greater ionic strength. Nanoparticles of HgS would be possible in aquatic environments where HgS precipitation is possible. We conducted equilibrium speciation calculations to determine HgS(s) saturation indices under conditions typical for sediment porewater. The calculations indicated that the metacinnabar saturation index was 1 to 3 orders of magnitude above or below saturation, depending on Hg-(bi)sulfide and Hg-NOM binding constants, which vary by orders of magnitude. These insights suggest that HgS nanoparticles may exist in surface waters and porewater of contaminated sediments as a result of kinetically-hindered mineralization reactions. Hg

  1. Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water

    NASA Astrophysics Data System (ADS)

    Okochi, H.; Sato, E.; Matsubayashi, Y.; Igawa, M.

    2008-03-01

    Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m, p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269-276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L ( n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L ( n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 10 2 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and

  2. Effect of humic substance photodegradation on bacterial growth and respiration in lake water.

    PubMed

    Anesio, Alexandre M; Granéli, Wilhelm; Aiken, George R; Kieber, David J; Mopper, Kenneth

    2005-10-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-microm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by approximately 18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed approximately 10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates.

  3. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2013-07-01

    Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC. Copyright © 2013 SETAC.

  4. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments.

  5. Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water

    PubMed Central

    Anesio, Alexandre M.; Granéli, Wilhelm; Aiken, George R.; Kieber, David J.; Mopper, Kenneth

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ∼18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ∼10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  6. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.

    PubMed

    Park, Ha Ju; Chae, Namyi; Sul, Woo Jun; Lee, Bang Yong; Lee, Yoo Kyung; Kim, Dockyu

    2015-04-01

    Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48% after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172% during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0%), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

  7. [The changes in the structure and properties of alkali-soluble humic substances in phosphorus-enriched gray forest soil].

    PubMed

    Kudeiarova, A Iu

    2003-01-01

    The dynamics of spectral and kinetic properties of alkali-soluble humic substances in the gray forest soil were studied in the course of its incubation with NH4H2PO4 (44.5 mg P per 100 g soil) for seven days, one year, and three years. The results provided evidence for consistent changes in the energy state of electrons in the functional groups of humic molecules extracted from the phosphorus-enriched soil. The structure of these molecules markedly changed by the end of the experiment, which was manifested in the increased number of coupled chromophores (due to the formation of additional C=C bonds) and the accumulation of new strongly polar functional groups (P=O). These changes provided for an increased solubility of soil humus in 0.1 N NaOH, higher saturation of dissolved humic substances with metals, and a different pattern of the distribution of carbon, metals, and phosphorus between the fractions of humic and fulvic acids.

  8. The effect of acidification on abiotic interactions of dissolved humic substances, iron and phosphate in epilimnetic water from the HUMEX Lake Skjervatjern

    SciTech Connect

    Shaw, P.J.; Haan, H. De ); Jones, R.I. )

    1992-01-01

    The responses to pH of abiotic interactions between dissolved humic substances, iron and phosphate were investigated by examining redistributions of [sup 55]FeCl[sub 3] and [sup 32]PO[sub 4][sup 3[minus

  9. Effect of humic substance on thermal treatment of chromium(VI)-containing latosol soil.

    PubMed

    Wei, Yu-Ling; Hsieh, Hui-Fang

    2006-03-01

    Latosol soils contaminated with chromium(VI) [Cr(VI)], which is hazardous, can be recycled as raw materials for porcelain and construction sectors if a proper thermal stabilization process is implemented. This study investigates how thermal treatment affects Cr behavior during the sintering of latosol and deorganic latosol samples; both samples are artificially contaminated with CrO3. Approaches including X-ray absorption spectroscopy, scanning electron microscopy, N2-based Brunauer Emmett Teller surface analyzer, thermogravimetric analyzer/differential scanning calorimeter, and the toxicity characteristic leaching procedure promulgated by Taiwan Environmental Protection Administration are used in this study. After drying the Cr(VI)-contaminated latosol (i.e., containing 37,120 mg of Cr/kg sample) at 105 degrees C, approximately 80% of the doped CrO3 is chemically reduced to Cr(OH)3 by a humic substance naturally existing in the soil. In contrast, in the organics-free CrO3-contaminated latosol dried at 105 degrees C, only 9% of the doped CrO3 is reduced to Cr(OH)3. Heating the samples at 500 and 1100 degrees C transforms hazardous Cr(VI) into Cr(III) that is negligibly toxic; Cr2O3, which is insoluble, is detected as the most abundant Cr species. Moreover, formation of Cr2SiOs, which is suggested to relate to low Cr leaching, is only detected in the sample heated at 1100 degrees C. Surface morphology, surface area, and thermogravimetric analyzer/differential scanning calorimeter results demonstrate that thermal treatment at 1100 degrees C can incur considerable soil sintering/ melting if the humic substance in the soil has been heated off previously. Finally, Cr concentrations in the toxicity characteristic leaching procedure leachates collected from the samples thermally treated at 1100 degrees C for 4 hr are < or =0.21 mg of Cr L(-1) that are much less than the Taiwan Environmental Protection Administration regulatory limit (<5 mg of Cr L(-1)); consequently

  10. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  11. Effects of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jussi

    The present study focused on the accumulation of benzo(a)pyrene (BaP), hexachlorocyclohexane (lindane), pentachlorophenol (PCP) and dehydroabietic acid (DHAA), from a natural humic water (DOC 18 mg/l) and a humus-free reference water, in Daphnia magna (Cladocera) and nymphs of the mayfly Heptagenia fuscogrisea (Ephemeroptera). Effects of water pH ranging from 3.5 to 8.5 was examined. The partition coefficients (Kp) of BaP and PCP to organic material were measured by equilibrium dialysis, and in both cases increases in Kp values were noticed with decreasing pH. For neutral compounds (BaP and lindane), the bioconcentration factor (BCF) was the highest at pH 6.5 in the control water. Humic substances significantly lowered the accumulation of BaP, but had no effect on the accumulation of lindane. The lowest test pH gave the highest BCF value, and increasing pH decreased the BCF values of weak organic acids (PCP and DHAA) in the control experiments. This was because the unionized forms of these compounds accumulate better than the more hydrophilic ionized forms. The presence of dissolved organic substances lowered the accumulation of PCP in H. fuscogrisea between pH 4.5 and 7.5 and had no effect at pHs 3.5 and 8.5. Humic substances lowered the accumulation of DHAA in D. magna between pH 5.5 and 6.5 and had no effect when pH was over 7. In experiments with H. fuscogrisea humic substances had no effect on the accumulation of DHAA.

  12. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  13. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  14. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    SciTech Connect

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  15. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.

    PubMed

    Laglera, Luis M; Battaglia, Gianluca; van den Berg, Constant M G

    2007-09-05

    A new voltammetric method is presented for the measurement of humic substances (HS) in natural waters. The method is based on catalytic cathodic stripping voltammetry (CSV) and makes use of adsorptive properties of iron-HS complexes on the mercury drop electrode at natural pH. A fulvic acid standard (IHSS) was used to confirm the voltammetric response (peak potential and sensitivity) for the HS for natural water samples. Optimized conditions included the linear-sweep mode, deposition at -0.1 V, pH buffered at 8 and a scan rate of 50 mV s(-1). At a deposition time of 240 s in the presence of 10 nM iron and 30 mM bromate, the detection limit was 5 microg L(-1) HS in seawater, which could be lowered further by an increase in the bromate concentration, or in the adsorption time. The method was used to determine HS in the Irish Sea which were found to occur at levels between 60 and 600 microg L(-1). The new method is sufficiently sensitive to detect the low HS content in oceanic samples and has implications to the study of iron speciation.

  16. Annual cycle of humic substances in a temperate estuarine system affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Waeles, Matthieu; Riso, Ricardo; Pernet-Coudrier, Benoît; Quentel, François; Durrieu, Gaël; Tissot, Cyril

    2013-04-01

    Although widely studied for their chemical structures and properties (e.g., metal complexation, growth stimulation of planktonic species), humic substances (HS) have been very poorly quantified in fluvial and estuarine waters. In this monthly basis study, we determined HS concentrations (by Adsorptive Square Wave Cathodic Stripping Voltammetry) along the entire river-seawater gradient of the Penzé estuary (NW France), with the aim to characterize the export of these compounds. In this watershed where agricultural activities are predominant, manuring activities were identified as being the main source of dissolved organic carbon (DOC) and HS. HS concentrations varied usually within a narrow range in fluvial waters, i.e., 1.8 ± 0.4 mgC L-1 (150 ± 40 μM), but increased significantly as the first flood of autumn occurred (>4 mgC L-1 in river and upper estuary). At this time, HS accounted for a very high proportion of DOC (>80%). As evidenced by the increasing contribution of HS to DOC, and by the increasing contribution of small colloidal HS species; this autumnal flood increase should be attributed to a greater retention and transformation of organic matter on soils over the hotter, drier, and lighter period preceding the first autumnal flood. In the mixing zone, HS displayed mostly conservative behaviour, although some removals were occasionally observed. Overall, our study suggests that preservation of HS could be relatively important during their transfer across macrotidal temperate estuaries, at least in systems affected by agricultural practices.

  17. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    PubMed

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen.

  18. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle. PMID:27100573

  19. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle. PMID:27478277

  20. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  1. Development of an automated system for isolation and purification of humic substances.

    PubMed

    van Zomeren, André; van der Weij-Zuiver, Esther; Comans, Rob N J

    2008-07-01

    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system lies in the way the multiple liquids and columns used in the isolation/purification procedure are handled in both forward and back-elution mode by solenoid valves. The automated procedure significantly reduces the total throughput time needed, from 6-7 days to 48 h, and the amount of labor to obtain purified HS for further characterization. Chemical characterization of purified HS showed that results were in good agreement with previously published values for HS from a variety of sources, including the IHSS standard HS collection. It was also shown that the general properties of HS were consistent among the different source materials (soil, waste, aquatic) used in this study. The developed system greatly facilitates isolation and characterization of HS and reduces the risk of potential (time-dependent) alteration of HS properties in the manual procedure.

  2. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    PubMed

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-04

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  3. Synthesis and physico-chemical properties of peptides in soil humic substances.

    PubMed

    Fan, T W-M; Lane, A N; Chekmenev, E; Wittebort, R J; Higashi, R M

    2004-03-01

    Soil humic substances (HS) are heterologous, polydispersive, and multi-functional organometallic macromolecules ubiquitous in soils and sediments. They are key players in the maintenance of the belowground ecosystems and in the bioavailability of both organic and inorganic contaminants. It is widely assumed that the peptidic substructures of HS are readily degraded and therefore do not contribute significantly to interactions with contaminants such as toxic metals. To investigate the turnover of humified peptides, laboratory soil aging experiments were conducted with 13C-glucose or 15N-nitrate for 8.5 months. Evidence for random-coil peptidic structures in the labeled HS was obtained from 2-D nuclear magnetic resonance (NMR), pyrolysis gas chromatography-mass spectrometry (pyro-GC-MS), and circular dichroism data. Interaction of metals with the peptidic carbonyls of labeled HS was rationalized from the solid-state NMR data. Detailed 13C and 15N labeling patterns of amino acid residues in the acid hydrolysates of HS acquired from NMR and GC-MS revealed two pools of peptides, i.e. one extant (unlabeled) and the other, newly humified with little isotopic scrambling (fully labeled). The persistence of pre-existing peptidic structures indicates their resistance to degradation while the presence of fully labeled peptidic amino acids suggests wholesale incorporation of newly synthesized peptides into HS. These findings are contrary to the general notion that humified peptides are readily degraded.

  4. Terrestrial humic substances in Daliao River and its estuary: optical signatures and photoreactivity to UVA light.

    PubMed

    Chen, Hao; Lei, Kun; Wang, Xuechun

    2016-04-01

    Fluorescent dissolved organic matter (FDOM) components were identified by Parallel Factor Analysis (PARAFAC) in surface water of Daliao River and its estuary with a focus on terrestrial humic substance-(HS)-like FDOM identified under two contrasting hydrological conditions. The hydrological conditions did not have noticeable effect on the spectral features of the terrestrial HS-like FDOM, but did affect the components' intensities and photoreactivity: (1) the intensities of terrestrial HS-like components were higher in the normal flow period than in the high flow period, and (2) a spectrally similar terrestrial HS-like FDOM identified under the two contrasting hydrological conditions showed distinct photoreactivity to the same dose of UVA illumination. The findings indicated that terrestrial HS was generated at lower intensities at the terrestrial sources during the high flow period than during the normal flow period and that the transport of terrestrial HS material through the river-estuary system was affected dominantly by seawater dilution along the salinity gradient while fine-tuned by solar UVA illumination. This study exemplifies the effect of hydrological conditions on optical signatures of terrestrial HS-like FDOM and their photoreactivity towards UVA illumination, improving our understanding of the dynamics of terrestrial HS material in river-estuary systems in the framework of the currently proposed new conceptual model for terrestrial organic matter.

  5. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS.

  6. Estimation of Uptake of Humic Substances from Different Sources by Escherichia coli Cells under Optimum and Salt Stress Conditions by Use of Tritium-Labeled Humic Materials▿

    PubMed Central

    Kulikova, Natalia A.; Perminova, Irina V.; Badun, Gennady A.; Chernysheva, Maria G.; Koroleva, Olga V.; Tsvetkova, Eugenia A.

    2010-01-01

    The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg−1 of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg−1. The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress. PMID:20639375

  7. The sorption of humic acids to mineral surfaces and their roles in contaminant binding

    SciTech Connect

    Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.

    1990-11-01

    Humic substances dissolved in groundwater may adsorb to certain mineral surfaces, rendering hydrophilic surfaces hydrophobic and making them sorbents for hydrophobic organic compounds (HOC). The sorption of humic and fulvic acids (International Humic Substance Society, IHSS, reference samples) on hematite and kaolinite was investigated to determine how natural organic coatings influence HOC sorption. The sorption behavior of the humic substances was consistent with a ligand-exchange mechanism, and the amount of sorption depended on the concentration of hydroxylated surface sites on the mineral and the properties of the humic substance. The sorption of the humic substances to two solids was proportional to their aromatic carbon content and inversely proportional to the O/C ratio. Increasing quantities of sorbed humic substances (f{sub oc}0.01 to 0. 5%) increased the sorption of carbazole, dibenzothiophene, and anthracene. Peat humic acid, the most aromatic coating, showed the greatest sorption enhancement of HOC when sorbed to hematite. In addition, HOC sorption was greater on organic coating formed at low ionic strength (I = 0.005) as compared to higher ionic strength (I = 0.1). We suggest that both the mineral surface and the ionic strength of the electrolyte affect the interfacial configuration of the sorbed humic substance, altering the size or accessibly of hydrophobic domains on the humic molecule to HOC. 30 refs., 5 figs.

  8. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    PubMed

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  10. Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water

    NASA Astrophysics Data System (ADS)

    Hoffer, A.; Kiss, G.; Blazsó, M.; Gelencsér, A.

    2004-03-01

    A representative lignin-type component from biomass burning aerosol has been shown to react with OH radicals in model cloud water yielding colored organic species. In this paper we investigated the chemical properties of the complex reaction products formed from 3,5-dihydroxybenzoic acid. The reaction was followed by UV-VIS spectrophotometry, liquid chromatography, electrospray-mass spectrometry, thermally assisted hydrolysis and methylation-gas chromatography/mass spectrometry and a thermal method. This paper provides experimental proofs that actually larger molecular weight species are formed in the aqueous phase by free radical oligomerization. The features observed by all analytical techniques closely resemble those found for natural humic acids and HULIS found in rural and biomass burning aerosol. Therefore such processes are assumed to produce the ubiquitous humic-like substances (HULIS) in atmospheric aerosol. Since these species show intense absorbance in the lower visible to UV range, they might also be important in atmospheric absorption of solar radiation.

  11. Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin

    NASA Astrophysics Data System (ADS)

    Mukai, Hitoshi; Ambe, Yoshinari

    A brown substance having the solubility characteristics of humic acid was extracted from airborne particulate matter sampled in a rural area of Japan. This brown substance contributed 0.6-3% of the total carbon in airborne particulate matter. This fraction also contained pollen protein in samples collected during the pollen season. Patterns of elution from gel permeation chromatography suggested a molecular weight range from 500 to 10,000, with a still higher upper limit for one sample. The infrared spectra were compared with those of humic acid from the local soil, extracts from dead leaves, smoke from burning plant matter, and soot from automotive exhaust, all possible sources of the brown substance. The closest similarity was with the extract smoke. This identification is strengthened by lack of correlation of the brown substance with aluminum, a tracer for soil content, and a value of K/Fe ratio in the associated particulate matter higher than any plausible source other than combustion. It is probable that the primary source of this brown, high molecular weight acidic materials is agricultural burning.

  12. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study.

    PubMed

    Ballesteros, S García; Costante, M; Vicente, R; Mora, M; Amat, A M; Arques, A; Carlos, L; Einschlag, F S García

    2017-01-18

    In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, SBOs). In particular, complexation of these substances with iron and changes along a photo-Fenton process have been studied. Recorded EEMs were decomposed by using parallel factor analysis (PARAFAC). Three fluorescent components were identified by PARAFAC modeling of the entire set of SBO solutions studied. The EEM peak locations (λex/λem) of these components were 310-330 nm/400-420 nm (C1), 340-360 nm/450-500 nm (C2), and 285 nm/335-380 nm (C3). Slight variations of the maximum position of each component with the solution pH were observed. The interaction of SBO with Fe(iii) was characterized by determining the stability constants of the components with Fe(iii) at different pH values, which were in the order of magnitude of the ones reported for humic substances and reached their highest values at pH = 5. Photochemical experiments employing SBO and Fe(iii), with and without H2O2, showed pH-dependent trends for the evolution of the modeled components, which exhibited a strong correlation with the efficiency reported for the photo-Fenton processes in the presence of SBO at different pH values.

  13. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  14. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    PubMed Central

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 × 101 in aquifer sediments to a high of 9.33 × 106 in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N2. Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  15. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app) humic substance in methanol/water mixtures. Modification of humic structure and hydrophilic interaction (such as Ca(2+) bridge and same-charge repulsion) is considered a relevant process that possibly restricts the applicability of the cosolvency model.

  16. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components.

  17. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    NASA Astrophysics Data System (ADS)

    Voisin, Didier; Jaffrezo, Jean-Luc; Houdier, StéPhan; Barret, Manuel; Cozic, Julie; King, Martin D.; France, James L.; Reay, Holly J.; Grannas, Amanda; Kos, Gregor; Ariya, Parisa A.; Beine, Harry J.; Domine, Florent

    2012-07-01

    Snowpacks contain many carbonaceous species that can potentially impact on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were investigated in various types of snow: precipitating snows, remobilized snows, wind slabs and depth hoars. EC was found to represent less than 5% of the Total Carbon Content (TCC = EC + WinOC + DOC), whereas WinOC was found to represent an unusual 28 to 42% of TCC. Snow type was used to infer physical processes influencing the evolution of different fractions of DOC. DOC is highest in soil influenced indurated depth hoar layers due to specific wind related formation mechanisms in the early season. Apart from this specific snow type, DOC is found to decrease from precipitating snow to remobilized snow to regular depth hoar. This decrease is interpreted as due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. Depending on the relative proportions of diamond dust and fresh snow in the deposition of the seasonal snowpack, we estimate that 31 to 76% of DOC deposited to the snowpack is reemitted back to the boundary layer. Under the assumption that this reemission is purely photochemical, we estimate an average flux of VOC out of the snowpack of 20 to 170 μgC m-2 h-1. Humic like substances (HULIS), short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC + WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or a possible marine source.

  18. Modeling metal binding by dissolved humic substance: a revisit to the fluorometric titration approach.

    PubMed

    Chen, Hao; Meng, Wei; Lei, Kun

    2014-01-01

    It is desirable to directly investigate metal cation binding by dissolved humic substance (HS) in environmental samples without isolation and purification of the HS. This is commonly achieved by the fluorometric titration approach, in which the variations of the HS components' fluorescence when titrated with metal cations, such as cupric ions (Cu(2+)), were commonly resolved by a well-established chemometric tool called parallel factor analysis and fit to a classical nonlin ear equation to obtain cation binding parameters. The nonlinear expression was derived based on the two assumptions that a given HS component (e.g., L) binds Cu(2+) with a 1:1 stoichiometry, forming only the complex LCu, and that other ligands competing with L for Cu(2+) are not explicitly considered. Given the deviations (e.g., the presence of multiple HS components competing for Cu(2+) and a likely 2:1 binding stoichiometry in addition to the 1:1 binding) from the assumptions, the fitting-derived binding parameters reported in past studies are questionable; those studies commonly reported high goodness-of-fit (R(2)) as a support of the validity of the assumptions. This study deconstructed the current equation and examined it with two organic ligand components in a simulated study to see what conditions could also yield a good fit. It turned out that high a R(2) value ranging between 0.9971 and 1.0 was observed despite the deviations from the above-mentioned assumptions. In addition, this study re-evaluated some published experimental data from these past studies and found that the fitting-derived parameters could not be accounted for based on the above-mentioned assumptions. The findings in this study therefore indicate that the current fluorometric titration approach is problematic when investigating HS component interactions with metal ions in situ. The combination of ion-selective electrode and fluorometric titration may be an alternative to the current fluorometric titration approach alone.

  19. The effects of humic substances on Pinus callus are reversed by 2,4-dichlorophenoxyacetic acid.

    PubMed

    Muscolo, Adele; Panuccio, Maria Rosaria; Sidari, Maria; Nardi, Serenella

    2005-03-01

    The reversal of humic matter-induced inhibition of callus growth and metabolism by 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in Pinus laricio. Two forest humic fractions (relative molecular mass (Mr) > 3500), derived from soil under Fagus sylvatica (Fs) and Abies alba (Aa) plantation, were used. Pinus laricio callus was grown for a subculture period (4 weeks) on Basal Murashige and Skoog (MS) medium plus forest humic matters (Fs or Aa), at a concentration of 1 mg C/l, and then was transferred, for an additional four weeks, to a MS medium culture without humic matter, but with different hormones: indole-3-acetic acid (IAA, 2 mg/l) or 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/l) and/or 6-benzylaminopurine (BAP, 0.25 mg/l). Growth of calluse, glucose, fructose, and sucrose contents, and activities of soluble and bound invertases, glucokinase, phosphoglucose isomerase, aldolase, and pyruvate kinase were monitored. The results show a negative effect of humic fractions on callus growth, due to decreased utilization of glucose and fructose, and decreased activities of glycolytic enzymes. The effects are reversible. Substitution of humic fractions with 2,4-D+BAP or 2,4-D is followed by an increase of glycolytic enzyme activities and, consequently, by the utilization of glucose and fructose that induces a restart of growth. In contrast, the inhibitory effects of humic fractions persist when they are substituted with BAP alone, indicating that only the auxin 2,4-D is capable of reversing the negative effects. A possible competitive action on the auxin-binding site between 2,4-D and the chemical structures in the forest humic fractions is suggested.

  20. SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste.

    PubMed

    Sadi, Baki B M; Wrobel, Kazimierz; Wrobel, Katarzyna; Kannamkumarath, Sasi S; Castillo, J R; Caruso, J A

    2002-12-01

    In this work, the speciation of elements in compost was studied with emphasis on their binding to humic substances. In order to assess the distribution of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, U, Th and Zn among molecular weight fractions of humic substances, the compost extract (extracted by 0.1 mol l(-1) sodium pyrophosphate) was analyzed by size exclusion chromatography coupled on-line with UV-Vis spectrophotometric and ICP-MS detection. Similar chromatograms were obtained for standard humic acid (Fluka) and for compost extract (254 nm, 400 nm) and three size fractions were operationally defined that corresponded to the apparent molecular weight ranges > 15 kDa, 1-15 kDa and < 1 kDa. The percentage of total element content in compost that was leached to the extract ranged from 30% up to 100% for different elements. The elution profiles of Co, Cr, Cu, Ni and Pb (ICP-MS) followed that of humic substances, while for other elements the bulk elution peak matched the retention time observed for the element in the absence of compost extract. Spiking experiments were carried out to confirm elements' binding and to estimate the affinity of individual elements for humic substances derived from compost. The results obtained indicated the following order of decreasing affinity: Cu > Ni > Co > Pb > Cd > (Cr, U, Th) > (As, Mn, Mo, Zn). After standard addition, further binding of Cu, Ni and Co with the two molecular weight fractions of humic substances was observed, indicating that humic substances derived from compost were not saturated with these elements.

  1. Removal of humic substances from water by means of calcium-ion-enriched natural zeolites.

    PubMed

    Capasso, S; Colella, C; Coppola, E; Iovino, P; Salvestrini, S

    2007-03-01

    The ability of the natural zeolited Neapolitan Yellow Tuff (NYT) enriched with calcium ions to remove humic acids from water was evaluated by batch adsorption equilibrium tests and dynamic experiments carried out by percolating humic acid solutions through a small NYT column (breakthrough curves). Under the experimental condition explored, the sorption capacity increases with the ionic strength and has the highest value at pH 7.4. The partition coefficient for a low concentration of humic acid ([humic acid] --> 0), at pH 7.4 in 0.01 M sodium chloride, was approximately 1000 L/kg, versus the value of approximately 100 L/kg in the absence of the alkaline metal salt. Therefore, after humic acids have been adsorbed in a column filled with the calcium-ion-enriched tuff, a reduction of the salt concentration in the ongoing solution enhances the release of the adsorbed material. These findings show that NYT can be used for the removal of humic acids from water.

  2. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that

  3. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  4. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  5. Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates.

    PubMed

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Guoxue; Zhang, Bangxi

    2017-09-01

    Sewage sludge and corn stalk were co-composted under different aeration rates 0.12 (AR0.12), 0.24 (AR0.24), 0.36 (AR0.36)L·kg(-1)DMmin(-1), respectively. Transformation of humic substance was evaluated by a series of chemical and spectroscopic methods to reveal compost humification. Results showed that aeration rate could significantly affect compost stability and humification process. Humic acid contents in AR0.24 were significantly higher than those in the other two treatments. The final humic acid/fulvic acid ratios in AR0.12, AR0.24 and AR0.36 treatment were 1.0, 1.9 and 0.8, respectively, corresponding to the final E4/E6 of 4.7, 3.2 and 5.5. Moreover, compost in AR0.24 treatment had a high stability degree due to the low C/N atom ratio and high C/H atom ratio. However, it is noteworthy that composting could not significantly affect the structure of HA in a 35-day period. These results indicate that composting with the aeration rate of 0.24L·kg(-1)DMmin(-1) could accelerated the humification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  7. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    NASA Astrophysics Data System (ADS)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  8. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    PubMed

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique.

  9. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-04-01

    The transport behavior of titanium dioxide nanoparticles (TiO2 NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO2 NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L-1. Facilitated transport of TiO2 NPs was likely attributable to the increased stability of TiO2 NPs and repulsive interaction between TiO2 NPs and quartz sands due to the adsorbed HS. The mobility of TiO2 NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO2 NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl2. In addition, calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO2 NPs, while the secondary energy minimum could play an important role in the retention of TiO2 NPs at 100 mmol L-1 NaCl. Straining and gravitational settlement of larger TiO2 NPs aggregates at 1 mg L-1 HS, pH 5.0, and 2 mmol L-1 CaCl2 could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO2 NPs and TiO2 NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L-1 CaCl2. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO2 NPs over the range of solution chemistry examined in this study.

  10. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    NASA Astrophysics Data System (ADS)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  11. Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Hong, Juan; Häme, Silja A. K.; Ding, Aijun; Li, Yugen; Yan, Chao; Hao, Liqing; Mikkilä, Jyri; Zheng, Longfei; Xie, Yuning; Zhu, Caijun; Xu, Zheng; Chi, Xuguang; Huang, Xin; Zhou, Yang; Lin, Peng; Virtanen, Annele; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Yu, Jianzhen; Kerminen, Veli-Matti; Petäjä, Tuukka

    2017-03-01

    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55 % for all the regenerated HULIS particles at the temperature of 280 °C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93 % in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45 % in 2 : 2 mixed samples, and to 70 % in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate

  12. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors.

    PubMed

    Sun, W L; Ni, J R; Xu, N; Sun, L Y

    2007-01-01

    Humic substances (HS) have a critical influence on the sorption of organic contaminants by soils and sediments. This paper describes investigations into the sorption behavior of three representative endocrine disruptors, bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynylestradiol (EE2), onto sediments and HS extracted sediments using a batch technique. The organic carbon-normalized partition coefficients (K(oc)) for the extracted HS (K(oc)(hs)) were calculated, and the fluorescence spectra of the HS extraced from different sediment samples were gained using excitation/emission matrix (EEM). Particular attention was paid to the correlations between the fluorescence characteristics of HS and the log K(oc)(hs) of selected endocrine disruptors. The results show that the log K(oc)(hs) values range from 3.14 to 4.09 for BPA, from 3.47 to 4.33 for E2, and from 3.65 to 4.32 for EE2. Two characteristic excitation-emission peaks were observed for HS samples extracted from sediments. They are located at Ex/Em=250-260 nm/400-450 nm (peak alpha') and Ex/Em=310-330 nm/390-400 nm (peak alpha) respectively. The alpha' and alpha peak relative intensities I(alpha')/I(alpha) vary from 0.46 to 1.64 for different extracted HS samples. The similarity between fulvic acids (FA) Ex/Em pairs and those observed for HS indicates that FA is the predominant fraction of HS extracted from sediments. Moreover, the log K(oc)(hs) values of BPA, E2, and EE2 have a negative linear correlation to I(alpha')/I(alpha) values. Peak alpha is often attributed to relatively stable and high molecular weight aromatic fulvic-like matter. Therefore, the result presented here reveals that the abundance of aromatic rings in HS molecular structure plays a critical role in the sorption of selected endocrine disruptors.

  13. Humic Substances in Organic Wastes and their Effects on Amended Soils

    NASA Astrophysics Data System (ADS)

    Senesi, N.; Ciavatta, C.; Plaza, C.

    2009-04-01

    Soil humic substances (HS) are universally recognized to play a major role in a wide number of agronomic and environmental processes. For example, soil HS are able to bind mineral particles together, thus promoting a good soil structure, constitute an important source of nutrients for plants and microorganisms, contribute largely to the acid-base buffering capacity of soils, and exert a marked control on the biological availability, physico-chemical behavior, and environmental fate of toxic metal ions and xenobiotics. For these reasons, the knowledge of the short- and long-term effects of organic amendments on the status, quality, and reactivity of indigenous soil HS is of paramount importance. The objective of this presentation is to provide an overview of the chemical and physico-chemical data available in the literature for the evaluation of the effects of organic wastes of various origin and nature used as soil amendments on the composition, structure, and chemical reactivity of native soil HS. In general, HS-like components of organic wastes are typically characterized by a relatively larger presence of aliphatic, amide, and polysaccharide structures, simple structural components of wide molecular heterogeneity, smaller contents of oxygen, acidic functional groups, and organic free radicals, and smaller degrees of aromatic ring polycondensation, polymerization, and humification than native soil HS. Further, with respect to native soil HS, HS-like fractions from organic wastes generally exhibit smaller binding capacities and affinities for metal ions and organic xenobiotics. Appropriate treatment processes of raw organic wastes able to produce environmentally safe and agronomically efficient soil amendments, such as composting, yield HS-like fractions characterized by chemical and physico-chemical features that approach those of native soil HS. In general, aliphatic, polysaccharide, and lignin structures and S- and N-containing groups of the HS-like fractions

  14. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    PubMed

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found.

  15. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    PubMed

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  16. A simple method for quantifying the humic content of commercial products.

    PubMed

    Quentel, François; Filella, Montserrat

    2011-12-01

    A method based on an analytical technique, initially developed for quantifying aquatic refractory organic matter (often called humics), has been applied to commercial samples claiming to contain humic-type substances. At present, no method exists for quantifying the humic content on this type of sample. The analytical method is based on measuring the peak current obtained by adsorptive stripping voltammetry of the complex formed by refractory organic matter in the presence of trace amounts of Mo(VI). The quantification procedure requires the response obtained for the unknown sample to be compared with the response obtained with International Humic Substance Society (IHSS) reference humic substances. A very simple procedure that enables the humic content of any sample to be expressed as IHSS standard equivalents is described in detail. The method is highly selective, reproducible and suitable for routine analysis.

  17. Effects of humic substances on the 241Am migration in a sandy aquifer: column experiments with Gorleben groundwater/sediment systems

    NASA Astrophysics Data System (ADS)

    Artinger, R.; Kienzler, B.; Schüßler, W.; Kim, J. I.

    1998-12-01

    Migration experiments were performed to study the influence of aquatic humic substances on the transport behavior of 241Am(III). Four groundwaters with different humic substance concentrations (DOC: 1 to 80 mg/l) were sampled together with Pleistocene aeolian quartz sand from the Gorleben site. Sand, groundwaters and humic substances were characterized by different analytical methods (e.g., ICP-MS, X-ray diffraction, X-ray fluorescence analysis, ultrafiltration). The sand was equilibrated with each groundwater under inert gas atmosphere with 1% CO 2 for a period of at least 3 months. As confirmed by ultrafiltration, the size distribution of humic colloids remained unchanged during equilibration. The hydraulic properties of sand columns were characterized with tritiated water as an inert tracer. Column and batch experiments were carried out with each groundwater as a function of the reaction period and flow velocity. In addition, the influence of the equilibration period of Am with groundwater was investigated prior to the injection into a column. The results revealed that increasing humic substance concentration reduced the Am sorption onto sand and enhanced the transport as colloid-borne Am species. The migration of colloid-borne Am was slightly faster than the groundwater flow velocity. Furthermore, the migration behavior of Am was found to depend on kinetically controlled interaction of humic colloid-bound Am with the sand surface. The application of the laboratory data to natural conditions was examined. The results were found applicable for the assessment of humic colloid facilitated radionuclide migration in natural aquifers.

  18. The lanthanum precipitation method. Part 2: quantification of the conditional interaction constant between technetium(IV) and humic substances.

    PubMed

    Geraedts, K; Maes, A

    2008-09-01

    The interaction between colloidal Tc(IV) species and colloidal Gorleben humic substances (HS) was quantified after application of the La-precipitation method on supernatant solutions obtained under various experimental conditions but at constant ionic strength of the Gorleben groundwater (0.04M). The determined interaction constant LogKHS (2.3+/-0.3) remained unchanged over a large range of Tc(IV) and HS concentrations and was independent of the pH of the original supernatant solution (pH range 6-10), Tc(IV)-HS loading (10(-3)-10(-6)molTcg(-1) HS) and the nature of the reducing surface (Magnetite, Pyrite and Gorleben sand) used for the pertechnetate reduction. The LogKHS value determined by the La-precipitation method is lower than the LogK value obtained from a previous study where the interaction between colloidal Tc(IV) species and Gorleben humic substances was quantified using a modified Schubert approach (2.6+/-0.3). The La-precipitation method allows to accurately determine the amount of Tc(IV) associated with HS but leads to a (small) overestimation of the free inorganic Tc(IV) species.

  19. Fast tracking the molecular weight changes of humic substances in coagulation/flocculation processes via fluorescence EEM-PARAFAC.

    PubMed

    Aftab, Bilal; Hur, Jin

    2017-07-01

    The removal of a commercial humic acid (HA) and changes in its chemical composition were examined for coagulation/flocculation (C/F) processes based on jar tests using two different coagulants at a wide range of pH. ZrCl4 showed a better performance in eliminating HA than Al2SO4 with the same removal rates at lower dosages. The highest removal rates were found at a neutral pH range (5.0-6.5). The HA was further decomposed into three different humic-like components (C1, C2, and C3) by excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Although the removal rates of all three components generally followed those of dissolved organic carbon, the relative removals of the individual components depended on the coagulant's doses and the solution pH. The fluorescent components of five ultrafiltered size fractions of the HA revealed that the peak with a longer emission wavelength could be associated with larger sized molecules. The C1/C3 ratios of the size fractions exhibited a significant linear relationship with the logarithmic values of the average molecular weight (MW) measured by size exclusion chromatography, which made it possible to predict the HA MW value changes upon the C/F using EEM-PARAFAC alone. Irrespective of the coagulant types and the pH, larger sized HA molecules were removed to a greater extent than smaller sized fractions. The preferential removal was more pronounced for ZrCl4 versus Al2SO4 and at a neutral pH range. Our study suggests a great potential of EEM-PARAFAC in fast tracking the MW of humic substances in conventional C/F processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens.

    PubMed

    Gomez-Rosales, S; de L Angeles, M

    2015-02-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

  1. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  2. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  3. Colloidal α-Al2O3 Europium(III) and humic substances interactions: a macroscopic and spectroscopic study.

    PubMed

    Janot, Noémie; Benedetti, Marc F; Reiller, Pascal E

    2011-04-15

    Eu(III) sorption onto α-Al(2)O(3) in the presence of purified Aldrich humic acid (PAHA) is studied by batch experiments and time-resolved laser-induced luminescence spectroscopy of Eu(III). Experiments are conducted at varying pH, at 0.1 mol/L NaClO(4), 10(-6) mol/L Eu(III), 1 g/L α-Al(2)O(3) and 28 mg/L PAHA, which assured a complete Eu(III)-PAHA complexation. Adsorption of Eu(III) presents the expected pH-edge at 7, which is modified by addition of PAHA. Presence of Eu(III) slightly increases PAHA sorption throughout the pH range. The evolutions of luminescence spectra and decay times of the binary systems, that is, Eu(III)/α-Al(2)O(3) and Eu(III)/PAHA, indicate a progressive surface- and humic-complexation with increasing pH. The typical biexponential luminescence decay in Eu(III)/PAHA system is also recorded; the fastest deactivation depending barely on pH. In ternary Eu(III)/PAHA/α-Al(2)O(3) system, the existence of a luminescence biexponential decay for all pH means that Eu(III) is always in the direct neighborhood of the humic substance. Below pH 7, the spectra of the ternary system (Eu(III)/PAHA/α-Al(2)O(3)) are not different from the ones of Eu(III)/PAHA system, implying the same complex symmetry. Nevertheless, the increase of luminescence decay time points to a change in PAHA conformation onto the surface.

  4. Humic Substances as Electron Acceptors and Electron Shuttlers in Anaerobic Marine Sediments.

    DTIC Science & Technology

    1998-09-30

    D. Lovley and B. Schink. 1998. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic...fold after incubation with Geobacter Metallireducens. A direct positive correlation exists between the change in organic radicals and the molar...the humics with a pure culture of Geobacter metallireducens and acetate, and then adding Fe(III) and measuring the resulting Fe(II) using the

  5. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis.

    PubMed

    Tadini, A M; Constantino, I C; Nuzzo, A; Spaccini, R; Piccolo, A; Moreira, A B; Bisinoti, M C

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC-MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC-MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation.

  6. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  7. Chemical characterization of fractions of dissolved humic substances from a marginal sea—a case from the Southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Yang, Keli; Du, Jinzhou; Zhang, Fenfen; Dong, Yaping; Li, Wu

    2017-03-01

    Marine dissolved organic matter (DOM) is one of the largest dynamic pools of organic carbon in the global carbon cycle, yet DOM is still chemically poorly characterized. To better understand the origin, composition, and cycling of DOM in the China marginal sea, dissolved humic substances (DHS) were isolated from seawaters in two locations in the Southern Yellow Sea. The DHS were subdivided into fulvic acids (FAs), humic acids (HAs) and the XAD-4 fractions. Complementary analytical approaches were used to characterize the isolated DHS samples including stable carbon isotopic composition, Fourier transform infrared spectroscopy (FTIR), 13C cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The results demonstrated that both DHS samples encountered the influences from marine source, indicating that algal and microbial-derived materials are the predominant precursors for the studied samples. The three fractions of DHS showed different properties. FAs presented more aromatic features, whereas HAs contained more aliphatic lipids and proteinaceous materials. The XAD-4 fractions were enriched in 13C and contained more carbohydrates but less aromatic compounds. The lower molecular weight and higher heteroatom content and number of carboxyl groups for the XAD-4 fractions may give them considerable geochemical significance for aspects of trace metal species, bioavailability of pollutants, mineral weathering and water acidification in marine environments.

  8. Double pH control on humic substance-borne trace elements distribution in soil waters as inferred from ultrafiltration.

    PubMed

    Pédrot, Mathieu; Dia, Aline; Davranche, Mélanie

    2009-11-15

    Colloidal dissolved organic carbon (DOC) is an important carrier phase for trace elements (TE) in subsurface environments. As suggested by previously published field observations, preferential sorption of DOC onto mineral surfaces tends to enrich the solid phase in humic acids. This DOC fractionation may affect the mobility of TE. pH is known to play an important role in the stability of colloids. This study was therefore dedicated to identifying the influence of DOC fractionation on TE mobility. Sequential extraction has been used to provide information on the possible TE carriers within soil (as exchangeable, weak acid soluble, reducible, oxidizable, and nonextractible metal fractions). Batch experiments were carried out to investigate the influence of pH on the detachment of colloids and associated TE. Different groups of elements were identified according to TE behavior during pH changes. Several elements displayed increasing concentrations with decreasing pH. These concentrations can represent an important fraction of the total soil concentration. By contrast, other elements showed increasing concentrations following increasing pH, in association with an increasing amount of colloids in soil solution. Concerning this latter group, two colloidal carrier phases were identified during the pH increase: (i) the first one concerned the majority of elements, which were associated with humic substances remaining in solution, and (ii) the second one involved several TE rather associated with nanooxides. Therefore, DOC fractionation plays a key role in the TE concentration in soil solution during pH changes.

  9. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize.

    PubMed

    Eyheraguibel, B; Silvestre, J; Morard, P

    2008-07-01

    A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials.

  10. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances

    PubMed Central

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C.; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R.; Steinberg, Christian E. W.

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  11. Impact of two different humic substances on selected coccal green algae and cyanobacteria--changes in growth and photosynthetic performance.

    PubMed

    Bährs, Hanno; Steinberg, Christian E W

    2012-02-01

    There is growing evidence to show that dissolved humic substances, HSs, can directly interact with freshwater organisms, such as phototrophic organisms, cladocerans, amphipods and fish. The responses are-at least in part-transcriptionally controlled. These interactions can lead to stress symptoms in the exposed organisms. In phototrophs, stress symptoms include a reduction in photosynthetic oxygen release and antioxidative stress. Besides the direct effects, HSs also cause indirect effects that provoke different physiological adaptations in the phototrophs. The HS-influenced photosynthetic performance and stress response of two different green algae, Pseudokirchneriella subcapitata (Koršikov) Hindák and Monoraphidium braunii (Nägeli in Kützing) Komárková-Legnerová, and two cyanobacterial species, Synechocystis sp. (PCC 6803, Institut Pasteur) and Microcystis aeruginosa (PCC 7806, Institut Pasteur), were tested. Two humic preparations were applied, the synthetic HS1500 and HuminFeed, HF, which had previously been proven effective in bioassays with invertebrates and a water mould. When the algae were grown near light saturation, most of the tested species were positively affected by HSs in growth rate or chlorophyll content. Cell sizes decreased with increasing HS concentrations for all eukaryotic phototrophs, except for the cyanobacteria. After 4 to 5 days of cultivation at the highest HS exposure, there was a decrease in total dry weight due to reduced cell sizes in contrast to an increase in cell numbers. With the exception of Synechocystis, the dry weight per cell ratio decreased with increasing HS concentration. The efficiency of utilizing absorbed light quanta increased with increasing HS concentrations; the maximum quantum yield of photosystem II (ΦPSIImax) was higher in all of the tested species, with the exception of M. aeruginosa, after exposure to HS. The applied humic preparations did not interact directly with PSII, but changed the physiological

  12. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    PubMed

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Influence of the apparent molecular size of aquatic humic substances on colour removal by coagulation and filtration.

    PubMed

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2011-12-01

    This study aims to verify the influence of the apparent molecular size of aquatic humic substances (AHSs) on the effectiveness of coagulation with aluminium sulphate and ferric chloride. Coagulation-filtration tests using the jar test and bench-scale sand filters were carried out with water samples having a true colour of approximately 100 Hazen units and prepared with AHSs of different molecular sizes. Stability diagrams are presented showing regions of > or = 90% and > or = 95% apparent colour removal delineated for each water sample using plots of total metal ion concentration (Al3+ and Fe3+) versus coagulation pH. To achieve the same degree of colour removal, the water samples with smaller apparent molecular sizes and a higher percentage of fulvic acids required higher dosages of both aluminium sulphate and ferric chloride.

  14. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2017-05-01

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  15. A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances

    NASA Astrophysics Data System (ADS)

    Zavarzina, A. G.

    2006-12-01

    The hypothesis was proposed that highly polymeric humic substances in the mineral horizons of soils in a temperate humid climate originate from polymerization of water-soluble structural precursors directly on mineral surfaces under the catalytic effect of immobilized phenoloxidases (heterophasic biocatalysis). This hypothesis was confirmed by a laboratory experiment using a mixture of monomeric phenols and nitrogenous compounds as structural precursors, fungal laccase as a biotic catalyst, and a hydroxyaluminum-kaolinite complex as a mineral support. Enzymic oxidation of phenolic precursors on the mineral surface was substantially more rapid than abiotic oxidation and led to synthesis of a highly polymeric fraction with a molecular weight over 75 kDa. These products were not produced on the mineral with an absence of laccase (abiotic catalysis) or in solution without the mineral matrix (homogeneous catalysis).

  16. Interfacial reactions between humic-like substances and lateritic clay: application to the preparation of "geomimetic" materials.

    PubMed

    Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi

    2014-11-15

    The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic

  17. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  18. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions

    PubMed Central

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  19. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  20. Interaction of hydrophobic organic compounds with mineral-bound humic substances

    SciTech Connect

    Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.; Wietsma, T.W. )

    1994-07-01

    The sorption of hydrophobic organic compounds (HOC) on mineral-associated peat humic acid (PHA) was evaluated under different pH and electrolyte regimes. Relative size distribution measurements indicated that PHA was [open quotes]coiled[close quotes] in solution at high ionic strength (I) and elongated at low I. The sorption of PHA to hematite and kaolinite varied with I and electrolyte cation, suggesting that the configuration of the humic acid in solution influenced its structure on the mineral surface. The sorption maxima for PHA on kaolinite indicated that PHA occupies twice the mineral surface area at low I (0.005) as that observed at high I (0.1). HOC sorption to mineral-bound PHA in Na[sup +] electrolyte was greater at lower I, indicating that humate structure was a plausible determinant of HOC sorption. Freundlich isotherms of dibenzothiophene on the PHA-coated kaolinite did not display unit slope, regardless of pH, I, or cation. Carbazole and anthracene displayed competitive behavior for sorption onto PHA-coated kaolinite. Collectively, the experimental observations indicate that hydrophobic adsorption rather than phase partitioning was the dominant mode of HOC binding. 70 refs., 8 figs., 1 tab.

  1. Mass spectrometry of humic substances of different origin including those from Antarctica A comparative study.

    PubMed

    Peña-Méndez, E M; Gajdosová, D; Novotná, K; Prosek, P; Havel, J

    2005-10-31

    Mass spectra of humic acids (HA) from different sampling sites (Antarctica, Brazil, Czech Republic, Mexico and USA) and origin (plant, soil, peat, and coal derived) were obtained by laser desorption/ionization time of flight mass spectrometry (LDI-TOF MS). Optimisation of the experimental conditions are given as the optimal value of the laser energy at approximately 20-30% higher than the threshold. Under these conditions, reproducible mass spectra of HA samples were obtained. In the mass spectra the majority of the peaks are observed in the m/z region 100-1000Da. Mass spectra fingerprints of HA were analyzed and, in spite of the differences in their origin, a number of common features and profiles (patterns of peaks) were observed in most of the samples. Very similar structural groups (patterns) of the peaks are present in the m/z range 717-918Da for HA samples of quite different origins, countries or continents. The tandem LDI-TOF MS and multivariate statistical tools allowed us to extract and elucidate underlying information contained in the mass spectra of the HA samples under study. Applying principal components and cluster analysis, it was, e.g. demonstrated that most of the Antarctica HA samples show distinguishable differences when compared with humic acids from other continents and of different origin.

  2. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  3. Enhanced humification by carbonated basic oxygen furnace steel slag--II. Process characterization and the role of inorganic components in the formation of humic-like substances.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nishimoto, Ryo; Nie, Yongfeng

    2012-06-01

    Enhanced humification by abiotic catalysts is a potentially promising supplementary composting method for stabilizing organic carbon from biowastes. In this study, the role of steel slag in the transformation of humic precursors was directly characterized by measuring the variance in dissolved organic carbon (DOC), spectroscopic parameters (E(600)), and the concentration and molecular weight change of humic-like substances (HLS) during the process. In addition, a mechanistic study of the process was explored. The results directly showed that steel slag greatly accelerated the formation of HLS. The findings indicate that Fe(III)-and Mn(IV)-oxides in steel slag act as oxidants and substantially enhance the polycondensation of humic precursors. Moreover, the reaction appears to suppress the release of metals from steel slag to a certain extent under acidic conditions. This can be attributed to the cover of HLS on the external surface of steel slag, which is significant for its environmentally sound reuse.

  4. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  5. Effects of humic substances and phenolic compounds on the in vitro toxicity of aluminium.

    PubMed

    Sauvant, M P; Pepin, D; Guillot, J

    1999-09-01

    The effects of natural chelators [humic acids (HA), caffeic acid (CFA), p-coumaric acid (PCA), protocatechuic acid (PA), vanillic acid (VA), salicylic acid (SA), and 4-hydroxyacetophenone (HY)] and effects of well-known chelators [EDTA and citric acid (CA)] on the in vitro toxicity of aluminium (Al) were investigated with the L-929 murine, Vero simian, and MRC-5 human cell lines. Moderate in vitro cytotoxic effects were induced by Al on the three cell lines (IC(50) values ranking from 5.6 to 7.6 mM). Furthermore, an increased toxicity was observed when Al was concurrently administered with CA, SA, VA, PCA, and HY. Inversely, significant cytoprotective effects were noted with EDTA, HA, CFA, and PA. The role of chelators, and especially the position and the number of reactive moieties of the phenolic compounds tested, can be highlighted to explain the different toxicological Al behavior observed. Copyright 1999 Academic Press.

  6. Environmental signals: synthetic humic substances act as xeno-estrogen and affect the thyroid system of Xenopus laevis.

    PubMed

    Lutz, Ilka; Jie, Zhang; Opitz, Robert; Kloas, Werner; Ying, Xu; Menzel, Ralph; Steinberg, Christian E W

    2005-12-01

    According to outdated paradigms humic substances (HS) are considered to be refractory or inert that do not directly interact with aquatic organisms. However, they are taken up and induce biotransformation activities and may act as hormone-like substances. In the present study, we tested whether HS can interfere with endocrine regulation in the amphibian Xenopus laevis. In order to exclude contamination with phyto-hormones, which may occur in environmental isolates, the artificial HS1500 was applied. The in vivo results showed that HS1500 causes significant estrogenic effects on X. laevis during its larval development and results of semi-quantitative RT-PCR revealed a marked increase of the estrogenic biomarker estrogen receptor mRNA (ER-mRNA). Furthermore, preliminary RT-PCR results showed that the thyroid-stimulating hormone (TSHbeta-mRNA) is enhanced after exposure to HS1500, indicating a weak adverse effect on T3/T4 availability. Hence, HS may have estrogenic and anti-thyroidal effects on aquatic animals, and therefore may influence the structure of aquatic communities and they may be considered environmental signaling chemicals.

  7. Effects of humic substances supplementation provided through drinking water on performance, carcass traits and meat quality of broilers.

    PubMed

    Ozturk, E; Ocak, N; Coskun, I; Turhan, S; Erener, G

    2010-02-01

    The present study aimed at evaluating the effects of different doses of humic substances (HS) in waterer pan on broiler performances and meat quality. For the trial, 480 chicks (ROSS 308) were allocated into four groups (HS0, HS150, HS300 and HS450) of 120 equally mixed-sex birds, each receiving a drinking water supplemented with 0, 150, 300 and 450 ppm of a humic acid (provided by 0.0%, 0.5%, 1.0% and 1.5% of HS, v/v) respectively. At the age of 21 and 42 days, feed consumption and live weight were taken. At the age of 42 days, 16 birds per treatment were slaughtered, dressing percentages, digestive tract traits were evaluated and samples of breast (pectoralis major) and thigh (iliotibialis) meat were taken to evaluate the changes in colour characteristics (CIE L*, a* and b*) and chemical composition. The body weight gain increased by the HS300 in relation to the HS0 and HS450, and decreased by the HS450 in relation to the HS0. The feed consumption of birds in the HS450 and feed efficiency of birds in the HS300 were lower and higher than those in the other treatments respectively. The carcass weight of broilers in the HS150 and HS300 were higher than those of in the HS0 and HS450. The carcass weight decreased by the HS450 in relation to the other treatments. The dressing percentage increased by the HS150 in relation to the HS450. The HS450 resulted in breast and thigh meat colour that were lighter than those found in the HS0 birds. The HS450 increased fat content of thigh meat in relation to the HS0. It was concluded that the humic acid supplementation at 300 ppm and 450 ppm appears to have a measurable impact on live performance improving feed efficiency and lightness of breast and thigh meat colours in broilers respectively.

  8. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth.

    PubMed

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  9. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  10. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    PubMed

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo

    2014-05-20

    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Natural humic substances effects on the life history traits of Latonopsis australis SARS (1888) (Cladocera--Crustacea).

    PubMed

    de Carvalho-Pereira, Ticiana Soares de Andrade; Santos, Thirza de Santana; Pestana, Edilene M S; Souza, Fábio Neves; Lage, Vivian Marina Gomes Barbosa; Nunesmaia, Bárbara Janaína Bezerra; Sena, Palloma Thaís Souza; Mariano-Neto, Eduardo; da Silva, Eduardo Mendes

    2015-02-01

    Cultivation medium is one of the first aspects to be considered in zooplankton laboratory cultivation. The use of artificial media does not concern to reproduce natural conditions to the cultivations, which may be achieved by using natural organic compounds like humic substances (HS). This study aimed to evaluate the effects of a concentrate of dissolved organic carbon (DOC) from the Negro River (NR(1)) and an extraction of humic acids (HA) from humus produced by Eisenia andrei on the life history traits of laboratory-based Latonopsis australis SARS (1888). A cohort life table approach was used to provide information about the effectiveness of NR and HA as supplements for the artificial cultivation of L. australis. Additionally, we seek to observe a maximization of L. australis artificial cultivation fitness by expanding the range of HS concentrations. The first experiment demonstrated that the females of L. australis reared under NR10 (mgDOCL(-1)) may have experienced an acceleration of the population life cycle, as the females have proportionally reproduced more and lived shorter than controls. By contrast, the use of the HA did not improve life history traits considered. The expansion of the concentration range (5, 10, 20 and 50 mgDOCL(-1)) corroborated the patterns observed on the first assay. Results for the fitness estimates combined with shorter lifespans than controls demonstrated trade-offs between reproductive output and female longevity reared under NR conditions, with NR20 been suggested as the best L. australis cultivation medium. This response might be associated with hormone-like effects.

  12. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    PubMed

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  14. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2010-07-01

    Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM) showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  15. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  16. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2

    USGS Publications Warehouse

    Hejzlar, J.; Szpakowska, B.; Wershaw, R. L.

    1994-01-01

    Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered using 0.1 M NaOH, whereas 98% of the AHS adsorbed onto XAD was released by consecutive elution with 1 M NH4OH (91%) and methanol (7%). Four main fractions of different composition were obtained from each of the alkali-desorbed AHS samples by Sephadex-gel chromatography. General agreement was found in relative amounts, spectroscopic characteristics and composition of corresponding fractions of both isolates except nitrogen content, which was significantly higher in AHS isolated with XAD, apparently due to the reaction of AHS with NH4OH used for the desorption from the resin.Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered

  17. Application of basic chemical concepts to understanding the formation and transformation mechanisms of humic substances: A revue of publications and own experimental data

    NASA Astrophysics Data System (ADS)

    Kudeyarova, A. Yu.

    2007-09-01

    Fundamental concepts of coordination and organic chemistry and their possible applications to understanding the formation and transformation mechanisms of humic substances were considered. In accordance with the electronic concepts of interactions between inorganic and organic molecules, the ash elements should be considered as structural components of soil humus determining its transformation. An important role of reactions with the participation of nucleophilic (electron-donating) reagents, including inorganic anions, in the transformation of the humus-mineral system of an acid soil is shown. Anion reactions can involve not only metal atoms of humus-mineral complexes but also the C and P atoms of the functional groups of humus macroligands. These reactions determine the transformation of humus molecules related to the formation of migration-capable compounds and the formation of new functional groups in a humus macroligand. The role of iron and phosphorus in the implementation of different transformation pathways of humic substances is shown.

  18. Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soils.

    PubMed

    Botero, Wander Gustavo; de Oliveira, Luciana Camargo; Rocha, Julio Cesar; Rosa, Andre Henrique; Dos Santos, Ademir

    2010-05-15

    Improved agricultural productivity, and reduction of environmental impacts, require studies of the interactions between different soil components. Fertilizers marketed as "organic" or "natural", such as peats or humic substances (HS) extracted from peats, are enriched with macro and micronutrients that, according to the manufacturers, are released to the plant in accordance with its needs. This work investigates the complexation capacity of HS for macro and micronutrient metal species, considering the competition, for HS complexation sites, between non-essential metals (aluminium and lead), present in the soil, and the nutrients. Humic substances were found to possess strong affinities for Pb(II) and Al(III), forming stable complexes, with concomitant release of complexed nutrients. Although HS are already used commercially as organic fertilizers, further studies of methods of HS enrichment, aimed at avoiding losses, are highly desirable from environmental and economic perspectives.

  19. Humic substances and the biogeochemical arsenic cycle in groundwater of the Blackfoot Disease endemic area, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Jean, J.

    2009-12-01

    (V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.

  20. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    PubMed

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  1. Coordinative and hydrophobic interaction of humic substances with hydrophilic Al[sub 2]O[sub 3] and hydrophobic mercury surfaces

    SciTech Connect

    Ochs, M.; Stumm, W. ); Cosovic, B. )

    1994-01-01

    The extent and kinetics of adsorption of a peat-derived humic substance (HS) onto a hydrophobic surface (mercury electrode) and a polar mineral surface ([gamma]-Al[sub 2]O[sub 3] colloids) was studied. Adsorption on the Hg-electrode was assessed by directly measuring the change of the double layer capacitance caused by the adsorption of HS on the electrode surface through phase-selective a.c. polarography; the extent of adsorption of HS on the [gamma]-Al[sub 2]O[sub 3]-surface was monitored by determining the residual HS-concentration in solution. On both surfaces, HS is adsorbed strongly over a wide pH-range; hydrophobic interaction (i.e., expulsion from solution) prevails at the mercury surface while coordinative adsorption (ligand exchange), enhanced by hydrophobic effects, is the predominant mechanism at the oxide surface. Adsorption kinetics are characterized by an initial fast process, where even in dilute solutions (<1 mg HS L[sup [minus]1]), a high surface coverage is attained initially. True adsorption equilibrium, however, cannot be reached within hours. The slow approach to equilibrium is though to be caused mainly by the polydispersity of HS resulting in fractionation processes, where presumably fast-adsorbing low-molecular weight compounds are successively displaced from the surface by slow-adsorbing compounds of higher molecular weight. Slow molecular rearrangements of HS-molecules at the interface cannot be ruled out, however. These results suggest that adsorption of humic substances on mineral as well as hydrophobic aquatic surfaces may lead to a progressive and selective immobilization of certain fractions of humic substances. This may have significant effects on the qualitative composition and reactivity of dissolved vs. particulate organic carbon and on the residence time of different fractions of humic substances in natural systems.

  2. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5

    PubMed Central

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-01-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. PMID:23217085

  3. Aquatic humic substances inhibit clastogenic events in germinating seeds of herbaceous plants.

    PubMed

    Ferrara, G; Loffredo, E; Senesi, N

    2001-03-01

    One humic acid (HA) and two fulvic acids (FAs) of aquatic origin have been tested for their capacity to inhibit clastogenic events caused by maleic hydrazide (MH) in germinating seeds of the herbaceous plant species Allium cepa and Vicia faba. Either HA or FA at concentrations of 50 and 500 mg L(-)(1) was interacted with 10 mg L(-)(1) MH for 24 h before addition to the seeds. The evaluation of genotoxic activity was made by counting micronuclei (MN) and aberrant anatelophases (AT) in root tip cells after treatment with HA or FA alone, MH alone, and interacted HA + MH and FA + MH. Regular AT were also counted as an index of mitotic activity. In all cases HA and FA interacted with MH showed an evident anticlastogenic action indicated by the marked reduction of genetic anomalies. In A. cepa, the anticlastogenic effect of HA and FA was more significant for aberrant AT than for MN, whereas the opposite was true in the case of V. faba. The protective effect exhibited for both anomalies by HA was slightly higher than that of the corresponding FA in A. cepa, whereas no significant differences between these HA and FA treatments were observed in the case of V. faba. The two FAs generally showed similar anticlastogenic behaviors with slight quantitative differences observed as a function of the type of anomaly and the plant species. The effects of HA and FA concentration differed depending on the type of anomaly observed, the plant species, and FA origin. In V. faba, cell division, that is, the number of regular AT, was generally depressed by HA and FA at either concentration with respect to the control. In A. cepa, HA and FA produced either stimulating or inhibiting effects on regular AT depending on their nature, origin, and concentration.

  4. Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation.

    PubMed

    Sheng, Guodong; Shen, Runpu; Dong, Huaping; Li, Yimin

    2013-06-01

    This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.

  5. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles. © 2015 SETAC.

  6. Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances.

    PubMed

    Herod, Alan A; Zhuo, Yuqun; Kandiyoti, Rafael

    2003-06-30

    Size-exclusion chromatography (SEC) using 1-methyl-2-pyrrolidinone (NMP) as eluent has been calibrated using various standard polymers and model compounds and applied to the analysis of extracts of coal, petroleum and kerogens, to petroleum vacuum residues, soots, biomass tars and humic substances. Three separate columns of different molecular mass (MM) ranges were used, with detection by UV absorption; an evaporative light scattering detector was used for samples with no UV absorption. Fractionation was useful to separate signal from the less abundant high-mass material, which was normally masked by the strong signal from the more abundant low-mass material in the absence of fractionation. Fractionation methods used to isolate high-mass materials before SEC analysis included planar chromatography, column chromatography and solvent solubility. The apparently large molecules were concentrated into the fractions not soluble in common solvents and were relatively immobile in planar chromatography. All samples and fractions contained some material excluded from the column porosity. Evidence from other techniques suggests that the excluded material is of different structures from that of the resolved material rather than consisting of aggregates of small molecules. We speculate that the excluded material may elute early because the structures of this material are three-dimensional rather than planar or near planar.

  7. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  8. Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature.

    PubMed

    Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu

    2017-03-21

    The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.

  9. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.

    PubMed

    Jiang, Jie; Bauer, Iris; Paul, Andrea; Kappler, Andreas

    2009-05-15

    Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this study we show that semiquinone radicals produced during microbial or chemical reduction of a HS model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) are strong oxidants. They oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. This reaction depends strongly on pH with more arsenite (up to 67.3%) being oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In order to understand redox reactions between arsenite/arsenate and reduced/oxidized HS, we quantified the radical content in reduced quinone solutions and constructed Eh-pH diagrams that explain the observed redox reactions. The results from this study can be used to better predict the fate of arsenic in the environment and potentially explain the occurrence of oxidized As(V) in anoxic environments.

  10. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  11. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. © The Author(s) 2014.

  12. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  13. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  14. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors

    SciTech Connect

    Perminova, I.V.; Grechishcheva, N.Y.; Petrosyan, V.S.

    1999-11-01

    Partition coefficients for the binding affinities of pyrene, fluoranthene, and anthracene to 26 different humic materials were determined by fluorescence quenching. Sources included isolated humic acids, fulvic acids, and combined humic and fulvic fractions from soil, peat, and freshwater as well as Aldrich humic acid. Each of the humic materials was characterized by elemental composition, ultraviolet absorbance at 280 nm, molecular weight, and for 19 samples, composition of main structural fragments determined by {sup 13}C solution-state NMR. The magnitude of the K{sub oc} values correlated strongly with the independent descriptors of aromaticity of humic materials, including atomic H/C ratio, absorptivity at 280 nm, and three interdependent {sup 13}C NMR descriptors (C{sub Ar{minus}H,R}, {summation}C{sub Ar}, {summation}C{sub Ar}/{summation}C{sub Alk}). Statistical comparison of humic sources grouped by the origin revealed that binding affinities were best predicted by the {sup 13}C NMR descriptors. with a slight prevalence of {summation}C{sub Ar}/{summation}C{sub Alk} ration, while molecular weight was the poorest predictor. The latter produced either direct or inverse significant correlation with the K{sub oc} values depending upon the origin and/or fractional composition of the grouped humic materials.

  15. Does quinone or phenol enrichment of humic substances alter the primary compound from a non-algicidal to an algicidal preparation?

    PubMed

    Bährs, Hanno; Menzel, Ralph; Kubsch, Georg; Stösser, Reinhardt; Putschew, Anke; Heinze, Tobias; Steinberg, Christian E W

    2012-06-01

    Dissolved organic matter (DOM) has been shown to affect phytoplankton species directly. These interactions largely depend on the origin and molecular size of DOM and are different in prokaryotes and eukaryotes. In a preceding study, however, two humic substance preparations did not adversely affect coccal green algae or cyanobacterial growth even at high concentrations of dissolved organic carbon (DOC). These results contradicted previous findings, showing a clear, negative response of different phototrophs to much lower DOC concentrations. To test whether or not at least defined building blocks of humic substances (HSs) are effective algicidal structures, we enriched two humic preparations with hydroquinone and p-benzoquinone, respectively, and exposed two different green algae, Pseudokirchneriella subcapitata and Monoraphidium braunii, and two cyanobacterial species, Synechocystis sp. and Microcystis aeruginosa, to the unmodified and enriched HSs. As response variables, growth rates in terms of biomass increase, chlorophyll-a content, and photosynthetic yield were measured. The highest concentration (4.17 mM DOC) of the modified HSs clearly inhibited growth; the cyanobacterial species were much more sensitive than the green algal species. However, realistic ecological concentrations did not adversely affect growth. Aerating the exposure solution for 24 h strongly reduced the inhibitory effect of the modified HSs. The algicidal effect was obviously caused by monomers and not by polymerised high molecular weight HSs themselves. Furthermore, the maximum quantum yield (Φ PSII max) was stimulated in the green algal species by low and medium DOC concentrations, but reduced in the cyanobacterial species upon exposure to higher HS concentrations. The quinone- and phenol-enriched HSs only showed algicidal activity at high concentrations of 4.17 mM DOC and lost their effects over time, presumably by oxidation and subsequent polymerisation. This study confirms that the

  16. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment.

    PubMed

    Wang, Huawei; Wang, Ya-Nan; Li, Xiaoyue; Sun, Yingjie; Wu, Hao; Chen, Dali

    2016-10-01

    Concentrated leachate from membrane treatment process, which contains large amount of difficult-to-degrade humic substances, can induce potential hazards to ecological environment. In this study, the concentrated leachates from reverse osmosis (RO) and nanofiltration (NF) were treated by continuous ozone generating-reaction integrated equipment, and the removal characteristics of humic substances were analyzed using gel filtration chromatography (GFC), excitation-emission matrix fluorescence spectroscopy (EEM), XAD-8 resin fractionation, and Fourier transform infrared spectroscopy (FTIR). The results of XRD-8 fractionation and SUVA254 showed that the humic substances including humic acid (HA) and fulvic acid (FA), were effectively removed along with the breakdown of aromatic hydrocarbons and decrease in the degree of humification during the ozonation process. After 110min of reaction, HA in both concentrated leachates was completely removed. GFC analysis indicated that both concentrated leachates had much broader distribution after the degradation. The high molecular weight (MW) organic matter was transformed into low molecular weight of <10kDa. The majority of high MW organics in NF concentrate were converted to low MW molecules of 10kDa-1kDa, while those in RO concentrate were decomposed to small MW molecules of <1kDa. The results of EEM analysis implied that the degradation of HA and FA led to a significant decrease in the fluorescence intensity. Though the effluent of two concentrated leachate did not meet the maximum allowable criterion for leachate direct or indirect discharge standard in China, the composition and properties of organic matters in concentrated leachate were changed significantly after entire ozonation reaction, which would be conducive to the further biological treatment or other advanced treatment.

  17. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities.

    PubMed

    Meinelt, Thomas; Paul, Andrea; Phan, Thuy My; Zwirnmann, Elke; Krüger, Angela; Wienke, Andreas; Steinberg, Christian E W

    2007-06-15

    Humic substances (HS) account for 50-80% of the dissolved organic matter in non-eutrophicated freshwater ecosystems. HS are not inert, but are taken up by and may interact with aquatic organisms. However, at present no information is available on the interaction of HS with fungi, for instance, the fish-pathogenous species Saprolegnia parasitica. To fill this gap, we tested effects of HS on S. parasitica growth in-vitro using 25-500mgL(-1) carbon of HS on GY-agar. We investigated 20 HS including natural organic matter (NOM) samples, two lignite derived HS, and one synthetic HS. The aim was (1) to find out, if there are inhibiting effects and (2) if potential effects can be explained by humic matter properties by structure activity relationships. The growth of S. parasitica was related to the growth on HS-free agar controls. Characterization of HS and NOMs included elemental analysis, high-pressure size exclusion chromatography (HPSEC), UV/VIS, FTIR-, and EPR-spectroscopy in order to obtain information on elemental and structural composition including various metals, molecular weights of the HS fraction, aromaticity, free organic radicals, and functional groups. NOMs with high moieties of high-molecular carbohydrates supported the growth of S. parasitica, all other HS and NOMs reduced it. However, no inhibition of the development of the sporangia and primary zoospores was found. Therefore, the impact of the HS on S. parasitica has to be classified as fungistatic, rather than fungicidal. Synthetic and lignite-derived HS were among the most efficient HS sources. Growth inhibition was correlated (p<0.05) with the molecular weights of the HS-fraction, sUVa, COOH groups, C and H. Our results suggest that especially HS with higher molecular weights and aromaticity which contain a high number of organic radicals are the most efficient in reducing fungal growth. Furthermore, highly functionalized HS seem to be important for the observed effect. The development of internal

  18. Bioavailability of HOC depending on the colloidal state of humic substances: a case study with PCB-77 and Daphnia magna.

    PubMed

    Gallé, T; Grégoire, Ch; Wagner, M; Bierl, R

    2005-10-01

    Condensed organic matter with higher affinity for hydrophobic organic compounds (HOC) is currently held responsible for slow desorption and concomitant lower bioavailabilities of HOC in sediments and soils. In an experiment with Daphnia magna and IHSS Peat Humic Acid (PHA), we showed that the bioconcentration factor (BCF) of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) was directly related to the charge of the humic colloid, as predicted by the metal-humic binding model WHAM. Consistent with the type of binding to the humic acid (counter-ion accumulation vs. specific binding), increasing the concentration of Na+ and Ca2+ ions generated opposite effects on colloid charge and HOC binding by the humic acid. Condensation as a colloidal phenomenon in solution as well as on surfaces needs to be addressed as a contributor to lower bioavailabilities and, possibly, to slower desorption kinetics.

  19. Lability of Humic-Bound Phosphorus

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) has long been known to be present in humic substances from various sources. However, information on the lability of humic-bound P is very limited although such information is critical for understanding the role of humic substances in P cycling and nutrition. In this presentation, we d...

  20. Effect of metal ions on the molecular weight distribution of humic substances derived from municipal compost: ultrafiltration and size exclusion chromatography with spectrophotometric and inductively coupled plasma-MS detection.

    PubMed

    Wrobel, Kazimierz; Sadi, Baki B M; Wrobel, Katarzyna; Castillo, Juan R; Caruso, Joseph A

    2003-02-15

    The effect of metal ions (Co, Cu, Ni, Pb, Zn) on the molecular weight distribution of humic substances (HSs) obtained from compost is studied. We believe this is the first of this type of study applied in this way to humic substances. Size exclusion chromatography is coupled with two on-line detection systems (spectrophotometric and ICPMS) to study the binding of metal ions by humic substances leached from compost. ICPMS provided highly specific, sensitive, and multielement analytical information that enabled obtaining direct experimental evidence for the participation of metal ions in molecular size distributions of humic compounds. The compost extract or its high molecular weight fraction (>5,000) was put in contact with EDTA or citrate ions, thereby competing with HSs for binding metals. The experiments were carried out by varying the pH maintained by Tris-HCl or CAPS buffer (pH 8.0 and 10.3) and keeping the ionic strength constant. The elution profile of humic substances using UV/ visible detection was compared with those from ICPMS detection of Co, Cu, Ni, Pb, and Zn in the same chromatographic runs. The results obtained suggested that both bridging between small molecules and complexation/ chelation by individual molecules are involved in metal ion binding to humic substances. The use of ICPMS to study the role of metal ions in aggregation/disassociation of humic substances proposed in this work is promising. Coupling element-specific detection with SEC or other separation systems allows better understanding of the mobility and bioaccessibility of elemental species in the environment and further elucidation of the dissolved humic structure.

  1. Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment.

    PubMed

    Rezácová, V; Baldrian, P; Hrselová, H; Larsen, J; Gryndler, M

    2007-01-01

    Changes in microfungal communities, fungal activities and humic substances (HS) in agricultural soils kept under different fertilization regimes were observed and their causal relationships were investigated in a long-term field experiment. Fertilization did not change the abundance of HS-utilizing microfungi and, except for organic amendment alone, total culturable microfungi were also unaffected by this factor. Organic fertilization increased activities of manganese peroxidase (MnP) and proteinase, but decreased endo-1,4-beta-glucanase activity compared to the corresponding control without organic fertilization. In soils treated with mineral fertilizers, the activities of MnP, endo-1,4-beta-glucanase and proteinase were higher than in control without any mineral treatment. Both the aromaticity of fulvic acid and the molar mass of humic acid was lower in soil with organic fertilization, which may be a result of oxidative degradation mediated by higher MnP activity observed in treatments with organic fertilization.

  2. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  3. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    PubMed

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P < 0.05). In conclusion, the 15 and 22.5 g/kg HS administration in drinking water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  4. Determination of Humic Like Substance (HULIS) in Absorbing Aerosols by FTIR Spectroscopy: CARES and Other Field Results

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Gaffney, J. S.; Sarkar, A.

    2011-12-01

    In past work, black carbon (BC) emitted from fossil fuel combustion (i.e. diesel engines) was assumed to be the only major absorbing species in atmospheric aerosols. Now other absorbing carbonaceous aerosol species have been found that can add to the overall aerosol absorption with enhanced absorption primarily at shorter wavelengths and in the mid-IR. The most important absorbing species other than BC is the water soluble humic-like substances, or HULIS. These aerosol species can become internally mixed with black carbon resulting in enhanced Ångstrom absorption exponents (AAEs), enhanced hygroscopicities and enhanced removal of the aerosols through cloud formation and rainout. They are produced from both primary biomass burning and from secondary biogenic aerosol formation from reactive plant VOC emission precursors. Fine mode (< 1 micron) aerosol samples have been collected on quartz fiber filters at several locations, including Mexico City, Little Rock, Chicago, and Cool, CA, with high volume impactor samplers. The IR absorbing aerosol species have been identified by using diffuse reflectance FTIR after removal of the aerosols from the filter medium. Comparison of the FTIR spectra with Raman microscopy indicates the presence of internal mixtures of BC and HULIS. FTIR Spectra are presented and results from rural and urban sites are compared. These results are discussed in terms of their potential importance in climate forcing, particularly their role in nighttime boundary layer warming. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Science Program.

  5. Altering the characteristics of a leaf litter-derived humic substance by adsorptive fractionation versus simulated solar irradiation.

    PubMed

    Hur, Jin; Jung, Ka-Young; Schlautman, Mark A

    2011-11-15

    Changes in the characteristics of a leaf litter-derived humic substance (LLHS) that resulted from its adsorption onto kaolinite or exposure to simulated solar irradiation were tracked using selected spectroscopic descriptors, apparent weight-average molecular weight (MW(w)) and pyrene binding. Heterogeneity within the original bulk LLHS was confirmed by a range of different characteristics obtained from ultrafiltration-based size fractions. In general, trends of some changing LLHS characteristics were similar for the adsorption and irradiation processes when tracked against percent carbon removal. For example, the overall values of specific ultraviolet absorbance (SUVA), MW(w), and humification index (HIX) all decreased with increasing irradiation time and with increasing concentration of mineral adsorbent in the respective experiments, indicating that both processes resulted in less aromatic and smaller-sized LLHS components remaining in solution. In addition, both the adsorption and irradiation experiments resulted in enrichment of the relative distribution of protein-like fluorescence (PLF), implying the PLF-related components had low affinities for phototransformation and mineral surface adsorption. Despite these apparently similar overall trends in LLHS characteristics caused by the adsorption and irradiation processes, closer examination revealed considerable differences in how the two processes altered the original material. Net production of intermediate-sized constituents was observed only with the irradiation experiments. In addition, residual LLHS resulting from the adsorptive fractionation experiments exhibited consistently higher pyrene binding versus the irradiated LLHS despite having comparable MW(w) values. Changes in LLHS characteristics due to adsorption by kaolinite were likely caused by physical mechanisms (primarily hydrophobic interactions between LLHS components and the kaolinite surface) whereas the irradiation-induced changes appear to have

  6. Two-Dimensional Offline Chromatographic Fractionation for the Characterization of Humic-Like Substances in Atmospheric Aerosol Particles.

    PubMed

    Spranger, Tobias; van Pinxteren, Dominik; Herrmann, Hartmut

    2017-05-02

    Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.

  7. Effects of Americium-241 and humic substances on Photobacterium phosphoreum: bioluminescence and diffuse reflectance FTIR spectroscopic studies.

    PubMed

    Kamnev, Alexander A; Tugarova, Anna V; Selivanova, Maria A; Tarantilis, Petros A; Polissiou, Moschos G; Kudryasheva, Nadezhda S

    2013-01-01

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of (241)Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of (241)Am was 2 kBq l(-1); [(241)Am]=6.5×10(-11) M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l(-1); containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λ(max)=481±3 nm; FWHM=83±3 nm) showing that (241)Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of (241)Am, BL was initially activated but inhibited after 180 h, while the system (241)Am+HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of (241)Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  8. Effects of americium-241 and humic substances on Photobacterium phosphoreum: Bioluminescence and diffuse reflectance FTIR spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Selivanova, Maria A.; Tarantilis, Petros A.; Polissiou, Moschos G.; Kudryasheva, Nadezhda S.

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of 241Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of 241Am was 2 kBq l-1; [241Am] = 6.5 × 10-11 M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l-1; containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λmax = 481 ± 3 nm; FWHM = 83 ± 3 nm) showing that 241Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of 241Am, BL was initially activated but inhibited after 180 h, while the system 241Am + HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of 241Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  9. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    USDA-ARS?s Scientific Manuscript database

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  10. An Association of Humic-like Substances with Aerosol Light Absorption during Winter

    NASA Astrophysics Data System (ADS)

    Kim, S.; Cho, S. Y.; Park, S.

    2016-12-01

    Despite the importance of brown carbon aerosols on the atmospheric environment and global climate, there is largely a lack of knowledge on the connection between the chemical composition of light-absorbing organic aerosols and the absorption properties of the aerosols measured in the near ultraviolet and visible wavelengths. In order to investigate the association of aerosol light absorption with the composition of organic aerosols, daily PM2.5 samples were collected during winter at an urban site, and analyzed for mass, OC, EC, WSOC, HULIS, and water-soluble inorganic substances. Continuous measurements of aerosol BC were also made in order to understand the aerosol absorption properties and changes in the spectral absorption associated with changes in aerosol episodes. The average absorption Ångströ;m exponent (AAE) of fine aerosols for 370-520 nm, 590-950 nm, and 370-950 nm wavelengths was 1.51, 1.18, and 1.29, respectively, indicating that the aerosol light absorption characteristics during winter were influenced not only by traffic emissions, but also by biomass burning emissions. The AAE370-520nm value when the highest EC, highest OC, and Asian dust events occurred over the study period was 1.42 (1.26-1.59), 1.44 (1.16-1.68), and 1.90 (1.54-2.36), respectively, implying that the Asian dust particles contributed strongly to light absorption of aerosols. Additionally, the aerosol light absorption coefficient (babs) at 370 nm showed a strong association with OC (R2=0.76), water-insoluble OC (R2=0.70), and water-soluble HULIS (R2=0.64), suggesting that water-insoluble fractions of OC from primary combustion sources, as well as the water-soluble brown carbon, could be important contributors to aerosol light absorption. This study demonstrates that a dual-spot aethalometer could be utilized to characterize light absorption of organic aerosols. However, further research should be carried out to examine the influence of the water-insoluble brown carbon composition

  11. Nutritional Value of Rice Bran Fermented by Bacillus amyloliquefaciens and Humic Substances and Its Utilization as a Feed Ingredient for Broiler Chickens

    PubMed Central

    Supriyati; Haryati, T.; Susanti, T.; Susana, I. W. R.

    2015-01-01

    An experiment was conducted to increase the quality of rice bran by fermentation using Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. The experiment was carried out in two steps. First, the fermentation process was done using a completely randomized design in factorial with 16 treatments: i) Dosage of B. amyloliquefaciens (2.108 cfu/g), 10 and 20 g/kg; ii) Graded levels of humic substances, 0, 100, 200, and 400 ppm; iii) Length of fermentation, three and five days. The results showed that the fermentation significantly (p<0.05) reduced crude fiber content. The recommended conditions for fermentation of rice bran: 20 g/kg dosage of inoculums B. amyloliquefaciens, 100 ppm level of humic substances and three days fermentation period. The second step was a feeding trial to evaluate the fermented rice bran (FRB) as a feed ingredient for broiler chickens. Three hundred and seventy-five one-day-old broiler chicks were randomly assigned into five treatment diets. Arrangement of the diets as follows: 0%, 5%, 10%, 15%, and 20% level of FRB and the diets formulation based on equal amounts of energy and protein. The results showed that 15% inclusion of FRB in the diet provided the best bodyweight gain and feed conversion ratio (FCR) values. In conclusion, the nutrient content of rice bran improved after fermentation and the utilization of FRB as a feed ingredient for broiler chickens could be included up to 15% of the broiler diet. PMID:25557819

  12. [Isolation and characterization of a facultative anaerobe Pantoea agglomerans MFC-3 and its humic substance-and Fe(III) - respiring activity].

    PubMed

    Wu, Chun-Yuan; Li, Fang-Bai; Zhou, Shun-Gui; Zhuang, Li; Wang, Yue-Qiang

    2010-01-01

    A strain of humic substance- and Fe(III)- reducing bacterium was isolated from the subterranean forest sediment and designated as MFC-3. The strain is facultative anaerobic, Gram-negative, motile and rod (1.0-3.0 microm long, 0.5-1.0 microm wide) and identified as Pantoea agglomerans with the 16S rDNA sequence analyses. Batch experiments were conducted to investigate its humic substance-and Fe(III)-respiring activity. The results showed that MFC-3 was capable of anaerobic respiration on anthraquinone-2,6-disulphonate (AQDS) as the sole terminal electron acceptor with glucose as the electron donor. Within 48 h, MFC-3 could reduce 0.3 mmol x L(-1) AQDS at the expense of 4.5 mmol x L(-1) glucose, and the population of bacteria was increased by 7 times. The strain could use sucrose, glucose, citrate, lactate and formate as electron donors for anaerobic respiration, and the reduction rates of AQDS ranked as sucrose (77%) > glucose (66%) > citrate (50%) > lactate (33%) > glycerol (25%) > formate (17%). MFC-3 can also effectively reduce four types of Fe(III) oxides. After 25 d, the total Fe(II) concentration in the tests of using ferrihydrite, alpha-FeOOH, gamma-FeOOH or alpha-Fe2 O3 as electron acceptor reached 2.5, 2.1, 2.3 and 0.8 mmol x L(-1), respectively. As a strain of environmental origin, MFC-3 is quite useful for the study of extracellular respiration and bioremediation of chlorinated organic pollutants in Fe(III)/humic substance-rich environments.

  13. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    NASA Astrophysics Data System (ADS)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the

  14. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    PubMed

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  15. Chemical nature of humic substances in two typical Chinese soils (upland vs paddy soil): A comparative advanced solid state NMR study.

    PubMed

    Xu, Jisheng; Zhao, Bingzi; Chu, Wenying; Mao, Jingdong; Zhang, Jiabao

    2017-01-15

    Knowledge of the structural features of humic substances (HSs) is essential for elucidating the mechanisms of humification in different soil environments and realizing their profound roles in environmental issues. The aim of this work was to investigate the chemical structures of fulvic acid (FA), humic acid (HA) and humin (HM) fractions isolated from an upland soil (Fluvisol) and a paddy soil (Anthrosol) typical in China using advanced solid-state (13)C nuclear magnetic resonance (NMR) techniques. The results revealed that there were great structural differences of HSs between the two soils. The two FAs showed distinct quantitative differences in aliphatics with more polysaccharides in the FA from the upland soil than from the paddy soil. The HM from the upland soil differed from the paddy soil HM in having more proteins/peptides (23% vs 20%), total aromatics (21% vs 12%) as well as fewer lipids (24% vs 35%) and polysaccharides (27% vs 31%). The HM fractions represented the most different components of organic matter between the two soils. The degree of difference between the two HAs fell in between that of FAs and HM fractions. In particular, the HA from the upland soil had relatively greater degree of aromaticity. Our study indicated that the upland soil exhibited a higher degree of humification compared with the paddy soil. Among the three humic fractions, the FAs featured COO/N-CO groups, and the HAs were more enriched in protonated aromatic C for both soils. In contrast, the two HM fractions contained more O-alkyl C and fewer aromatics than did the other humic fractions, being closer to the original organic materials in soils. We speculate that the evolutionary route of HSs is likely to be the transformation of original organic materials into HM, followed by increased degradation, further oxidization and conversion into HA, and then into FA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH

    PubMed Central

    Lee, Ying Ping; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro

    2017-01-01

    Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7–8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS. PMID:28453538

  17. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry.

    PubMed

    Stenson, Alexandra C; Landing, William M; Marshall, Alan G; Cooper, William T

    2002-09-01

    Electrospray ionization (ESI) was combined with ultra-high-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FTICR MS) to characterize complex humic and fulvic acid mixtures. Lower than expected molecular weight distributions previously observed for humics when analyzed by ESI-MS have fueled speculation about a bias in favor of low molecular weight. Multiply charged ions, ionization suppression, and sample fragmentation have all been suggested as sources of this low molecular weight bias. In this work, resolution of the individual components of humic mixtures within a 1 mass-to-charge unit window was accomplished by FTICR MS at 9.4 T. At mass resolving powers between 60,000 (high mass) and 120,000 (low mass), it was possible to determine that virtually all ions present in spectra of Suwannee River fulvic and humic acid are singly charged, thus eliminating inadequate accounting for multiply charged ions as a primary source of any low molecular weight bias. The high-resolution mass spectra also revealed the presence of molecular families containing ions that differ from each other in degree of saturation, functional group substitution (primarily CH vs N and CH4 vs O), and number of CH2 groups. Ionization suppression and ion fragmentation were addressed for humic and fulvic acid mixtures and well-characterized poly(ethylene glycol) (PEG) mixtures with average molecular weights of 8000 and 10,000. Although these high molecular weight PEG mixtures fragment extensively under traditional positive-ion mode ESI conditions, similar fragmentation could not be confirmed for humic and fulvic acid mixtures.

  18. XAFS Studies of Cobalt(II) Binding by Solid Peat and Soil-derived Humic Acids and Plant-derived Humic Acid-like Substances

    SciTech Connect

    Ghabbour,E.; Scheinost, A.; Davies, G.

    2007-01-01

    This work has examined cobalt(II) binding by a variety of solid humic acids (HAs) isolated from peat, plant and soil sources at temperatures down to 60 K. The results confirm that X-ray absorption near-edge spectroscopy (XANES) measurements cannot distinguish between aquo and carboxylato ligands in the inner coordination sphere of Co(II). However, between 1 and 2 inner-sphere carboxylato ligands can be detected in all the peat, plant and soil-derived HA samples by extended X-ray absorption fine structure (EXAFS) measurements, indicating inner-sphere coordination of HA-bound Co(II). The precision of C(carboxylate) detection is limited by the extent and quality of the data and the contribution from inner-sphere O to the Fourier transformed peaks used to detect carbon. Putative chelate ring formation is consistent with a relatively negative entropy change in step A, the stronger Co(II) binding step by HA functional groups, and could relate to 'non-exchangeable' metal binding by HSs.

  19. XAFS studies of cobalt(II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances.

    PubMed

    Ghabbour, Elham A; Scheinost, Andreas C; Davies, Geoffrey

    2007-02-01

    This work has examined cobalt(II) binding by a variety of solid humic acids (HAs) isolated from peat, plant and soil sources at temperatures down to 60K. The results confirm that X-ray absorption near-edge spectroscopy (XANES) measurements cannot distinguish between aquo and carboxylato ligands in the inner coordination sphere of Co(II). However, between 1 and 2 inner-sphere carboxylato ligands can be detected in all the peat, plant and soil-derived HA samples by extended X-ray absorption fine structure (EXAFS) measurements, indicating inner-sphere coordination of HA-bound Co(II). The precision of C(carboxylate) detection is limited by the extent and quality of the data and the contribution from inner-sphere O to the Fourier transformed peaks used to detect carbon. Putative chelate ring formation is consistent with a relatively negative entropy change in step A, the stronger Co(II) binding step by HA functional groups, and could relate to 'non-exchangeable' metal binding by HSs.

  20. Forms and lability of phosphorus in humic and fulvic acids

    USDA-ARS?s Scientific Manuscript database

    Humic substances are involved in many biological and ecological processes in soils and natural waters. Characterization of phosphorus (P) associated with humic substances may shed light on the function of humic substances in P cycling and nutrition. In this chapter, we review and discuss the forms a...

  1. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  2. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  3. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    PubMed

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  4. Surfactant properties and tetrachloroethene (PCE) solubilisation ability of humic acid-like substances extracted from maize plant and from organic wastes: a comparative study.

    PubMed

    Adani, Fabrizio; Tambone, Fulvia; Davoli, Enrico; Scaglia, Barbara

    2010-02-01

    Humic acid-like substance (HA-like substance) extracted from maize plant residue at an yield of 81.1+/-4.9gkg(-1) of dry matter (dm) was tested for surfactant properties and ability to solubilise tetrachloroethene (PCE). Critical micelle concentration (CMC) of HA-like substance was detected to be 1986mgL(-1). Both, HA-like substance composition and average molecular weight [MW] affected CMC and a multiple linear regression model was proposed: CMC=12246-56.19 alkyl-C - 0.532MW (R(2)=0.90; P<0.01, n=7) where CMC was given in mgL(-1), alkyl-C was the percentage of total C, and MW was given in Da. Maize-HA-like substance solubilised PCE at the rate of 0.05g of PCE for each gram of maize-HA-like substance, which was 3.6-9.6 times lower than the data obtained in our earlier work using HA extracted from organic wastes, but was higher than that obtained with commercial HA from leonardite. Taking into consideration the two-site model of solubilisation of PCE in surfactant (i.e., solute partitioning into the micellar hydrophobic core and dissolution and/or binding into the hydrophilic non-ionic shell) and macromolecular composition of HA-like substance, the non-ionic hydrophile-alkyl lipophile balance was expected to control PCE solubilisation as the good multiple linear regression indicated: logK(dom)=-1.37+0.062 alkyl-C +0.055 O-alkyl-C (R(2)=0.93, P<0.05, n=6), where logK(dom) represents the micelle-water partitioning of PCE (mLg(-1)) and alkyl-C and O-alkyl-C represent the content of these two kinds of C detected by CP MAS (13)C NMR (as % of the total C).

  5. A new economical method to remove humic substances in water: adsorption onto a recycled polymeric material with surfactant addition.

    PubMed

    Adou, A F; Muhandiki, V S; Shimizu, Y; Matsui, S

    2001-01-01

    Cationic surfactants were used to enhance the adsorption of dissolved organic matter (DOM), contained in the effluent of municipal wastewater, onto polypropylene (PPL), a polymeric synthetic adsorbent made from recycled plastics. Both batch and continuous up-flow column experiments were carried out. The DOM, in the form of humic acid, was treated with a range of cationic surfactants, then, adsorption experiments were conducted to evaluate the adsorption of the mixture onto PPL in both its soluble and precipitated forms. This research validated the feasibility of the proposed system in which anionic humic acid is removed from the aqueous phase by forming neutral hydrophobic molecules with cationic surfactants and subsequently by adsorbing them on the hydrophobic surface of PPL.

  6. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  7. Capillary zone electrophoresis of humic acids from the American continent.

    PubMed

    Pacheco, Maria de Lourdes; Havel, Josef

    2002-01-01

    A multicomponent background electrolyte (BGE) was developed and its composition optimized using artificial neural networks (ANN). The optimal BGE composition was found to be 90 mM boric acid, 115 mM Tris, and 0.75 mM EDTA (pH 8.4). A separation voltage of 20 kV, 20 degrees C and detection at 210 nm were used. The method was applied to characterize several humic acids originating from various countries of the American continent: soil (Argentina), peat (Brazil), leonardite (Guatemala and Mexico) and coal (United States). Comparison with humic acids of International Humic Substances Society (IHSS) standard samples was also done. Well reproducible electropherograms showing a relatively high number of peaks were obtained. Characterization of the samples by elemental analysis and UV spectrophotometry was also done. In spite of the very different origins, the similarities between humic acids are high and by matrix assisted desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry it was shown that most of the m/z patterns are the same in all humic acids. This means that humic acids of different origin have the same structural units or that they contain the same components.

  8. Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum.

    PubMed

    Charest, Marie-Hélène; Beauchamp, Chantal J; Antoun, Hani

    2005-04-01

    We investigated the in vitro influence of humic substances (HS) extracted from de-inking paper sludge compost on the inhibition of Pythium ultimum by two compost bacteria, Rhizobium radiobacter (Agrobacterium radiobacter) and Pseudomonas aeruginosa. When low concentrations (5 or 50 mg l(-1)) of HS were added to the culture medium, fungal inhibition by R. radiobacter significantly increased (P<0.01) by 2-3%. In contrast, these low levels of HS had no effect on P. ultimum inhibition by P. aeruginosa. The Fe, chelated by HS, was in part responsible for the decrease of P. ultimum inhibition by the bacteria when increasing amounts of HS were added in the culture medium. The addition of 500 mg l(-1) of humic acids isolated from de-inking paper sludge compost or from fossil origin completely eliminated the inhibition of P. ultimum by R. radiobacter. This Fe effect also stimulated growth of R. radiobacter and reduced its siderophore production in a minimal medium supplemented with HS as sole source of Fe. The results showed that HS influence microbial antagonism when added to a culture medium. However, this effect varies with different factors such as the type of bacteria, concentration of HS, molecular weight and Fe content.

  9. Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations.

    PubMed

    Kazpard, V; Lartiges, B S; Frochot, C; d'Espinose de la Caillerie, J B; Viriot, M L; Portal, J M; Görner, T; Bersillon, J L

    2006-06-01

    A model of a humic substance (MHS) obtained from auto-oxidation of catechol and glycine, was aggregated at pH 6 and 8 with Al(13) polycations. The fate of Al(13) coagulant species upon association with MHS functional groups was studied using solid state (27)Al Magic-angle spinning (MAS) NMR and CP-MAS (13)C NMR. Electrophoretic measurements and steady-state fluorescence spectroscopy with pyrene as a fluoroprobe, were combined to investigate structural re-organization of humic material with aluminum concentration. MAS (27)Al NMR revealed that the coagulant species are Al(13) polycations or oligomers of Al(13) units at both pHs. CP MAS (13)C spectra indicated that, at low Al concentration, hydrolyzed aluminum species bind selectively to carboxylic groups at pH 6 and to phenolic moieties at pH 8. At higher coagulant concentrations, the remaining functional groups also interact with hydrolyzed Al to yield similar CP MAS (13)C spectra in the optimum concentration range. Negative values of electrophoretic mobility were obtained at optimum coagulant concentrations even though an overall charge balance was achieved between MHS anionic charge and Al(13) cationic charge at pH 6. The polarity-sensitive fluorescence of pyrene revealed that the interaction of Al(13) coagulant species with MHS functional groups induces the formation of intramolecular hydrophobic microenvironments. Such structural changes were reversed upon further addition of Al(13) polycations.

  10. Inherent humic substance promotes microbial denitrification of landfill leachate via shifting bacterial community, improving enzyme activity and up-regulating gene.

    PubMed

    Dong, Shanshan; Li, Mu; Chen, Yinguang

    2017-09-22

    Microbial denitrification is the main pathway for nitrogen removal of landfill leachate. Although humic substances (HSs) have been reported in landfill leachate, the effects of HS on denitrification process of activated sludge for leachate treatment are still unknown. In this study, we adopted SAHA as the model HS to study the effects of HS on the denitrification of landfill leachate. After long-term operation at 10 mg/L of Shanghai Aladdin Humic Acid (SAHA), the final nitrate concentration and nitrite accumulation were much lower than the control (5.2 versus 96.2 mg/L; 0.5 versus 34.7 mg/L), and the final N2O emission was 13.1% of the control. The mechanistic study unveiled that SAHA substantially changed the activated sludge community structure and resulted in the dominance of Thauera after long-term exposure to SAHA. Thauera could be able to utilize HSs as electron shuttle to improve denitrificattion performance, especially for nitrite reduction. Moreover, SAHA significantly upregulated the gene expressions and catalytic activities of the key enzymes related to denitrification, the reducing power (NADH) generation, and the electron transport system activity, which accelerated nitrogen oxide reduction. The positive effects of HS on denitrification performance were confirmed by the addition of SAHA into real leachate.

  11. Investigations on the conditional kinetic and thermodynamic stability of aquatic humic substance-metal complexes by means of EDTA exchange, ultrafiltration and atomic spectrometry.

    PubMed

    Van den Bergh, J; Jakubowski, B; Burba, P

    2001-09-13

    The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS-metal species, respectively. Considerable fractions of natural HS-metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS-metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>Cu(II)>Cr(III)>Co(II)>Mn(II).

  12. American Society for Pain Management Nursing Position Statement: Pain Management in Patients with Substance Use Disorders

    PubMed Central

    Oliver, June; Coggins, Candace; Compton, Peggy; Hagan, Susan; Matteliano, Deborah; Stanton, Marsha; St. Marie, Barbara; Strobbe, Stephen; Turner, Helen N.

    2013-01-01

    The American Society for Pain Management Nursing (ASPMN) has updated its position statement on managing pain in patients with substance use disorders. This position statement is endorsed by the International Nurses Society on Addictions (IntNSA) and includes clinical practice recommendations based on current evidence. It is the position of ASPMN and IntNSA that every patient with pain, including those with substance use disorders, has the right to be treated with dignity, respect, and high quality pain assessment and management. Failure to identify and treat the concurrent conditions of pain and substance use disorders will compromise the ability to treat either condition effectively. Barriers to caring for these patients include stigmatization, misconceptions, and limited access to providers skilled in these two categories of disorders. Topics addressed in this position statement include the scope of substance use and related disorders, conceptual models of addiction, ethical considerations, addiction risk stratification, and clinical recommendations. PMID:22929604

  13. American Society for Pain Management Nursing Position Statement: Pain Management in Patients with Substance Use Disorders

    PubMed Central

    Oliver, June; Coggins, Candace; Compton, Peggy; Hagan, Susan; Matteliano, Deborah; Stanton, Marsha; St. Marie, Barbara; Strobbe, Stephen

    2014-01-01

    The American Society for Pain Management Nursing (ASPMN) has updated its position statement on managing pain in patients with substance use disorders. This position statement is endorsed by the International Nurses Society on Addictions (IntNSA) and includes clinical practice recommendations based on current evidence. It is the position of ASPMN and IntNSA that every patient with pain, including those with substance use disorders, has the right to be treated with dignity, respect, and high quality pain assessment and management. Failure to identify and treat the concurrent conditions of pain and substance use disorders will compromise the ability to treat either condition effectively. Barriers to caring for these patients include stigmatization, misconceptions, and limited access to providers skilled in these two categories of disorders. Topics addressed in this position statement include the scope of substance use and related disorders, conceptual models of addiction, ethical considerations, addiction risk stratification, and clinical recommendations. PMID:24335741

  14. American Society for Pain Management nursing position statement: pain management in patients with substance use disorders.

    PubMed

    Oliver, June; Coggins, Candace; Compton, Peggy; Hagan, Susan; Matteliano, Deborah; Stanton, Marsha; St Marie, Barbara; Strobbe, Stephen; Turner, Helen N

    2012-10-01

    The American Society for Pain Management Nursing (ASPMN) has updated its position statement on managing pain in patients with substance use disorders. This position statement is endorsed by the International Nurses Society on Addictions (IntNSA) and includes clinical practice recommendations based on current evidence. It is the position of ASPMN and IntNSA that every patient with pain, including those with substance use disorders, has the right to be treated with dignity, respect, and high-quality pain assessment and management. Failure to identify and treat the concurrent conditions of pain and substance use disorders will compromise the ability to treat either condition effectively. Barriers to caring for these patients include stigmatization, misconceptions, and limited access to providers skilled in these two categories of disorders. Topics addressed in this position statement include the scope of substance use and related disorders, conceptual models of addiction, ethical considerations, addiction risk stratification, and clinical recommendations.

  15. Frequency-domain fluorescence lifetime measurements via frequency segmentation and recombination as applied to pyrene with dissolved humic materials.

    PubMed

    Marwani, Hadi M; Lowry, Mark; Xing, Baoshan; Warner, Isiah M; Cook, Robert L

    2009-01-01

    In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene's measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM.

  16. American Society for Pain Management nursing position statement: pain management in patients with substance use disorders.

    PubMed

    Oliver, June; Coggins, Candace; Compton, Peggy; Hagan, Susan; Matteliano, Deborah; Stanton, Marsha; St Marie, Barbara; Strobbe, Stephen; Turner, Helen N

    2012-09-01

    The American Society for Pain Management Nursing (ASPMN) has updated its position statement on managing pain in patients with substance use disorders. This position statement is endorsed by the International Nurses Society on Addictions (IntNSA) and includes clinical practice recommendations based on current evidence. It is the position of ASPMN and IntNSA that every patient with pain, including those with substance use disorders, has the right to be treated with dignity, respect, and high-quality pain assessment and management. Failure to identify and treat the concurrent conditions of pain and substance use disorders will compromise the ability to treat either condition effectively. Barriers to caring for these patients include stigmatization, misconceptions, and limited access to providers skilled in these two categories of disorders. Topics addressed in this position statement include the scope of substance use and related disorders, conceptual models of addiction, ethical considerations, addiction risk stratification, and clinical recommendations. Copyright © 2012 International Nursing Society on Addiction (IntNSA) and the American Society for Pain Management Nursing (ASPMN). Published by Elsevier Inc. All rights reserved.

  17. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  18. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses.

    PubMed

    Tadini, Amanda Maria; Pantano, Glaucia; de Toffoli, Ana Lúcia; Fontaine, Barbara; Spaccini, Riccardo; Piccolo, Alessandro; Moreira, Altair Benedito; Bisinoti, Márcia Cristina

    2015-02-15

    Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande-BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    PubMed Central

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432

  20. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    PubMed

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  1. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite.

    PubMed

    Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S

    2017-08-23

    A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L(-1) and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L(-1)in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L(-1) or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples.

    PubMed

    Hsu, Hsiu-Jung; Oung, Jung-Nan; Kuo, Tseng-Long; Wu, Suh-Huey; Shiea, Jentaie

    2007-01-01

    We describe the use of electrospray-assisted pyrolysis ionization/mass spectrometry (ESA-Py/MS) to selectively ionize trace polar compounds that coexist with large amounts of nonpolar hydrocarbons in crude oil, amber, humic substances, and rubber samples. Samples of different origins are distinguished rapidly by their positive ion ESA-Py mass spectra without prior separation or chemical pretreatment. During ESA-Py analysis, the samples in their solid or liquid states were pyrolyzed at 590, 630 or 940 degrees C using a commercial Curie-point pyrolysis probe. The gaseous pyrolysates were transferred into a glass reaction cell. The polar compounds (M) in the pyrolysates were then ionized by electrospray ionization (ESI), yielding protonated molecules (MH+). Although the major components of the pyrolysates are nonpolar hydrocarbons, their lack of functional groups that can receive a proton in the ESA-Py source results in no hydrocarbon ion signals being produced; thus, the positive ions detected in ESA-Py mass spectra all result from trace polar components in the pyrolysates.

  4. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.

    PubMed

    Soleimani, Mohsen; Hajabbasi, Mohammad A; Afyuni, Majid; Akbar, Samira; Jensen, Julie K; Holm, Peter E; Borggaard, Ole K

    2010-01-01

    Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and other synthetic polycarboxylic acids have been shown to possess substantial capacity as washing agents of heavy metal-polluted soils, but they are environmentally problematic. Therefore, a sample of natural soluble humic substances (HS) was tested as a possible substitute. The efficiency of HS to extract cadmium (Cd), copper (Cu), and lead (Pb) from a strongly polluted calcareous urban soil was compared with that of EDTA and NTA. The influence of extractant concentration (25-100 mmol L(-1) C), solution/soil ratio (5-100 L kg(-1)), and single-step vs. multistep extraction on heavy metal removal from the soil was investigated. The extracted pools were assessed by sequential extraction. Ethylenediaminetetraacetic acid and NTA extracted up to 86, 77, and 30% of total soil Cd, Cu, and Pb, respectively, whereas HS extracted 44, 53, and 4%. Extracted amounts of Cd, Cu, and Pb increased with increasing extractant concentration and solution/soil ratio in the range 5 to 100 L kg(-1). Single-step extraction removed about the same amounts of the three metals as multiple-step extraction. The metal-extracted pools of the soil depended on the metal and on the extractant. The overall conclusion is that soluble HS can replace synthetic EDTA and NTA as washing agents for Cd- and Cu-polluted soils, whereas HS is not a promising substitute of EDTA or NTA for cleaning Pb-polluted, calcareous soils.

  5. Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance.

    PubMed

    Mecozzi, M; Acquistucci, R; Di Noto, V; Pietrantonio, E; Amici, M; Cardarilli, D

    2001-08-01

    The appearance of gelatinous aggregates called mucilages causes serious damages to tourism and fishery industries of the Adriatic Sea. So, many studies have been planned and some of them are still in progress to clarify the origin and causes of the phenomenon. The scientific research has showed that mucilages are produced by several marine organisms when peculiar climatic and trophic conditions occur. Moreover, as far as the mucilage composition is concerned, although it is well known that polysaccharides give a high contribution, knowledge of the structural characteristics of mucilages and their relationship with the natural organic matter of the marine environment has not been clarified yet. In this paper a study on the characterization of the marine mucilage samples collected in the Adriatic and Tyrrhenian Seas is described. The study was performed by spectroscopic (infrared and colorimetric) techniques, and elemental analysis. The results showed that mucilage samples have chemical and structural similarities with the insoluble fraction of the marine humic substance (humin). According to experimental evidences it is possible to establish the relationship between mucilages and the dissolved organic matter (DOM) in the marine environment in order to identify the most likely pathways of mucilage formation.

  6. Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.

    2013-05-01

    Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II.

  7. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud.

    PubMed

    Guo, Xiaobo; Huang, Junhao; Lu, Yanyu; Shan, Guangchun; Li, Qunliang

    2016-11-01

    For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased. The FTIR and UV-vis spectroscopy indicated that the aromatization of HS was promoted over the composting process. Adding FGDG increased the unsaturated degree and aromatization of HS. Pyrolysis-GC/MS showed the level of alkane decreased, and the level of benzene and nitrogen compounds increased upon the addition of FGDG. The nitrogen compounds of HS in CPG was significantly higher than that in CP.

  8. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Fava, Fabio; Berselli, Sara; Conte, Pellegrino; Piccolo, Alessandro; Marchetti, Leonardo

    2004-10-20

    The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.

  9. Sorption of aromatic compounds to clay mineral and model humic substance-clay complex: effects of solute structure and exchangeable cation.

    PubMed

    Zhang, Yingjie; Zhu, Dongqiang; Yu, Hongxia

    2008-01-01

    Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.

  10. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2015-12-15

    Ultrafiltration (UF) can achieve excellent removal of natural organic matter (NOM), but the main challenge for this process is the limited understanding of membrane fouling. The objective of this study is to explore the potential of UV-vis spectroscopic analysis for the detection of membrane fouling caused by humic acids (HA) at different solution chemistries (i.e., calcium ions (Ca(2+)) and pH). In the presence of Ca(2+), several spectral parameters, including the DSlope(325-375) (the slope of the log-transformed absorbance spectra over 325-375 nm), S(275-295) (the slope of the absorption coefficient over 257-295 nm) and S(R) (the ratio of S(275-295) to S(350-400)) of various HA solutions, were correlated with the molecule aggregation and the membrane fouling potential. Interestingly, increased DSlope(325-375) and decreased S(275-295) and S(R) were observed for the HA-Ca(2+) interaction under alkaline conditions (i.e., pH = 9) relative to those in lower pH environments (i.e., pH = 7 or 6), suggesting that spectral parameters were able to predict HA-Ca(2+) interactions under varying pH conditions. The strong correlations between the spectral parameters and the unified membrane fouling index (UMFI) obtained from UF experiments further corroborated that the spectral parameters were able to predict the membrane fouling potential. Moreover, the spectral parameters were also found to well reveal the fouling extent of the mixture of HA and Suwannee River NOM (SRNOM) or the pure SRNOM added with varying calcium concentrations, implying that the spectroscopic analysis was also available for the indication of practical NOM fouling. In addition, the measurement of S(275-295) and S(R) of the permeate solution suggests an increasing proportion of small-molecule HA in the permeate during the UF process. This study not only expands our knowledge of NOM-Ca(2+) aggregates as well as their role in membrane fouling behavior but also provides an approach for the in situ

  12. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  13. Determination of humic and fulvic acids in commercial solid and liquid humic products by alkaline extraction and gravimetric determination

    USDA-ARS?s Scientific Manuscript database

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method for quantification of humic (HA) and fulvic acids (FA) in raw ores and products. Here we present a thoroughly validated method, the Humic Pro...

  14. Isolation of humic acids from leonardite

    SciTech Connect

    Shah, S.B.; Tartamella, T.L.; Lee, S.; Kulik, C.J.

    1996-12-31

    The primary interest in humic acid is its use as an effective fertilizer. Humic substances, found commonly in low-rank coals, enhance plant growth directly through positive physiological effects and indirectly by affecting the properties of the soil. Humic acids have traditionally been defined as the dark-colored organic matter that can be extracted from soil by dilute alkali and other reagents and which is insoluble in dilute acid. This paper discusses the isolation of humic acid from leonardite using the alkaline extraction method and the subsequent characterization using elemental analysis and infrared spectroscopy techniques. In this study, yields of more than 60% were obtained.

  15. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  16. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    other enantiomers, because their spatial structure dictate, as did so regarding elemental selection. References: 1- Miller, Stanly L." production of amino acid under possible primitive Earth conditions" Science 117:528.(may 1953) 2- Encyclopedia Britannica website "carbonaceous contrite" October 17, 2014 3- Shapiro, Robert " A simpler origin for life" Science American February 12 . 2007 4- Pettit, Robert, "organic matter, humus, humate, humic acid, fulvic acid humin: their importance in soil fertility and plant health" 5- International Humic Substances Society website, " What are humic substances" 6- Humic, Fulvic and microbial balance: organic soil conditioning, by William R. Jackson 1993, pag 165-167 7- Steinberg, Christian E.W "Ecology of humic substances in freshwater-determination from geochemistry to ecological niches" (2003)

  17. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances

    DOE PAGES

    Dantas, Joana M.; Kokhan, Oleksandr; Pokkuluri, P. Raj; ...

    2015-06-09

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS,more » and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (- 127 mV) compared to that of AH2QDS (- 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. In conclusion, such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs.« less

  18. New insights on humic-like substances associated with wintertime urban aerosols from central and southern Europe: Size-resolved chemical characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Voliotis, Aristeidis; Prokeš, Roman; Lammel, Gerhard; Samara, Constantini

    2017-10-01

    Although Humic-LIke Substances (HULIS) are important contributors to the mass of organic aerosol in airborne particulate matter (PM), little is known about their chemical composition, while, their size-resolved optical properties have not been studied yet. Here, HULIS fractions were isolated from size-resolved aerosol samples (≤0.49, 0.49-0.95, 0.95-3 and 3-10 μm) collected in urban and suburban environments of four European cities during wintertime. The bulk (i.e., sum of all size fractions) concentration of HULIS ranged between 1.29 and 2.80 μg m-3 across sites with highest values in the ≤0.49 μm particle size fraction. The contribution of the carbon mass of HULIS (HULIS-C) to the water-soluble organic carbon content (WSOC) of PM was 32-43%, which is typical for urban sites affected by biomass burning. The Mass Absorption Efficiency (MAE), which characterizes the efficiency of absorbing solar energy per carbon mass of HULIS decreased with particle size, suggesting that the finest size fractions contain more light-absorbing chromophores, which could affect the light-absorbing ability of organic aerosols. The good correlation of HULIS with effective biomass tracers such as K+, as well as with secondary inorganic aerosol components, proposed that HULIS had both primary (i.e., biomass burning) and secondary sources. The Fourier Transfer Infrared coupled to Attenuation Total Reflectance (FTIR-ATR) spectra demonstrated prevalence of aromatic over carboxylic functional groups in most HULIS fractions, indicating contribution from coal combustion emissions in addition to fresh biomass burning aerosol. The new findings add to better understanding the sources and chemical structure of HULIS in urban and suburban environments.

  19. Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2016-05-01

    Humic-Like Substances (HULIS) are important macromolecular compounds that are present in PM2.5 and play significant roles in the atmospheric environment. In this study, 48 PM2.5 samples were collected from February 2010 to January 2011 at an urban site in Guangzhou, southern China. The water soluble HULIS fractions in PM2.5 were analyzed to explore the temporal variation of abundance and optical properties and to identify their possible sources. The HULIS concentrations were in the range of 0.4 to 8.2 μg C m- 3, with a mean of 2.4 μg C m- 3. HULIS are important components in organic aerosols, accounting for 17 ± 5% of the organic carbon (OC), and 49 ± 6 and 68 ± 5% of water soluble organic carbon (WSOC) as determined with a total organic carbon (TOC) analyzer and UV absorbance at 250 nm, respectively. The special UV absorbance (SUVA) at 254 nm and 280 nm and the E250/E365 ratio of HULIS were 3.2 ± 0.5 L (m mg C)- 1, 2.2 ± 0.4 L (m mg C)- 1, and 5.9 ± 0.9, respectively. The HULIS fractions had higher concentrations, slightly higher SUVA values, and lower E250/E365 ratios from November to January, indicating the important contribution of aromatic compounds to HULIS in the dry season. The concentrations of HULIS were positively correlated with water soluble K+, secondary organic carbon (SOC), and secondary inorganic ions (NH4+, NO3-, and SO42 -). These results suggest that biomass burning and secondary photochemical formation are both sources of HULIS in our study area. In addition, the SUVA280 of HULIS was strongly correlated with K+ and SOC, suggesting that HULIS properties were also influenced by their primary source of biomass burning and secondary atmospheric formation.

  20. Reduction of mercury(II) by tropical river humic substances (Rio Negro)-Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur).

    PubMed

    Rocha, Julio Cesar; Sargentini, Ezio; Zara, Luiz Fabricio; Rosa, André Henrique; Dos Santos, Ademir; Burba, Peter

    2003-12-04

    The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F(1)>100 kDa and F(2): 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F(5): 5-10 kDa, F(6): <5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F(5)>F(2)>F(1)>F(3)>F(4)>F(6)). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested.

  1. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2014-01-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species, challenging simple classification schemes. Traditional offline chemical methods identify chemical classes based on the retention behaviour on chromatographic columns and absorbing beds. Such an approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, online aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for the classification of oxygenated organic aerosols (OOAs) on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS data sets suggested the occurrence of very oxidized OOAs which were postulated to correspond to HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classifications from the offline methods. In this paper, we consider a case study representative of polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare them to chemical classes of water-soluble organic carbon (WSOC) analysed offline on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to proton nuclear magnetic resonance (NMR) spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS {sensu stricto}) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups

  2. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2013-06-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, on-line aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for oxygenated organic aerosols (OOAs) classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare to chemical classes of water-soluble organic carbon (WSOC) analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted carboxylic

  3. Yields of potato and alternative crops impacted by humic product application

    USDA-ARS?s Scientific Manuscript database

    Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...

  4. The lanthanum precipitation method. Part 1: a new method for technetium(IV) speciation in humic rich natural groundwater.

    PubMed

    Geraedts, K; Maes, A

    2008-09-01

    A new and quick method for direct speciation of Tc(IV) in humic rich solutions, based on the induced aggregation of humic substances in the presence of the trivalent cation La3+, is presented. This method (the "La-precipitation method") allows flocculating all the humic substances and also the Tc(IV) associated with humic substances. The method is tested on solutions containing Tc(IV) and Gorleben humic substances. The influence of different parameters (humic substance concentration, Tc concentration, reaction time and pH) is investigated on the observed free Tc(IV) concentration after precipitation of all humic substances. None of these parameters had a (significant) influence on the observed Tc(IV) concentration in solution after addition of La3+ to Tc(IV)-HS containing solutions. It is therefore proposed that the method can be used to separate the Tc(IV) bound to humic substances from the free inorganic Tc species in solution.

  5. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.

    PubMed

    Figueroa, Julio Alberto Landero; Wrobel, Katarzyna; Afton, Scott; Caruso, Joseph A; Corona Felix Gutierrez, J; Wrobel, Kazimierz

    2008-02-01

    Phytochelatins (PCs) were determined in the wild plants, focusing on their relationship with the levels of heavy metals and humic substances (HS) in soil. Ricinus communis and Tithonia diversifolia were collected from several sites in Guanajuato city (Mexico), which had long been the silver and gold mining center. The analysis of PCs in root extracts was carried out by liquid chromatography (derivatization with monobromobimane). Total Ag, Cd, Cu and Pb in plant roots and in soil samples, as well as soil HS were determined. The association of metals with HS in soils was evaluated by size exclusion chromatography (SEC) with UV and ICP-MS detection. The results obtained revealed the induction of PCs in R. communis but not in T. diversifolia. The levels of Cd and Pb in plant roots presented strong positive correlation with PC-2 (r=0.9395, p=0.005; r=0.9573, p=0.003, respectively), indicating that these two metals promote PCs induction in R. communis. On the other hand, the inverse correlation was found between soil HS and metal levels in roots of R. communis (Cu>Pb>Cd>Ag), in agreement with the decreasing affinity of these metals to HS. Importantly, the inverse correlation between soil HS and plant PC-2 was observed (r=-0.7825, p=0.066). These results suggest that metals strongly bound to HS could be less bioavailable to plants, which in turn would limit their role in the induction of PCs. Indeed, the SEC elution profiles showed Pb but not Cd association with HS and the correlation between metal in soil and PC-2 in plant was statistically significant only for Cd (r=0.7857, p=0.064). Based on these results it is proposed that the role of heavy metals in PCs induction would depend on their uptake by R. communis, which apparently is controlled by the association of metals with soil HS. This work provides further evidence on the role of environmental conditions in the accumulation of heavy metals and phytochelatin production in plants.

  6. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry.

    PubMed

    Lin, Peng; Yu, Jian Zhen; Engling, Guenter; Kalberer, Markus

    2012-12-18

    Humic-like substances (HULIS) in ambient aerosols collected at seven locations in East Asia were analyzed using electrospray ionization (ESI) coupled with an ultra-high-resolution mass spectrometer (UHRMS). Locations included a 3 km high mountaintop site in Taiwan, rural, suburban, and urban locations in the Pearl River Delta (PRD), South China, and in Taiwan. Organosulfates (OS) in the HULIS fraction were tentatively identified through accurate mass measurements and MS/MS spectra interpretation. In the two mountaintop samples collected in regional background atmosphere, little OS were detected, while a few hundred OS formulas were identified in the six samples taken in Taiwan and PRD. Many of the OS ions were among the most intense peaks in the negative ESI-UHRMS spectra, and their elemental formulas were identical to OS derived from biogenic volatile organic compounds (BVOCs) (e.g., monoterpenes) that have been identified in chamber studies. With OS having less than 6 carbon atoms too hydrophilic to be effectively retained in the HULIS fraction, OS containing 10 carbon atoms were the most abundant, indicating monoterpenes as important precursors of OS in the HULIS fraction. Clear spatial variation in abundance of OS was found among different atmospheric environments, with enhanced coupling of BVOCs with anthropogenic acidic aerosols observed in the PRD samples over the Taiwan samples. The double bond equivalent (DBE) values indicate the majority of OS (>90%) in the HULIS fraction are aliphatic. The elemental compositions of OS compounds containing N atoms (defined as CHONS) indicate that they are probably nitrooxy OS. Some insights into OS formation mechanisms are also gained through examining the presence/absence of perceived reactant-product formula pairs in the mass spectra. The results suggest the dominant epoxide intermediate pathway for formation of OS compounds without N atoms (defined as CHOS) and confirm the more readily hydrolyzed characteristics of the

  7. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers

    NASA Astrophysics Data System (ADS)

    Kuang, B. Y.; Lin, P.; Huang, X. H. H.; Yu, J. Z.

    2015-02-01

    Humic-like substances (HULIS), the hydrophobic part of water-soluble organic carbon (WSOC), account for a significant fraction of PM2.5 mass. Their source studies are so far largely qualitative. In this study, HULIS and WSOC were determined in 100 PM2.5 samples collected in 2009 at an urban site (Guangzhou) and a suburban site (Nansha) in the Pearl River Delta in South China. The annual average concentration of HULIS was 4.83 and 4.71 μg m-3, constituting 8.5 and 10.2% of the PM2.5 mass, while HULIS-C (the carbon component of HULIS) contributed 48 and 57% of WSOC at the two sites, respectively. HULIS were found to correlate with biomass burning (BB) tracers (i.e., levoglucosan and K) and secondary species (e.g., SO42- and NH4+), suggesting its association with BB emissions and secondary formation processes. Sources of HULIS were investigated using positive matrix factorization analysis of PM2.5 chemical composition data, including major components and source markers. In addition to secondary formation process and BB emissions, residual oil combustion related to shipping was identified for the first time as a significant source of HULIS. Secondary formation process contributed the most, accounting for 49-82% of ambient HULIS at the two sites in different seasons. BB emissions contributed a seasonal average of 8-28%, with more contributions observed in the winter months (November-February) due to crop residue burning during harvest season. Residual oil combustion was revealed to be an important source at the suburban site in summer (44% of HULIS-C) due to its proximity to one of the ports and the shipping lane in the region. Vehicle emissions were found to contribute little to HULIS, but had contributions to the hydrophilic WSOC fraction. The contrast in contributions from different combustion sources to HULIS and hydrophilic WSOC suggests that primary sources of HULIS are linked to inefficient combustion. This source analysis suggests further study of HULIS be

  8. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products.

    PubMed

    Lamar, Richard T; Olk, Daniel C; Mayhew, Lawrence; Bloom, Paul R

    2014-01-01

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method to quantify humic acid (HA) and fulvic acid (FA) in raw ores and products. Here we present a thoroughly validated method, the new standardized method for determination of HA and FA contents in raw humate ores and in solid and liquid products produced from them. The methods used for preparation of HA and FA were adapted according to the guidelines of the International Humic Substances Society involving alkaline extraction followed by acidification to separate HA from the fulvic fraction. This is followed by separation of FA from the fulvic fraction by adsorption on a nonionic macroporous acrylic ester resin at acid pH. It differs from previous methods in that it determines HA and FA concentrations gravimetrically on an ash-free basis. Critical steps in the method, e.g., initial test portion mass, test portion to extract volume ratio, extraction time, and acidification of alkaline extract, were optimized for maximum and consistent recovery of HA and FA. The method detection limits for HA and FA were 4.62 and 4.8 mg/L, respectively. The method quantitation limits for HA and FA were 14.7 and 15.3 mg/L, respectively.

  9. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    USDA-ARS?s Scientific Manuscript database

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  10. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR).

    PubMed

    Jacquin, Céline; Lesage, Geoffroy; Traber, Jacqueline; Pronk, Wouter; Heran, Marc

    2017-07-01

    The goal of this study is to help filling the research gaps linked to the on-line application of fluorescence spectroscopy in wastewater treatment and data processing tools suitable for rapid correction and extraction of data contained in three-dimensional fluorescence excitation-emission matrix (3DEEM) for real-time studies. 3DEEM was evaluated for direct quantification of Effluent Organic Matter (EfOM) fractions in full-scale MBR bulk supernatant and permeate samples. Principal Component Analysis (PCA) was used to investigate possible correlations between conventional Lowry and Dubois methods, Liquid Chromatography coupled to Organic Carbon and Organic Nitrogen Detection (LC-OCD-OND) and 3DEEM. 3DEEM data were analyzed using the volume of fluorescence (Φ) parameter from the Fluorescence Regional Integration (FRI) method. Two mathematical correlations were established between LC-OCD-OND and 3DEEM data to quantify protein-like and humic-like substances. These correlations were validated with supplementary data from the initial full-scale MBR, and were checked with samples from other systems (a second full-scale MBR, a full-scale conventional activated sludge (CAS) and a laboratory-scale MBR). While humic-like correlation showed satisfactory prediction for a second full-scale MBR and a CAS system, further studies are required for protein-like estimation in other systems. This new approach offers interesting perspectives for the on-line application of 3DEEM for EfOM quantification (protein-like and humic-like substances), fouling prediction and MBR process control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of humic acids in vitro.

    PubMed

    Vašková, Janka; Veliká, Beáta; Pilátová, Martina; Kron, Ivan; Vaško, Ladislav

    2011-06-01

    Humic acids are known for their overall positive health and productivity effects in animal feeding trials and, controversially, as an aetiological factor of cancer. We tried to assess the in vitro effect of humic acids from a selected source in Slovakia when used at recommended prophylactic dosage. We investigated antioxidant properties, enzymatic and non-enzymatic antioxidant defence system in liver mitochondria and cultured cancer cell lines in vitro. We observed a significant decrease in superoxide dismutase activity after humic acids treatment irrespective of dissolving in dimethyl sulphoxide or direct addition to mitochondria suspension in a respiration medium. Activities of other antioxidant enzymes measured, such as glutathione peroxidase and glutathione reductase, showed no significant differences from the control as well as the reduced glutathione content. Percentage of inhibition by humic acids of superoxide radical indicated lower efficacy compared with that of hydroxyl radical. Survival of six different cancer cells lines indicated that only the acute T lymphoblastic leukaemia cell line was sensitive to the tested humic acids. Despite relatively low solubility in aqueous solutions, humic acids from the selected source participated in redox regulation. By recapturing the radicals, humic acids reloaded the antioxidant defensive mechanism. Results from in vitro study conducted with humic acids from the natural source showed potential of these substances as promising immunity enhancing agents.

  12. Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction

    PubMed Central

    Lovley, Derek R.; Blunt-Harris, Elizabeth L.

    1999-01-01

    The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in