Science.gov

Sample records for humic substances

  1. Preparative isolation of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1981-01-01

    A useful procedure has been developed which utilizes adsorption chromatography followed by size-exclusion chromatography, hydrogen saturation by ion exchange, and lypholization to obtain low-ash aqueous humic substances. The preparative concentration of aquatic humic substances is done by multiple reconcentration procedures even though initial concentrations of aqueous humus may be less than 25 ??g/L. The procedure yields concentration factors of 25 000 times for both humic and fulvic acid in water.

  2. Molecular size of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Wershaw, R. L.; Malcolm, R.L.; Pinckney, D.J.

    1982-01-01

    Aquatic humic substances, which account for 30 to 50% of the organic carbon in water, are a principal component of aquatic organic matter. The molecular size of aquatic humic substances, determined by small-angle X-ray scattering, varies from 4.7 to 33 A?? in their radius of gyration, corresponding to a molecular weight range of 500 to greater than 10,000. The aquatic fulvic acid fraction contains substances with molecular weights ranging from 500 to 2000 and is monodisperse, whereas the aquatic humic acid fraction contains substances with molecular weights ranging from 1000 to greater than 10,000 and is generally polydisperse. ?? 1982.

  3. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  4. Humic substance formation during wastewater infiltration

    SciTech Connect

    Siegrist, R.L. ); Hildmann-Smed, R.; Filip, Z.K. , Langen . Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. . Centre for Soil and Environmental Research)

    1991-01-01

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  5. On the nature of humic substances

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-12-01

    It is argued that the isolation of low-molecular-weight compounds from humic substances does not prove their supramolecular nature, because small molecules can be sorbed on macromolecules by interacting with them due to noncovalent bonds. The relative mobility of molecular segments in humic substances has been proposed to be used as a criterion for the discrimination between the humic substances of supraand macromolecular nature. The macromolecules are characterized by mobility of their segments, whereas supramolecular systems have stiff structure. This difference between macroand supramolecules results in different behaviors of the matrices (gels) formed from them in the processes of segregation. In the macromolecules, the formations of a new phase appearing at the segregation (microphase separation) are of nano size, at least in one dimension. They are incapable of moving within the matrix and form a well-known, limited set of systems. In the supramolecular matrices, the new-phase formations should have higher mobility and ability to move within the matrix with the formation of particles and zones of not only nano, but also micro sizes, as well as a significantly larger set of systems, including fractal configurations. The experimental electron microscopic study of the humic matrices of soil gels shows that the new-phase formations in the matrix of humic substances have not only nano, but also micro sizes and are capable of moving within the matrix, which confirms the supramolecular nature of humic substances. The proposed method has allowed generalizing the supraand macromolecular approaches, because macromolecules can enter into the composition of supramolecular systems. It is no less important that the behavior of HSs can be perceived as the behavior of stiff impenetrable particles that may compose the structures of different types and sizes.

  6. Photochemical aspects related to humic substances

    SciTech Connect

    Frimmel, F.H. )

    1994-01-01

    Dissolved humic substances (HS) show yellow color and relatively strong absorption in the UV range [a(254 nm) ca. 0.04 cm[sup [minus]1] for c(DOC) = 1 mg/L]. This is the basis for photochemical reactions in the photic zone of aquatic systems and in water treatment using IV sources. Even though understanding the mechanisms involved in the energy transfer and the resulting reactions is hampered by the poorly defined structure of HS, reliable information has been gathered on some typical aspects of their photochemistry. The luminescence of HS can be influenced and partly quenched by molecular interactions with other water constituents (e.g., heavy metals and organic micropollutants). The presence of oxygen may lead to the sensitized production of singlet oxygen (O[sub 2]), that can react specifically with substances containing diene structures or low valent sulfur. Because of the presence of these structures in HS, humic molecules will also react with the sensitized products. As a consequence, their biological, chemical, and physical properties are influenced. In addition, HS have a significant impact on the photochemical treatment of organic micropollutants in water. This has to be kept in mind when using photochemical steps for water treatment. The results from model experiments reflecting the conditions in surface water and in water treatment are given and discussed. In the presence of H[sub 2]O[sub 2], irradiation led to a transformation and partial degradation of HS. The rate of photochemical degradation of pesticides (e.g., atrazine) was decreased in the presence of HS. Fe and Mn quenched the luminescence. From this, a decrease of excited states of HS for sensitizing reactions can be deduced. The results suggest the manyfold and significant influences of HS on the photochemistry of aquatic systems. 66 refs., 9 figs., 7 tabs.

  7. Effects of diaphragm discharge in water solutions containing humic substances

    NASA Astrophysics Data System (ADS)

    Halamova, Ivana; Stara, Zdenka; Krcma, Frantisek

    2010-01-01

    Preliminary results of research focused on the applications of DC diaphragm discharge in water solutions containing humic substances are presented in this paper. Diaphragm discharge investigated by this work was created in the reactor using constant DC high voltage up to 2 kV that gave the total input power from 100 to 200 W. Presented work investigated decomposition of humic substances by the electric discharge in the dependence of discharge conditions (electrode polarity) as well as solution properties (electrolyte kind, pH). Especially substantial effect of pH on humic acid decomposition has been observed when acidic conditions stimulated the degradation process. Absorption spectroscopy in UV-VIS region together with fluorescence spectroscopy has been used for the detection of changes in humic solutions. Index of humification was calculated from obtained fluorescence spectra and a significant decrease of aromatic components in the humic mixture was determined during the discharge treatment.

  8. DBP formation of aquatic humic substances

    USGS Publications Warehouse

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  9. Sources of sedimentary humic substances: vascular plant debris

    NASA Astrophysics Data System (ADS)

    Ertel, John R.; Hedges, John I.

    1985-10-01

    A modern Washington continental shelf sediment was fractionated densimetrically using either an organic solvent, CBrCl 3, or aqueous ZnCl 2. The resulting low density materials (<2.06 g/ml) account for only 1% of the sediment mass but contain 25% of the sedimentary organic carbon and 53% of the lignin. The C/N ratios (30-40) and lignin phenol yields ( Λ = 8) and compositions indicate that the low density materials are essentially pure vascular plant debris which is slightly enriched in woody ( versus nonwoody) tissues compared to the bulk sediment. The low density materials yield approximately one-third of their organic carbon as humic substances and contribute 23% and 14% of the total sedimentary humic and fulvic acids, respectively. Assuming that the lignin remaining in the sedimentary fraction is also contained in plant fragments that yield similar levels of humic substances, then 50% and 30% of the total humic and fulvic acids, respectively, arise directly from plant debris. Base-extraction of fresh and naturally degraded vascular plant materials reveals that significant levels of humic and fulvic acids are obtained using classical extraction techniques. Approximately 1-2% of the carbon from fresh woods and 10-25% from leaves and bark were isolated as humic acids and 2-4 times those levels as fulvic acids. A highly degraded hardwood yielded up to 44% of its carbon as humic and fulvic acids. The humic acids from fresh plants are generally enriched in lignin components relative to carbohydrates and recognizable biochemicals account for up to 50% of the total carbon. Humic and fulvic acids extracted directly from sedimentary plant debris could be responsible for a major fraction of the biochemical component of humic substances.

  10. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer.

    PubMed

    Porras, Jazmín; Fernández, Jhon J; Torres-Palma, Ricardo A; Richard, Claire

    2014-02-18

    The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet-visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300-450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances.

  11. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  12. Mechanisms of humic substances degradation by fungi

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  13. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  14. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  15. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  16. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  17. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  18. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  19. Removal of humic substances from water by brown coal sorbents

    SciTech Connect

    E.V. Veprikova; A.V. Rudkovskii; M.L. Shchipko

    2007-12-15

    Brown coal sorption materials with high activity toward humic substances were prepared using a larger scale laboratory unit with a spouted-bed system. The effect of thermal treatment conditions on the sorption properties of these materials was studied. It was found that the sorption activity of the resulting samples toward humates was closely related to the limiting sorption volume of the materials with respect to benzene.

  20. Some effects of ozonation of humic substances in drinking water

    NASA Astrophysics Data System (ADS)

    Hongve, Dag; Lund, Vidar; Åkesson, Gunvor; Becher, Georg

    Ozonation is employed as a method for removal of colour due to humic substances in drinking water. We have examined some effects of ozonation of humic water in the laboratory. Ozonation reduced colour by 80% but had little influence on the DOC concentration and only moderate effect on the UV absorbance at 254 nm. High-performance size-exclusion chromatography (HPSEC) showed that the content of high-molecular-weight substances was reduced while a nearly corresponding amount of low-molecular-weight compounds was produced. The produced substances have acidic properties, are uncoloured and do not absorb UV light at 254 nm. Ozonation also led to higher BOD values. The formed low-molecular-weight compounds were consumed by microorganisms. In the original humic water sample the microbial degradation affected only high-molecular-weight compounds. The higher content of biodegradable organic compounds in ozonated drinking water is probably responsible for accelerated growth of bacteria and production of sludge in the distribution systems of a Norwegian waterwork. The obtained colour reduction seems to be temporary, since the colour of ozonated water increases under the influence of microorganisms.

  1. Complexation of copper by aquatic humic substances from different environments

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.

    1983-01-01

    The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.

  2. Interactions of Tc(IV) with humic substances

    SciTech Connect

    Boggs, M. A.; Minton, Travis; Lomasney, Samuel; Islam, Mohammed; Dong, Wenming; Gu, Baohua; Wall, Nathalie

    2011-01-01

    To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)20. Binding constants were found to be 6.8 and between 3.9 and 4.3, for log 1, 1,1 and log 1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 M to 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, while TcO(OH)20 and TcO(OH)2-HA are the major species, in the pH 6-8 range.

  3. AhR-mediated and antiestrogenic activity of humic substances.

    PubMed

    Janosek, J; Bittner, M; Hilscherová, K; Bláha, L; Giesy, J P; Holoubek, I

    2007-04-01

    Humic substances (HS) were for decades regarded as inert in the ecosystems with respect to their possible toxicity. However, HS have been recently shown to elicit various adverse effects generally attributed to xenobiotics. In our study, we used MVLN and H4IIE-luc cell lines stably transfected with luciferase gene under control of estrogen receptor (ER) and Ah receptor (AhR; receptor connected with so-called dioxin-like toxicity) for assessment of anti/estrogenic and AhR-mediated effects of 12 commercially available humic substances. Out of those, five humic acids were shown to induce AhR-mediated activity with relative potencies related to TCDD 2.6 x 10(-8)-7.4 x 10(-8). Organic extracts of HS solutions also elicited high activities what means that lipophilic molecules are responsible for a great part of effect. However, relatively high activity remaining in extracted solution suggests also presence of polar AhR-agonists. Contribution of persistent organic compounds to the observed effects was ruled out by H(2)SO(4) treatment. Eight out of twelve HS elicited significant antiestrogenic effects with IC(50) ranging from 40 to 164 mg l(-1). The possible explanations of the antiestrogenic effect include sorption of 17-beta-estradiol (E2) on HS, changes in membrane permeability for E2 or another specific mechanism.

  4. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  5. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    SciTech Connect

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-12-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a biologically determined partition coefficient K{sub DOC}. The authors observed significant linear relationships between K{sub DOC} and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons as determined by {sup 13}C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K{sub DOC} with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, their results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  6. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  7. Cloud formation of particles containing humic-like substances

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Sorjamaa, R.; Peräniemi, A.; Raatikainen, T.; Laaksonen, A.

    2006-05-01

    Humic like substances (HULIS) are a class of compounds that are suspected to have an effect on cloud droplet activation properties of atmospheric aerosols because they decrease the surface tension of aqueous solutions quite efficiently. Surface active organic compounds have a tendency of concentrating on the surfaces of liquid droplets. If the total amount of surface active compound is small enough, partitioning of the substance on the surface depletes it from the droplet interior, decreasing the Raoult effect and increasing the Kelvin effect. Thus, the surface partitioning causes an increase of the critical supersaturation (Köhler curve maximum), and the effect gets stronger with decreasing size of the cloud condensation nucleus. In this study, the effects of HULIS on the activation of cloud droplets was studied by cloud parcel model calculations. Model results indicate that if the surface partitioning is not taken into account, the number of activated droplets can be highly overestimated. The simulations were made using particles containing 10-80% mass fraction of HULIS, while the remaining fraction of the particle was ammonium sulfate. The calculations indicated that the surface tension effects of humic-like compounds on the cloud activation become significant only when the weight fraction of the organics is very high. In contrast, if the surface partitioning is not taken into account, already a small weight fraction of organics will lead to significant increase in number of cloud droplets.

  8. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    PubMed

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  9. The uniqueness of humic substances in each of soil, stream and marine environments

    USGS Publications Warehouse

    Malcolm, R.L.

    1990-01-01

    Definitive compositional differences are shown to exist for both fulvic acids and humic acids from soil, stream and marine environments by five different methods (1H and 13C NMR spectroscopy, 14C age and ?? 13C isotopic analyses, amino acid analyses and pyrolysis-mass spectrometry). Definitive differences are also found between fulvic acids and humic acids within each environment. These differences among humic substances from various sources are more readily discerned because the method employed for the isolation of humic substances from all environments excludes most of the non-humic components and results in more purified humic isolates from water and soils. The major compositional aspects of fulvic acids and humic acids which determine the observed characteristic differences in each environment are the amounts and compositions of saccharide, phenolic, methoxyl, aromatic, hydrocarbon, amino acid and nitrogen moieties.

  10. The contribution of humic substances to the acidity of colored natural waters

    USGS Publications Warehouse

    Oliver, B.G.; Thurman, E.M.; Malcolm, R.L.

    1983-01-01

    An operationally defined carboxyl content of humic substances extracted from rivers, streams, lakes, wetlands, and groundwaters throughout the United States and Canada is reported. Despite the diversity of the samples, only small variations were observed in this humic carboxyl content. The dissociation behavior of two combined fulvic/humic acid extracts was studied and it was found that the dissociation of the humics varied in a predictable manner with pH. Using a carboxyl content of 10 ??eq/ mg humic organic carbon, and mass action quotient calculated from sample pH, the ionic balances of three highly colored Nova Scotia rivers were estimated. ?? 1983.

  11. Effect of soil invertebrates on the formation of humic substances under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Frouz, J.; Li, X.; Brune, A.; Pizl, V.; Abakumov, E. V.

    2011-08-01

    The complete polymerization of phenols and proteins (one of the processes involved in the formation of humic substances) was explained. It was shown that fly ( Bibio marci) larvae and earthworms ( Aporrectodea caliginosa) participate in the complete polymerization of phenols and proteins. In a laboratory experiment, invertebrates participated in the degradation of organic matter and the synthesis of humic substances, which was proved in experiments with 14C-labeled phenols and proteins. The same organic substances (phenols and proteins) without the impact of invertebrates were used as the control substances. The distributions of the 14C isotope in alkaline extracts separated by solubility in acids (humic and fulvic acids) was compared to those of the control substances. The portion of the 14C isotope in the humic acids in the excrements of Bibio marci was higher than that in the control substances. The content of 14C-labeled humic substances in the excrements of the earthworm Aporrectodea caliginosa exceeded the control values only in the experiment with proteins. When clay material was added to the organic substances, the portion of the 14C isotope in the humic acids increased in both experiments with phenols and proteins. When these substrates passed through the digestive tracts of the invertebrates, the polymerization of organic substances and the inclusion of proteins and phenols into humic acids occurred.

  12. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible.

  13. Natural carbon-based dots from humic substances

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-05-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics.

  14. Production of humic substances through coal-solubilizing bacteria

    PubMed Central

    Valero, Nelson; Gómez, Liliana; Pantoja, Manuel; Ramírez, Ramiro

    2014-01-01

    In this paper, the production of humic substances (HS) through the bacterial solubilization of low rank coal (LRC) was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA) obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O), IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L−1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils. PMID:25477925

  15. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  16. Soil humic substances hinder the propagation of prions

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    capacity of clay minerals; however the contribution of soil organic components in adsorption has so far been neglected, as they represent a minor soil fraction on a weight basis. Among organic molecules, humic substances (HSs) are natural polyanions that result among the most reactive compounds in the soil and possess the largest specific surface area. Humic substances make up a large portion of the dark matter in humus and consist of heterogeneous mixtures of transformed biomolecules exhibiting a supramolecular structure. HSs are classified as humic acids (HAs), which are soluble only in alkaline solutions, and fulvic acids (FAs), which are soluble in both alkaline and acid solutions. The amphiphilic characteristics confer to HAs and FAs great versatility to interact with xenobiotics and reasonably also with prion proteins and/or prions too, leading to the formation of adducts with peculiar chemical and biophysical characteristics, thus affecting the transport, fixation and toxicity of prion. Results from our chemical, biophysical and biochemical investigation will be presented and results on anti-prion activity exerted by HAs and FAs will be provided, thus suggesting that amendment of contaminated soil with humic substances could be a strategy to contrast prion diffusion.

  17. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  18. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Spectroscopy for Characterization of Humic Substances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis (CE) and fluorescence spectroscopy have been used in natural organic matter (NOM) studies. In this study, we characterized five fulvic acids, six humic acids and two unprocessed NOM samples obtained from the International Humic Substances Society (IHSS) using these two ana...

  19. Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most models of soil humic substances include a substantial component of aromatic carbon (C) either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. Here we report that most of the aromatic C in the clay fraction of three stud...

  20. Reconnaissance samplings and characterization of aquatic humic substances at the Yuma Desalting Test Facility, Arizona

    USGS Publications Warehouse

    Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.

    1981-01-01

    Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)

  1. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors

    SciTech Connect

    Nakayasu, Ken; Sasaki, Keiko; Tanaka, Shunitz; Nakamura, Hiroshi ); Fukushima, Masami )

    1999-06-01

    Hexavalent chromium (Cr[VI]) is reduced by dissolved organic carbons (DOCs) such as humic substances, tannic acid (TA), and gallic acid (GA). The kinetic constants and the resulting chemical species after the reduction were compared with each other. The kinetic constants for GA and TA, which are model precursors of humic substances, were two to three orders of magnitude larger than those for the humic substances when these kinetic constants were expressed as a function of the molar concentration of the reductive functional group (F[sub red]) in various DOCs. After the reduction of Cr(VI), the percentages of the species complexed with GA and TA were higher than those with the humic substances. This appears to be due to the formation of high molecular weight compounds by polymerization during the reduction of Cr(VI) and complexation of Cr(III) with the polymerized compounds. The UV-vis spectrophotometric data and gel permeation chromatography support this view.

  2. CAPILLARY ELECTROPHORESIS IN THE ANALYSIS OF HUMIC SUBSTANCES FACTS AND ARTIFACTS

    EPA Science Inventory

    Humic substances, extracted as mixtures from soil and surface waters according to their solubility in acids and bases, are relatively high-molecular-mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits. The degree of ionization of their phenolic and carb...

  3. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  4. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.

    PubMed

    Vindedahl, Amanda M; Stemig, Melissa S; Arnold, William A; Penn, R Lee

    2016-02-02

    Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible.

  5. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  6. Supporting the process of removing humic substances on activated carbon.

    PubMed

    Olesiak, Paulina; Stępniak, Longina

    2014-01-01

    This study is focused on biosorption process used in water treatment. The process has a number of advantages and a lot of research has been done into its intensification by means of ultrasonic modification of solutions. The study carried out by the authors leads to the conclusion that sonication of organic solutions allows for extension of the time of operation of carbon beds. For the analysis of the results obtained during the sorption of humic substances (HS) from the solution dependencies UV/UV₀ or DOC/DOC₀ were used. In comparative studies the effectiveness of sorption and sonosorption (UV/UV₀) shows that the share of ultrasounds (US) is beneficial for extension of time deposit, both at a flow rate HS solution equal to 1 m/h and 5 m/h. Analysis of the US impact sorption on HS sorption in a biological fluidized bed, both prepared from biopreparat and the activated sludge confirms the higher efficiency compared to sonobiosorption than biosorption. These results confirm the degree of reduction UV₂₅₄/UV₀ and DOC/DOC₀ for the same processes. EMS index also confirms the improvement of HSbiodegradation by sludge microorganisms.

  7. Hygroscopic growth of atmospheric and model humic-like substances

    NASA Astrophysics Data System (ADS)

    Dinar, E.; Taraniuk, I.; Graber, E. R.; Anttila, T.; Mentel, T. F.; Rudich, Y.

    2007-03-01

    The hygroscopic growth (HG) of humic-like substances (HULIS) extracted from smoke and pollution aerosol particles and of Suwannee River fulvic acid (SRFA, bulk and fractions of different molecular weight) was measured by humidity tandem differential mobility analyzer (H-TDMA). By characterizing physical and chemical parameters such as molecular weight, elemental composition, and surface tension, we test the effect of these parameters on particle interactions with water vapor. For molecular weight-fractionated SRFA fractions, the growth factor at 90% relative humidity was generally inversely proportional to the molecular weight. HULIS extracts from ambient particles are more hygroscopic than all the SRFA fractions and exhibit different hygroscopic properties depending on their origin and residence time in the atmosphere. The results point out some dissimilarities between SRFA and aerosol-derived HULIS. The cloud condensation nuclei (CCN) behavior of the studied materials was predicted on the basis of hygroscopic growth using a recently introduced approach of Kreidenweis et al. (2005) and compared to CCN activity measurements on the same samples (Dinar et al., 2006). It is found that the computational approach (Kreidenweis et al., 2005) works reasonably well for SRFA fractions but is limited in use for the HULIS extracts from aerosol particles. The difficulties arise from uncertainties associated with HG measurements at high relative humidity, which leads to large errors in the predicted CCN activity.

  8. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity.

  9. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal

  10. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique.

    PubMed

    Kirishima, Akira; Ohnishi, Takashi; Sato, Nobuaki; Tochiyama, Osamu

    2009-07-15

    The phenolic-group capacities of five humic substances, such as, the Aldrich humic acid, the humic and fulvic acids extracted from a soil, the humic and fulvic acids extracted from a peat have been precisely determined by the non-aqueous potentiometric titration technique. The titration by KOH in the mixed solvent of DMSO:2-propanol:water=80:19.3:0.7 at [K(+)]=0.02 M enabled to measure the potential change in a wide range of pOH (=-log[OH(-)]), and thus to determine the capacities of phenolic groups which could not be precisely determined in the aqueous titration. The results of the titration revealed that the mean protonation constants of the phenolic groups were nearly the same for all humic substances and close to that of phenol in the same medium, indicating that each phenolic-group in the humic substances is rather isolated and is not electronically affected by other affecting groups in the humic macromolecule.

  11. Humic substances interfere with phosphate removal by Lanthanum modified clay in controlling eutrophication.

    PubMed

    Lürling, Miquel; Waajen, Guido; van Oosterhout, Frank

    2014-05-01

    The lanthanum (La) modified bentonite Phoslock(®) has been proposed as dephosphatisation technique aiming at removing Filterable Reactive Phosphorus (FRP) from the water and blocking the release of FRP from the sediment. In the modified clay La is expected the active ingredient. We conducted controlled laboratory experiments to measure the FRP removal by Phoslock(®) in the presence and absence of humic substances, as La complexation with humic substances might lower the effectiveness of La (Phoslock(®)) to bind FRP. The results of our study support the hypothesis that the presence of humic substances can interfere with the FRP removal by the La-modified bentonite. Both a short-term (1 d) and long-term (42 d) experiment were in agreement with predictions derived from chemical equilibrium modelling and showed lower FRP removal in presence of humic substances. This implies that in DOC-rich inland waters the applicability of exclusively Phoslock(®) as FRP binder should be met critically. In addition, we observed a strong increase of filterable La in presence of humic substances reaching in a week more than 270 μg La l(-1) that would infer a violation of the Dutch La standard for surface water, which is 10.1 μg La l(-1). Hence, humic substances are an important factor that should be given attention when considering chemical FRP inactivation as they might play a substantial role in lowering the efficacy of metal-based FRP-sorbents, which makes measurements of humic substances (DOC) as well as controlled experiments vital.

  12. Binding of ciprofloxacin by humic substances: a molecular dynamics study.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2010-01-01

    A comprehensive assessment of the potential impacts of antimicrobials released into the environment requires an understanding of their sequestration by natural particles. Of particular interest are the strong interactions of antimicrobials with natural organic matter (NOM), which are believed to reduce their bioavailability, retard their abiotic and biotic degradation, and facilitate their persistence in soils and aquatic sediments. Molecular dynamics (MD) relaxation studies of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), interacting with a model humic substance (HS) in a hydrated environment, were performed to elucidate the mechanisms of these interactions. Specifically, a zwitterionic Cipro molecule, the predominant species at circumneutral pH, was reacted either with protonated HS or deprotonated HS bearing Ca, Mg, or Fe(II) cations. The HS underwent conformational changes through rearrangements of its hydrophobic and hydrophilic regions and disruption of its intramolecular H-bonds to facilitate favorable intermolecular H-bonding interactions with Cipro. Complexation of the metal cations with HS carboxylates appeared to impede binding of the positively charged amino group of Cipro with these negatively charged HS complexation sites. On the other hand, an outer-sphere complex between Cipro and the HS-bound cation led to ternary Cipro-metal-HS complexes in the case of Mg-HS and Fe(II)-HS, but no such bridging interaction occurred with Ca-HS. The results suggested that the ionic potential (valence/ionic radius) of the divalent cation may be a determining factor in the formation of the ternary complex, with high ionic potential favoring the bridging interaction. Environ. Toxicol. Chem. 2010;29:90-98. (c) 2009 SETAC.

  13. Humic substances-mediated microbial reductive dehalogenation of triclosan

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  14. Humic substances in drinking water and the epidemiology of thyroid disease.

    PubMed

    Laurberg, Peter; Andersen, Stig; Pedersen, Inge Bülow; Ovesen, Lars; Knudsen, Nils

    2003-01-01

    Thyroid diseases are common in all populations but the type and frequency depends on environmental factors. In Denmark geographical differences in iodine intake are caused by different iodine contents of drinking water, which varies from < 1 to 139 microg iodine per litre. Comparative epidemiologic studies have demonstrated considerable differences in type and occurrence of thyroid disease with more goitre and hyperthyroidism in Aalborg with water iodine content around 5 microg/L, and more hypothyroidism in Copenhagen with water iodine around 20 microg/L. In Denmark, iodine in ground water is bound in humic substances, which have probably leached from marine sediments in the aquifers. Interestingly, humic substances in water from other parts of the world have goitrogenic properties, especially humic substances from coal and shale. Humic substances are heterogeneous mixtures of naturally occurring molecules, produced by decomposition of plant and animal tissues. The effect of humic substances in drinking water on the epidemiology of thyroid disease probably depends on the source of aquifer sediments.

  15. Complexation of transuranic ions by humic substances: Application of laboratory results to the natural system

    SciTech Connect

    Czerwinski, K.; Kim, J.

    1997-12-31

    Environmental investigations show transuranic ions sorb to humic substances. The resulting species are often mobile and are expected to be important vectors in the migration of transuranic ions in natural systems. However, these environmental studies yield no quantitative data useful for modeling. Laboratory complexation experiments with transuranic ions and humic substances generate thermodynamic data required for complexation modeling. The data presented in this work are based on the metal ion charge neutralization model, which is briefly described. When a consistent complexation model is used, similar results are obtained from different experimental conditions, techniques, and laboratories. Trivalent transuranic ions (Cm(III), Am(III)) have been extensively studied with respect to pH, ionic strength, origin of humic acid, and mixed species formation. The complexation of Np(V) has been examined over a large pH and metal ion concentration range with different humic acids. Some data does exist on the complexation ion concentration range with different humic acids. Some data does exist on the complexation of plutonium with humic acid, however further work is needed. Calculations on the Gorleben aquifer system using the thermodynamic data are presented. Critical information lacking from the thermodynamic database is identified. 55 refs., 2 figs., 3 tabs.

  16. Order of functionality loss during photodegradation of aquatic humic substances

    USGS Publications Warehouse

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  17. The Effect of Humic Substances on the Production Rate of Alkyl Nitrates in Seawater

    NASA Astrophysics Data System (ADS)

    Heiss, E. M.; Dahl, E. E.

    2008-12-01

    Alkyl nitrates are produced photochemically in seawater by the reaction of organic peroxy radicals and nitric oxide (ROO + NO). Dissolved organic matter (DOM) is a source of organic peroxy radicals in seawater, but it is unclear as to which fraction of DOM is important for alkyl nitrate formation. Dissolved humics may be important to alkyl nitrate production. The production rates of C1-C3 alkyl nitrates were observed in 0.2 μm filtered open ocean seawater as a function of nitrite concentration. The net production rates of methyl, ethyl, isopropyl, and n-propyl nitrate increased with increasing nitrite concentrations. Suwannee River humics were added to seawater samples and the net production rates of alkyl nitrates were determined. The production rate of ethyl nitrate increased at nitrite concentrations above 20 μM nitrite by a factor of ~5 with the addition of humic substances. The addition of humic substances to the water samples also resulted in an increase in the ratio of isopropyl nitrate production to ethyl nitrate production by a factor of ~3 compared to nitrite only additions. The ratio of isopropyl to ethyl nitrate production with additional humics is also greater than production rates determined using open ocean water in previous studies. The ratios of methyl nitrate and n-propyl nitrate production to ethyl nitrate production did not change significantly. The minimal change in alkyl nitrate production rates at nitrite concentrations below 20 μM indicates that NO may be the limiting reactant in this particular water sample. The effect of the humics at high nitrite concentrations shows that organic peroxy radicals are an important reactant in the production of alkyl nitrates. The difference between production rate patterns with the addition of humics compared to the nitrite only incubations indicate that humics are not the only source of organic peroxy radicals affecting open ocean water alkyl nitrate formation.

  18. Formation and loss of humic substances during decomposition in a pine forest floor

    USGS Publications Warehouse

    Qualls, R.G.; Takiyama, A.; Wershaw, R. L.

    2003-01-01

    Since twice as much C is sequestered in soils as is contained in the atmosphere, the factors controlling the decomposition rate of soil C are important to the assessment of the effects of climatic change. The formation of chemically resistant humic substances might be an important process controlling recycling of CO2 to the atmosphere. Our objectives were to measure the rate of formation and loss of humic substances during 13 yr of litter decomposition. We placed nets on the floor of a white pine (Pinus strobus) forest to separate each annual layer of litter for 13 yr and measured humic substance concentration using NaOH extraction followed by chromatographic fractionation. The humic acid fraction increased from 2.1% of the C in litterfall to 15.7% after 1 yr. On a grams per square meter (g m-2) basis the humic substance fraction increased during the first year and then declined, with a half decay time (t1/2) of 5.1 yr, which was significantly slower than the bulk litter (t1/2 = 3.9 yr). The carboxylic C concentration estimated from 13C nuclear magnetic resonance (NMR) increased in the litter over time, though total mass of carboxylic acid C in the forest floor also declined over the 13-yr period (t1/2 = 4.6 yr). While humic substances in the forest floor decomposed at a somewhat slower rate than bulk litter during Years 1 to 13, they decomposed much faster than has been calculated from 14C dating of the refractory fraction of organic matter in the mineral soil.

  19. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  20. Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, S.; Song, X. Y.; Wang, N.; Li, C. X.; Wang, W.; Zhang, J. J.

    2014-11-01

    Humic substances (HS) play an important role in soil fertility and carbon sequestration in soil. The structural characteristics of soil HS, extracted from two natural soils and a laboratory-incubated soil, were investigated by conventional beamline-based Fourier transform infrared radiation (CB-FTIR), a common FTIR technique based on a conventional thermal source, and synchrotron radiation-based (SR-FTIR) spectroscopy. The relative area of absorbance peaks that appeared at 2930, 2860, 1711, and 1635 cm-1 were calculated to make a comparison of the absorbance intensities. The absorption of aromatic functional groups of HS was stronger in SR-FTIR spectroscopy than in CB-FTIR spectroscopy. Compared with humic acid extracted with a 0.1 mol/l Na4P2O7 solution, the level of aliphaticity in humic acid extracted with a 0.1 mol/l NaOH solution was higher. The aliphaticity of humin associated with clay (HMc) was higher than that of humin associated with iron (HMi). These results suggest that SR-FTIR spectroscopy is a useful and nondestructive technique to study the structural characteristics of soil humic substances. Sequential extraction of soil humic substances with NaOH and Na4P2O7 solutions may be helpful in providing additional information in cases where differences in the material obtained from different extraction solutions occur. The aliphaticity and complexity of HMc were higher than those of HMi.

  1. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    NASA Astrophysics Data System (ADS)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  2. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems.

  3. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  4. Influence of humic substances on plant-microbes interactions in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  5. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  6. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  7. Biodegradation of RDX by Stimulating Humic Substance- and Fe(III) - Reduction

    DTIC Science & Technology

    2007-06-19

    prior to analysis . RDX and its metabolites, MNX, DNX and hexahydro-1,3,5-trinitroso-1,3,5- triazine (TNX), and HMX and its metabolite, 1-NO-HMX, were...8 VIII. Materials and Methods ...Mulch Humic Substance Extraction Method ............................................................................ 16 Military Smoke Dye Suspensions

  8. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  9. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  10. Humic substances and nitrogen-containing compounds from low rank brown coals

    SciTech Connect

    Demirbas, A.; Kar, Y.; Deveci, H.

    2006-03-15

    Coal is one of the sources of nitrogen-containing compounds (NCCs). Recovery of NCCs from brown coals in high yield was carried out from tars of stepwise semicoking of brown coals. Humic acids have been shown to contain many types of nitrogen compounds. Humic acids are thought to be complex aromatic macromolecules with amino acids, amino sugars, peptides, and aliphatic compounds that are involved in the linkages between the aromatic groups. Humic acids extracted from peats, brown coals, and lignites, are characterized using different techniques. Humic substances (HSs) have several known benefits to agriculture. The properties of humic substances vary from source to source, because they are heterogeneous mixtures of biochemical degradation products from plant and animal residues, and synthesis activities of microorganisms. HSs have been considered to be a significant floculant in surface water filtration plants for the production of drinking water as well as the processing of water. HSs are produced from chemical and biological degradation of plant and animal residues and from synthetic activities of microorganisms.

  11. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms.

    PubMed

    Cervantes, Francisco J; de Bok, Frank A M; Duong-Dac, Tuan; Stams, Alfons J M; Lettinga, Gatze; Field, Jim A

    2002-01-01

    Physiologically distinct anaerobic microorganisms were explored for their ability to oxidize different substrates with humic acids or the humic analogue, anthraquinone-2,6-disulphonate (AQDS), as a terminal electron acceptor. Most of the microorganisms evaluated including, for example, the halorespiring bacterium, Desulfitobacterium PCE1, the sulphate-reducing bacterium, Desulfovibrio G11 and the methanogenic archaeon, Methanospirillum hungatei JF1, could oxidize hydrogen linked to the reduction of humic acids or AQDS. Desulfitobacterium dehalogenans and Desulfitobacterium PCE1 could also convert lactate to acetate linked to the reduction of humic substances. Humus served as a terminal electron acceptor supporting growth of Desulfitobacterium species, which may explain the recovery of these microorganisms from organic rich environments in which the presence of chlorinated pollutants or sulphite is not expected. The results suggest that the ubiquity of humus reduction found in many different environments may be as a result of the increasing number of anaerobic microorganisms, which are known to be able to reduce humic substances.

  12. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions.

    PubMed

    Piccolo, A; Spiteller, M

    2003-11-01

    Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate the average molecular mass of terrestrial humic substances, such as humic (HA) and fulvic (FA) acids from a soil, and humic acid from a lignite (NDL). Their ESI mass spectra, by direct infusion, gave average molecular masses comparable to those previously obtained for aquatic humic materials. The soil HA and FA were further separated in size-fractions by preparative high performance size exclusion chromatography (HPSEC) and analyzed with ESI-MS by both direct infusion and a further on-line analytical HPSEC. Unexpectedly, their average molecular mass was only slightly less than for the bulk sample and, despite different nominal molecular size, did not substantially vary among size-fractions. The values increased significantly (up to around 1200 Da) after on-line analytical HPSEC for the HA bulk sample, at both pH 8 and 4, and for the HA size-fractions when pH was reduced from 8 to 4. It was noticed that HA size-fractions at pH 8 were separated by on-line HPSEC in further peaks showing average masses which progressively increased with elution volume. Furthermore, when the HA and NDL bulk samples were sequentially ultracentrifuged at increasing rotational speed, their supernatants showed mass values which were larger than bulk samples and increased with rotational speed. These variations in mass values indicate that the electrospray ionization is dependent on the composition of the humic molecular mixtures and increases when their heterogeneity is progressively reduced. It is suggested that the dominance of hydrophobic compounds in humic supramolecular associations may inhibit the electrospray ionization of hydrophilic components. Our results show that ESI-MS is reasonably applicable to humic substances only after an extensive reduction of their chemical complexity.

  13. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.

    PubMed

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2012-07-01

    The organic matter-mineral complex plays an important role in regulating the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the authors investigated the microbial bioavailability of phenanthrene (PHE) sorbed on the original and demineralized humic acids (HAs) and humin (HM) that were sequentially extracted from a peat soil. Demineralization treatment dramatically decreased the 720-h mineralized percentage of HM-sorbed PHE from 42.5 ± 2.6% to 3.4 ± 1.3%, whereas the influence of this treatment on the biodegradability of HA-associated PHE was much lower. Degradation kinetics of HA- and HM-sorbed PHE showed that its initial degradation rate was negatively correlated with the aromatic carbon content of humic substances (p<0.05). This was attributed to the strong interactions between PHE and the aromatic components of humic substances, which hampered its release and subsequent biodegradation. The 720-h mineralized percentage of PHE was inversely correlated with the estimated thickness of the organic matter layer at the surfaces of HAs and HMs. Therefore, in a relatively long term, diffusion of PHE within the organic matter layer could be an important factor that may limit the bioavailability of PHE to bacteria. Results of the present study highlight the molecular-scaled mechanisms governing bioavailability of PHE sorbed on humic substances.

  14. Sorption of metal ions on lignite and the derived humic substances.

    PubMed

    Havelcová, Martina; Mizera, Jirí; Sýkorová, Ivana; Pekar, Miloslav

    2009-01-15

    The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters.

  15. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  16. Characterization of humic substances by environmental scanning electron microscopy.

    PubMed

    Redwood, Paul S; Lead, Jamie R; Harrison, Roy M; Jones, Ian P; Stoll, Serge

    2005-04-01

    Environmental scanning electron microscopy (ESEM) is a new technique capable of imaging micron and submicron particles. Here, we have applied it to image and quantify natural aquatic organic matter (standard Suwannee River humic acid, SRHA). Uniquely, we have observed the humic aggregate structures as a function of humidity and pH. Large aggregates of tens of micrometers were observed as the dominant material under all conditions, although much smaller material was also observed. Fractal dimensions (D) were calculated between 1.48 and 1.70, although these values were not statistically different under conditions of low humidity. However, D values calculated at high humidities (85%) during the rehydration phase were significantly lower (1.48+/-0.01) than in the initial dehydration phase (1.69+/-0.01). This hysteresis indicated that full rehydration of the HS was either kinetically slow or irreversible after dehydration. Fractal analysis of ESEM images was also performed to probe the change in aggregate structure as a function of pH. Minimum values were calculated at neutral pHs, rising by 0.1-0.2 at both high and low pHs because of a combination of the physical chemistry of HS and the impacts of the drying regime within the ESEM. Thus, ESEM was an important complementary technique to other analytical methods. At present, ESEM cannot be used to image nonperturbed natural samples. However, the method is an ideal method for probing the changes in colloid structure as function of hydration state and has the potential to perform fully quantitative and nonperturbing analysis of colloidal structure.

  17. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  18. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  19. Evidence for the interaction of technetium colloids with humic substances by X-ray absorption spectroscopy.

    PubMed

    Maes, A; Geraedts, K; Bruggeman, C; Vancluysen, J; Rossberg, A; Hennig, C

    2004-04-01

    Spectroscopic extended X-ray absorption fine structure (EXAFS) evidence was obtained on the chemical environment of 99Tc(IV) atoms formed upon introduction of TcO4- into four types of laboratory-scale synthetic and natural systems which mimic in situ natural reducing conditions in humic-rich geochemical environments: (a) magnetite/pyrite in synthetic groundwater in the absence of humic substances (HSs), (b) magnetite/pyrite in natural Gorleben groundwater in the presence of HSs, (c) Boom clay sediment mixed with synthetic groundwater, and (d) Gorleben sand mixed with natural Gorleben groundwater. The investigated systems obey to pH 8-9 conditions, and all measured samples show similar EXAFS spectra for Tc, which could be fitted by a hydrated TcO2 x xH2O phase. The results are interpreted as follows: upon introduction of high concentrations (millimolar to micromolar) of TcO4-to chemically reducing environments, small Tc(IV) oxidic polymers are formed, which either may aggregate into larger units (colloids) and finally precipitate or may interact in their polymeric form with (dissolved and immobile) humic substances. This latter type of interaction--Tc(IV) colloid sorption onto HSs--differs significantly from the generally accepted metal--humate complexation and therefore offers new views on the possible reaction pathways of metals and radionuclides in humic-rich environments.

  20. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Windmoeller, C.C.; Wilken, R.D.

    1998-09-01

    The interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg-hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) > 300,000. Successive cation and anion exchange experiments demonstrated that those Hg-ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg{sup 2+} into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water-soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

  1. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  2. Characterization and quantification of humic substances 2D-Fluorescence by usage of extended size exclusion chromatography.

    PubMed

    Wagner, Martin; Schmidt, Wido; Imhof, Lutz; Grübel, Anika; Jähn, Camilla; Georgi, Denise; Petzoldt, Heike

    2016-04-15

    In this article, two methods for in-depth analysis of humic substances fluorescence are presented. The first one allows the combined analysis of fluorescence excitation-emission matrix (EEM) with chromatography technique. The main issue is the coupling of size exclusion chromatography (SEC) with spectroscopy by the use of an absorption and a fluorescence spectrometer as additional detectors. These allow a detailed characterization of humic substances depending on their molecular size, concentration and optical properties. For the evaluation of the resulting complex data, a model based on non-negative matrix factorization, which is also presented in this article, was developed. From the results of the examined humic substances standards, the second method was developed. It allows the characterization and quantification of humic substances fluorescence of a natural water sample solely on the basis of an excitation-emission matrix. The validation of the model is carried out within the framework of extensive analysis of real water samples.

  3. Comparative evaluation of humic substances in oral drug delivery

    PubMed Central

    Mirza, Mohd. Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M.; Iqbal, Z.

    2011-01-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ–HA and CBZ–FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ–HA (1:2) demonstrated better result than any other complex. PMID:25755978

  4. Role of humic substances in the formation of nanosized particles of iron corrosion products

    NASA Astrophysics Data System (ADS)

    Pankratov, D. A.; Anuchina, M. M.

    2017-02-01

    The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid-base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

  5. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  6. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  7. Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland

    USGS Publications Warehouse

    Watt, B.E.; Malcolm, R.L.; Hayes, M.H.B.; Clark, N.W.E.; Chipman, J.K.

    1996-01-01

    Humic substances are amorphous organic macromolecules responsible for the hue of natural waters. They are also known to be precursors of mutagens formed on chlorination prior to distribution of drinking water. In this study humic substances from the waters of primary streams, from major rivers, and from reservoirs were isolated and fractionated into humic acids (HA), fulvic acids (FA) and XAD-4 acids using columns of XAD-8 and of XAD-4 resins in tandem, and the fractions from the different sources were chlorinated and assayed for mutagenicity. CPMAS 13C NMR spectroscopy showed marked differences in compositions not only between HA, FA, and XAD-4 acids from the same water samples, but also between the same fractions from water samples from different watersheds. There were found to be strong similarities between the fractions from watersheds which had closely related soil types. Aromaticity was greatest in HAs, and lowest in XAD-4 acids, and carboxyl contents and aliphatic character were greatest in the XAD-4 acids. Carbon content decreased in the order HA > FA > XAD-4 acids, and amino acids and neutral sugars contents decreased in the order HA > XAD-4 > FA. Titration data complemented aspects of the NMR data, demonstrating that carboxyl content decreased in the order XAD-4 acids > FA > HA, and indicated that phenolic character was highest in HAs and lowest in the XAD-4 acids. All samples tested gave rise to bacterial mutagens on chlorination. Although the mutagenicities were of the same order of magnitude for the chlorinated humic samples from the different sources, the samples which showed the greatest number of revertant bacterial colonies were from the Thames and Trent, large rivers with humic materials from diverse environments, and relatively high in amino acid contents.

  8. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  9. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins

    NASA Astrophysics Data System (ADS)

    Brevet, Julien; Claret, Francis; Reiller, Pascal E.

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu 3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D 0 → 7F 2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu 3+ ( λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/ I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/ I614.7 = 1.2-1.3, whilst the LHA

  10. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins.

    PubMed

    Brevet, Julien; Claret, Francis; Reiller, Pascal E

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu(3+) at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components tau(1) and tau(2) are in the same order of magnitude for all the samples, i.e., 40 (7)F(2) transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu(3+) (lambda(max) = 615.4 nm), and the humic samples share almost the same lambda(max) approximately 614.5 nm. The main differences between the samples reside in a shoulder around lambda approximately 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around lambda approximately 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I(612.5)/I(614.7) = 1.1, KFA

  11. Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states.

    PubMed

    Halladja, Sabrina; Ter Halle, Alexandra; Aguer, Jean-Pierre; Boulkamh, Abdelaziz; Richard, Claire

    2007-09-01

    To probe the reactivity of 2,4,6-trimethylphenol with humic triplet excited states, we investigated its influence on the humic substances-mediated photooxygenation offurfuryl alcohol. Elliott soil humic and fulvic acids were employed for these experiments. When added in the concentration range of 10(-4) - 10(-3) M, 2,4,6-trimethylphenol inhibited furfuryl alcohol photooxygenation to an extent depending on its concentration. The inhibiting effect decreased as the oxygen concentration was increased. By postulating that 2,4,6-trimethylphenol competes with oxygen for reaction with humic triplet excited states and with furfuryl alcohol for reaction with singlet oxygen, we obtained kinetic laws describing the consumption profiles of furfuryl alcohol and 2,4,6-trimethylphenol. Experimental rates of 2,4,6-trimethylphenol and furfuryl alcohol loss could be satisfactorily fitted with 1.09-1.16 for the ratio k2/k3, where k2 and k3 are the reaction rate constants of humic triplet excited states with oxygen and 2,4,6-trimethylphenol, respectively. These types of experiments could be extended to a variety of substrates to measure their reaction rate constants with humic triplet excited states.

  12. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners.

    PubMed

    Han, Young-Soo; Lee, Jai-Young; Miller, Carol J; Franklin, Lance

    2009-05-01

    A detailed characterization was performed on the humic substances present in landfill leachate derived from the older (10-year) and younger (6-month) municipal landfill cells at a site in Inchion, Korea. The characterization focused on the humic and fulvic acid components of the leachate, relying on information gleaned from the UV/visible spectroscopy, molecular weight distribution, and Fourier transform infrared spectroscopy. The effect of the leachates, and specific components of the leachates, on the hydraulic conductivity of a geosynthetic clay liner (GCL), was evaluated. The humic acid extracted from the older leachate was composed primarily of high molecular weight and aromatic compounds, which is typical for humic acids. However, the humic acid extracted from the younger leachate showed characteristics more similar with fulvic acids, indicating that the younger humic acid was at the initial stage of humification. The hydraulic conductivity of the GCLs to the humic and fulvic acids of the older and younger leachate was similar to those permeated with the distilled deionized water (DI). However, the hydraulic conductivity of the samples tested with the raw leachate was more than 200 times the DI value. This fact suggests that cations present in leachate, rather than humic substances, are the key factor in the increase of the permeability.

  13. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  14. Influence of biochar addition on the humic substances of composting manures.

    PubMed

    Jindo, Keiji; Sonoki, Tomonori; Matsumoto, Kazuhiro; Canellas, Luciano; Roig, Asunción; Sanchez-Monedero, Miguel A

    2016-03-01

    Application of biochar (10% v/v) to a manure composting matrix was investigated to evaluate its effect on the chemical composition of humic substances during the composting process. The characteristics of the humic acid (HA) and fulvic acid (FA) fractions were analyzed in compost mixtures originating from two different manures (poultry manure (PM) and cow manure (CM)). The C contents of HA and FA from the manure compost/biochar blends (PM+B and CM+B) were higher than those from PM and CM, with an enhanced recalcitrant fraction, as determined by thermogravimetric analysis. Spectroscopic analysis showed that enrichment of aromatic-C and carboxylic-C occurred in the FA fractions of PM+B and CM+B to a greater extent than in PM and CM. Biochar addition into the composting mixture improved the final compost quality, especially for the light humified fraction (FA).

  15. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    ERIC Educational Resources Information Center

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  16. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  17. The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis

    SciTech Connect

    Pempkowiak, J.; Kozuch, J. ); Southon, T. )

    1994-01-01

    Laboratory experiments revealed that both concentration and origin of humic substances (HS) influence the accumulation rates of cadmium by the blue mussel Mytilus edulis. In the concentration of humic substances typical of seawater, the increase is about 60% and 100%, respectively, for aquatic and sedimentary humic substances. The phenomenon was attributed to the stimulation of cadmium uptake due to complexing properties of the substances toward cadmium. Complexing capacity of sedimentary humic substances was found to be 0.57 [mu]g/mg HS, that of aquatic substances 0.41 [mu]g/mg HS. Cross Polarization Magic Angle Spinning (CP/MAS) [sup 13]C NMR of the investigated humic substances revealed differences in the spectra at about 175, 100, 55 and 32 ppm. This was attributed to the varying content of oxygen containing functional groups involved in formation of complexes with metal ions. 8 refs., 4 figs., 3 tabs.

  18. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.

    PubMed

    Martínez, Claudia M; Celis, Lourdes B; Cervantes, Francisco J

    2013-11-01

    The present study reports a novel treatment concept combining the redox-mediating capacity of immobilized humic substances with the biodegrading activity of anaerobic sludge for the simultaneous removal of two representative pollutants of textile wastewaters (e.g., phenol and Reactive Red 2 (RR2)) in a high-rate anaerobic reactor. The use of immobilized humic substances (1 g total organic carbon (TOC) L(-1), supported on an anion exchange resin) in an upflow anaerobic sludge blanket (UASB) reactor increased the decolorization efficiency of RR2 (~90 %), extent of phenol oxidation (~75 %), and stability as compared to a control UASB reactor operated without immobilized humic substances, which collapsed after 120 days of dye introduction (50-100 mg L(-1)). Increase in the concentration of immobilized humic substances (2 g TOC L(-1)) further enhanced the stability and efficiency of the UASB reactor. Detection of aniline in the effluent as RR2 reduction product confirmed that reduction of RR2 was the major mechanism of dye removal. This is the first demonstration of immobilized humic substances serving as effective redox mediators for the removal of recalcitrant pollutants from wastewater in a high-rate anaerobic bioreactor. The novel treatment concept could also be applicable to remove a wide variety of contaminants susceptible to redox conversion, which are commonly found in different industrial sectors.

  19. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface.

    PubMed

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-08

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of (14)C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth's subsurface.

  20. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  1. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity.

  2. Spectroscopic in situ examination of interactions of rare earth ions with humic substances.

    PubMed

    Chen, Yao; Fabbricino, Massimiliano; Benedetti, Marc F; Korshin, Gregory V

    2015-01-01

    This study utilized the methods of fluorescence quenching and differential absorbance to probe in situ the extent and the nature of the interactions between rare earth ions (REIs) and humic substances. Experiments were conducted with the standard Suwannee river humic acid (SRHA) in the presence of varying amount of lanthanum, europium and terbium. The data of differential absorbance showed that the mechanism of SRHA-metal complexation was largely the same for all the examined REIs. In all cases several discrete bands whose properties were discerned via numerical decomposition of the differential spectra absorbance were observed. Their nature was examined based on the comparison of the experimental data and those of NICA-Donnan modeling carried out for Eu³⁺. The observed effects suggested that the changes of SRHA absorbance induced by REIs binding are likely to be caused by a bathochromic shift of the absorbance bands associated with such chromophores. The intensity of the Gaussian band with a maximum at 387 nm was observed to be proportional to the total concentration of SRHA-bound REIs. The data obtained in this study demonstrate the existence of complex yet quantifiable changes of the spectroscopic properties of humic species in the presence of REIs and their utility to quantify modes of interactions in such systems.

  3. A method for quantitative analysis of aquatic humic substances in clear water based on carbon concentration.

    PubMed

    Tsuda, Kumiko; Takata, Akihiro; Shirai, Hidekado; Kozaki, Katsutoshi; Fujitake, Nobuhide

    2012-01-01

    Aquatic humic substances (AHSs) are major constituents of dissolved organic matter (DOM) in freshwater, where they perform a number of important ecological and geochemical functions, yet no method exists for quantifying all AHSs. We have developed a method for the quantitative analysis of AHSs based on their carbon concentration. Our approach includes: (1) the development of techniques for clear-water samples with low AHS concentrations, which normally complicate quantification; (2) avoiding carbon contamination in the laboratory; and (3) optimizing the AHS adsorption conditions.

  4. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    PubMed

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results.

  5. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy.

    PubMed

    Hur, Jin; Jung, Ka-Young; Jung, Young Mee

    2011-04-01

    The spectral responses of a leaf litter derived humic substance (LLHS) and Suwannee River fulvic acid (SRFA) upon ultraviolet (UV) A irradiation were characterized using two-dimensional correlation spectroscopy (2D-COS) based on the absorption and the synchronous fluorescence spectra at different irradiation times. A 12 day irradiation on the humic substances (HS) resulted in higher reduction of the absorbance relative to the dissolved organic carbon concentration, suggesting that aromatic chromophores were preferentially oxidized and/or non UV-absorbing compounds were generated by the photobleaching. Synchronous fluorescence spectra revealed the preferential removal of fulvic-like and humic-like fluorophores and delayed response of protein-like fluorescence upon the irradiation. The spectral features at long wavelengths (>430 nm) appear to be affected by intra-molecular interactions of the individual chromophores associated with shorter wavelengths. Absorption-based 2D-COS demonstrated that there are three types of absorption bands for the two HS, which changed sequentially in the order of 290-400 nm → 200-250 nm → 250-290 nm. In addition, two or three distinctive fluorescence bands in response to the irradiation were identified from 2D-COS. The sequential orders and the associated wavelength bands were possibly explained by the irradiation wavelengths and the differences between direct and indirect photochemical reactions. The interpretation of the 2D-COS results was very consistent with the kinetic rate constants individually calculated at several discrete wavelengths. Our study demonstrated that 2D-COS could be used as a powerful tool in identifying distinctive bands of HS that have dissimilar behavior and the associated sequential orders by visualizing the spectral changes at continuous wavelengths.

  6. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Machekhina, K. I.; Gryaznova, E. N.

    2016-02-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters.

  7. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  8. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  9. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  10. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  11. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  12. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    SciTech Connect

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  13. The role of humic substances in the acidification response of soil and water - results of the Humic Lake Acidification Experiment (HUMEX)

    SciTech Connect

    Gjessing, E.T. )

    1994-01-01

    Major results of the Humic Lake Acidification Experiment (HUMEX) are summarized, based on 2 y of pretreatment and 2.5 y of posttreatment data. The major objectives of the HUMEX project are to quantify the role of acid deposition on the properties of humic substances (HS) and the role of humic substances (HS) in the acidification processes that occur in soil and water. The project involves artificial acidification of one half of a divided dystrophic lake and the corresponding catchment. A combination of sulphuric acid and ammonium nitrate has been applied via sprinkler systems, mounted on trees, during precipitation events since 1990. The treatment has resulted in small changes in water quality, including an increase in SO[sub 4], NO[sub 3], and H[sup +] concentrations in the lake water and in the soil water of some of the upper soil horizons, and small changes in the nature of the HS. The results of biological studies show increased toxicity in fish, increase in the phytoplankton primary production, and disappearance of some of the dominating species of zooplankton. Epiphytic growth increased in the treated basin, whereas a group of macrophytes was reduced. Present knowledge of the relationships between chemical changes and biological response is not sufficient to explain the observed changes in biota. 22 refs., 1 fig.

  14. Decreasing toxic and mutagenic activity of soils through the application of humic substances

    NASA Astrophysics Data System (ADS)

    Gorova Alla, I.; Pavlichenko Artem, 2.; Klimkina Iryna, 3.

    2009-04-01

    Based on an example of conditions on mining industry land adjacent to the Dnepr River in the Dnepropetrovsk Region (Ukraine), the ecological quality of the soils was evaluated by cytogenetic methods and, in parallel, the efficiency of using humates obtained from brown coal of the Alexandria deposit was also researched. During an ecological monitoring programme from 1997 to 2007, the genetic characteristics of soils at 12 locations in Dnepropetrovsk, and at 33 locations in four other industrial mining areas in the region, was studied. A theoretical basis for the use of humic substances for blocking the migration paths of ecological toxic-matter within a soil-to-plant system was reasoned, namely that introducing natrium humate into the soil would promote a normalization of the cell division processes and a reduction in the chromosome aberration rate in the root meristem of the biological indicators. Laboratory tests involved growing seeds of an indicator plant (Pisum sativum L.) in the different soils, to some of which humic substances had been added. The data showed evidence that the soils of the region display a rather patchy picture in terms of toxic and mutagen features. This was obvious from the variety of levels on the mitotic index, as well as from the increase of 5 to 24 times the frequency of aberrant chromosomes. Introducing 0.01per cent of a Christecol water solution into a substratum for growing the indicator plant apparently reduced (P<0,01) the level of the chromosome aberrations in the meristem cells of the test material. The mutagenic rates of the soils during the test was reduced by 1.5 to 4 times and, at the same time, a reduction of the soil toxic rates was also observed. The reduction in chromosome aberration levels in the cells of the tested materials for the soils in the different city districts, varied from 2.9 to 12.4 times. Importantly, a reliable reduction in the genetic damage under the influence of humic substances was observed in all test

  15. Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands.

    PubMed

    Park, Ha Ju; Kim, Dockyu

    2015-01-01

    Humic substances (HS), an important fraction of soil organic carbon, are distributed widely throughout cold environments. A total of cold-adapted 122 bacterial strains were isolated from 66 Alaska grassland soil samples based on their ability to grow on humic acids (HA), a main fraction of HS, as a carbon and energy source. These isolates were identified based on 16S rRNA gene sequencing, with class Bacilli (79.5%) and γ-Proteobacteria (17.1%) comprising the largest groups. Among them, 45 strains, mainly Paenibacillus (27 strains) and Pseudomonas (15 strains), were selected for further screening. Two strains (Pseudomonas sp. PAMC 26793 and Paenibacillus sp. PAMC 26794) most efficiently degraded HA, but showed significant differences in their ability to grow on various monocyclic aromatics, which are putative degradative metabolites of HS. Fourier transform infrared spectra also showed substantial but different changes in HA chemical structure after incubation with each strain. Gel permeation chromatography demonstrated that depolymerization and polymerization of HA occurred during HS degradation by these newly isolated microbes.

  16. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity.

    PubMed

    Litvin, Valentina A; Minaev, Boris F

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  17. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Litvin, Valentina A.; Minaev, Boris F.

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  18. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.

    PubMed

    Wolf, Manfred; Kappler, Andreas; Jiang, Jie; Meckenstock, Rainer U

    2009-08-01

    Humic substances (HS) and quinones can accelerate dissimilatory Fe(III) reduction by electron shuttling between microorganisms and poorly soluble iron(III) (hydr)oxides. The mechanism of electron shuttling for HS is not fully understood, but it is suggested that the most important redox-active components in HS are also quinones. Here we studied the influence of HS and different quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. The aquatic HS used were humic and fulvic acids (HA and FA) isolated from groundwater of a deep aquifer in Gorleben (Niedersachsen, Germany). HA stimulated iron reduction stronger than FA down to total HA concentrations as low as 1 mg/L. The quinones studied showed large differences: some had strong accelerating effects, whereas others showed only small effects, no effects, or even inhibitory effects on the kinetics of iron reduction. We found that the redox potentials of the most active quinones fall in a narrow range of -137 to -225 mV vs NHE at pH 7. These results give evidence that the kinetic of microbial iron reduction mediated by electron shuttles is mainly controlled by thermodynamic parameters, i.e., by the redox potential of the shuttle compound, rather than by the proportion of dissolved vs adsorbed compound.

  19. Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances.

    PubMed

    Marang, Laura; Reiller, Pascal E; Eidner, Sascha; Kumke, Michael U; Benedetti, Marc F

    2008-07-15

    In an area that contains high concentrations of natural organic matter, it is expected that it plays an important role on the behavior of rare earth elements (REE), like europium, and of trivalent actinides. Competitive interactions with H+, inorganic species, major cations, e.g. Ca(II) or Mg(II), could influence these metals transport and bioavailability. Competitive experiments between cations, which can bind differently to humic substances and Eu3+, will bring an improved understanding of the competitive mechanisms. The aim of this study is to acquire data for Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary originated humic acid (Gorleben, Germany). The NICA-Donnan parameters for Ca2+, Cu2+, and Eu3+ obtained from competitive binding experiments using Ca2+ or Cu2+ ion selective electrodes were used to model time-resolved laser fluorescence spectroscopy (TRLFS) measurements. Eu3+ and CU2+ are in direct competition for the same type of sites, whereas Ca2+ has an indirect influence through electrostatic binding.

  20. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  1. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  2. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction.

    PubMed

    Sidstedt, Maja; Jansson, Linda; Nilsson, Elin; Noppa, Laila; Forsman, Mats; Rådström, Peter; Hedman, Johannes

    2015-10-15

    Real-time polymerase chain reaction (qPCR) is the cornerstone of DNA analysis, enabling detection and quantification of minute nucleic acid amounts. However, PCR-based analysis is limited, in part, by the presence of inhibitors in the samples. PCR inhibition has been viewed solely as failure to efficiently generate amplicons, that is, amplification inhibition. Humic substances (HS) are well-known inhibitors of PCR amplification. Here we show that HS from environmental samples, specifically humic acid (HA), are very potent detection inhibitors, that is, quench the fluorescence signal of double-stranded DNA (dsDNA) binding dyes. HA quenched the fluorescence of the commonly used qPCR dyes EvaGreen, ResoLight, SYBR Green I, and SYTO 82, generating lowered amplification plots, although amplicon production was unaffected. For EvaGreen, 500 ng of HA quenched nearly all fluorescence, whereas 1000 ng of HA completely inhibited amplification when applying Immolase DNA polymerase with bovine serum albumin (BSA). Fluorescence spectroscopy measurements showed that HA quenching was either static or collisional and indicated that HA bound directly to the dye. Fulvic acid did not act as a qPCR detection inhibitor but inhibited amplification similarly to HA. Hydrolysis probe fluorescence was not quenched by HA. Detection inhibition is an overlooked phenomenon that needs to be considered to allow for development of optimal qPCR assays.

  3. Lability of heavy metal species in aquatic humic substances characterized by ion exchange with cellulose phosphate.

    PubMed

    Rocha, J C; Toscano, I A; Burba, P

    1997-01-01

    Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.

  4. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants.

  5. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  6. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  7. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  8. Evaluation of salinity effect on quantitative analysis of aquatic humic substances using nonionic DAX-8 resin.

    PubMed

    Kida, Morimaru; Ohtsuka, Toshiyuki; Kato, Taku; Suzuki, Takeshi; Fujitake, Nobuhide

    2016-03-01

    A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity.

  9. Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity.

    PubMed

    Grillo, Renato; Clemente, Zaira; de Oliveira, Jhones Luis; Campos, Estefânia Vangelie Ramos; Chalupe, Victor C; Jonsson, Claudio M; de Lima, Renata; Sanches, Gabriela; Nishisaka, Caroline S; Rosa, André H; Oehlke, Kathleen; Greiner, Ralf; Fraceto, Leonardo F

    2015-04-09

    Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.

  10. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    PubMed

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p < 0.05) except in Liyushan mud volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  11. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  12. A meta-analysis of plant-growth response to humic substance applications

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Tim

    2013-04-01

    Humic substances (HS) are a category of naturally occurring organic compounds that arise from the decomposition and transformation of plant, animal and microbial residues (Maccarthy 2001). The loss of humic material, together with overall reductions in soil organic matter, is of concern because they play important roles in maintaining key soil functions and plant productivity (Lal 2004). Consequently, there is interest in the application of HS-based amendments, often derived from agricultural wastes (e.g composts) to remediate and/or maintain soil health (Quilty and Cattle 2011). In light of the potential benefits of HS, together with their inconsistent performance under field conditions, we sought to quantitatively review the effects of HS on plant growth, by undertaking a meta-analysis of the literature. A total of 390 papers were originally selected from the current literature. A number of criteria were applied to reduce this number to 81, from which the meta-analysis was undertaken. The 81 papers comprised 57 studies presenting data on shoot (or total) dry weight and 39 studies reporting root dry weight. As part of the meta-analysis we attempted: (i) to quantify the magnitude and likelihood of plant growth promotion, in terms of shoot and root biomass, resulting from HS application, (ii) to determine the influence of environmental conditions, plant type, humic substance properties, and the manner of application on plant growth response to HS, (iii) to identify gaps in our understanding of the interaction of HS with plants, and (iv) to provide some general recommendations for the practical use of HS in agronomic systems and suggestions for future work. Some of the key findings from this meta-analysis included: Many papers lack details on HS chemical characteristics The application of HS needs to be tailored to the environmental conditions in which they will be used. The effect of HS on shoot biomass was not only dependent on the source and rate of application

  13. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  14. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    PubMed

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  15. Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-07-01

    Differences relating to the ability of various types of humic substances (HS) to influence toxicity of pollutants have been reported in the literature, but there still remains a gap in understanding whether various HS will have the same influence on the toxicity of acid mine drainage (AMD). This study investigated differences in the ability of Aldrich humic acid (AHA), Suwannee River humic acid and Suwannee River fulvic acid to decrease toxicity of AMD to the freshwater shrimp (Caridina sp. D). Toxicity tests were conducted over 96 h and used Mount Morgan open pit water as source of AMD and Dee River water as control/diluents. Concentrations of 0-4 % AMD at 0 mg/L HS, 10 mg/L AHA, 10 mg/L Suwannee River humic acid and 10 mg/L Suwannee River fulvic acid were used. Significantly higher survival of shrimp was recorded in the HS treatments compared with the treatment containing no HS. No significant differences were found among HS type. HS considerably increased LC50 values irrespective of type, from 1.29 (0 mg/L HS) to 2.12 % (AHA); 2.19 (Suwannee River humic acid) and 2.22 % (Suwannee River fulvic acid). These results support previous work that HS decrease the toxicity of AMD to freshwater organisms, but with the novel finding that this ability occurs irrespective of HS type. These results increase the stock of knowledge regarding HS and may contribute to a possible remediation option for AMD environments.

  16. Stabilization of Nanoparticulate HgS by Thiols and Humic Substances During HgS Precipitation

    NASA Astrophysics Data System (ADS)

    Hsu-Kim, H.; Deonarine, A.

    2008-12-01

    In the aquatic environment mercury has a strong affinity for reduced sulfur-containing ligands such as inorganic sulfides and thiolate functional groups in natural organic matter (NOM). Complexation of aqueous Hg(II) is particularly important because coordination to inorganic sulfide and humic compounds governs Hg(II) speciation (and subsequent bioavailability and mobility) in contaminated water and sediment. The purpose of this study was to explore the potential for NOM-coated HgS nanoparticles in the aquatic environment. HgS precipitation experiments were conducted in the presence of natural organic acids that are prevalent in surface water and sediment porewater. Dynamic light scattering was used to the monitor the size of HgS particles precipitating over time. The results indicated that humic substances decreased growth rates of precipitating HgS particles and stabilized particles with aggregate diameters smaller than 0.2 μm for at least 8 hours. Thiol-containing low molecular weight acids such as cysteine and thioglycolate also decreased growth of HgS particles whereas the hydroxyl-containing acids (serine and glycolate) did not affect particle growth rates. As the humic and thiol concentration increased in solution, growth rates of HgS particles decreased. Growth rates of the aggregates increased in solutions with greater ionic strength. Nanoparticles of HgS would be possible in aquatic environments where HgS precipitation is possible. We conducted equilibrium speciation calculations to determine HgS(s) saturation indices under conditions typical for sediment porewater. The calculations indicated that the metacinnabar saturation index was 1 to 3 orders of magnitude above or below saturation, depending on Hg-(bi)sulfide and Hg-NOM binding constants, which vary by orders of magnitude. These insights suggest that HgS nanoparticles may exist in surface waters and porewater of contaminated sediments as a result of kinetically-hindered mineralization reactions. Hg

  17. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  18. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2013-07-01

    Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC.

  19. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments.

  20. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.

    PubMed

    Park, Ha Ju; Chae, Namyi; Sul, Woo Jun; Lee, Bang Yong; Lee, Yoo Kyung; Kim, Dockyu

    2015-04-01

    Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48% after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172% during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0%), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

  1. Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water

    NASA Astrophysics Data System (ADS)

    Okochi, H.; Sato, E.; Matsubayashi, Y.; Igawa, M.

    2008-03-01

    Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m, p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269-276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L ( n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L ( n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 10 2 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and

  2. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  3. Effects of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jussi

    The present study focused on the accumulation of benzo(a)pyrene (BaP), hexachlorocyclohexane (lindane), pentachlorophenol (PCP) and dehydroabietic acid (DHAA), from a natural humic water (DOC 18 mg/l) and a humus-free reference water, in Daphnia magna (Cladocera) and nymphs of the mayfly Heptagenia fuscogrisea (Ephemeroptera). Effects of water pH ranging from 3.5 to 8.5 was examined. The partition coefficients (Kp) of BaP and PCP to organic material were measured by equilibrium dialysis, and in both cases increases in Kp values were noticed with decreasing pH. For neutral compounds (BaP and lindane), the bioconcentration factor (BCF) was the highest at pH 6.5 in the control water. Humic substances significantly lowered the accumulation of BaP, but had no effect on the accumulation of lindane. The lowest test pH gave the highest BCF value, and increasing pH decreased the BCF values of weak organic acids (PCP and DHAA) in the control experiments. This was because the unionized forms of these compounds accumulate better than the more hydrophilic ionized forms. The presence of dissolved organic substances lowered the accumulation of PCP in H. fuscogrisea between pH 4.5 and 7.5 and had no effect at pHs 3.5 and 8.5. Humic substances lowered the accumulation of DHAA in D. magna between pH 5.5 and 6.5 and had no effect when pH was over 7. In experiments with H. fuscogrisea humic substances had no effect on the accumulation of DHAA.

  4. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    NASA Astrophysics Data System (ADS)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  5. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  6. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.

    PubMed

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2016-01-15

    The main objective of this work is to conduct a comprehensive structural characterization of humic substances using the following experimental techniques: FTIR, 1H NMR and several UV–Vis parameters (Specific UV Absorbance at 254 nm or SUVA254, SUVA280, A400, the absorbance ratios A210/254, A250/365, A254/203, A254/436, A265/465, A270/400, A280/350, A465/665, the Absorbance Slope Index (ASI), the spectral slopes S275–295, S350–400 and the slope ratio SR). These UV–Vis parameters have also been correlated with key properties of humic substances such as aromaticity, molecular weight (MW) and trihalomethane formation potential (THMFP). An additional objective of this work is also to evaluate the usefulness of these techniques to monitor structural changes in humic substances produced by the ozonation treatment. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SRFA, Suwannee River Humic Acid Standard: SRHA and Nordic Reservoir Fulvic Acid Reference: NLFA) and the other one was a terrestrial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: AHA). The UV–Vis parameters showing the best correlations with aromaticity in this study were SUVA254, SUVA280, A280/A350 ratio and A250/A364 ratio. The best correlations with molecular weight were for SUVA254, SUVA280 and A280/A350 ratio. Finally, in the case of the THMFP it was STHMFP-per mol HS the parameter showing good correlations with most of the UV–Vis parameters studied (especially with A280/A350 ratio, A265/A465 ratio and A270/A400 ratio) whereas STHMFP-per mg C showed poor correlations in most cases. On the whole, the UV–Vis parameter showing the best results was A280/A350 ratio as it showed excellent correlations for the three properties studied (aromaticity, MW and THMFP). A decrease in aromaticity following ozonation of humic substances can

  7. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    PubMed

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-04

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  8. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  9. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  10. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle. PMID:27100573

  11. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle. PMID:27478277

  12. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Hoch, A. R.; Reddy, M. M.; Aiken, G. R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO 3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (Ω = 4.5), P CO2 (10 -3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not.

  13. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  14. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    SciTech Connect

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  15. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  16. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    PubMed

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  17. Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water

    NASA Astrophysics Data System (ADS)

    Hoffer, A.; Kiss, G.; Blazsó, M.; Gelencsér, A.

    2004-03-01

    A representative lignin-type component from biomass burning aerosol has been shown to react with OH radicals in model cloud water yielding colored organic species. In this paper we investigated the chemical properties of the complex reaction products formed from 3,5-dihydroxybenzoic acid. The reaction was followed by UV-VIS spectrophotometry, liquid chromatography, electrospray-mass spectrometry, thermally assisted hydrolysis and methylation-gas chromatography/mass spectrometry and a thermal method. This paper provides experimental proofs that actually larger molecular weight species are formed in the aqueous phase by free radical oligomerization. The features observed by all analytical techniques closely resemble those found for natural humic acids and HULIS found in rural and biomass burning aerosol. Therefore such processes are assumed to produce the ubiquitous humic-like substances (HULIS) in atmospheric aerosol. Since these species show intense absorbance in the lower visible to UV range, they might also be important in atmospheric absorption of solar radiation.

  18. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  19. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study.

    PubMed

    Ballesteros, S García; Costante, M; Vicente, R; Mora, M; Amat, A M; Arques, A; Carlos, L; Einschlag, F S García

    2017-01-18

    In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, SBOs). In particular, complexation of these substances with iron and changes along a photo-Fenton process have been studied. Recorded EEMs were decomposed by using parallel factor analysis (PARAFAC). Three fluorescent components were identified by PARAFAC modeling of the entire set of SBO solutions studied. The EEM peak locations (λex/λem) of these components were 310-330 nm/400-420 nm (C1), 340-360 nm/450-500 nm (C2), and 285 nm/335-380 nm (C3). Slight variations of the maximum position of each component with the solution pH were observed. The interaction of SBO with Fe(iii) was characterized by determining the stability constants of the components with Fe(iii) at different pH values, which were in the order of magnitude of the ones reported for humic substances and reached their highest values at pH = 5. Photochemical experiments employing SBO and Fe(iii), with and without H2O2, showed pH-dependent trends for the evolution of the modeled components, which exhibited a strong correlation with the efficiency reported for the photo-Fenton processes in the presence of SBO at different pH values.

  20. Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin

    NASA Astrophysics Data System (ADS)

    Mukai, Hitoshi; Ambe, Yoshinari

    A brown substance having the solubility characteristics of humic acid was extracted from airborne particulate matter sampled in a rural area of Japan. This brown substance contributed 0.6-3% of the total carbon in airborne particulate matter. This fraction also contained pollen protein in samples collected during the pollen season. Patterns of elution from gel permeation chromatography suggested a molecular weight range from 500 to 10,000, with a still higher upper limit for one sample. The infrared spectra were compared with those of humic acid from the local soil, extracts from dead leaves, smoke from burning plant matter, and soot from automotive exhaust, all possible sources of the brown substance. The closest similarity was with the extract smoke. This identification is strengthened by lack of correlation of the brown substance with aluminum, a tracer for soil content, and a value of K/Fe ratio in the associated particulate matter higher than any plausible source other than combustion. It is probable that the primary source of this brown, high molecular weight acidic materials is agricultural burning.

  1. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    NASA Astrophysics Data System (ADS)

    Voisin, Didier; Jaffrezo, Jean-Luc; Houdier, StéPhan; Barret, Manuel; Cozic, Julie; King, Martin D.; France, James L.; Reay, Holly J.; Grannas, Amanda; Kos, Gregor; Ariya, Parisa A.; Beine, Harry J.; Domine, Florent

    2012-07-01

    Snowpacks contain many carbonaceous species that can potentially impact on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were investigated in various types of snow: precipitating snows, remobilized snows, wind slabs and depth hoars. EC was found to represent less than 5% of the Total Carbon Content (TCC = EC + WinOC + DOC), whereas WinOC was found to represent an unusual 28 to 42% of TCC. Snow type was used to infer physical processes influencing the evolution of different fractions of DOC. DOC is highest in soil influenced indurated depth hoar layers due to specific wind related formation mechanisms in the early season. Apart from this specific snow type, DOC is found to decrease from precipitating snow to remobilized snow to regular depth hoar. This decrease is interpreted as due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. Depending on the relative proportions of diamond dust and fresh snow in the deposition of the seasonal snowpack, we estimate that 31 to 76% of DOC deposited to the snowpack is reemitted back to the boundary layer. Under the assumption that this reemission is purely photochemical, we estimate an average flux of VOC out of the snowpack of 20 to 170 μgC m-2 h-1. Humic like substances (HULIS), short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC + WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or a possible marine source.

  2. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app) humic substance in methanol/water mixtures. Modification of humic structure and hydrophilic interaction (such as Ca(2+) bridge and same-charge repulsion) is considered a relevant process that possibly restricts the applicability of the cosolvency model.

  3. Removal of humic substances from water by means of calcium-ion-enriched natural zeolites.

    PubMed

    Capasso, S; Colella, C; Coppola, E; Iovino, P; Salvestrini, S

    2007-03-01

    The ability of the natural zeolited Neapolitan Yellow Tuff (NYT) enriched with calcium ions to remove humic acids from water was evaluated by batch adsorption equilibrium tests and dynamic experiments carried out by percolating humic acid solutions through a small NYT column (breakthrough curves). Under the experimental condition explored, the sorption capacity increases with the ionic strength and has the highest value at pH 7.4. The partition coefficient for a low concentration of humic acid ([humic acid] --> 0), at pH 7.4 in 0.01 M sodium chloride, was approximately 1000 L/kg, versus the value of approximately 100 L/kg in the absence of the alkaline metal salt. Therefore, after humic acids have been adsorbed in a column filled with the calcium-ion-enriched tuff, a reduction of the salt concentration in the ongoing solution enhances the release of the adsorbed material. These findings show that NYT can be used for the removal of humic acids from water.

  4. SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste.

    PubMed

    Sadi, Baki B M; Wrobel, Kazimierz; Wrobel, Katarzyna; Kannamkumarath, Sasi S; Castillo, J R; Caruso, J A

    2002-12-01

    In this work, the speciation of elements in compost was studied with emphasis on their binding to humic substances. In order to assess the distribution of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, U, Th and Zn among molecular weight fractions of humic substances, the compost extract (extracted by 0.1 mol l(-1) sodium pyrophosphate) was analyzed by size exclusion chromatography coupled on-line with UV-Vis spectrophotometric and ICP-MS detection. Similar chromatograms were obtained for standard humic acid (Fluka) and for compost extract (254 nm, 400 nm) and three size fractions were operationally defined that corresponded to the apparent molecular weight ranges > 15 kDa, 1-15 kDa and < 1 kDa. The percentage of total element content in compost that was leached to the extract ranged from 30% up to 100% for different elements. The elution profiles of Co, Cr, Cu, Ni and Pb (ICP-MS) followed that of humic substances, while for other elements the bulk elution peak matched the retention time observed for the element in the absence of compost extract. Spiking experiments were carried out to confirm elements' binding and to estimate the affinity of individual elements for humic substances derived from compost. The results obtained indicated the following order of decreasing affinity: Cu > Ni > Co > Pb > Cd > (Cr, U, Th) > (As, Mn, Mo, Zn). After standard addition, further binding of Cu, Ni and Co with the two molecular weight fractions of humic substances was observed, indicating that humic substances derived from compost were not saturated with these elements.

  5. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  6. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that

  7. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    NASA Astrophysics Data System (ADS)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  8. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  9. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  10. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    NASA Astrophysics Data System (ADS)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  11. Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Hong, Juan; Häme, Silja A. K.; Ding, Aijun; Li, Yugen; Yan, Chao; Hao, Liqing; Mikkilä, Jyri; Zheng, Longfei; Xie, Yuning; Zhu, Caijun; Xu, Zheng; Chi, Xuguang; Huang, Xin; Zhou, Yang; Lin, Peng; Virtanen, Annele; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Yu, Jianzhen; Kerminen, Veli-Matti; Petäjä, Tuukka

    2017-03-01

    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55 % for all the regenerated HULIS particles at the temperature of 280 °C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93 % in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45 % in 2 : 2 mixed samples, and to 70 % in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate

  12. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-04-01

    The transport behavior of titanium dioxide nanoparticles (TiO2 NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO2 NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L-1. Facilitated transport of TiO2 NPs was likely attributable to the increased stability of TiO2 NPs and repulsive interaction between TiO2 NPs and quartz sands due to the adsorbed HS. The mobility of TiO2 NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO2 NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl2. In addition, calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO2 NPs, while the secondary energy minimum could play an important role in the retention of TiO2 NPs at 100 mmol L-1 NaCl. Straining and gravitational settlement of larger TiO2 NPs aggregates at 1 mg L-1 HS, pH 5.0, and 2 mmol L-1 CaCl2 could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO2 NPs and TiO2 NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L-1 CaCl2. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO2 NPs over the range of solution chemistry examined in this study.

  13. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    PubMed

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique.

  14. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    PubMed

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found.

  15. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    PubMed

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  16. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    PubMed

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products.

  17. Effects of humic substances on the 241Am migration in a sandy aquifer: column experiments with Gorleben groundwater/sediment systems

    NASA Astrophysics Data System (ADS)

    Artinger, R.; Kienzler, B.; Schüßler, W.; Kim, J. I.

    1998-12-01

    Migration experiments were performed to study the influence of aquatic humic substances on the transport behavior of 241Am(III). Four groundwaters with different humic substance concentrations (DOC: 1 to 80 mg/l) were sampled together with Pleistocene aeolian quartz sand from the Gorleben site. Sand, groundwaters and humic substances were characterized by different analytical methods (e.g., ICP-MS, X-ray diffraction, X-ray fluorescence analysis, ultrafiltration). The sand was equilibrated with each groundwater under inert gas atmosphere with 1% CO 2 for a period of at least 3 months. As confirmed by ultrafiltration, the size distribution of humic colloids remained unchanged during equilibration. The hydraulic properties of sand columns were characterized with tritiated water as an inert tracer. Column and batch experiments were carried out with each groundwater as a function of the reaction period and flow velocity. In addition, the influence of the equilibration period of Am with groundwater was investigated prior to the injection into a column. The results revealed that increasing humic substance concentration reduced the Am sorption onto sand and enhanced the transport as colloid-borne Am species. The migration of colloid-borne Am was slightly faster than the groundwater flow velocity. Furthermore, the migration behavior of Am was found to depend on kinetically controlled interaction of humic colloid-bound Am with the sand surface. The application of the laboratory data to natural conditions was examined. The results were found applicable for the assessment of humic colloid facilitated radionuclide migration in natural aquifers.

  18. The lanthanum precipitation method. Part 2: quantification of the conditional interaction constant between technetium(IV) and humic substances.

    PubMed

    Geraedts, K; Maes, A

    2008-09-01

    The interaction between colloidal Tc(IV) species and colloidal Gorleben humic substances (HS) was quantified after application of the La-precipitation method on supernatant solutions obtained under various experimental conditions but at constant ionic strength of the Gorleben groundwater (0.04M). The determined interaction constant LogKHS (2.3+/-0.3) remained unchanged over a large range of Tc(IV) and HS concentrations and was independent of the pH of the original supernatant solution (pH range 6-10), Tc(IV)-HS loading (10(-3)-10(-6)molTcg(-1) HS) and the nature of the reducing surface (Magnetite, Pyrite and Gorleben sand) used for the pertechnetate reduction. The LogKHS value determined by the La-precipitation method is lower than the LogK value obtained from a previous study where the interaction between colloidal Tc(IV) species and Gorleben humic substances was quantified using a modified Schubert approach (2.6+/-0.3). The La-precipitation method allows to accurately determine the amount of Tc(IV) associated with HS but leads to a (small) overestimation of the free inorganic Tc(IV) species.

  19. Humic Substances as Electron Acceptors and Electron Shuttlers in Anaerobic Marine Sediments.

    DTIC Science & Technology

    1998-09-30

    fold after incubation with Geobacter Metallireducens. A direct positive correlation exists between the change in organic radicals and the molar...the humics with a pure culture of Geobacter metallireducens and acetate, and then adding Fe(III) and measuring the resulting Fe(II) using the...fold after incubation with Geobacter metallireducens. A direct positive correlation exists between the change in concentration of organic

  20. Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens.

    PubMed

    Gomez-Rosales, S; de L Angeles, M

    2015-02-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

  1. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  2. Chemical characterization of fractions of dissolved humic substances from a marginal sea—a case from the Southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Yang, Keli; Du, Jinzhou; Zhang, Fenfen; Dong, Yaping; Li, Wu

    2017-03-01

    Marine dissolved organic matter (DOM) is one of the largest dynamic pools of organic carbon in the global carbon cycle, yet DOM is still chemically poorly characterized. To better understand the origin, composition, and cycling of DOM in the China marginal sea, dissolved humic substances (DHS) were isolated from seawaters in two locations in the Southern Yellow Sea. The DHS were subdivided into fulvic acids (FAs), humic acids (HAs) and the XAD-4 fractions. Complementary analytical approaches were used to characterize the isolated DHS samples including stable carbon isotopic composition, Fourier transform infrared spectroscopy (FTIR), 13C cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The results demonstrated that both DHS samples encountered the influences from marine source, indicating that algal and microbial-derived materials are the predominant precursors for the studied samples. The three fractions of DHS showed different properties. FAs presented more aromatic features, whereas HAs contained more aliphatic lipids and proteinaceous materials. The XAD-4 fractions were enriched in 13C and contained more carbohydrates but less aromatic compounds. The lower molecular weight and higher heteroatom content and number of carboxyl groups for the XAD-4 fractions may give them considerable geochemical significance for aspects of trace metal species, bioavailability of pollutants, mineral weathering and water acidification in marine environments.

  3. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis.

    PubMed

    Tadini, A M; Constantino, I C; Nuzzo, A; Spaccini, R; Piccolo, A; Moreira, A B; Bisinoti, M C

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC-MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC-MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation.

  4. Double pH control on humic substance-borne trace elements distribution in soil waters as inferred from ultrafiltration.

    PubMed

    Pédrot, Mathieu; Dia, Aline; Davranche, Mélanie

    2009-11-15

    Colloidal dissolved organic carbon (DOC) is an important carrier phase for trace elements (TE) in subsurface environments. As suggested by previously published field observations, preferential sorption of DOC onto mineral surfaces tends to enrich the solid phase in humic acids. This DOC fractionation may affect the mobility of TE. pH is known to play an important role in the stability of colloids. This study was therefore dedicated to identifying the influence of DOC fractionation on TE mobility. Sequential extraction has been used to provide information on the possible TE carriers within soil (as exchangeable, weak acid soluble, reducible, oxidizable, and nonextractible metal fractions). Batch experiments were carried out to investigate the influence of pH on the detachment of colloids and associated TE. Different groups of elements were identified according to TE behavior during pH changes. Several elements displayed increasing concentrations with decreasing pH. These concentrations can represent an important fraction of the total soil concentration. By contrast, other elements showed increasing concentrations following increasing pH, in association with an increasing amount of colloids in soil solution. Concerning this latter group, two colloidal carrier phases were identified during the pH increase: (i) the first one concerned the majority of elements, which were associated with humic substances remaining in solution, and (ii) the second one involved several TE rather associated with nanooxides. Therefore, DOC fractionation plays a key role in the TE concentration in soil solution during pH changes.

  5. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize.

    PubMed

    Eyheraguibel, B; Silvestre, J; Morard, P

    2008-07-01

    A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials.

  6. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2016-10-25

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  7. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    PubMed

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment.

  8. Influence of the apparent molecular size of aquatic humic substances on colour removal by coagulation and filtration.

    PubMed

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2011-12-01

    This study aims to verify the influence of the apparent molecular size of aquatic humic substances (AHSs) on the effectiveness of coagulation with aluminium sulphate and ferric chloride. Coagulation-filtration tests using the jar test and bench-scale sand filters were carried out with water samples having a true colour of approximately 100 Hazen units and prepared with AHSs of different molecular sizes. Stability diagrams are presented showing regions of > or = 90% and > or = 95% apparent colour removal delineated for each water sample using plots of total metal ion concentration (Al3+ and Fe3+) versus coagulation pH. To achieve the same degree of colour removal, the water samples with smaller apparent molecular sizes and a higher percentage of fulvic acids required higher dosages of both aluminium sulphate and ferric chloride.

  9. Interfacial reactions between humic-like substances and lateritic clay: application to the preparation of "geomimetic" materials.

    PubMed

    Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi

    2014-11-15

    The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic

  10. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  11. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions

    PubMed Central

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  12. Mass spectrometry of humic substances of different origin including those from Antarctica A comparative study.

    PubMed

    Peña-Méndez, E M; Gajdosová, D; Novotná, K; Prosek, P; Havel, J

    2005-10-31

    Mass spectra of humic acids (HA) from different sampling sites (Antarctica, Brazil, Czech Republic, Mexico and USA) and origin (plant, soil, peat, and coal derived) were obtained by laser desorption/ionization time of flight mass spectrometry (LDI-TOF MS). Optimisation of the experimental conditions are given as the optimal value of the laser energy at approximately 20-30% higher than the threshold. Under these conditions, reproducible mass spectra of HA samples were obtained. In the mass spectra the majority of the peaks are observed in the m/z region 100-1000Da. Mass spectra fingerprints of HA were analyzed and, in spite of the differences in their origin, a number of common features and profiles (patterns of peaks) were observed in most of the samples. Very similar structural groups (patterns) of the peaks are present in the m/z range 717-918Da for HA samples of quite different origins, countries or continents. The tandem LDI-TOF MS and multivariate statistical tools allowed us to extract and elucidate underlying information contained in the mass spectra of the HA samples under study. Applying principal components and cluster analysis, it was, e.g. demonstrated that most of the Antarctica HA samples show distinguishable differences when compared with humic acids from other continents and of different origin.

  13. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  14. Enhanced humification by carbonated basic oxygen furnace steel slag--II. Process characterization and the role of inorganic components in the formation of humic-like substances.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nishimoto, Ryo; Nie, Yongfeng

    2012-06-01

    Enhanced humification by abiotic catalysts is a potentially promising supplementary composting method for stabilizing organic carbon from biowastes. In this study, the role of steel slag in the transformation of humic precursors was directly characterized by measuring the variance in dissolved organic carbon (DOC), spectroscopic parameters (E(600)), and the concentration and molecular weight change of humic-like substances (HLS) during the process. In addition, a mechanistic study of the process was explored. The results directly showed that steel slag greatly accelerated the formation of HLS. The findings indicate that Fe(III)-and Mn(IV)-oxides in steel slag act as oxidants and substantially enhance the polycondensation of humic precursors. Moreover, the reaction appears to suppress the release of metals from steel slag to a certain extent under acidic conditions. This can be attributed to the cover of HLS on the external surface of steel slag, which is significant for its environmentally sound reuse.

  15. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  16. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  17. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth.

    PubMed

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  18. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  19. Natural humic substances effects on the life history traits of Latonopsis australis SARS (1888) (Cladocera--Crustacea).

    PubMed

    de Carvalho-Pereira, Ticiana Soares de Andrade; Santos, Thirza de Santana; Pestana, Edilene M S; Souza, Fábio Neves; Lage, Vivian Marina Gomes Barbosa; Nunesmaia, Bárbara Janaína Bezerra; Sena, Palloma Thaís Souza; Mariano-Neto, Eduardo; da Silva, Eduardo Mendes

    2015-02-01

    Cultivation medium is one of the first aspects to be considered in zooplankton laboratory cultivation. The use of artificial media does not concern to reproduce natural conditions to the cultivations, which may be achieved by using natural organic compounds like humic substances (HS). This study aimed to evaluate the effects of a concentrate of dissolved organic carbon (DOC) from the Negro River (NR(1)) and an extraction of humic acids (HA) from humus produced by Eisenia andrei on the life history traits of laboratory-based Latonopsis australis SARS (1888). A cohort life table approach was used to provide information about the effectiveness of NR and HA as supplements for the artificial cultivation of L. australis. Additionally, we seek to observe a maximization of L. australis artificial cultivation fitness by expanding the range of HS concentrations. The first experiment demonstrated that the females of L. australis reared under NR10 (mgDOCL(-1)) may have experienced an acceleration of the population life cycle, as the females have proportionally reproduced more and lived shorter than controls. By contrast, the use of the HA did not improve life history traits considered. The expansion of the concentration range (5, 10, 20 and 50 mgDOCL(-1)) corroborated the patterns observed on the first assay. Results for the fitness estimates combined with shorter lifespans than controls demonstrated trade-offs between reproductive output and female longevity reared under NR conditions, with NR20 been suggested as the best L. australis cultivation medium. This response might be associated with hormone-like effects.

  20. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  1. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  2. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2010-07-01

    Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM) showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  3. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    PubMed

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  4. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2

    USGS Publications Warehouse

    Hejzlar, J.; Szpakowska, B.; Wershaw, R. L.

    1994-01-01

    Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered using 0.1 M NaOH, whereas 98% of the AHS adsorbed onto XAD was released by consecutive elution with 1 M NH4OH (91%) and methanol (7%). Four main fractions of different composition were obtained from each of the alkali-desorbed AHS samples by Sephadex-gel chromatography. General agreement was found in relative amounts, spectroscopic characteristics and composition of corresponding fractions of both isolates except nitrogen content, which was significantly higher in AHS isolated with XAD, apparently due to the reaction of AHS with NH4OH used for the desorption from the resin.Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered

  5. Humic substances and the biogeochemical arsenic cycle in groundwater of the Blackfoot Disease endemic area, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Jean, J.

    2009-12-01

    (V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.

  6. Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soils.

    PubMed

    Botero, Wander Gustavo; de Oliveira, Luciana Camargo; Rocha, Julio Cesar; Rosa, Andre Henrique; Dos Santos, Ademir

    2010-05-15

    Improved agricultural productivity, and reduction of environmental impacts, require studies of the interactions between different soil components. Fertilizers marketed as "organic" or "natural", such as peats or humic substances (HS) extracted from peats, are enriched with macro and micronutrients that, according to the manufacturers, are released to the plant in accordance with its needs. This work investigates the complexation capacity of HS for macro and micronutrient metal species, considering the competition, for HS complexation sites, between non-essential metals (aluminium and lead), present in the soil, and the nutrients. Humic substances were found to possess strong affinities for Pb(II) and Al(III), forming stable complexes, with concomitant release of complexed nutrients. Although HS are already used commercially as organic fertilizers, further studies of methods of HS enrichment, aimed at avoiding losses, are highly desirable from environmental and economic perspectives.

  7. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles.

  8. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  9. Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances.

    PubMed

    Herod, Alan A; Zhuo, Yuqun; Kandiyoti, Rafael

    2003-06-30

    Size-exclusion chromatography (SEC) using 1-methyl-2-pyrrolidinone (NMP) as eluent has been calibrated using various standard polymers and model compounds and applied to the analysis of extracts of coal, petroleum and kerogens, to petroleum vacuum residues, soots, biomass tars and humic substances. Three separate columns of different molecular mass (MM) ranges were used, with detection by UV absorption; an evaporative light scattering detector was used for samples with no UV absorption. Fractionation was useful to separate signal from the less abundant high-mass material, which was normally masked by the strong signal from the more abundant low-mass material in the absence of fractionation. Fractionation methods used to isolate high-mass materials before SEC analysis included planar chromatography, column chromatography and solvent solubility. The apparently large molecules were concentrated into the fractions not soluble in common solvents and were relatively immobile in planar chromatography. All samples and fractions contained some material excluded from the column porosity. Evidence from other techniques suggests that the excluded material is of different structures from that of the resolved material rather than consisting of aggregates of small molecules. We speculate that the excluded material may elute early because the structures of this material are three-dimensional rather than planar or near planar.

  10. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  11. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment.

    PubMed

    Wang, Huawei; Wang, Ya-Nan; Li, Xiaoyue; Sun, Yingjie; Wu, Hao; Chen, Dali

    2016-10-01

    Concentrated leachate from membrane treatment process, which contains large amount of difficult-to-degrade humic substances, can induce potential hazards to ecological environment. In this study, the concentrated leachates from reverse osmosis (RO) and nanofiltration (NF) were treated by continuous ozone generating-reaction integrated equipment, and the removal characteristics of humic substances were analyzed using gel filtration chromatography (GFC), excitation-emission matrix fluorescence spectroscopy (EEM), XAD-8 resin fractionation, and Fourier transform infrared spectroscopy (FTIR). The results of XRD-8 fractionation and SUVA254 showed that the humic substances including humic acid (HA) and fulvic acid (FA), were effectively removed along with the breakdown of aromatic hydrocarbons and decrease in the degree of humification during the ozonation process. After 110min of reaction, HA in both concentrated leachates was completely removed. GFC analysis indicated that both concentrated leachates had much broader distribution after the degradation. The high molecular weight (MW) organic matter was transformed into low molecular weight of <10kDa. The majority of high MW organics in NF concentrate were converted to low MW molecules of 10kDa-1kDa, while those in RO concentrate were decomposed to small MW molecules of <1kDa. The results of EEM analysis implied that the degradation of HA and FA led to a significant decrease in the fluorescence intensity. Though the effluent of two concentrated leachate did not meet the maximum allowable criterion for leachate direct or indirect discharge standard in China, the composition and properties of organic matters in concentrated leachate were changed significantly after entire ozonation reaction, which would be conducive to the further biological treatment or other advanced treatment.

  12. Bioavailability of HOC depending on the colloidal state of humic substances: a case study with PCB-77 and Daphnia magna.

    PubMed

    Gallé, T; Grégoire, Ch; Wagner, M; Bierl, R

    2005-10-01

    Condensed organic matter with higher affinity for hydrophobic organic compounds (HOC) is currently held responsible for slow desorption and concomitant lower bioavailabilities of HOC in sediments and soils. In an experiment with Daphnia magna and IHSS Peat Humic Acid (PHA), we showed that the bioconcentration factor (BCF) of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) was directly related to the charge of the humic colloid, as predicted by the metal-humic binding model WHAM. Consistent with the type of binding to the humic acid (counter-ion accumulation vs. specific binding), increasing the concentration of Na+ and Ca2+ ions generated opposite effects on colloid charge and HOC binding by the humic acid. Condensation as a colloidal phenomenon in solution as well as on surfaces needs to be addressed as a contributor to lower bioavailabilities and, possibly, to slower desorption kinetics.

  13. Effect of metal ions on the molecular weight distribution of humic substances derived from municipal compost: ultrafiltration and size exclusion chromatography with spectrophotometric and inductively coupled plasma-MS detection.

    PubMed

    Wrobel, Kazimierz; Sadi, Baki B M; Wrobel, Katarzyna; Castillo, Juan R; Caruso, Joseph A

    2003-02-15

    The effect of metal ions (Co, Cu, Ni, Pb, Zn) on the molecular weight distribution of humic substances (HSs) obtained from compost is studied. We believe this is the first of this type of study applied in this way to humic substances. Size exclusion chromatography is coupled with two on-line detection systems (spectrophotometric and ICPMS) to study the binding of metal ions by humic substances leached from compost. ICPMS provided highly specific, sensitive, and multielement analytical information that enabled obtaining direct experimental evidence for the participation of metal ions in molecular size distributions of humic compounds. The compost extract or its high molecular weight fraction (>5,000) was put in contact with EDTA or citrate ions, thereby competing with HSs for binding metals. The experiments were carried out by varying the pH maintained by Tris-HCl or CAPS buffer (pH 8.0 and 10.3) and keeping the ionic strength constant. The elution profile of humic substances using UV/ visible detection was compared with those from ICPMS detection of Co, Cu, Ni, Pb, and Zn in the same chromatographic runs. The results obtained suggested that both bridging between small molecules and complexation/ chelation by individual molecules are involved in metal ion binding to humic substances. The use of ICPMS to study the role of metal ions in aggregation/disassociation of humic substances proposed in this work is promising. Coupling element-specific detection with SEC or other separation systems allows better understanding of the mobility and bioaccessibility of elemental species in the environment and further elucidation of the dissolved humic structure.

  14. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    PubMed

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P < 0.05). In conclusion, the 15 and 22.5 g/kg HS administration in drinking water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  15. Effects of americium-241 and humic substances on Photobacterium phosphoreum: Bioluminescence and diffuse reflectance FTIR spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Selivanova, Maria A.; Tarantilis, Petros A.; Polissiou, Moschos G.; Kudryasheva, Nadezhda S.

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of 241Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of 241Am was 2 kBq l-1; [241Am] = 6.5 × 10-11 M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l-1; containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λmax = 481 ± 3 nm; FWHM = 83 ± 3 nm) showing that 241Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of 241Am, BL was initially activated but inhibited after 180 h, while the system 241Am + HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of 241Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  16. Effects of Americium-241 and humic substances on Photobacterium phosphoreum: bioluminescence and diffuse reflectance FTIR spectroscopic studies.

    PubMed

    Kamnev, Alexander A; Tugarova, Anna V; Selivanova, Maria A; Tarantilis, Petros A; Polissiou, Moschos G; Kudryasheva, Nadezhda S

    2013-01-01

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of (241)Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of (241)Am was 2 kBq l(-1); [(241)Am]=6.5×10(-11) M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l(-1); containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λ(max)=481±3 nm; FWHM=83±3 nm) showing that (241)Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of (241)Am, BL was initially activated but inhibited after 180 h, while the system (241)Am+HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of (241)Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  17. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  18. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  19. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    PubMed

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  20. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  1. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  2. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    PubMed

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  3. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  4. Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum.

    PubMed

    Charest, Marie-Hélène; Beauchamp, Chantal J; Antoun, Hani

    2005-04-01

    We investigated the in vitro influence of humic substances (HS) extracted from de-inking paper sludge compost on the inhibition of Pythium ultimum by two compost bacteria, Rhizobium radiobacter (Agrobacterium radiobacter) and Pseudomonas aeruginosa. When low concentrations (5 or 50 mg l(-1)) of HS were added to the culture medium, fungal inhibition by R. radiobacter significantly increased (P<0.01) by 2-3%. In contrast, these low levels of HS had no effect on P. ultimum inhibition by P. aeruginosa. The Fe, chelated by HS, was in part responsible for the decrease of P. ultimum inhibition by the bacteria when increasing amounts of HS were added in the culture medium. The addition of 500 mg l(-1) of humic acids isolated from de-inking paper sludge compost or from fossil origin completely eliminated the inhibition of P. ultimum by R. radiobacter. This Fe effect also stimulated growth of R. radiobacter and reduced its siderophore production in a minimal medium supplemented with HS as sole source of Fe. The results showed that HS influence microbial antagonism when added to a culture medium. However, this effect varies with different factors such as the type of bacteria, concentration of HS, molecular weight and Fe content.

  5. Investigations on the conditional kinetic and thermodynamic stability of aquatic humic substance-metal complexes by means of EDTA exchange, ultrafiltration and atomic spectrometry.

    PubMed

    Van den Bergh, J; Jakubowski, B; Burba, P

    2001-09-13

    The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS-metal species, respectively. Considerable fractions of natural HS-metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS-metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>Cu(II)>Cr(III)>Co(II)>Mn(II).

  6. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  7. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity.

  8. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud.

    PubMed

    Guo, Xiaobo; Huang, Junhao; Lu, Yanyu; Shan, Guangchun; Li, Qunliang

    2016-11-01

    For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased. The FTIR and UV-vis spectroscopy indicated that the aromatization of HS was promoted over the composting process. Adding FGDG increased the unsaturated degree and aromatization of HS. Pyrolysis-GC/MS showed the level of alkane decreased, and the level of benzene and nitrogen compounds increased upon the addition of FGDG. The nitrogen compounds of HS in CPG was significantly higher than that in CP.

  9. Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance.

    PubMed

    Mecozzi, M; Acquistucci, R; Di Noto, V; Pietrantonio, E; Amici, M; Cardarilli, D

    2001-08-01

    The appearance of gelatinous aggregates called mucilages causes serious damages to tourism and fishery industries of the Adriatic Sea. So, many studies have been planned and some of them are still in progress to clarify the origin and causes of the phenomenon. The scientific research has showed that mucilages are produced by several marine organisms when peculiar climatic and trophic conditions occur. Moreover, as far as the mucilage composition is concerned, although it is well known that polysaccharides give a high contribution, knowledge of the structural characteristics of mucilages and their relationship with the natural organic matter of the marine environment has not been clarified yet. In this paper a study on the characterization of the marine mucilage samples collected in the Adriatic and Tyrrhenian Seas is described. The study was performed by spectroscopic (infrared and colorimetric) techniques, and elemental analysis. The results showed that mucilage samples have chemical and structural similarities with the insoluble fraction of the marine humic substance (humin). According to experimental evidences it is possible to establish the relationship between mucilages and the dissolved organic matter (DOM) in the marine environment in order to identify the most likely pathways of mucilage formation.

  10. Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples.

    PubMed

    Hsu, Hsiu-Jung; Oung, Jung-Nan; Kuo, Tseng-Long; Wu, Suh-Huey; Shiea, Jentaie

    2007-01-01

    We describe the use of electrospray-assisted pyrolysis ionization/mass spectrometry (ESA-Py/MS) to selectively ionize trace polar compounds that coexist with large amounts of nonpolar hydrocarbons in crude oil, amber, humic substances, and rubber samples. Samples of different origins are distinguished rapidly by their positive ion ESA-Py mass spectra without prior separation or chemical pretreatment. During ESA-Py analysis, the samples in their solid or liquid states were pyrolyzed at 590, 630 or 940 degrees C using a commercial Curie-point pyrolysis probe. The gaseous pyrolysates were transferred into a glass reaction cell. The polar compounds (M) in the pyrolysates were then ionized by electrospray ionization (ESI), yielding protonated molecules (MH+). Although the major components of the pyrolysates are nonpolar hydrocarbons, their lack of functional groups that can receive a proton in the ESA-Py source results in no hydrocarbon ion signals being produced; thus, the positive ions detected in ESA-Py mass spectra all result from trace polar components in the pyrolysates.

  11. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.

    PubMed

    Soleimani, Mohsen; Hajabbasi, Mohammad A; Afyuni, Majid; Akbar, Samira; Jensen, Julie K; Holm, Peter E; Borggaard, Ole K

    2010-01-01

    Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and other synthetic polycarboxylic acids have been shown to possess substantial capacity as washing agents of heavy metal-polluted soils, but they are environmentally problematic. Therefore, a sample of natural soluble humic substances (HS) was tested as a possible substitute. The efficiency of HS to extract cadmium (Cd), copper (Cu), and lead (Pb) from a strongly polluted calcareous urban soil was compared with that of EDTA and NTA. The influence of extractant concentration (25-100 mmol L(-1) C), solution/soil ratio (5-100 L kg(-1)), and single-step vs. multistep extraction on heavy metal removal from the soil was investigated. The extracted pools were assessed by sequential extraction. Ethylenediaminetetraacetic acid and NTA extracted up to 86, 77, and 30% of total soil Cd, Cu, and Pb, respectively, whereas HS extracted 44, 53, and 4%. Extracted amounts of Cd, Cu, and Pb increased with increasing extractant concentration and solution/soil ratio in the range 5 to 100 L kg(-1). Single-step extraction removed about the same amounts of the three metals as multiple-step extraction. The metal-extracted pools of the soil depended on the metal and on the extractant. The overall conclusion is that soluble HS can replace synthetic EDTA and NTA as washing agents for Cd- and Cu-polluted soils, whereas HS is not a promising substitute of EDTA or NTA for cleaning Pb-polluted, calcareous soils.

  12. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2015-12-15

    Ultrafiltration (UF) can achieve excellent removal of natural organic matter (NOM), but the main challenge for this process is the limited understanding of membrane fouling. The objective of this study is to explore the potential of UV-vis spectroscopic analysis for the detection of membrane fouling caused by humic acids (HA) at different solution chemistries (i.e., calcium ions (Ca(2+)) and pH). In the presence of Ca(2+), several spectral parameters, including the DSlope(325-375) (the slope of the log-transformed absorbance spectra over 325-375 nm), S(275-295) (the slope of the absorption coefficient over 257-295 nm) and S(R) (the ratio of S(275-295) to S(350-400)) of various HA solutions, were correlated with the molecule aggregation and the membrane fouling potential. Interestingly, increased DSlope(325-375) and decreased S(275-295) and S(R) were observed for the HA-Ca(2+) interaction under alkaline conditions (i.e., pH = 9) relative to those in lower pH environments (i.e., pH = 7 or 6), suggesting that spectral parameters were able to predict HA-Ca(2+) interactions under varying pH conditions. The strong correlations between the spectral parameters and the unified membrane fouling index (UMFI) obtained from UF experiments further corroborated that the spectral parameters were able to predict the membrane fouling potential. Moreover, the spectral parameters were also found to well reveal the fouling extent of the mixture of HA and Suwannee River NOM (SRNOM) or the pure SRNOM added with varying calcium concentrations, implying that the spectroscopic analysis was also available for the indication of practical NOM fouling. In addition, the measurement of S(275-295) and S(R) of the permeate solution suggests an increasing proportion of small-molecule HA in the permeate during the UF process. This study not only expands our knowledge of NOM-Ca(2+) aggregates as well as their role in membrane fouling behavior but also provides an approach for the in situ

  13. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  14. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  15. Reduction of mercury(II) by tropical river humic substances (Rio Negro)-Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur).

    PubMed

    Rocha, Julio Cesar; Sargentini, Ezio; Zara, Luiz Fabricio; Rosa, André Henrique; Dos Santos, Ademir; Burba, Peter

    2003-12-04

    The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F(1)>100 kDa and F(2): 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F(5): 5-10 kDa, F(6): <5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F(5)>F(2)>F(1)>F(3)>F(4)>F(6)). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested.

  16. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2014-01-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species, challenging simple classification schemes. Traditional offline chemical methods identify chemical classes based on the retention behaviour on chromatographic columns and absorbing beds. Such an approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, online aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for the classification of oxygenated organic aerosols (OOAs) on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS data sets suggested the occurrence of very oxidized OOAs which were postulated to correspond to HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classifications from the offline methods. In this paper, we consider a case study representative of polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare them to chemical classes of water-soluble organic carbon (WSOC) analysed offline on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to proton nuclear magnetic resonance (NMR) spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS {sensu stricto}) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups

  17. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2013-06-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, on-line aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for oxygenated organic aerosols (OOAs) classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare to chemical classes of water-soluble organic carbon (WSOC) analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted carboxylic

  18. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.

    PubMed

    Figueroa, Julio Alberto Landero; Wrobel, Katarzyna; Afton, Scott; Caruso, Joseph A; Corona Felix Gutierrez, J; Wrobel, Kazimierz

    2008-02-01

    Phytochelatins (PCs) were determined in the wild plants, focusing on their relationship with the levels of heavy metals and humic substances (HS) in soil. Ricinus communis and Tithonia diversifolia were collected from several sites in Guanajuato city (Mexico), which had long been the silver and gold mining center. The analysis of PCs in root extracts was carried out by liquid chromatography (derivatization with monobromobimane). Total Ag, Cd, Cu and Pb in plant roots and in soil samples, as well as soil HS were determined. The association of metals with HS in soils was evaluated by size exclusion chromatography (SEC) with UV and ICP-MS detection. The results obtained revealed the induction of PCs in R. communis but not in T. diversifolia. The levels of Cd and Pb in plant roots presented strong positive correlation with PC-2 (r=0.9395, p=0.005; r=0.9573, p=0.003, respectively), indicating that these two metals promote PCs induction in R. communis. On the other hand, the inverse correlation was found between soil HS and metal levels in roots of R. communis (Cu>Pb>Cd>Ag), in agreement with the decreasing affinity of these metals to HS. Importantly, the inverse correlation between soil HS and plant PC-2 was observed (r=-0.7825, p=0.066). These results suggest that metals strongly bound to HS could be less bioavailable to plants, which in turn would limit their role in the induction of PCs. Indeed, the SEC elution profiles showed Pb but not Cd association with HS and the correlation between metal in soil and PC-2 in plant was statistically significant only for Cd (r=0.7857, p=0.064). Based on these results it is proposed that the role of heavy metals in PCs induction would depend on their uptake by R. communis, which apparently is controlled by the association of metals with soil HS. This work provides further evidence on the role of environmental conditions in the accumulation of heavy metals and phytochelatin production in plants.

  19. The lanthanum precipitation method. Part 1: a new method for technetium(IV) speciation in humic rich natural groundwater.

    PubMed

    Geraedts, K; Maes, A

    2008-09-01

    A new and quick method for direct speciation of Tc(IV) in humic rich solutions, based on the induced aggregation of humic substances in the presence of the trivalent cation La3+, is presented. This method (the "La-precipitation method") allows flocculating all the humic substances and also the Tc(IV) associated with humic substances. The method is tested on solutions containing Tc(IV) and Gorleben humic substances. The influence of different parameters (humic substance concentration, Tc concentration, reaction time and pH) is investigated on the observed free Tc(IV) concentration after precipitation of all humic substances. None of these parameters had a (significant) influence on the observed Tc(IV) concentration in solution after addition of La3+ to Tc(IV)-HS containing solutions. It is therefore proposed that the method can be used to separate the Tc(IV) bound to humic substances from the free inorganic Tc species in solution.

  20. Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity

    SciTech Connect

    Rigg, Y. J.; Alpert, P. A.; Knopf, Daniel A.

    2013-07-12

    Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curve as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5) × 104 and (5.4 ± 1.4) × 104 cm-2 s-1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model

  1. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H

  2. Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity

    DOE PAGES

    Rigg, Y. J.; Alpert, P. A.; Knopf, Daniel A.

    2013-07-12

    Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curvemore » as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5) × 104 and (5.4 ± 1.4) × 104 cm-2 s-1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or

  3. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1999-02-15

    The effect of pH, ionic strength, and cation in solution on the binding of phenanthrene by a soil humic acid in the aqueous phase was determined using fluorescence quenching. The phenanthrene binding coefficient with the dissolved soil humic, K{sub oc}, decreased with increasing ionic strength and solution cation valence. At low values of ionic strength, K{sub oc} values for this soil humic acid increased with increasing pH. For this humic sample, the experimental results were consistent with a conformational model of the humic substance in aqueous solution where, depending on solution conditions, some parts of the humic structure may be more open to allow increased PAH access to attachment sites. After sorption onto clays, supernatant solutions of the unadsorbed humic fraction yielded lower K{sub oc} values than the original bulk humic acid, suggesting that the humic substance was fractionating during its sorption onto the clays. Additionally, the extent of phenanthrene binding with the adsorbed humic fraction was lower than the results determined for the bulk humic acid prior to adsorption. The conformation of the humic substance when sorbed onto the inorganic surface appears to be affecting the level of phenanthrene binding by the humic acid.

  4. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances.

    PubMed

    Dantas, Joana M; Morgado, Leonor; Catarino, Teresa; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2014-06-01

    The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

  5. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  6. New insights into the dynamics of adsorption equilibria of humic matter as revealed by radiotracer studies

    NASA Astrophysics Data System (ADS)

    Lippold, Holger; Lippmann-Pipke, Johanna

    2014-05-01

    The mobility of contaminants in the subsurface hydrosphere can be governed by their interaction with aquatic humic substances, which may act as carriers. For modelling migration processes, retardation of humic molecules at mineral surfaces must be considered. There is, however, a lack of clarity concerning the reversibility of adsorption of these natural polyelectrolytes. In this work, evidence was provided that a dynamic adsorption equilibrium exists. For this purpose, adsorption of humic substances (purified Aldrich humic acid and an aquatic fulvic acid) onto kaolinite was examined in tracer exchange studies by means of 14C-labelled humic material. In addition, the kinetics of adsorption and desorption were investigated in batch experiments.

  7. - and Cross-Polarization 13C NMR Evidence of Alterations in Molecular Composition of Humic Substances Following Afforestation with Eucalypt in Distinct Brazilian Biomes

    NASA Astrophysics Data System (ADS)

    Silva, I. R.; Soares, E. M.; Schmidt-Rohr, K.; Novais, R.; Barros, N.; Fernandes, S.

    2010-12-01

    The effect of planting fast growing tree species on SOM quality in tropical regions has been overlooked. In the present study 13C-NMR approaches were used to evaluate the impact of eucalypt cultivation on humic and fulvic acids molecular composition. The results indicate that the replacement of native vegetation by eucalypt plantations increased the relative contribution of aliphatic groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only). The same trend was observed for FA, except in the Curvelo site. A trend for degradation and smaller contribution of O-alkyl C (carbohydrates) in HA was observed in soils under eucalyptus in Atlantic Forest and Cerrado. For FA such decreases were seen in Cerrado and Grassland biomes after eucalypt planting. In the area cultivated with pasture in the Atlantic Forest biome and in the Grassland soil, the largest contributions of lignin-derived compounds were detected in HA. The HA from the Cerrado at the Curvelo site, where the woody vegetation is virtually devoid of grassy species, showed the lowest intensity of lignin signal then those from the Cerrado sensu stricto in Itacambira, where grass species are more abundant. At our study sites, charred material are most likely derived from burning of the native vegetation, as naturally occurs in the Cerrado region, or anthropogenic fires in the Grassland biome. Burning of harvest residues in eucalypt fields was also a common practice in the early rotations. The replacement of native vegetation by eucalypt plantations increases the relative contribution of nonpolar alkyl groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only) biomes. There is evidence of substantial contribution of lignin-derived C to HA and FA, especially in sites planted with Brachiaria sp pastures. Eucalypt introduction decreases the relative contribution of carbohydrates in HA and FA. 13C DP/MAS NMR functional groups in

  8. Stability and biodegradability of humic substances from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis

    NASA Astrophysics Data System (ADS)

    Ejarque, E.; Abakumov, E.

    2015-11-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasize the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-NMR spectroscopy. Also, the total mineralisable carbon was measured. Our results show that there is a uniformity of SOM characteristics throughout the studied region, as well as within soil profiles. Such in-depth homogeneity, together with a predominance of aliphatic carbon structures, suggests the accumulation in soil of raw and slightly decomposed organic matter. Moreover, results on total mineralisable carbon suggest a high lability of these compounds. The mineralisation rate was found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the fundamental role that the soils of Western Siberia may have on regulating the global carbon balance when faced with increasing ambient temperatures.

  9. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach.

    PubMed

    Bolea, E; Gorriz, M P; Bouby, M; Laborda, F; Castillo, J R; Geckeis, H

    2006-10-06

    The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter

  10. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: spectroscopic evidence of two different excited species.

    PubMed

    Reiller, Pascal E; Brevet, Julien

    2010-02-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the (5)D(0)-->(7)F(0) and (5)D(0)-->(7)F(2) luminescent transitions are occurring between 10 and 300 micros delay. First, the (5)D(0)-->(7)F(0) transition is decreasing relative to the (5)D(0)-->(7)F(1) showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the (5)D(0)-->(7)F(2) transition is also evidencing a slightly different ligand field splitting. No significant modification of the (5)D(0)-->(7)F(1) magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The (5)D(0)-->(7)F(0) transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components.

  11. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    PubMed

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  12. Compound-specific isotope analysis. Application to archaeology, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport.

    PubMed

    Lichtfouse, E

    2000-01-01

    The isotopic composition, for example, (14)C/(12)C, (13)C/(12)C, (2)H/(1)H, (15)N/(14)N and (18)O/(16)O, of the elements of matter is heterogeneous. It is ruled by physical, chemical and biological mechanisms. Isotopes can be employed to follow the fate of mineral and organic compounds during biogeochemical transformations. The determination of the isotopic composition of organic substances occurring at trace level in very complex mixtures such as sediments, soils and blood, has been made possible during the last 20 years due to the rapid development of molecular level isotopic techniques. After a brief glance at pioneering studies revealing isotopic breakthroughs at the molecular and intramolecular levels, this paper reviews selected applications of compound-specific isotope analysis in various scientific fields.

  13. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    PubMed

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  14. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  15. Influence of different kind of peats on some physic-chemical properties, biochemical activity, the content of different forms of nitrogen and fractions of humic substances of The Great Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.

    2009-04-01

    Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of

  16. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  17. Model Compound Interactions Characterizing Aquatic Humic Substances

    DTIC Science & Technology

    1990-01-01

    Isolation...............48 3.3.2 Titration Apparatus..............49 3.3.3 Potentiometric Titrations ..........52 3.3.4 Complexometric Titrations ...Potentiometric Titrations ..........57 4.2.2 Complexometric Titrations ..........61 4.3 Natural Sources and Model Compound Mixtures . .. 69 4.3.1...groundwater ........ .................... 50 3.4 Milli-Q complexometric titrations ... ......... .54 4.1a Potentiometric titration of model compounds

  18. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  19. Coupling of carbon and nitrogen cycles through humic redox reactions in an alpine stream

    NASA Astrophysics Data System (ADS)

    McKnight, D.; Cory, R.; Miller, M.; Williams, M.

    2004-05-01

    Humic substances are a heterogeneous class of moderate molecular weight, yellow-colored bio-molecules present in all soils, sediments and natural waters. Although humic substances are generally resistant to microbial degradation under anaerobic conditions, some microorganisms in soils and sediments can use quinone moieties in humic substances as electron acceptors or as electron shuttles in the microbial reduction of ferric iron. In turn, ferrous iron can reduce nitrate, facilitating the formation of organic nitrogen moieties. Field studies of humic electron shuttling processes can be carried out by characterizing the oxidation state of quinone moieties in humic substances at natural concentrations using fluorescence spectroscopy. We have used fluorescence spectroscopy to show that humic substances are important in electron transport reactions in coastal marine sediments and in the water columns of ice-covered lakes. Gradients in humic redox state may also occur as stream water is exchanged with water in associated hyporheic zones. We conducted a conservative tracer injection experiment in an alpine stream-wetland system located in the Front Range of the Colorado Rocky Mountains. In this system, concentrations of nitrate and dissolved organic carbon both increase with the onset of snowmelt as nitrate deposited in the snowpack is mobilized and DOC is flushed from upper soil horizons. During the tracer experiment, we sampled wells adjacent to the stream and found that lower nitrate concentrations occurred in wells with slower hyporheic exchange and more reduced dissolved humic substances. These results suggest that humic redox shuttling may be an important process linking carbon, nitrogen and iron cycling in watersheds.

  20. Characterization of the interaction of uranyl ions with humic acids by x-ray absorption spectroscopy

    SciTech Connect

    Reich, T.; Denecke, M.A.; Pompe, S.

    1995-11-01

    Humic substances are present throughout the environment in soil and natural water. They are organic macromolecules with a variable structural formula, molecular weight, and a wide variety of functional groups depending on their origin. In natural waters, humic substances represent the main component of the {open_quotes}dissolved organic carbon{close_quotes} (DOC). The DOC may vary considerably from 1 mg/L at sea water surfaces to 50 mg/L at the surface in dark water swamps. There is strong evidence that all actinides form complexes with humic substances in natural waters. Therefore, humic substances can play an important role in the environmental migration of radionuclides by enhancing their transport. Retardation through humic substance interaction may be also possible due to formation of precipitating agglomerates. For remediation and restoration of contaminated environmental sites and risk assessment of future nuclear waste repositories, it is important to improve the predictive capabilities for radionuclide migration through a better understanding of the interaction of radionuclides with humic substances.

  1. Capillary zone electrophoresis of humic acids from the American continent.

    PubMed

    Pacheco, Maria de Lourdes; Havel, Josef

    2002-01-01

    A multicomponent background electrolyte (BGE) was developed and its composition optimized using artificial neural networks (ANN). The optimal BGE composition was found to be 90 mM boric acid, 115 mM Tris, and 0.75 mM EDTA (pH 8.4). A separation voltage of 20 kV, 20 degrees C and detection at 210 nm were used. The method was applied to characterize several humic acids originating from various countries of the American continent: soil (Argentina), peat (Brazil), leonardite (Guatemala and Mexico) and coal (United States). Comparison with humic acids of International Humic Substances Society (IHSS) standard samples was also done. Well reproducible electropherograms showing a relatively high number of peaks were obtained. Characterization of the samples by elemental analysis and UV spectrophotometry was also done. In spite of the very different origins, the similarities between humic acids are high and by matrix assisted desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry it was shown that most of the m/z patterns are the same in all humic acids. This means that humic acids of different origin have the same structural units or that they contain the same components.

  2. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  3. Effects of Humic Acids Isolated from Peat of Various Origin on in Vitro Production of Nitric Oxide: a Screening Study.

    PubMed

    Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Yu; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M

    2016-09-01

    A screening study of biological activity of native humic acids isolated from peat was performed; several physical and chemical parameters of their structures were studied by UV- and infrared spectroscopy. Spectroscopy yielded similar shape of light absorption curves of humic acids of different origin, which can reflect similarity of general structural principles of these substances. Alkaline humic acids have more developed system of polyconjugation, while molecular structures of pyrophosphate humic acids were characterized by higher aromaticity and condensation indexes. Biological activity of the studied humic acids was assessed by NO-stimulating capacity during their culturing with murine peritoneal macrophages in a wide concentration range. It was shown that due to dose-dependent enhancement of NO production humic acids can change the functional state of macrophages towards development of pro-inflammatory properties. These changes were associated with high activity of humic acids isolated by pyrophosphate extraction, which allows considering effects of isolation method on biological activity.

  4. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    PubMed

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  5. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    NASA Astrophysics Data System (ADS)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  6. Interaction of Humic Acids with Organic Toxicants

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  7. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.

  8. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  9. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  10. Limitations in the use of commercial humic acids in water and soil research

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1986-01-01

    Seven samples of commercial "humic acids", purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning 13C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the 13C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  11. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics.

  12. Cloud Condensation Nucleus Activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Gierlus, K. M.; Schuttlefield, J. D.; Grassian, V. H.

    2007-12-01

    Many recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of common inactive cloud nuclei, such as mineral aerosol. As many studies have shown that a large fraction of unidentified organic material in aerosol particles is composed of polycarboxylic acids resembling humic substances, the presence of these large molecular weight Humic-Like Substances (HULIS) may also alter the water adsorption and CCN activity of mineral aerosol. Thus, we have measured the water adsorption and CCN activity of model humic and fulvic acids. Additionally, the water adsorption and CCN activity of mineral aerosol particles coated with humic and fulvic acids have been studied. We find that humic and fulvic acids show continual multilayer water adsorption as the relative humidity is raised. Additionally, we find that calcite particles mixed with humic and fulvic acids take up more water by mass, by a factor of two, compared to the uncoated calcite particles at approximately 70% RH. CCN measurements also indicate that internally mixed calcite-humic or fulvic acid aerosols are more CCN active than the otherwise inactive, uncoated calcite particles. Our results suggest that mineral aerosol particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the Earth's atmosphere than single-component mineral aerosol.

  13. Humic Materials Offer Photoprotective Effect to Escherichia coli Exposed to Damaging Luminous Radiation.

    PubMed

    Muela, A.; García-Bringas, J.M.; Arana, I.; Barcina, I.

    2000-12-01

    The behavior of Escherichia coli immersed in aqueous systems amended with humic acids, under PAR, UV-A, UV-B, and simulated solar radiation was examined. Culturability, ability to elongate, functioning of the electron transport systems, and glucose uptake were assessed. Humic substances in the range from 1 to 50 mg L-1 protected cells from photoinactivation. Decrease in culturability and cellular activities was significantly (p <0.05) less in the presence of humic material. However, humic acids were not used as nutrients. Neither irradiated nor nonirradiated humic solutions (50 mg L-1) supported the growth of 105 cells ml-1. However, humic acids dissolved in 0.9% NaC1 efficiently absorbed light over wavelengths from 270 to 500 nm. Also, a photoprotective effect against simulated sunlight was observed when humic acids were not in contact with but rather enveloped the cellular suspensions in double-wall microcosms. The protection afforded by humic acids against luminous radiation likely derives from their ability to absorb these radiations and hence reduces the amount of energy reaching the cells.

  14. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  15. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification.

    PubMed

    Wang, Wendong; Li, Hua; Ding, Zhenzhen; Wang, Xiaochang

    2011-01-01

    Due to the formation of disinfection by-products and high concentrations of Al residue in drinking water purification, humic substances are a major component of organic matter in natural waters and have therefore received a great deal of attention in recent years. We investigated the effects of advanced oxidation pretreatment methods usually applied for removing dissolved organic matters on residual Al control. Results showed that the presence of humic acid increased residual Al concentration notably. With 15 mg/L of humic acid in raw water, the concentrations of soluble aluminum and total aluminum in the treated water were close to the quantity of Al addition. After increasing coagulant dosage from 12 to 120 mg/L, the total-Al in the treated water was controlled to below 0.2 mg/L. Purification systems with ozonation, chlorination, or potassium permanganate oxidation pretreatment units had little effects on residual Al control; while UV radiation decreased Al concentration notably. Combined with ozonation, the effects of UV radiation were enhanced. Optimal dosages were 0.5 mg O3/mg C and 3 hr for raw water with 15 mg/L of humic acid. Under UV light radiation, the combined forces or bonds that existed among humic acid molecules were destroyed; adsorption sites increased positively with radiation time, which promoted adsorption of humic acid onto polymeric aluminum and Al(OH)3(s). This work provides a new solution for humic acid coagulation and residual Al control for raw water with humic acid purification.

  16. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  17. Formation of chloroacetic acids from soil, humic acid and phenolic moieties.

    PubMed

    Fahimi, I J; Keppler, F; Schöler, H F

    2003-07-01

    The mechanism of formation of chloroacetates, which are important toxic environmental substances, has been controversial. Whereas the anthropogenic production has been well established, a natural formation has also been suggested. In this study the natural formation of chloroacetic acids from soil, as well as from humic material which is present in soil and from phenolic model substances has been investigated. It is shown that chloroacetates are formed from humic material with a linear relationship between the amount of humic acid used and chloroacetates found. More dichloroacetate (DCA) than trichloroacetate (TCA) is produced. The addition of Fe(2+), Fe(3+) and H(2)O(2) leads to an increased yield. NaCl was added as a source of chloride. We further examined the relationship between the structure and reactivity of phenolic substances, which can be considered as monomeric units of humic acids. Ethoxyphenol with built-in ethyl groups forms large amounts of DCA and TCA. The experiments with phenoxyacetic acid yielded large amounts of monochloroacetate (MCA). With other phenolic substances a ring cleavage was observed. Our investigations indicate that chloroacetates are formed abiotically from humic material and soils in addition to their known biotic mode of formation.

  18. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  19. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  20. Pyrolysis GC-MS and NMR studies of humics in contaminated sediments

    SciTech Connect

    Higashi, R.M.; Fan, T.W.M.; Lane, A.N.

    1994-12-31

    Sediment ``humics`` play a major role in sorption and chemical reactions of organic and metal pollutants, as well as of nutrients, detritus, and other naturally-occurring chemicals. Not surprisingly, the chemical structure of humics is very important in this regard. The problem is, humics are among the most complex and least-understood substances in the world. This is because the primary structure is heterologous, unlike most other macromolecules which are polymeric; thus, researchers could not obtain coherent structures to identify with properties. However, recent advances in NMR spectroscopy and pyrolysis GC-MS have enabled researchers to begin relating primary and higher order structural motifs germane to the chemistry of the refractory humics. The authors have explored various means of sediment extraction for humics analysis by these techniques, including direct analysis of unextracted sediments. Marine sediments from near produced water discharges, salt marshes, and dredge material were surveyed. The study has revealed interpretive pitfalls, depending on the method of humic extraction. These difficulties are expected since the approach is at its infancy, but the overall approach is clearly useful in probing the humic structure profile of marine sediments.

  1. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  2. Characterization of Fe-humic complexes in an Fe-enriched biosolid by-product of water treatment.

    PubMed

    Pérez-Sanz, A; Lucena, J J; Graham, M C

    2006-12-01

    The fertilizing potential of Fe-enriched biosolids has been attributed to Fe associations with humic substances contained therein. In this study, alkaline and near-neutral aqueous extractions of humic substances from an Fe-enriched biosolid were followed by gel chromatographic fractionation and characterization (CHNS elemental analysis; UV/visible and FTIR spectroscopy; FAAS analysis). The alkaline bulk humic extract had a strong fulvic character and Fe was predominantly associated with the higher molecular weight ( approximately 50000 Da) molecules, possibly including organic-coated Fe oxides from which Fe may be released more slowly. Under both near-neutral and alkaline conditions, associations with lower molecular weight humic molecules were also observed, indicative of the presence of Fe in more readily available forms. Thus the biosolid appears to have good short- and long-term fertilizing potential, particularly for alkaline, Fe-deficient soils.

  3. Triad method for assessing the remediation effect of humic preparations on urbanozems

    NASA Astrophysics Data System (ADS)

    Pukalchik, M. A.; Terekhova, V. A.; Yakimenko, O. S.; Kydralieva, K. A.; Akulova, M. I.

    2015-06-01

    The data on the pollutant content, ecological toxicity, and structural and functional specifics of soil microbial communities in urbanozem sampled in the city of Kirov were used to describe the remediation effect of humic substances (lignohumate and nanomagnetitohumate). The integral index of environmental risk on contaminated and background soil sites was calculated using the triad method. Based on varying Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index, this method proved that humic substances are able to reduce ecological toxicity and transform the ecophysiological indices of biota in urban soils. The most vivid effect of humic products has been revealed on introduction of 0.0025 and 0.01% mass. The biological activity of nanomagnetitohumate and lignohumate, rather than their ability to bind toxicants, is apparently the principal factor controlling their remediating effect.

  4. {Quantification of Colloidal Blocking by Humic Acids in Porous Media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Flynn, R.; von der Kammer, F.; Hofmann, T.

    2009-04-01

    Humic acids (humics), resulting from the partial decomposition of organic matter, occur widely in nature and form a major constituent of environmental natural organic matter (NOM). Although their ability to promote the dissolution of many substances has been widely recognized, quantification of the influence of humics on the fate and transport of particulate matter has proven less conclusive. One dimensional dynamic column tests involving the injection of suspensions of fluorescence stained 200nm latex microspheres (microspheres) and Suwannee River Humic Acid (SRHA) through columns filled with partly iron-coated quartz sand permitted the influence of humics on colloid deposition in water saturated porous media under controlled conditions to be studied. Tests consisted of two series of experiments. The first involved the injection of an initial pulse of 13 pore volumes (PV) of 10.4ppm microspheres that resulted in a gradual rise in the colloid's concentration in the column effluent to 8.4% of that injected. Injection of further two identical pulses of 13 PV of colloid, separated by pulses of about 10 PV of colloid-free flushing water resulted in a sustained rise in effluent concentration in the breakthrough of successive pulses. Colloid response, modeled using a random sequential adsorption (RSA) model, suggested that the system required the deposition 1.35x1010 colloids on the sand surface for each 1% rise in relative concentration observed in column effluent. The second series of experiments involved the injection of an initial pulse of 13 pore volumes of colloid suspension followed by the injection of four pore volumes of 5 mg/l SRHA. A mass balance of column effluent suggested that the column retained 98.8% of SRHA injected. Subsequent injection of a second pulse of 13 PV of microspheres saw colloidal concentration breakthrough in column effluent jump to 16% after which it continued to rise at a rate comparable to that in SRHA-free experiments. RSA modeling of

  5. Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Gierlus, Kelly M.; Schuttlefield, Jennifer D.; Grassian, Vicki H.

    Recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of insoluble nuclei, such as mineral dust aerosol. A large fraction of unidentified organic material in aerosol particles is composed of poly-acidic compounds resembling humic substances. The presence of these humic-like substances (HULIS) can alter the water adsorption and CCN activity of mineral dust aerosol. We have measured the CCN activity of model humic and fulvic acids and of mineral dust particles coated with these substances in the laboratory. We find that coatings of humic and fulvic acids on calcite particles significantly increases water adsorption compared to uncoated particles. CCN measurements indicate that humic- or fulvic acid-coated calcite particles are more CCN active than uncoated calcite particles. Additionally, thicker coatings of humic or fulvic acids appear to result in more efficient CCN activity. Thus, mineral dust particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the atmosphere than uncoated mineral dust particles, potentially altering the effect of mineral dust on the Earth's climate. In addition to the experimental results, we have explored a newly modified Köhler theory for predicting the CCN activity of insoluble, wettable particles based on multi layer water adsorption measurements of calcite.

  6. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    PubMed

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  7. Separation of humic acids from Bayer process liquor by membrane filtration

    SciTech Connect

    Awadalla, F.T.; Kutowy, O.; Tweddle, A. ); Hazlett, J.D. )

    1994-05-01

    Humic acids of high molecular weight were removed from spent Bayer liquor by polymeric ultrafiltration membranes. Among the commercial and laboratory-cast membranes tested, Radel-R polyphenylsulfone on a polypropylene backing material was found to be the most promising candidate for this separation. However, the maximum separation of humic acids obtained at operating conditions of 50[degree]C and 0.34 MPa, as measured by spectrophotometric analysis, was only in the 50 to 55% range. In order to explain this limited membrane separation of humic acids in spent Bayer liquor, a synthetic alkaline solution of humic acids was treated using the same membranes. These tests indicated much higher separation of humic acids (92%). Humic substances in Bayer liquor appear to be hydrolyzed and degraded to low molecular weight fractions (molecular weight < 1000 daltons) by the combined action of the strongly alkaline Bayer liquor and high digestion temperatures. These low molecular weight fractions cannot be retained by standard ultrafiltration membranes. However, some preliminary tests with laboratory-cast Radel-R nanofiltration membranes showed improved color separation (> 70%) when treating spent Bayer liquor. 23 refs., 8 figs., 5 tabs.

  8. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  9. Evaluation of the electrochemical behavior of pentachlorophenol by cyclic voltammetry on carbon paste electrode modified by humic acids.

    PubMed

    Airoldi, Flávia P S; Da Silva, Wilson T L; Crespilho, Frank N; Rezende, Maria O O

    2007-01-01

    Humic substances, or natural recalcitrant organic matter, have an important role in the environment for their plant nutritional functions or for their capability to control the mobility of xenobiotic substances, such as pesticides. To verify the electrochemical behavior of pentachlorophenol (PCP), cyclic voltammetry was used because of its versatility. The following two different electrodes were used: carbon paste electrode (CPE) and carbon paste electrode chemically modified with humic acid (HACMCPE). The results demonstrated that PCP was better accumulated at the HACMCPE electrode, as a consequence of a larger current signal than at the CPE electrode. Cyclic voltammograms showed oxidation steps of PCP itself and probable production of quinonelike compounds.

  10. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  11. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  12. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  13. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    PubMed

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies.

  14. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter.

    PubMed

    Vakondios, Nikos; Koukouraki, Elisavet E; Diamadopoulos, Evan

    2014-10-15

    This work developed a method, based on the Lowry method and Frølund modification, for the simultaneous determination of proteins and humic matter in wastewater effluent samples at low concentrations. The method was based on simultaneous spectrophotometric measurements of proteins and humic matter at 750 nm in the absence and presence of CuSO4, which is responsible for increasing the absorbance only in the presence of to proteins. Statistical analysis through ANOVA showed that the response surface of the method fit the experimental measurements at significance level lower than 0.05, indicating satisfactory fit. The quantification limits of the proposed method were 0.5-30 mg/l for proteins and 2-30 mg/l for humic matter. The presence of carbohydrates did not interfere with the analysis of proteins and humic matter at carbohydrate concentrations below 35-40 mg/l. The Lowry method overestimated the concentration of the proteins because of the presence of humic substances. A carbon balance indicated that the analytical method developed could provide a satisfactory distribution of the main organic constituents in wastewater and effluents.

  15. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  16. Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts

    USGS Publications Warehouse

    McKnight, Diane; Thurman, E. Michael; Wershaw, Robert L.; Hemond, Herold

    1985-01-01

    Thoreau's Bog is an ombrotrophic floating—mat Sphagnum bog developed in a glacial kettlehole and surrounded by a red maple swamp. Concentrations of dissolved organic carbon in the porewater of the bog average 36 mg/L and are greatest near the surface, especially during late summer. This distribution suggest that the upper layer of living and dead Sphagnum and moderately humified peat is the major site of dissolved organic material production in the bog. The dissolved organic material consists mainly of aquatic fulvic acid (67%) and hydrophilic acids (20%); these organic acids control the pH (typically 4 or somewhat lower) of the bogwater. The elemental, amino acid, carbohydrate, and carboxylic acid contents of fulvic acid from the bog are similar to those of aquatic fulvic acid from the nearby Shawsheen River, although the phenolic hydroxyl content of fulvic acid from Thoreau's Bog is higher. The hydrophilic acids have greater amino acid, carbohydrate, and carboxylic acid contents than the fulvic acid, consistent with the hypothesis that hydrophilic acids are more labile intermediate compounds in the formation of fulvic acid.

  17. CAPILLARY ISOELECTRIC FOCUSING (CIEF) FOR THE CHARACTERIZATION OF HUMIC SUBSTANCES

    EPA Science Inventory

    Preparative solution isoelectric focusing was used to fractionate 50 mg of a soil fulvic acid (FA); the harvested fractions were characterized with UV-Vis spectroscopy, gel permeation chromatography and capillary zone electrophoresis (CZE) and showed a distribution in the created...

  18. ROLE OF HUMIC SUBSTANCES ON THE PHOTOCHEMICAL REDUCTION OF MERCURY

    EPA Science Inventory

    Solutions containing mercury and fulvic acids (isolated from the Florida Everglades) were exposed to simulated sunlight from a 1000-W Xenon lamp. In the ensuing reaction, ionic mercury was reduced to elemental mercury, which was collected on a gold trap and measured on a cold va...

  19. Americium binding to humic acid.

    PubMed

    Peters, A J; Hamilton-Taylor, J; Tipping, E

    2001-09-01

    The binding of americium (Am) by peat humic acid (PHA) has been investigated at Am concentrations between 10(-1) and 10(-7) M at pH approximately 2.6 in the presence and absence of Cu as a competing ion. Cu-PHA binding was also investigated in order to derive independent binding constants for use in modeling the competitive binding studies. Humic ion-binding model VI was used to compare the acquired data with previously published binding data and to investigate the importance of high-affinity binding sites in metal-PHA binding. Am was not observed to bind to high-affinity, low-concentration binding sites. The model VI parameter deltaLK2 takes into accountthe small number of strong sites in PHA and was found to be important for Cu-PHA binding but not for Am-PHA binding, regardless of whether Cu was present. Analysis of the PHA sample revealed that it contained a considerable quantity of Fe not removed by the extraction procedure, much of which is believed to be present as Fe(III). Model VI was then used to investigate the possible importance of the presence of Fe(III) in the Am-PHA binding experiments. When Fe(III) was assumed to be present, improved descriptions of the data by model VI were obtained by assuming that all of the metals [Am, Cu, and Fe(III)] undergo strong binding. This highlights the importance of Fe(III) competition in metal-PHA binding studies and possible shortcomings in the extraction procedure used to extract PHA.

  20. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  1. Immunomodulative properties of humic peat preparations

    NASA Astrophysics Data System (ADS)

    Stepchenko, L. M.; Syedykh, N. J.

    2010-05-01

    It is proved, that the humic peat preparations promote the resistance of plants, animals and poultry to the influence of both abyotyc and byotyc extreme factors of external environment, to action. It was shown by us before, that biologically active compounds from peat promote stability against different diseases of agricultural animals and poultry. We conducted researches of humic preparations influence (hydrohumate and oxyhumate) on several indexes of immunoreactivity of the organisms of chickens broilers, ostriches, cows and laboratory rats. It is found out, that adding of humic preparations to forage or drinking water results in the normalization of immunity indexes; in particular, leucocytes level, in the increase of the level of some classes of immunoglobuline in blood, of haemoglobin level, T- and B-lymphocytes level, as well as common unspecific resistance - lyzocymic, phagocytic and bactericidic activity. These results allow to suggest that the peat humic preparations show immunomodulative activity, influencing both on humoral and cel immunity links.

  2. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  3. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection

    PubMed Central

    Kesba, Hosny H; El-Beltagi, Hossam S

    2012-01-01

    Objective To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes. PMID:23569915

  4. Properties and structure of raised bog peat humic acids

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  5. Usage of humic materials for formulation of stable microbial inoculants

    NASA Astrophysics Data System (ADS)

    Kydralieva, K. A.; Khudaibergenova, B. M.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Jorobekova, Sh. J.

    2009-04-01

    of the product. It is known that humic substances can increase of live organism resistance to stress loads, in particular to chemical stress, low and high temperature. Spray- and fluidized-bed drying and addition of humate-based drying protectants were evaluated for the development of dry formulations of biocontrol and plant growth promoting rhizobacteria. The drying protectants - humic acids and sodium humate gave the highest initial survival rates and the most stable formulations, without significant losses of viability after storage for 1 month at 30oC. As a result, the specific plant growth promoting effect is retained. Thus, humic materials have an unfulfilled potential for biotechnology industries based on such applications. Acknowledgement. This research was supported by the grant of ISTC KR-993.2.

  6. Influence of Aldrich humic acid and metal precipitates on survivorship of mayflies (Atalophlebia spp.) to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-03-01

    Humic substances (HS) have been shown to decrease the toxicity of environmental stressors, but knowledge of their ability to influence the toxicity of multiple stressors such as metal mixtures and low pH associated with acid mine drainage (AMD) is still limited. The present study investigated the ability of HS to decrease toxicity of AMD to mayflies (Atalophlebia spp.). The AMD was collected from the Mount Morgan (Mount Morgan, Queensland, Australia) open pit. Mayflies were exposed to concentrations of AMD at 0%, 1%, 2%, 3%, and 4% in the presence of 0 mg/L, 10 mg/L, and 20 mg/L Aldrich humic acid (AHA). A U-shaped response was noted in all AHA treatments, with higher rates of mortality recorded in the 2% and 3% dilutions compared with 4%. This result was linked with increased precipitates in the lower concentrations. A follow-up trial showed significantly higher concentrations of precipitates in the 2% and 3% AMD dilutions in the 0 mg/L AHA treatment and higher precipitates in the 2% AMD, 10 mg/L and 20 mg/L AHA, treatments. Humic substances were shown to significantly increase survival of mayflies exposed to AMD by up to 50% in the 20 mg/L AHA treatment. Humic substances may have led to increased survival after AMD exposure through its ability to influence animal physiology and complex heavy metals. These results are valuable in understanding the ability of HS to influence the toxicity of multiple stressors.

  7. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    NASA Astrophysics Data System (ADS)

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria.

  8. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  9. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples.

  10. Humic derivatives as promising hormone-like materials

    NASA Astrophysics Data System (ADS)

    Koroleva, R. P.; Khudaibergenova, E. M.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The aim of this research is to prepare novel bio-inoculants derived from coal humic substances (HS) using bio-solubilization technique. This approach can be considered to some extent as model for supply plants with available nutrients throw the mineralisation of organic matter in soils by bacteria and fungi. Screening for the stable and active microorganisms' strains possessing ability to degrade humic substances was performed. The following subjects were examined using different isolation methods: natural microbial population from city soil, wood rot of Ulmis Pamila and biohumus of vermiculture of Eisenia foetida. Approaches for monitoring the humics-solubilizing fungi growth under liquid surface conditions in the presence of HS, proper conditions of bio-solubilization technique were elaborated. Coal humic acids (HA) from oxidized brown coal (Kyrgyz deposits) were isolated and added to a Czapek nutrient broth which was used either in full strength or without nitrogen source. The individual flasks were inoculated with natural microbial populations of corresponding cultivated soil, biohumus and wood rot samples for 12 months. Evaluation of phyto-hormonal activity of the produced HS and their derivatives in respect to higher plants with auxine and gibberellic tests was performed. To characterize structure of the biopreparations obtained, an experimental approach was undertaken that implies application of different complementary techniques for the structural analysis of biopreparations. As those were used: elemental and functional analysis, FTIR and 1H, 13C NMR spectroscopy and size-exclusion chromatography. According to the elemental composition of HS recovered from microbial cultures, a decrease in carbon and a significant increase of nitrogen in HS reisolated from the full strength broth inoculated with wood-decay microorganisms has been found. If biohumus microorganisms were used as inoculum, only minor changes were detected in the elemental composition of HS. A

  11. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing.

  12. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  13. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted.

  14. Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer.

    PubMed

    Araújo, Bruno R; Romão, Luciane P C; Doumer, Marta E; Mangrich, Antonio S

    2017-04-01

    The aim of this study was to evaluate the interactions of peat, humic acids, and humin with urea dispersed in chitosan, in systems intended for the controlled release of urea. Spheres of chitosan with humic material and urea intentionally added to the media were prepared and characterized by means of elemental analysis (CHN), electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The spheres possessed functional groups related to humic substances that interacted with the chitosan, and the presence of urea in the media was also confirmed after it has been added. Release experiments demonstrated that the samples released urea in a controlled manner that was dependent on pH, increasing in the order: pH 2.5 < pH 4.0 < pH 9.0. In soil experiments, the degree of release of urea (α) increased over time, with values of 0.44 for chitosan-humic acids-urea (CHAU), 0.48 for chitosan-peat-urea (CPTU), and 0.67 for chitosan-humin-urea (CHMU) obtained in the first day of the experiment. The release of urea did not exceed 70% after 7 days. The results demonstrated the potential of using peat, humic acids, and humin, in combination with chitosan, in order to manufacture controlled release urea fertilizers and contribute to reducing adverse environmental and economic impacts.

  15. Impact of humic acids on the colonic microbiome in healthy volunteers

    PubMed Central

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-01-01

    AIM To test the effects of humic acids on innate microbial communities of the colon. METHODS We followed the effects of oral supplementation with humic acids (Activomin®) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. RESULTS The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation (P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 (Bacteroides) and Myc657 (mycolic acid-containing Actinomycetes) FISH probes decreased (P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 109/mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae, Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. CONCLUSION Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome. PMID:28223733

  16. Impacts of Humic Injection Experiments on the South Oyster Field Research Site

    SciTech Connect

    John F. McCarthy

    2004-04-27

    A closure plan for the South Oyster Focus Area (SOFA) is being implemented to assess the impacts of a series of experimental injections of microorganisms, tracers and chemical amendments on the chemical and physical properties of the aquifer. The proposed research addresses environmental monitoring of humic substances injected into the aquifer, as described in the Site Closure Plan for the South Oyster Field Research Site. The goal of the research is to demonstrate that the dissolved organic matter (DOM) in the groundwater at and downgradient from the injection site has returned to a pre-injection �baseline� conditions with respect to either the concentration or chemical composition of the DOM. For clarity, the humic solution injected during the experiment will be referred to as �humic injectate.� The term �DOM� will refer to the organic material recovered in the groundwater, which includes the autochthonous groundwater DOM as well as any of the humic injectate remaining in the groundwater. Specific objectives include: � Estimate the amount of humic material remaining in the aquifer at the completion of the push-pull experiment and the potential for environmental impacts due to release of humics retained on the sediments. � Monitor the DOM concentrations in groundwater over time at the injection well and at sampling locations within the potential downgradient plume of the injected tracers. � Evaluate the chemical composition of the DOM to determine whether the injection experiment had an impact of the chemical properties of the aquifer. The product of this research will be a contribution to the Site Closure Report documenting the impact of the humic experiments on the aquifer. Return of the aquifer to a �baseline� conditions will be achieved if the DOM concentrations in the groundwater are determined over the course of the research to have decreased to the pre-injection level, or if the chemical properties of

  17. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots1

    PubMed Central

    Canellas, Luciano Pasqualoto; Olivares, Fabio Lopes; Okorokova-Façanha, Anna L.; Façanha, Arnoldo Rocha

    2002-01-01

    Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H+-ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H+-ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances. PMID:12481077

  18. Comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    SciTech Connect

    Chiou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-12-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p'-DDT), 2,4,5,2',5'-pentachlorobiphenyl (2,4,5,2',5'-PCB), and 2,4,4'-trichlorobiphenyl (2,4,4'-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (K/sub doc/) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials, The K/sub doc/ values with water and aquatic humic samples are, however, far less than the observed K/sub doc/ values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids. 14 references, 3 figures, 2 tables.

  19. Modelling of Rare Earth Elements Complexation With Humic Acid

    NASA Astrophysics Data System (ADS)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  20. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  1. Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry.

    PubMed

    Zherebker, Alexander; Kostyukevich, Yury; Kononikhin, Alexey; Kharybin, Oleg; Konstantinov, Andrey I; Zaitsev, Kirill V; Nikolaev, Eugene; Perminova, Irina V

    2017-03-01

    Here, we report a novel approach to enumeration of carboxylic groups carried by individual molecules of humic substances using selective chemical modification and isotopic labeling (deuteromethylation) and high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). Esterification was conducted with a use of thionyl chloride-deuteromethanol reagent under mild conditions to avoid transesterification. The deuteromethylated products were subjected to solid phase extraction using PPL Bond Elute cartridges prior to FTICR MS analysis. An amount of carboxyl groups in the individual molecular component was estimated from the length of identified deuteromethylation series. The method allowed for discerning between compounds with close elemental compositions possessing different protolytic properties. We found that different carboxylic moieties occupy distinct regions in molecular space of humic substances (HS) projected onto Van Krevelen diagram. These locations do not depend on the source of the humic material and can be assigned to carboxyl-rich alicyclic molecules (5 to 6 COOH), hydrolyzable tannins (3-4 COOH), lignins (1 to 2 COOH), condensed tannins and lignans (0 to 1 COOH), and carbohydrates (0 COOH). At the same time, the alignment pattern of these carboxylated species along the structural evolution lines in Van Krevelen diagrams was characteristic to the specific transformation processes undergone by the humic materials in the different environments. The obtained data enable mapping of molecular ensemble of HS with regards to their specific acidic compartments and might be used for directed fractionation of HS. Graphical abstract Selective isotopic labeling followed by FTICR MS enables discerning between humic molecules with close elemental compositions carrying different numbers of carboxylic groups.

  2. Effect of humic acid on sorption of technetium by alumina.

    PubMed

    Kumar, S; Rawat, N; Kar, A S; Tomar, B S; Manchanda, V K

    2011-09-15

    Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using (95)Tc(m) as a tracer. Measurements were carried out at fixed ionic strength (0.1M NaClO(4)) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10(-6)M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  3. Effects of standard humic materials on relative bioavailability of NDL-PCBs in juvenile swine.

    PubMed

    Delannoy, Matthieu; Schwarz, Jessica; Fournier, Agnès; Rychen, Guido; Feidt, Cyril

    2014-01-01

    Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95∶5) (SPAC) were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n = 5 for each group). During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19,200 ng of Aroclor 1254 per g of dry matter (6,000 ng.g⁻¹ of NDL-PCBs) to achieve an exposure dose of 1,200 ng NDL-PCBs.Kg⁻¹ of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds.

  4. Effects of Standard Humic Materials on Relative Bioavailability of NDL-PCBs in Juvenile Swine

    PubMed Central

    Delannoy, Matthieu; Schwarz, Jessica; Fournier, Agnès; Rychen, Guido; Feidt, Cyril

    2014-01-01

    Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95∶5) (SPAC) were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n  = 5 for each group). During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19 200 ng of Aroclor 1254 per g of dry matter (6 000 ng.g−1 of NDL-PCBs) to achieve an exposure dose of 1 200 ng NDL-PCBs.Kg−1 of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds. PMID:25549096

  5. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids.

    PubMed

    Ahmad, Farrukh; Hughes, Joseph B

    2002-10-15

    Sequential anaerobic/aerobic treatment of 2,4,6-trinitrotoluene (TNT) generally results in the incorporation of residues into biomass and natural organic matter fractions of a system. To better understand the potential contribution of hydroxylamine and nitroso moieties in these reactions, studies were conducted using model systems taking advantage of the biocatalytic-activity of Clostridium acetobutylicum that does not produce aminated TNT derivatives. To evaluate binding to biomass only, systems containing cell-free extracts of C. acetobutylicum and molecular hydrogen as a reductant were employed. At the end of treatment, mass balance studies showed that 10% of the total 14C was associated with an insoluble protein-containing precipitate that could not be extracted with organic solvents. Model reactions were conducted between a mixture of 2,4-dihydroxylamino-6-nitrotoluene (DHA6NT) and 4-hydroxylamino-2,6-dinitrotoluene (4HADNT) and 1-thioglycerol to test the involvement of the nitroso-thiol reaction in binding to biomass. It was demonstrated that DHA6NT formed a new and relatively polar product with 1-thioglycerol only in the presence of oxygen. The oxygen requirement confirmed that the nitroso functionality was responsible for the binding reaction. The reactivity of arylhydroxylamino and nitrosoarene functionalities toward International Humic Substance Society (IHSS) peat humic acid was evaluated under anaerobic and aerobic conditions, respectively. 4HADNT showed no appreciable reactivity toward peat humic acid. Conversely, the nitrosoarene compound, nitrosobenzene, showed rapid reactivity with peat humic acid (50% removal in 48 h). When tested with two other humic acids (selected on the basis of their protein content), it became apparent that the proteinaceous fraction was responsible at least in part for the nitrosoarene's removal from solution. Furthermore, the pretreatment of the humic acids with a selective thiol derivatizing agent had a considerable effect

  6. Basin scale survey of marine humic fluorescence in the Atlantic: Relationship to iron solubility and H2O2

    NASA Astrophysics Data System (ADS)

    Heller, M. I.; Gaiero, D. M.; Croot, P. L.

    2013-01-01

    Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with parallel factor (PARAFAC) data analysis of Coloured Dissolved Organic Matter (CDOM) fluorescence along a meridional transect through the Atlantic (PS ANT XXVI-4) to examine the hypothesis that marine humic fluorescence is a potential proxy for iron solubility in the surface ocean. PARAFAC analysis revealed 4 components (C1-4), two humic like substances (C2&4) and two protein-like (C1&3). Overall none of the 4 components were significantly correlated with iron solubility, though humic-like components were weakly correlated with iron solubility in iron replete waters. Our analysis suggests that the ligands responsible for maintaining iron in solution in the euphotic zone are sourced from both remineralisation processes and specific ligands produced in response to iron stress and are not easily related to bulk CDOM properties. The humic fluorescence signal was sharply attenuated in surface waters presumably most likely due to photo bleaching, though there was only a weak correlation with the transient photo product H2O2, suggesting longer lifetimes in the photic zone for the fluorescent components identified here.

  7. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  8. Sorption of humic acids and alpha-endosulfan by clayminerals

    SciTech Connect

    Hengpraprom, S.; Lee, C.M.; Coates, R.T.

    2005-02-18

    Sorption of alpha-endosulfan by kaolinite andmontmorillonite alone and in the presence of sorbed and dissolved humicacid (HA) was investigated (pH 8 and 25oC). Three types of HA, Elliotsoil HA (EHA), Peat HA (PHA), and Summit Hill HA (SHHA), were used torepresent typical humic substances found in soils. For sorption of HA byeither mineral, Freundlich sorption coefficient (Kf) values appeared todecrease in the order of EHA>PHA>SHHA, which followedincreasing polarity (expressed as the O/C atomic ratio) and decreasingpercent-carbon content. For both clays, sorption of alpha-endosulfan bythe HA mineral complex was greater than for sorption by the clay alone.Sorption of alpha-endosulfan by the HA mineral complexes followed thesame order as the Kf of the HAs (EHA>PHA>SHHA). Based on theamount of HA adsorbed by each mineral, organic carbon partitioncoefficients (KOC) were determined for sorption of alpha-endosulfan bytwo of the HA mineral complexes. The value of KOC for alpha-endosulfansorption was greater for kaolinite EHA than kaolinite SHHA. However, theopposite trend was found with the montmorillonite HA complexes.Montmorillonite appeared to sorb alpha-endosulfan and/or HA with higheraffinity than kaolinite, which likely is due to its 2:1 layer structureand higher surface area. Sorption of endosulfan diol, a hydrolysisproduct, by the minerals was much less than the parentpesticide.

  9. Aggregates dynamic in contrasting soils with different fertilizations and role of humic carbon as binding agent

    NASA Astrophysics Data System (ADS)

    Lugato, E.; Simonetti, G.; Nardi, S.; Berti, A.; Giardini, L.; Morari, F.

    2009-04-01

    In the last years aggregates fractionation has become a very common approach to study the close linkage between aggregate formation and SOM turnover. According to the hierarchical theory microaggregates are assumed to be stabilized by persisting binding agents whereas macroaggregates by transient or temporary organic materials. Humic substances, considered to be recalcitrant, should likely act as persistent binding agents but their role, also because of their heterogeneity and discussed origin, is still unclear. In a long-term experiment established in the early 1960s in north-eastern Italy, we wet-sieved large macroaggregates to separate three aggregate sizes (2000-250 mm, 250-53 mm and <53 mm) in contrasting soil (clay, sandy and peaty), fertilized with manure and mineral fertilizers. We analysed organic (OC) and humic (HC) carbon of each aggregate fraction, also investigating the molecular weight of the humic substances extracted (>60 KDa,60-30 KDa, <30 KDa). The aim were to evaluate the effect of the different fertilisations type in the aggregate and organic matter distribution and investigate the composition and role of HC as binding agent. The results evidenced that the addition of manure significantly increased the proportion of macroaggregates respect to the mineral fertilization but only in the clay soil. Aggregate hierarchy, according to which SOC concentration increase with increasing aggregates size, was generally supported by our data. The HC values followed the same pattern of the OC, with a very high correlation between these parameters (r >0.95). The HC/OC ratio, ranging narrowly among the aggregates fractions, indicated no hierarchical role of HC as persisting binding agents. However HC extracted in the silt-clay fraction showed higher proportion of low molecular weight fraction in peaty and clay soil, respect to HC of larger aggregates.

  10. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  11. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  12. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting.

    PubMed

    Xi, Beidou; Zhao, Xinyu; He, Xiaosong; Huang, Caihong; Tan, Wenbing; Gao, Rutai; Zhang, Hui; Li, Dan

    2016-11-01

    Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils.

  13. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.

    PubMed

    Ma, Hongrui; Gao, Mao; Hua, Li; Chao, Hao; Xu, Jing

    2015-11-01

    Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars' utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100-400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363-368 nm and 283/359-368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263-283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C.

  14. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  15. Mutagenic activity in humic water and alum flocculated humic water treated with alternative disinfectants.

    PubMed

    Backlund, P; Kronberg, L; Pensar, G; Tikkanen, L

    1985-12-01

    Mutagenic activity in Salmonella typhimurium strains TA 100, TA 98 and TA 97 has been determined for humic water and alum flocculated humic water, treated with the alternative disinfectants chlorine, ozone, chlorine dioxide, ozone/chlorine and chlorine/chlorine dioxide. The most pronounced activity was found for chlorine treated water tested on strain TA 100 without metabolic activation (S9 mix). Ozone treatment prior to chlorination did not alter the activity, while treatment with chlorine in combination with chlorine dioxide reduced the activity to a level somewhat over the background. No mutagenic response was detected in waters treated with ozone or chlorine dioxide alone. In presence of S9 mix all water extracts studied were non-mutagenic.

  16. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    Applicability of humic compound (HC) "Extra" (potassium humate produced from coal) was studied to remediate soils contaminated with copper in model experiments. Field experiments were carried out in 10-litter plastic containers. The upper layer was prepared as a mixture of loam (pH=5.3), sand (pH=7.4) and peat(pH=5.5). It was underlain consequently by loam and gravel. To study water migration we installed lysimeters. The experiment was conducted in 3 variants: 1) control, 2) control+Cu, 3) control+Cu+HC. Copper was applied in the form of dry powder (CuSO4*5H2O) over the upper layer of the soil column in a concentration of copper equaling to 1000 mg/kg. Total concentration of copper was determined by ICP AAS, its free ions was measured with the help of ion-selective electrode. Humic compound was sprayed on the surface in liquid form. The vessels stayed outdoors from July to October 2014 with additional watering in dry periods. Analysis of lysimetric waters obtained from this model field experiment revealed significant impact of pH. Application of the humic compound produces almost 5 times higher content of soluble organic substances than in the variant without it, and in the first portions of lysimetric waters the difference is 20-fold. Generation of extra organic content in soluble form was accompanied by the 2-6 times increase of the water soluble copper yield. However the content of the free copper ions in lysimetric waters in case of addition of the potassium humate was negligible, because almost all copper was bounded with water-soluble organic substances. The copper content in water extract from the top layer of soil in the variant with HC was about 1 mg/l, that was 2 times higher than without HC. The content of water-soluble organic carbon in HC variant was 100 mg/L, and without HC was 10 times lower (10 mg/l). The water extract from soils enriched in HC was passed through a column filled with weakly basic anion exchange resin DEAE (Cl-form), the eluate was

  17. Hygroscopic properties of humic-like organics isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Galambos, I.; Kiss, G.; Baltensperger, U.

    2003-04-01

    Organic species are a major fraction of the fine aerosol mode and it has been suggested that water-soluble organic carbon (WSOC) compounds may play an important role in cloud formation. Fine aerosol samples (diameter D < 1.5 μm) from the continental rural site K-puszta, Hungary, were characterized using a solid phase extraction method. The total water-soluble content (WSC) was composed of 49 % inorganics, 14 % highly water-soluble organics, and 37 % of less soluble organics. The latter, called isolated organic matter (ISOM), is assumed to be mainly composed of humic-like substances. Hygroscopic growth factors (HGF) of nebulised WSC and ISOM extracts, as well as reference substances NRFA and NRHA (fulvic and humic acids), were measured with an H-TDMA. Under increasing RH dry ISOM particles (D{_o} = 100 nm) dissolved in the range RH = 30 - 60 %, followed by continuous growth above this deliquescence transition, resulting in HGFs of D/D{_o} 1.14 at 90 % RH. Particles from WSC extracts exhibited HGFs of D/D{_o} 1.61 at 90 % RH. This is close to the HGF of pure ammonium sulfate (D/D{_o} = 1.69 at 90 % RH), indicating that ISOM contributes significantly to water uptake of mixed WSC particles. Although ISOM is distinctly less hygroscopic than pure inorganic salt particles, its role in the hygroscopic behavior of atmospheric particles is important because of the large abundance and relatively low deliquescence RH. HGFs of NRFA and NRHA were 1.15 and 1.07 at 90 % RH, and deliquescence was at 80 and 90 % RH, respectively. Their hygroscopic behavior was qualitatively similar to ISOM samples, but quantitative differences might be a result of larger average molecular size of the reference substances.

  18. Characterization of biofilm formation on a humic material.

    PubMed

    Rodrigues, A L; Brito, A G; Janknecht, P; Silva, J; Machado, A V; Nogueira, R

    2008-11-01

    Biofilms are major sites of carbon cycling in streams. Therefore, it is crucial to improve knowledge about biofilms' structure and microbial composition to understand their contribution in the self-purification of surface water. The present work intends to study biofilm formation in the presence of humic substances (HSs) as a carbon source. Two biofilm flowcells were operated in parallel; one with synthetic stream water, displaying a background carbon concentration of 1.26+/-0.84 mg L(-1), the other with added HSs and an overall carbon concentration of 9.68+/-1.00 mg L(-1). From the biofilms' results of culturable and total countable cells, it can be concluded that the presence of HSs did not significantly enhance the biofilm cell density. However, the biofilm formed in the presence of HSs presented slightly higher values of volatile suspended solids (VSS) and protein. One possible explanation for this result is that HSs adsorbed to the polymeric matrix of the biofilm and were included in the quantification of VSS and protein. The microbial composition of the biofilm with addition of HSs was characterized by the presence of bacteria belonging to beta-Proteobacteria, Cupriavidus metallidurans and several species of the genus Ralstonia were identified, and gamma-Proteobacteria, represented by Escherichia coli. In the biofilm formed without HSs addition beta-Proteobacteria, represented by the species Variovorax paradoxus, and bacteria belonging to the group Bacteroidetes were detected. In conclusion, the presence of HSs did not significantly enhance biofilm cell density but influenced the bacterial diversity in the biofilm.

  19. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  20. Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy.

    PubMed

    Xiong, Juan; Koopal, Luuk K; Tan, WenFeng; Fang, LinChuan; Wang, MingXia; Zhao, Wei; Liu, Fan; Zhang, Jing; Weng, LiPing

    2013-10-15

    Binding of lead (Pb) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through binding isotherms and XAFS. Pb binding to humic substances (HS) increased with increasing pH and decreasing ionic strength. The NICA-Donnan model described Pb binding to the HS satisfactorily. The comparison of the model parameters showed substantial differences in median Pb affinity constants among JGFA, PAHA, and the soil HAs. Milne's "generic" parameters did not provide an adequate prediction for the soil samples. The Pb binding prediction with generic parameters for the soil HAs was improved significantly by using the value n(Pb1) = 0.92 instead of the generic value n(Pb1) = 0.60. The n(Pb1)/n(H1) ratios obtained were relatively high, indicating monodentate Pb binding to the carboxylic-type groups. The nPb2/nH2 ratios depended somewhat on the method of optimization, but the values were distinctly lower than the n(Pb1)/nH1 ratios, especially when the optimization was based on Pb bound vs log [Pb(2+)]. These low values indicate bidentate binding to the phenolic-type groups at high Pb concentration. The NICA-Donnan model does not consider bidentate binding of Pb to a carboxylic- and a phenolic-type group. The EXAFS results at high Pb loading testified that Pb was bound in bidentate complexes of one carboxylic and one phenolic group (salicylate-type) or two phenolic groups (catechol-type) in ortho position.

  1. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  2. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  3. Aliphatic structure of humic acids; a clue to their origin

    USGS Publications Warehouse

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  4. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    PubMed

    Muller, François L L; Cuscov, Marco

    2017-02-28

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L2]/[Corg], where L2 was the second strongest copper-binding ligand, was 0.75 × 10(-4) when the reservoir residence time was 5 h but 0.34 × 10(-4) when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[Corg] = (0.80 ± 0.20) × 10(-2). Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  5. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  6. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    PubMed Central

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  7. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid.

    PubMed

    Wei, Zimin; Xi, Beidou; Zhao, Yue; Wang, Shiping; Liu, Hongliang; Jiang, Youhai

    2007-06-01

    Municipal solid waste (MSW) compost contains a significant amount of humic substances. In this study, the compost consisted of residual MSW with the metal, plastic and glass removed. In order to enhance degradation processes and the degree of composting humification, complex microorganisms (Bacillus casei, Lactobacillus buchneri and Candida rugopelliculosa) and ligno-cellulolytic (Trichoderma and White-rot fungi) microorganisms were respectively inoculated in the composting process. During the MSW composting, humic acid (HA) was extracted and purified. Elements (C, N, H, O) and spectroscopic characteristics of the HA were determined using elementary analyzer, UV, Fourier transform infrared (FTIR), and fluorescence spectroscopy. The elements analysis, UV, FTIR and fluorescence spectra all led to the same conclusion, that is inoculations with microbes led to a greater degree of aromatization of HA than in the control process (CK) with no inoculation microbes. This indicated that inoculation with microbes in composting would improve the degree humification and maturation processes, in the following order: lingo-cellulolytic>complex microorganisms>CK. And mixed inoculation of MSW with complex microorganisms and lingo-cellulolytic during composting gave a greater degree of HA aromatization than inoculation with complex microorganisms or lingo-cellulolytic alone. But comparing with the HA of soil, the HA of MSW compost revealed a lower degree of aromatization.

  8. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  9. Fractionation of Suwannee River fulvic acid and aldrich humic acid on alpha-Al2O3: spectroscopic evidence.

    PubMed

    Claret, Francis; Schäfer, Thorsten; Brevet, Julien; Reiller, Pascal E

    2008-12-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on alpha-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of alpha-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the (5)D0-->(7)F2 and (5)D0-->(7)F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface.

  10. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  11. Fractionation of Suwannee River Fulvic Acid and Aldrich Humic Acid on α-Al2O3: Spectroscopic Evidence

    SciTech Connect

    Claret, F.; Schäfer, T; Brevet, J; Reiller, P

    2008-01-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on a-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of a-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the 5D0?7F2 and 5D0?7F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface.

  12. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  13. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    PubMed

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently.

  14. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    PubMed

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting.

  15. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  16. Perspective on the use of humic acids from biomass as natural surfactants for industrial applications.

    PubMed

    Salati, Silvia; Papa, Gabriella; Adani, Fabrizio

    2011-01-01

    In the context of renewable vs. non-renewable sources of chemical compounds, the development of natural surfactants as a substitute for synthetic surfactants in technological applications is an important issue. In addition, as synthetic surfactants can persist in the environment causing toxic effects, the use of natural products presents a possibility to minimize impact on the environment. Nowadays, a promising new approach in surfactant-based technologies, consists of the use of humic acids (HAs) extracted directly from biomass that exhibit amphiphilic properties, and can be conveniently used as environmentally friendly surfactants. The raw material from which HAs are extracted and their macromolecular composition affect surfactant properties. Therefore fundamental data from more strictly qualitative aspects, needs to be investigated. This review highlights surfactant ability and chemical properties of HA substances coming from renewable sources in comparison to synthetic surfactants, and points out the capacity for HAs to be used effectively in this field of application.

  17. Formulation of humic-based soil conditioners

    NASA Astrophysics Data System (ADS)

    Amanova, M. A.; Mamytova, G. A.; Mamytova, B. A.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The goal of the study is to prepare soil conditioners (SC) able to carry out the following functions: (i) the chemical conditioning of soil mainly comprising the adjustment of pH, (ii) the balancing of inorganic nutrients, (iii) the physical conditioning of soil mainly comprising the improvement of water permeability, air permeability and water retention properties, and (iv) improvement of the ecological system concerning of useful microorganisms activity in the soil. The SC was made of a mixture of inorganic ingredients, a chemical composition and physical and chemical properties of which promoted improvement of physical characteristic of soil and enrichment by its mineral nutritious elements. In addition to aforesaid ingredients, this soil conditioner contains agronomical-valued groups of microorganisms having the function promoting the growth of the crop. As organic component of SC humic acids (HA) was used. HA serve many major functions that result in better soil and plant health. In soil, HA can increase microbial and mycorrhizal activity while enhancing nutrient uptake by plant roots. HA work as a catalyst by stimulating root and plant growth, it may enhance enzymatic activity that in turn accelerates cell division which can lead to increased yields. HA can help to increase crop yields, seed germination, and much more. In short, humic acids helps keep healthy plants health. The first stage goal was to evaluate mineral and organic ingredients for formulation of SC. Soil conditioners assessed included ash and slag. The use of slags has been largelly used in agriculture as a source of lime and phosphoric acid. The silicic acid of slags reduces Al-acitivity thus, promoting a better assimilation of P-fertilizer by plants. Additionally, silicic acid is also known to improve soil moisture capacity, thus enhancing soil water availability to plants. Physico-chemical characteristics of ash and slag were determined, as a total - about 20 samples. Results include

  18. Hydrophysical properties of Humic Latosols from Brazil

    NASA Astrophysics Data System (ADS)

    Ebenezer Ajayi, Ayodele; de Souza Dias, Moacir; Curi, Nilton; Moreira Pais, Paula Sant'Anna; Iori, Piero

    2014-10-01

    The hydrophysical properties of the prevalent Humic Latosols (organic matter rich and charcoal stained soils) were related to structural sustainability under loading. Intact cores collected at the Ap, AB, Bw horizons were used for hydrophysical characterization. Precompression stresses at 10 suctions were obtained to estimate the load bearing capacities. We observed the dominance of kaolinite with some occurrences of gibbsite and hydroxy-interlayered vermiculite in the clay mineralogy. The high organic matter content in the Ap horizon favours crumb structure with the structural unit presenting high porosity and water retention. The structure of the AB and Bw horizons was, however, granular with structural units having low porosity. Possible influence of earlier incidences of fire enhanced the organic matter and carbon content in the soil reducing down the profile from 42.5 g kg-1 at the Ap to 16.4 g kg-1 at the Bw horizon. The C/N ratio increased from 14 at the Ap to 17 at the Bw, and air capacity increased from 18.1% at Ap to 32.0% at Bw. Precompression stress values were: 100.6±40.7 kPa at Ap, 117.4±44.6 kPa at AB, and 116.1±58.9 kPa at Bw. Load bearing capacities at the AB and Bw horizons were homogenous.

  19. Humic and fulvic acids: sink or source in the availability of metals to the marine bivalves Macoma balthicaand Potamocorbula amurensis?

    USGS Publications Warehouse

    Decho, Alan; Luoma, Samuel N.

    1994-01-01

    Humic acids (HA) and fulvic acids (FA) are common forms of organic matter in marine sedirnents, and are routinely ingested by deposit- and suspension-feeding animals. These compounds may be a sink for metals, implying that once metals are bound to humic substances they are no longer available to food webs. A series of experiments was conducted to quantitatively examine this premise using 2 estuarine bivalves from San Francisco Bay, USA: the suspension feeder Potarnocorbula arnurensis and the facultative deposit feeder Macoma balthica. HA and FA, isolated from marine sediments, were bound as organic coatings to either hydrous ferric oxides (HFO) or silica particles. Cd and Cr(II1) were adsorbed to the organic coatings or directly to uncoated HFO and silica particles. Pulse-chase laboratory feeding expenments using '"'Cd and "Cr(III) were then conducted to determine absorption efficiencies of Cd and Cr for individual specimens using each of the partlcle types. The results demonstrated that: (1) absorption of Cr(I1I) from all types of non-living particles was consistently low (< 11%). Ingested Cd showed greater bioavailability than Cr(IIl), perhaps due to differences in metal chemistry. (2) Bivalves absorbed Cd bound to uncoated HFO or silica particles (i.e. with no HA or FA present). (3) The presence of organic coatings on part~cles reduced Cd bioavailabhty compared with uncoated particles. (4) Both geochemical and biological conditions affected the food chain transfer of Cd. The data suggest that in marine systems inorganic and organic-coated particles are predominantly a sink for Cr in sediments. In the transfer of Cd to consumer animals, inorganic particles and humic substances can act as a link (although not a highly efficient one) under oxidized conditions.

  20. Chlorination of humic materials: Byproduct formation and chemical interpretations

    USGS Publications Warehouse

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  1. Chemical modeling of boron adsorption by humic materials using the constant capacitance model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...

  2. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  3. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.

    PubMed

    Huang, S W; Chiang, P N; Liu, J C; Hung, J T; Kuan, W H; Tzou, Y M; Wang, S L; Huang, J H; Chen, C C; Wang, M K; Loeppert, R H

    2012-05-01

    Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.

  4. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene.

    PubMed

    Aulenta, Federico; Maio, Veronica Di; Ferri, Tommaso; Majone, Mauro

    2010-12-01

    Quinone moieties in humic substances have previously been shown to serve as extracellular electron acceptors in different metabolic pathways. Here we show that the humic acid analogue antraquinone-2,6-disulfonate (AQDS) can also serve as an electron donor in the microbial reductive dechlorination of TCE to cis-DCE. In a bioelectrochemical system (BES), equipped with a glassy carbon electrode (cathode) polarized at -250mV vs. SHE, electrically reduced AQDS served as the shuttle of electrons between the electrode surface and the dechlorinating bacteria. Interestingly, AQDS selectively stimulated only the first step of the TCE dechlorination sequence, leading to the formation of cis-DCE. Bioelectrochemical experiments carried out using a dechlorinating culture, highly enriched in the cis-DCE dechlorinating microorganism Dehalococcoides spp., confirmed the inability of reduced AQDS to serve as an electron donor for cis-DCE dechlorination. The results of this study have implications for the development of bioelectrochemical systems for groundwater remediation, as well as for the biogeochemical fate of chlorinated solvents in humic substances-rich subsurface environments.

  5. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)—habitats with contrasting conditions—was studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapek’s medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  6. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  7. Changes in redox properties of humic acids upon sorption to alumina

    NASA Astrophysics Data System (ADS)

    Subdiaga, Edisson; Orsetti, Silvia; Jindal, Sharmishta; Haderlein, Stefan B.

    2016-04-01

    properties upon sorption. Considering the total electron exchange capacities, significant changes were found mainly at higher amounts of sorbed PPHA and SRHA. 4. Conclusions Overall, our results suggest a change in the redox properties of sorbed HA but not for the dissolved fraction. The sorbed fraction showed a higher redox capacity than the stock samples. Given the absence of redox transfer between the HA and the redox inert aluminum oxide, such changes might be due to conformational changes in the humic substances. 5. References [1] Scott D., Mcknight, D., Blunt-Harris, E., Kolesar, S., Lovley, A. Environ. Sci. Technol. 1998, 32, 2984-2989. [2] Dunnivant, F. Schwarzenbach, R., Macalady, D. Environ. Sci. Technol. 1992, 26(11), 2133-2141. [3] Jiang, J. & Kappler, A. Environ. Sci. Technol. 2008, 42(10), 3562-3569. [4] Aeschbacher, M., Sander M., Schwarzenbach, R. Environ. Sci. Technol. 2010, 44(1), 87-93.

  8. CONDUCTOMETRIC CHARACTERIZATION OF DISSOLVED HUMIC MATERIALS. (R828158)

    EPA Science Inventory

    Conductometric replacement titrations of humic and fulvic acids dissolved in a slight excess of hydroxide were carried out with standard acid. The slope of the titration curve corresponding to the protonation of humate/fulvate was related to the electrophoretic mobility of the...

  9. Can Humic Water Discharge Counteract Eutrophication in Coastal Waters?

    PubMed Central

    Andersson, Agneta; Jurgensone, Iveta; Rowe, Owen F.; Simonelli, Paolo; Bignert, Anders; Lundberg, Erik; Karlsson, Jan

    2013-01-01

    A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy. PMID:23637807

  10. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  11. Geochemistry of aquatic humic substances in the Lake Fryxell basin, Antarctica

    USGS Publications Warehouse

    Aiken, G.; McKnight, D.; Harnish, R.; Wershaw, R.

    1996-01-01

    Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem 14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water; 3) The addition of recent organic matter to the bottom waters of the lake from the moat.

  12. Rapid changes in dissolved humic substances in Spirit Lake and South Fork Castle Lake, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Thorn, K.A.; Wershaw, R. L.; Bracewell, J.M.; Robertson, G.W.

    1988-01-01

    One major effect of the eruption of Mount St. Helens, Washington, was a large increase of dissolved organic material in the lakes of the area devastated near the volcano. Much of this material was aquatic fulvic acid derived from plants and soils from the surrounding watershed. During the 3 yr after the eruption, substantial chemical changes occurred in the aquatic fulvic acid. -from Authors

  13. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  14. Measurement and computation of movement of bromide ions and carbofuran in ridged humic-sandy soil.

    PubMed

    Leistra, Minze; Boesten, Jos J T I

    2010-07-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil-plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1-0.2 m layer of the ridges, while it was in the 0.3-0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields.

  15. Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged Humic-Sandy Soil

    PubMed Central

    Boesten, Jos J. T. I.

    2009-01-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil–plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1–0.2 m layer of the ridges, while it was in the 0.3–0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields. PMID:20041324

  16. Insights into the Role of Humic Acid on Pd-catalytic Electro-Fenton Transformation of Toluene in Groundwater

    PubMed Central

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-01-01

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H2O2, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances. PMID:25783864

  17. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.

    PubMed

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-03-18

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H₂O₂, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances.

  18. Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid

    NASA Astrophysics Data System (ADS)

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing

    2016-01-01

    There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8 μg L-1 in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective.

  19. Insights into the Role of Humic Acid on Pd-catalytic Electro-Fenton Transformation of Toluene in Groundwater

    NASA Astrophysics Data System (ADS)

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-03-01

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H2O2, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (.OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances.

  20. Coagulation of humic waters for diffused pollution control and the influence of coagulant type on DOC fractions removed.

    PubMed

    Heiderscheidt, Elisangela; Leiviskä, Tiina; Kløve, Bjørn

    2016-10-01

    This study examined the suitability of organic coagulants for treatment of typically humic peat extraction runoff water by comparing their performance with that of ferric sulphate (FS). The influence of coagulant type on dissolved organic carbon (DOC) fractions removed was analysed in detail using LC-OCD-OND (size exclusion liquid chromatography coupled with organic carbon and organic nitrogen detection) fractionation techniques. In general, lower coagulant dosage was needed under acidic (pH 4.5) than neutral (pH 6.5) conditions. Chitosan (Chit) and poly (diallyldimethyl) ammonium chloride (pDMAC) required significantly lower dosage (40-55%) than FS for acceptable purification, while a tannin-based coagulant (Tan2) required substantially higher dosage (55-75%) independent of water pH. FS demonstrated the best removal of DOC (<81%) and phosphorus (<93%) followed by pDMAC, while Chit and Tan2 achieved the highest removal of suspended solids (SS) (<58%), with flocs formed by Tan2 presenting the best settling properties. Higher molecular weight (MW) DOC fractions were more efficiently removed by all coagulants, with FS being the most efficient (biopolymers 69% and humic substances 91%), followed by Tan2. FS also displayed satisfactory removal of lower MW fractions (building blocks ∼46% and low MW neutrals 62%). Overall, FS was the best performing coagulant. Nevertheless, the organic polymers demonstrated satisfactory overall performance, achieving purification rates mostly inside the requirements set by Finnish environmental authorities.

  1. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry.

    PubMed

    Nguyen, K L; Lewis, D M; Jolly, M; Robinson, J

    2004-11-01

    The steps of the standard method to determine soluble aluminium concentration are filtering, followed by acidifying, then analysing with the atomic absorption spectrophotometer (AAS). When applied to alkaline humic water, acidification gives rise to the formation of humic acid as a brown particulate matter. Of the total soluble aluminium in the original water, 49-61% forms complexes with the particulate humic acid upon acidification. Although the AAS is capable of detecting the binding aluminium, the particulate nature of humic acid easily induces inaccurate readings as a result of the non-uniform distribution of the particulate matter. A more precise analysis of soluble aluminium concentration of alkaline humic water is shown to be achievable in basicified solutions instead. Basicified solutions keep humic acid in the soluble form; hence maintain the homogeneity of the sample.

  2. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  3. Sorption of tebuconazole onto selected soil minerals and humic acids.

    PubMed

    Cadková, Eva; Komárek, Michael; Kaliszová, Regina; Koudelková, Věra; Dvořák, Jiří; Vaněk, Aleš

    2012-01-01

    The aim of the present study was to investigate tebuconazole sorption on common soil minerals (birnessite, ferrihydrite, goethite, calcite and illite) and humic acids (representing soil organic matter). Tebuconazole was used (i) in the commercial form Horizon 250 EW and (ii) as an analytical grade pure chemical. In the experiment with the commercially available tebuconazole, a significant pH-dependent sorption onto the oxides was observed (decreasing sorption with increasing pH). The highest sorption was found for ferrihydrite due to its high specific surface area, followed by humic acids, birnessite, goethite and illite. No detectable sorption was found for calcite. The sorption of analytical grade tebuconazole on all selected minerals was significantly lower compared to the commercial product. The sorption was the highest for humic acids, followed by ferrihydrite and illite and almost negligible for goethite and birnessite without any pH dependence. Again, no sorption was observed for calcite. The differences in sorption of the commercially available and analytical grade tebuconazole can be attributed to the additives (e.g., solvents) present in the commercial product. This work proved the importance of soil mineralogy and composition of the commercially available pesticides on the behavior of tebuconazole in soils.

  4. Quinone-hydroquinone complexes as model components of humic acids: Theoretical studies of their structure, stability and Visible-UV spectra

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2009-04-01

    Humic substances present a geochemically and environmentally important, yet poorly characterized, component of dissolved organic matter. In the past they have generally been described as macromolecular polymers containing many different functional groups. Recently, it has been suggested, partly on the basis of new experimental data, that such materials are rather supramolecular in nature, consisting of smaller molecular units held together by noncovalent forces such as van der Waals forces and H-bonds. A perplexing difficulty in characterizing humic acids has always been that data expected to be informative, such as their Visible-UV spectra, were sadly lacking in structure. This has usually been explained using models in which ensembles of molecules are present characterized by either long-range charge-charge interactions or random short-range donor-acceptor interactions. Structural components resembling hydroquinone:quinone donor-acceptor complexes have been postulated to explain the near-IR and visible spectra of humic acids (Del Vecchio R., and Blough N.V. (2004) On the origin of the optical properties of humic substances. Environ. Sci. 38, 3885-3891). We have calculated structures, energetics and Visible-UV spectra for several different quinone and hydroquinone monomers and for donor-acceptor complexes formed between hydroquinone, H 2Q, the donor, and quinone, Q, the acceptor. Most of the Visible-UV spectral calculations are carried out using time-dependent density functional theory. For the monomers the calculated energies are in good agreement with experiment. We confirm that the absorption spectra of the D:A complexes have maxima at much lower energy than their monomeric components. These absorption energies are influenced by substituents on the aromatic rings, but are also sensitive functions of the distances between the aromatic rings. The importance of D:A complexes in generating a spectrum like that of natural humic acids is consistent with the model of

  5. Organic Substances Interfere with Reverse Transcription-Quantitative PCR-Based Virus Detection in Water Samples

    PubMed Central

    Katayama, Hiroyuki; Furumai, Hiroaki

    2014-01-01

    Reverse transcription (RT)-PCR-based virus detection from water samples is occasionally hampered by organic substances that are coconcentrated during virus concentration procedures. To characterize these organic substances, samples containing commercially available humic acid, which is known to inhibit RT-PCR, and river water samples were subjected to adsorption-elution-based virus concentration using an electronegative membrane. In this study, the samples before, during, and after the concentration were analyzed in terms of organic properties and virus detection efficiencies. Two out of the three humic acid solutions resulted in RT-quantitative PCR (qPCR) inhibition that caused >3-log10-unit underestimation of spiked poliovirus. Over 60% of the organics contained in the two solutions were recovered in the concentrate, while over 60% of the organics in the uninhibited solution were lost during the concentration process. River water concentrates also caused inhibition of RT-qPCR. Organic concentrations in the river water samples increased by 2.3 to 3.9 times after the virus concentration procedure. The inhibitory samples contained organic fractions in the 10- to 100-kDa size range, which are suspected to be RT-PCR inhibitors. According to excitation-emission matrices, humic acid-like and protein-like fractions were also recovered from river water concentrates, but these fractions did not seem to affect virus detection. Our findings reveal that detailed organic analyses are effective in characterizing inhibitory substances. PMID:25527552

  6. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds.

    PubMed

    Araújo, Paula A; Lemos, Madalena; Mergulhão, Filipe; Melo, Luís; Simões, Manuel

    2013-01-01

    Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium) were exposed to surfactants (single and combined) in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium) with minimum bactericidal concentrations ranging from 3 to 35 mg·L(-1). The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  7. Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar.

    PubMed

    Jung, Chanil; Phal, Narong; Oh, Jeill; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin

    2015-12-30

    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.

  8. [Forming mechanism of humic acid-kaolin complexes and the adsorption of trichloroethylene].

    PubMed

    Zhu, Xiao-jing; He, Jiang-tao; Su, Si-hui

    2015-01-01

    The interaction between soil organic components and mineral components was explored in this study. Humic acid and kaolin were used for the preparation of organic-mineral complexes with different contents of organic matter, for experimental study of the adsorption of trichloroethylene. The results showed that the adsorption of trichlorethylene fitted the Freundlich isotherm model. The existence of interaction between humic acid and kaolin was indicated by the significant difference between the actual value and the theoretically overlaid value of the adsorption capacity. With various characterizations, such as FTIR and surface area & pore analysis, the mechanism of interaction between humic acid and kaolin was suggested as follows. When their contents were low, humic acid molecules firstly loaded on the surface binding sites of kaolin. Then with the content increased, as O/M( organic-mineral mass ratio) was 0.02-0.04, some surface pores of kaolin were filled by part of the molecules. After reaching a relatively stable stage, as O/M was 0.04-0.08, humic molecules continued to load on the surface of kaolin and formed the first humic molecule-layer. With humic acid content continued increasing, as O/M was 0.08-0.10, more humic molecules attached to kaolin surface through the interaction with the first layer of molecules and then formed the second layer. O/M was 0.10-0.16 as the whole second layer stage, meanwhile the first layer was compressed. Then when O/M was 0.16-0.4, there were still some humic loadings onto the second layer as the third layer, and further compressed the inner humic acid layers. Besides, some humic acid molecules or aggregates might go on attaching to form as further outer layer.

  9. Humic and fulvic acids: sink or source in the availability of metals to the marine bivalves Macoma balthica and Potamocorbula amurensis?

    USGS Publications Warehouse

    Decho, Alan W.; Luoma, Samuel N.

    1994-01-01

    Humic acids (HA) and fulvic acids (FA) are common forms of organic matter in marine sediments, and are routinely ingested by deposit- and suspension-feeding animals. These compounds may be a sink for metals, implying that once metals are bound to humic substances they are no longer available to food webs. A series of experiments was conducted to quantitatively examine this premise using 2 estuarine bivalves from San Francisco Bay, USA: the suspension feeder Potarnocorbula arnurensis and the facultative deposit feeder Macoma balthica. HA and FA, isolated from marine sediments, were bound as organic coatings to either hydrous ferric oxides (HFO) or silica particles. Cd and Cr(II1) were adsorbed to the organic coatings or directly to uncoated HFO and silica particles. Pulse-chase laboratory feeding expenments using 109Cd and 51Cr(III) were then conducted to determine absorption efficiencies of Cd and Cr for individual specimens using each of the particle types. The results demonstrated that: (1) absorption of Cr(I1I) from all types of non-living particles was consistently low (< 11%). Ingested Cd showed greater bioavailability than Cr(IIl), perhaps due to differences in metal chemistry. (2) Bivalves absorbed Cd bound to uncoated HFO or silica particles (i.e. with no HA or FA present). (3) The presence of organic coatings on particles reduced Cd bioavailabhty compared with uncoated particles. (4) Both geochemical and biological conditions affected the food chain transfer of Cd. The data suggest that in marine systems inorganic and organic-coated particles are predominantly a sink for Cr in sediments. In the transfer of Cd to consumer animals, inorganic particles and humic substances can act as a link (although not a highly efficient one) under oxidized conditions.

  10. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site

    USGS Publications Warehouse

    Croue, J.-P.; Benedetti, M.F.; Violleau, D.; Leenheer, J.A.

    2003-01-01

    Humic substances typically constitute 40-60% of the dissolved organic matter (DOM) in surface waters. However, little information is available regarding the metal binding properties of the nonhumic hydrophilic portion of the DOM. In this study, humic and nonhumic DOM samples were isolated from the South Platte River (Colorado, DOC = 2.6 mg??L-1, SUVA254 = 2.4 L/mg??m) using a two-column array of XAD-8 and XAD-4 resins. The three major isolated fractions of DOM, which accounted for 57% of the bulk DOM, were characterized using a variety of analytical tools. Proton and copper binding properties were studied for each fraction. The main objective of this work was to compare the structural and chemical characteristics of the isolated fractions and test models describing DOM reactivity toward metal ions. The characterization work showed significant structural differences between the three isolated fractions of DOM. The hydrophobic acid fraction (i.e., humic substances isolated from the XAD-8 resin) gave the largest C/H, C/O, and C/N ratios and aromatic carbon content among the three isolated fractions. The transphilic acid (TPHA) fraction ("transphilic" meaning fraction of intermediate polarity isolated from the XAD-4 resin) was found to incorporate the highest proportion of polysaccharides, whereas the transphilic neutral (TPHN) fraction was almost entirely proteinaceous. The gradual increase of the charge with pH for the three DOM fractions is most likely caused by a large distribution of proton affinity constants for the carboxylic groups, as well as a second type of group more generally considered to be phenolic. In the case of the DOM fraction enriched in proteinaceous material (i.e., TPHN fraction), the results showed that the amino groups are reponsible for the charge reversal. For low copper concentrations, nitrogen-containing functional groups similar to those of amino acids are likely to be involved in complexation, in agreement with previously published data.

  11. Effects of humic acid on recoverability and fractal structure of alum-kaolin flocs.

    PubMed

    Zhong, Runsheng; Zhang, Xihui; Xiao, Feng; Li, Xiaoyan

    2011-01-01

    Particle surface characteristics, floc recoverability and fractal structure of alum-kaolin flocs were investigated using in situ particle image velocimetry (PIV) and microbalance with or without humic acid. Experimental results indicated that the zeta potential of kaolin particle surface after adsorption of humic acid was related with humic acid concentration and its acid-base buffering capacity. Adsorption of humic acid resulted in more negative electrophoresis on the particle surface. Coagulant dosages for particles to form flocs would increase with increasing humic concentration. PIV was used to evaluate floc structural fragmentation, floc surface erosion as well as recoverability after high shear. It was found that the floc size during the steady phase of growth was small, while the regrowing capability decreased in the presence of humic acid. The recoverability was closely related with floc breakage modes including floc structural fragmentation and floc surface erosion. The fractal dimensions of alum-kaolin flocs by mass-size method based on microbalance would decrease with increasing humic concentration. This study proved that humic acid had adverse influences on the performance of coagulation process.

  12. EFFECT OF HUMIC ACID ON UPTAKE AND TRANSFER OF COPPER FROM MICROBES TO CILIATES TO COPEPODS

    EPA Science Inventory

    This research is part of an ongoing project designed to determine the effect of humic acid on the uptake and transfer of metals by marine organisms at the lower end of the food chain. Binding affinities for Cu, Cd, Zn, and Cr to Suwannee River humic acid were determined at variou...

  13. Structural and functional comparison of mobile and recalcitrant humic fractions from agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mobile humic acid (MHA) and calcium humate (CaHA) are humic fractions sequentially extracted from soil samples. MHA is extracted by dilute NaOH, and CaHA is subsequently extracted by dilute NaOH from the dilute HCl-washed soil residues of the first extraction. This chapter reviews the recent advance...

  14. CHARACTERIZATION OF HUMIC ACID SIZE FRACTIONS BY SEC AND MALS (R822832)

    EPA Science Inventory

    Latahco silt-loam humic acid was separated on a preparatory scale by size exclusion chromatography (SEC) on a gravity-fed Sepharose column. Four fractions from this separation were collected and further analyzed, along with whole humic acid, by high-performance SEC coupled with a...

  15. Field trials of Growmate humic products in Central and South America: benefits of networked sites.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of humic products as crop and soil amendments deserves further study but remains in dispute. Broad-based evidence for their performance could be gained through coordinated networks of sites that evaluate humic products under diverse soil and weather conditions and for several crop...

  16. Activators of Biochemical and Physiological Processes in Plants Based on Fine Humic Acids

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Polishuk, S.; Kutskir, M.; Churilov, D.; Borychev, S.

    2015-11-01

    This article describes the application of ultrafine humic acids as growth promoters and development of crops, for example corn. During the study we determined the optimal concentration of humic acids in ultrafine state for presowing treatment of seeds of maize. An analysis of laboratory and field tests was presented. We showed the relationship between physiological changes and biochemical processes.

  17. Field Evaluations of Commercial Humic Products: Current Knowledge and Future Needs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic products are extracts of lignite or leonardite, which are immature coals. Humic products are sold commercially; their advertisements claim they will improve plant growth when applied to plants or soil. They are bought by small proportions of row crop farmers and growers of flowers, vegetables,...

  18. Preparation of waxes and humic acids from brown coal from the Sergeevskoe deposit

    SciTech Connect

    L.P. Noskova; A.V. Rokhin; A.P. Sorokin

    2007-06-15

    The comparative extraction of coal with organic solvents was performed. Humic acids were separated from solid residues. The yields, particle-size distributions, and chemical compositions of the resulting products were analyzed. It was demonstrated that brown-coal wax and humic fertilizers can potentially be obtained using coal from the Sergeevskoe deposit.

  19. Beneficial effects of humic acid on micronutrient availability to wheat

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  20. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  1. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  2. Binding characteristics of Cu(2+) to natural humic acid fractions sequentially extracted from the lake sediments.

    PubMed

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao

    2016-11-01

    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu(2+) to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu(2+) to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu(2+) to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu(2+) sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu(2+) were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  3. Effect of fulvic and humic acids on iron and manganese homeostasis in rats.

    PubMed

    Szabó, József; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Hullár, István

    2017-03-01

    The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA) as the two main compounds of humic substances, separately on Fe and Mn homeostasis. Seventy-two male Wistar rats were randomly divided into 9 experimental groups. The control diet (AIN-93G formula) and diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% HA or FA were fed for 26 days. Fe and Mn concentrations of the large intestinal content, liver, kidney, femur and hair were determined. No significant differences were observed in the production parameters. The effects of FA and HA on iron homeostasis were significantly different. FA proved to be a good iron source, and slightly increased the iron content of liver and kidney, but - up to a dietary iron level of 52.7 mg/kg - it did not influence the efficiency of iron absorption. Above a dietary iron level of 52.7 mg/kg down-regulation of Fe absorption can be assumed. HA significantly stimulated the iron uptake and there was no down-regulation of Fe absorption up to 0.8% dietary HA supplementation level (61.5 mg Fe/kg diet). In the HA groups the iron content of the liver and kidney decreased significantly, suggesting that in spite of the better Fe absorption, the HA-Fe complex does not provide iron to the investigated organs. Neither FA nor HA supplementation influenced the Fe content of the femur and hair and slightly decreased the Mn concentration in the large intestinal content. This effect was significant (with a 22.7% Mn concentration decrease) only at the HA supplementation rate of 0.8%. Neither FA nor HA influenced significantly the Mn concentrations of the liver, kidney and femur. The Mn concentration of the hair in rats receiving FA- or HA-supplemented diets was higher than in the control rats; however, this result needs further confirmation.

  4. Humic colloid-borne natural polyvalent metal ions: dissociation experiment.

    PubMed

    Geckeis, H; Rabung, Th; Ngo Manh, T; Kim, J I; Beck, H P

    2002-07-01

    The natural association nature of the humic colloid-borne trace elements is investigated. Rare earth elements (REE) Th and U are chosen as naturally occurring representatives and chemical homologues for actinides of different oxidation states present in nuclear waste. Tri- and tetravalent elements in two investigated Gorleben groundwaters (Gohy-532 and -2227) almost exclusively occur as humic or fulvic colloid-borne species. Their desorption behavior from colloids is examined in the unperturbed groundwater (pH approximately 8) under anaerobic conditions (Ar/1% CO2) by addition of a chelating cation exchanger resin. Particularly, the dissociation process of naturally occurring Eu(III) in the groundwater is compared with the Eu(III) desorption from its humate complex prepared with purified Aldrich humic acid in a buffered aqueous solution at pH approximately 8. The Eu(III) dissociation from the groundwater colloids is found to be considerably slower than found for the humate complex synthesized in the laboratory. This suggests that under natural aquatic conditions the Eu(III) binding in colloids is chemically different from the simple humate complexation as observed in the laboratory experiment. The colloid characterization bythe size exclusion chromatography (SEC) and the flow field-flow fractionation (FFFF) indicates that natural colloid-borne trace elements are found predominantly in colloids of larger size (>15 nm in size), while Eu(III) in its humate complex is found mainly in colloids of hydrodynamic diameters <5 nm. The slower desorption kinetics and the larger colloid size suggest that the polyvalent metal ion binding in natural humic colloids is associated to polynucleation with other co-present trace metal ions. Radiotracer experiments reveal that isotopic equilibria with the naturally colloid-borne trace elements are not attained within a period of more than 100 days, indicating irreversible binding of at least a part of colloid-borne polyvalent trace

  5. Electrochemical reduction of oxygen in the presence of humic acids

    NASA Astrophysics Data System (ADS)

    Mal'Tseva, E. V.; Yudina, N. V.; Lomovskii, O. I.

    2011-07-01

    The effect of the nature of humic acids (HAs), their modification by mechanochemical methods, and the pH of the medium on the electrochemical reduction of oxygen is determined. The mechanical activation of caustobioliths, regardless of their nature, is shown to increase the role of quinone moieties in the composition of HAs, thus promoting the initiation of the electrochemical reduction of O2 in a basic medium. The conclusion is drawn that this changes not only the ratio of redox-active moieties in HAs, which determine the total antioxidant activity, but also their character.

  6. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  7. Humic acid toxicity in biologically treated soil contaminated with polycyclic aromatic hydrocarbons and pentachlorophenol.

    PubMed

    Nieman, J K C; Sims, R C; Sorensen, D L; McLean, J E

    2005-10-01

    Contaminated soil from a land treatment unit at the Libby Groundwater Superfund Site in Libby, MT, was amended with 14C pyrene and incubated for 396 days to promote biodegradation and the formation of soil-associated bound residues. Humic and fulvic acids were extracted from the treated soil microcosms and analyzed for the presence of pyrene residues. Biologic activity promoted 14C association with the fulvic acid fraction, but humic acid-associated 14C did not increase with biologic activity. The Aboatox flash toxicity assay was used to assess the toxicity of humic and fulvic acid fractions. The fulvic acid gave no toxic response, but the humic acid showed significant toxicity. The observed toxicity was likely associated with pentachlorophenol, a known contaminant of the soil that was removed by solvent extraction of the humic acid and that correlated well with toxicity reduction.

  8. Substance use and multiculturalism.

    PubMed

    Adrian, M

    1996-01-01

    This paper reviews intercultural variability of substance use behaviors, including availability of international statistics on consumption of alcohol and other drugs, as well as the use of drugs available locally only. Within a conceptual framework of intercultural relations, it considers the history of transcultural spread of substance use behaviors and possible reactions to the introduction of new drugs within a culture or jurisdiction, including illustrations of the "law of alien poisons." Although intercultural views of substance use have generally concentrated on majority groups' views of substance use in minority groups, minority and non-Western views of substance use need to be considered in the context of increasing international and intercultural communications that increase the rate at which substance use behaviors spread. Both Western and non-Western experiences with substance use and misuse must be taken into account so that better interventions can be developed to deal with addictions and other substance-related problems.

  9. Substance Abuse and Trauma.

    PubMed

    Simmons, Shannon; Suárez, Liza

    2016-10-01

    There is a strong, bidirectional link between substance abuse and traumatic experiences. Teens with cooccurring substance use disorders (SUDs) and posttraumatic stress disorder (PTSD) have significant functional and psychosocial impairment. Common neurobiological foundations point to the reinforcing cycle of trauma symptoms, substance withdrawal, and substance use. Treatment of teens with these issues should include a systemic and integrated approach to both the SUD and the PTSD.

  10. Elder Abuse and Substance Abuse

    MedlinePlus

    ... to: What is Elder Abuse? Elder Abuse and Substance Abuse Substance abuse has been identified as the most frequently cited ... victim and/or the perpetrator who has the substance abuse problem. Substance abuse is believed to be a ...

  11. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.

    PubMed

    Kumpulainen, Sirpa; von der Kammer, Frank; Hofmann, Thilo

    2008-04-01

    In acid conditions, as in acid mine drainage waters, iron oxide particles are positively charged, attracting negatively charged organic particles present in surrounding natural waters. Schwertmannite (Fe8O8(OH)6SO4) and goethite (alpha-FeOOH) are the most typical iron oxide minerals found in mine effluents. We studied schwertmannite formation in the presence of humic acid. Further, surface charge and adsorption of humic acid on synthetic schwertmannite and goethite surfaces in pH 2-9 and in humic acid concentrations of 0.1-100 mg/L C were examined. Schwertmannite did precipitate despite the presence of humic acid, although it contained more sulphate and had higher specific surface area than ordinary schwertmannite. Specific surface area weighted results showed that schwertmannite and goethite had similar humic acid adsorption capacities. Sulphate was released from schwertmannite surfaces with increasing pH, resulting in an increase in specific surface area. Presence of sulphate in solution decreased the surface charge of schwertmannite and goethite similarly, causing coagulation. In acid conditions (pH 2-3.5), according to the zeta potential, schwertmannite is expected to coagulate even in the presence of high concentrations of humic acid (< or = 100 mg/L C). However, at high humic acid concentrations (10-100 mg/L C) with moderate acid conditions (pH>3.5), both schwertmannite and goethite surfaces are strongly negatively charged (zeta potential < -30 mV) thus posing a risk for colloid stabilization and colloidal transport.

  12. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    PubMed

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS.

  13. Influence of fertilizers applied to a paddy-upland rotation on characteristics of soil organic carbon and humic acids.

    PubMed

    Chang Chien, S W; Wang, M C; Hsu, J H; Seshaiah, K

    2006-09-06

    The qualitative and quantitative characteristics of soil organic carbon (SOC) and related humic acids (HAs) extracted from the soils of field plots were investigated after 8 years of annual paddy (Oryza sativa L.) and upland maize (Zea mays L.) rotation with various fertilizations. Seven fertilization treatments were selected: Ck (no inputs); Chem (chemical fertilizer of NPK); Comp (swine compost); Comp + 33% of Chem N rate; Comp + 67% of Chem N rate; GM (legume green manure) + 33% of Chem N rate; and peat + 33% of Chem N rate. Organic and inorganic nitrogen inputs of six treatments were equivalent with respect of nitrogen content, but Comp, GM, and peat treatments were complemented with various amounts of inorganic N. After harvest of the eighth paddy crop, surface soil samples collected from the plots were subjected to soil characterizations and extraction of humic substances, which were used for chemical, spectroscopic (FTIR, 13C NMR, ESR, X-ray diffractometry), delta13C, and 14C dating analyses. The yields of HAs extracted from the seven treatments were significantly different. Treatment containing persistent organic compound such as the peat + 33% N treatment increased the humification process in topsoils and produced higher yield of HA. Spectroscopic analyses revealed that fertilization treatments changed the functional groups, alkyl C, crystalline characteristics, and delta13C ratios of HAs and turnover rate of SOC considerably. The SOC of the peat + 33% N treatment had the highest mean residence time of 3100 years. Various fertilizer treatments are correlated with turnover rate of SOC and related HAs, which are associated with concerned carbon sequestration as well as mitigation of CO2 emission in the soil environment.

  14. Nonreversible immobilization of water-borne plutonium onto self-assembled adlayers of silanized humic materials.

    PubMed

    Shcherbina, Natalia S; Kalmykov, Stepan S; Karpiouk, Leonid A; Ponomarenko, Sergey A; Hatfield, Kirk; Haire, Richard; Perminova, Irina V

    2014-02-18

    The objective was to study plutonium partitioning between immobile and mobile humic materials at the water-solid interfaces. Immobilization of the humic materials on solid supports was performed in situ using self-adhesive silanized humic derivatives. The presence of the humic adlayers on solid supports was shown to significantly enhance Pu sorption and its retention under both steady state and dynamic conditions. While plutonium may exist in multiple oxidations states plus colloidal forms, the major thrust in this work was to study the behavior of most mobile--the PuO2(+) form in dilute solutions. The values of the plutonium partition coefficients (Kd) between water and humics-coated silica gels after 10 days exposure reached 1.6 × 10(4) L · kg(-1) at pH 7.5 under anaerobic conditions with a total plutonium concentration of 1.2 × 10(-8) M exceeding those for the uncoated SiO2 (6.3 × 10(2) L · kg(-1)). Column tests showed substantial sequestration of water-borne plutonium (up to 73%) on the humics-coated silica gels. Remobilization experiments conducted under batch conditions at different pH values (3.5, 4.5, 7.5) showed that no more than 3% of the sequestered Pu was remobilized from the humics-coated silica gels by treatment with dissolved humic materials at environmentally relevant pH of 7.5. Consequently, silanized humic materialas can be seen as both molecular probes and as potent candidate materials for scavenging mobile Pu from an aqueous phase.

  15. Stabilization of polynuclear plutonium(IV) species by humic acid

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Banik, Nidhu Lal; Marquardt, Christian Michael; Kratz, Jens Volker

    2014-04-01

    Although the formation of tetravalent plutonium (Pu(IV)) polymers with natural organic matter was previously observed by spectroscopy, there is no quantitative evidence of such reaction in batch experiments. In the present study, Pu(IV) interaction with humic acid (HA) was investigated at pH 1.8, 2.5 and 3, as a function of HA concentration and for Pu total concentration equal to 6 × 10-8 M. The finally measured Pu(IV) concentrations ([Pu(IV)]eq) are below Pu(IV) solubility limit. Pu(IV)-HA interaction can be explained by the complexation of Pu(IV) monomers by HA up to [Pu(IV)]eq ∼ 10-8 M. However, the slope of the log-log Pu(IV)-HA binding isotherm changes from ∼0.7 to ∼3.5 for higher [Pu(IV)]eq than ∼10-8 M and at any pH. This result suggests the stabilization of hydrolyzed polymeric Pu(IV) species by HA, with a 4:1 Pu:HA stoichiometry. This confirms, for the first time, previous observations made by spectroscopy in concentrated systems. The humic-ion binding model, Model VII, was introduced into the geochemical speciation program PHREEQC and was used to simulate Pu(IV) monomers binding to HA. The simulations are consistent with other tetravalent actinides-HA binding data from literature. The stabilization of a Pu tetramer (Pu4(OH)88+) by HA was proposed to illustrate the present experimental results for [Pu(IV)]eq > 10-8 M. Predictive simulations of Pu(IV) apparent solubility due to HA show that the chosen Pu(IV)-polymer has no impact for pH > 4. However, the comparison between these predictions and recent spectroscopic results suggest that more hydrolyzed polymeric Pu(IV) species can be stabilized by HA at pH > 4. Polymeric Pu(IV)-HA species might significantly enhance Pu(IV) apparent solubility due to humics, which support a colloid-facilitated transport of this low solubility element.

  16. The interaction between humic acid and naphthalene after exposure to visible and UV light

    NASA Astrophysics Data System (ADS)

    Nechaev, L. V.; Tchaikovskaya, O. N.

    2015-12-01

    Dissolved organic matter plays an important role in pollution migration from human waste to aquatic environments. In this study, the effect of humic acid (HA) on the photo-chemical transformation of naphthalene by irradiation model solar and UV light was reported using fluorescence quenching titrations. It was calculated the interactions between naphthalene and humic acids. It is found that the molecular complex of humic acid and naphthalene is more stable to UV irradiation, compared with the model solar radiation. The application of molecular fluorescence spectrometry is a useful sensitive tool evaluate intermolecular HA and naphthalene interactions.

  17. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  18. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2016-12-29

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  19. The HUMEX Project: Experimental acidification of a catchment and its humic lake

    SciTech Connect

    Gjessing, E.T. )

    1992-01-01

    Acid rain research during the late 1970s and the early 1980s concluded that acid precipitation seriously affected the environment. It was, however, realized that humic substances (HS) in the water have an effect on the response of acid rain, and that HS acts as a modifier on both the chemical composition and on the biological activity. The HUMEX Project is studing the impact of HS on the acidification and the effect acidification has on the biological properties of HS. This is done by artificial acidification of a whole catchment. In the fall of 1988 a dystrophic lake was divided in two halves by a plastic curtain from the middle of the natural outlet to the opposite side. During the following two years, through September 1990, the water chemistry of the two lake halves was monitored. A number of scientists from Europe and North America have been studying the organic matter and the biota in the water and in the catchment area prior to the artificial acidification, which started in October 1990. The results, after 18 months of treatment, with a combination of sulphuric acid and ammonium nitrate, show a change in the water chemistry. In the experimental lake, there is a small increase in the concentration of S and organic N and a small decrease in color and pH. A reduction of the anion deficit in the treated basin is suggested to be due to a protonization of the HS. There are also significant biological changes in the treated lake half. 22 refs., 7 figs., 3 tabs.

  20. Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids.

    PubMed

    Goveia, Danielle; Lobo, Fabiana Aparecida; Burba, Peter; Fraceto, Leonardo Fernandes; Dias Filho, Newton Luiz; Rosa, André Henrique

    2010-05-01

    This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd(II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations >485 microg L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

  1. Substance use - inhalants

    MedlinePlus

    Substance abuse - inhalants; Drug abuse - inhalants; Drug use - inhalants; Glue - inhalants ... symptoms and may include: Strong cravings for the drug Having mood swings from feeling depressed to agitated ...

  2. Substance use - amphetamines

    MedlinePlus

    Substance abuse - amphetamines; Drug abuse - amphetamines; Drug use - amphetamines ... Amphetamine: goey, louee, speed, uppers, whiz Dextroamphetamine (ADHD medicine used illegally): dexies, kiddie-speed, pep pills, uppers; ...

  3. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solar irradiance during the reaction period, an actinometer is simultaneously insolated. From these data.... This condition exists because the solar action spectrum for indirect photoreaction in humic-containing... also solar irradiance variations, tubes containing SHW and actinometer solutions are...

  4. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solar irradiance during the reaction period, an actinometer is simultaneously insolated. From these data.... This condition exists because the solar action spectrum for indirect photoreaction in humic-containing... also solar irradiance variations, tubes containing SHW and actinometer solutions are...

  5. Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem

    NASA Astrophysics Data System (ADS)

    Chukov, S. N.; Golubkov, M. S.; Ryumin, A. G.

    2010-11-01

    It is shown that some structural-functional parameters of humic acids from the surface (0-5 cm) layer of a typical chernozem differ from those in a deeper (5-20 cm) layer. The Cha-to-Cfa ratio in the surface layer is by 1.7 times lower, and the concentration of free radicals is by almost an order of magnitude lower than that in the layer of 5-20 cm. The stimulating effect of humic acids from the surface layer on the processes of photosynthesis is sharply retarded, whereas their effect on respiration of Chlorella vulgaris is more pronounced. Humic acids from the deeper layer of chernozem have a much stronger stimulating effect on photosynthesis and a very weak stimulating effect of respiration. The concentration of free radicals in humic acids and the activity of physiological processes of photosynthesis in Chlorella vulgaris display a tight correlative relationship.

  6. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu

  7. Study of coagulation processes of selected humic acids under copper ions influence*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  8. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives.

    PubMed

    Shcherbina, Natalia S; Perminova, Irina V; Kalmykov, Stepan N; Kovalenko, Anton N; Haire, Richard G; Novikov, Alexander P

    2007-10-15

    Actinides in their higher valence states (e.g., MO2+ and MO2(2+), where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regardsto complexing and/ or reducing Np(V) present in solution. These "designer" humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10(-6) (parent humic acid) to 1.06 x 10(-5) sec(-1) (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Logbeta values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone-enriched ones are the most useful for addressing

  9. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives

    SciTech Connect

    Shcherbina, Natalia S.; Perminova, Irina V.; Kalmykov, Stephan N.; Kovalenko, Anton N.; Novikov, Alexander P.; Haire, Richard {Dick} G

    2007-01-01

    Actinides in their higher valence states (e.g., MO{sub 2}{sup +} and MO{sub 2}{sup 2+}, where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regards to complexing and/or reducing Np(V) present in solution. These 'designer' humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10{sup -6} (parent humic acid) to 1.06 x 10{sup -5} sec{sup -1} (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Log{beta} values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone-enriched ones

  10. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  11. Reduced activity of alkaline phosphatase due to host-guest interactions with humic superstructures.

    PubMed

    Mazzei, Pierluigi; Oschkinat, Hartmut; Piccolo, Alessandro

    2013-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy was applied to directly study the interactions between the alkaline phosphatase enzyme (AP) and two different humic acids from a volcanic soil (HA-V) and a Lignite deposit (HA-L). Addition of humic matter to enzyme solutions caused signals broadening in (1)H-NMR spectra, and progressive decrease and increase of enzyme relaxation (T1 and T2) and correlation (τC) times, respectively. Spectroscopic changes were explained with formation of ever larger weakly-bound humic-enzyme complexes, whose translational and rotational motion was increasingly restricted. NMR diffusion experiments also showed that the AP diffusive properties were progressively reduced with formation of large humic-enzyme complexes. The more hydrophobic HA-L affected spectral changes more than the more hydrophilic HA-V. (1)H-NMR spectra also showed the effect of progressively greater humic-enzyme complexes on the hydrolysis of an enzyme substrate, the 4-nitrophenyl phosphate disodium salt hexahydrate (p-NPP). While AP catalysis concomitantly decreased NMR signals of p-NPP and increased those of nitrophenol, addition of humic matter progressively and significantly slowed down the rate of change for these signals. In agreement with the observed spectral changes, the AP catalytic activity was more largely inhibited by HA-L than by HA-V. Contrary to previous studies, in which humic-enzyme interactions were only indirectly assumed from changes in spectrophotometric behavior of enzyme substrates, the direct measurements of AP behavior by NMR spectroscopy indicated that humic materials formed weakly-bound host-guest complexes with alkaline phosphatase, and the enzyme catalytic activity was thereby significantly inhibited. These results suggest that the role of extracellular enzymes in soils may be considerably reduced when they come in contact with organic matter dissolved in the soil solution.

  12. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.

    PubMed

    Siglova, M; Cejkova, A; Masak, J; Jirku, V; Snajdr, J; Valina, O

    2003-01-01

    Fourteen samples of humic acids (HA) were screened for ability to influence reproduction and biodegradation activity of eukaryotic cells in the presence of chosen toxic pollutants. Microorganisms Candida maltosa and Rhodotorula mucilaginosa (soil isolates) were used for all tests. It was observed during our experiments that some samples of humic acids served as a protection against the high concentration of toxic pollutants (phenol, naphtalene etc). This effect can be widely used in many bioremediation technologies.

  13. Substance Abuse Policy

    ERIC Educational Resources Information Center

    Cuzzolino, Robert

    This brochure outlines the substance abuse policy for students at the Philadelphia College of Osteopathic Medicine (PCOM/Pennsylvania). Noted are the dangers of substance abuse during the stressful time of medical training and later for the doctor and clients during professional practice. The policy's five goals are briefly stated. Described next…

  14. Substance Abuse. Policy Statement.

    ERIC Educational Resources Information Center

    National Collaboration for Youth, Washington, DC.

    This paper presents the policy statement on substance abuse from the National Collaboration for Youth (NCY). The policy statement section lists programs and activities supported by the NCY. A section on background includes a statement of the issue of substance abuse. Areas examined in this section include alcohol abuse and drunk driving among…

  15. Effects of humic acid on physical and hydrodynamic properties of kaolin flocs by particle image velocimetry.

    PubMed

    Zhong, Runsheng; Zhang, Xihui; Xiao, Feng; Li, Xiaoyan; Cai, Zhonghua

    2011-07-01

    The physical and hydrodynamic properties of kaolin flocs including floc size, strength, regrowth, fractal structure and settling velocity were investigated by in situ particle image velocimetry technique at different humic acid concentration. Jar-test experimental results showed that the adsorbed humic acid had a significant influence on the coagulation process for alum and ferric chloride. Kaolin flocs formed with the ferric chloride were larger and stronger than those for alum at same humic acid concentration. Floc strength and regrowth were estimated by strength factor and recovery factor at different humic acid concentration. It was found that the increased humic acid concentration had a slight influence on the strength of kaolin flocs and resulted in much worse floc regrowth. In addition, the floc regrowth after breakage depended on the shear history and coagulants under investigation. The changes in fractal structure recorded continuously by in situ particle image velocimetry technique during the growth-breakage-regrowth processes provided a supporting information that the kaolin flocs exhibited a multilevel structure. It was proved that the increased humic acid concentration resulted in decrease in mass fractal dimension of kaolin flocs and consequently worse sedimentation performance through free-settling and microbalance techniques.

  16. Influence of humic acid on the uptake of aqueous metals by the killifish Fundulus heteroclitus.

    PubMed

    Dutton, Jessica; Fisher, Nicholas S

    2012-10-01

    The role of humic acids, over a concentration range of 0 to 20 mg L(-1) , was investigated in the uptake of three metals (Cd, Cr, and Hg-as both inorganic Hg [Hg(II)] and methylmercury [MeHg]) and a metalloid (As) from the aqueous phase by the killifish (Fundulus heteroclitus). Cadmium uptake showed no relationship with humic acid concentration, whereas Cr, Hg(II), and MeHg uptake showed an inverse relationship, and As uptake increased with increasing humic acid concentration. Concentration factors were >1 for Cd, Hg(II), and MeHg at all humic acid concentrations, indicating killifish were more enriched in the metal than the experimental media, whereas As and Cr generally had concentration factors <1 at the end of a 72-h exposure. The uptake of As and Cr reached steady state within the 72-h exposure, whereas uptake of Cd, Hg(II), and MeHg did not. Uptake rate constants (k(u) s; ml g(-1)  d(-1) ) were highest for MeHg (91-3,936), followed by Hg(II), Cd, and Cr, and lowest for As (0.17-0.29). Dissection data revealed that the gills generally had the highest concentration of all metals under all humic acid treatments. The present study concludes that changes in humic acid concentration can influence the accumulation of aqueous metals in killifish and should be considered when modeling metal bioaccumulation.

  17. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  18. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations.

  19. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  20. Water-retentive and anti-inflammatory properties of organic and inorganic substances from Korean sea mud.

    PubMed

    Kim, Jung-Hyun; Lee, Jeongmi; Lee, Hyang-Bok; Shin, Jeong Hyun; Kim, Eun-Ki

    2010-03-01

    Sea mud has been popularly used as an effective base in cosmetic preparations although its biologically-active materials and mechanisms on skin have not yet been fully determined. We isolated humic substances as the major organic substance of the sea mud from a tidal flat in Korea, and investigated their water-retentive properties. Among the three isolated humic substances, humic acid (HA) showed the highest water retentive property (approximately 50 % mass increase from water uptake). Based on the observations that mud pack therapy has been traditionally used to soothe UV-irradiated skin, we examined the antiinflammatory property of the sea mud on UVB-irradiated human keratinocytes (HaCaT cells) by measuring PGE2 levels produced by keratinocytes in the presence of either the total water or methanol extracts of the mud. The water extract showed higher inhibition of PGE2 production from HaCaT cells (30% inhibition) than the methanol extract at 200 ppm (microg/g). We further fractionated the water extract to determine the major components responsible for its anti-inflammatory effect. It was found that the minerals in the mud inhibited PGE2 production by 83 % at 200 ppm, which is comparable with the inhibitory effect of 1 microM indomethacin. No mud extract showed cytotoxicity at the tested concentrations. The mineral compositions of the mineral extract were determined by ICP-MS, revealing that the sea mud consisted of more than 19 different mineral components, rich in Na+, Mg2+, and Zn2+. These results imply that the anti-inflammatory effect of the sea mud is largely due to the minerals in the mud. Our research suggests the potential use of the organic and inorganic substances from the sea mud in various skin products as safe biological substances for skin protective purposes.

  1. The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor

    PubMed Central

    Hou, Xiaolin; Liu, Sitong; Feng, Ying

    2017-01-01

    Anammox is a cost-effective process to treat nitrogenous wastewater. In this work, excitation–emission matrix (EEM) fluorescence spectroscopy was used to characterize the intracellular and extracellular substances of anammox sludge during reactor operation of 276 days. Four main fluorophores were identified from the intracellular substances. Two main protein-like fluorophores were identified from the extracellular substances. Correlation analysis revealed that intracellular 420 peak and humic-like peak had strong correlation with nitrogen removal rate. The two intracellular protein-like peaks had high correlation with MLVSS and MLVSS growth rate. Correlation analysis between different fluorophores discovered that the two peaks in each of these three groups—two intracellular protein-like peaks, two humic acid-like peaks and the two extracellular protein-like peaks had strong intercorrelation, which gave evidence of their homology. A specific method for fluorescence monitoring of anammox reactor were put forward, which included typical fluorescence indexes and their possible values for different operation phases. PMID:28091530

  2. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    NASA Astrophysics Data System (ADS)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  3. Investigation of the Effect of Humic Acids on Phototransformation of Naphthalene Illuminated by Visible and UV Light

    NASA Astrophysics Data System (ADS)

    Nechaev, L. V.; Tchaikovskaya, O. N.

    2016-04-01

    Results of investigation of the effect of humic acids on the degree of photochemical transformation of naphthalene in an aqueous solution illuminated by model solar and UV light are presented. The constant of complexation of naphthalene and humic acids is determined. It is established that the molecular complex of the humic acid and naphthalene is more stable to illumination by UV light then by model sunlight.

  4. Influence of humic acid on the toxicity of copper, cadmium and lead to the unicellular alga, Synechosystis aquatilis

    SciTech Connect

    Shanmukhappa, H.; Neelakantan, K. )

    1990-06-01

    Humic acids are known to play a significant role in phytoplankton productivity by regulating the trace metals required for plant growth. Although few attempts have been made to evaluate the influence of humic acids on heavy metal toxicity to aquatic organisms, their interaction in natural waters is well documented. The present study was undertaken to evaluate the influence of humic acids (HA) extracted from mangrove sediments on Cu, Cd and Pb toxicity to the unicellular alga, Synechosystis aquatilis.

  5. Synthesis and characterization of agricultural controllable humic acid superabsorbent.

    PubMed

    Gao, Lijuan; Wang, Shiqiang; Zhao, Xuefei

    2013-12-01

    Humic acid superabsorbent polymer (P(AA/AM-HA)) and superabsorbent polymer (P(AA/AM)) were synthesized by aqueous solution polymerization method using acrylic acid (AA), acrylamide (AM) and humic acid (HA) as raw material. The effects of N,N'-methylenebisacrylamide (MBA) crosslinking agent, potassium peroxydisulfate (KPS) initiator, reaction temperature, HA content, ratio of AA to AM, concentration of monomer and neutralization of AA on water absorption were investigated. Absorption and desorption ratios of nitrogen fertilizer and phosphate fertilizer were also investigated by determination of absorption and desorption ratio of NH4(+), PO4(3-) on P(AA/AM-HA) and P(AA/AM). The P(AA/AM-HA) and P(AA/AM) were characterized by Fourier translation infrared spectroscopy, biological photomicroscope and scanning electron microscopy (SEM). The optimal conditions obtained were as follows: the weight ratio of MBA to AA and AM was 0.003; the weight ratio of KPS to AA and AM was 0.008; the weight ratio of HA to AA was 0.1; the mole ratio of AM to AA is 0.1; the mole ratio of NaOH to AA is 0.9; the reaction temperature was 60°C. P(AA/AM-HA) synthesized under optimal conditions, has a good saline tolerance, its water absorbency in distilled water and 0.9 wt.% saline solution is 1180 g/g and 110 g/g, respectively. P(AA/AM-HA) achieves half saturation in 6.5 min. P(AA/AM-HA) is superior to P(AA/AM) on absorption of NH4(+), PO4(3-). The SEM micrograph of P(AA/AM-HA) shows a fine alveolate structure. The biological optical microscope micrograph of P(AA/AM-HA) shows a network structure. Graft polymerization between P(AA/AM) and HA was demonstrated by infrared spectrum. The P(AA/AM-HA) superabsorbent has better absorbing ability of water and fertilizer, electrolytic tolerance and fewer cost than P(AA/AM) superabsorbent.

  6. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    SciTech Connect

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22/sup 0/C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90/sup 0/C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22/sup 0/C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables.

  7. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil

    SciTech Connect

    Ortega-Calvo, J.J.; Saiz-Jimenez, C.

    1998-08-01

    The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 {micro}g/ml. Humic acid at 10 {micro}g/ml stimulated the transformation only in the presence of 10 g of clay per liter. The authors suggest that sorption of phenanthrene to these soil components may result in a higher concentration of substrate in the vicinity of the bacterial cells and therefore may increase its bioavailability.

  8. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E

  9. A comparison of the compositional differences between humic fractions isolated by the IHSS and exhaustive extraction procedures

    NASA Astrophysics Data System (ADS)

    Chang, R. R.; Mylotte, R.; Hayes, M. H. B.; Mclnerney, R.; Tzou, Y. M.

    2014-03-01

    Humic substances (HSs), consisting, on the basis of solubilities in aqueous acid and basic media, of humic acids (HAs), fulvic acids (FAs), and humin (Hu), are the major components of soil organic matter (SOM). Most studies of soil/natural organic matter (SOM/NOM) have been carried out on extracts of soils in dilute sodium hydroxide solutions, the solvent used to extract the Standards of the International Humic Substances Society (IHSS). However, Hu, the major component in the classical definition of HSs, is insoluble in aqueous base and is not isolated by the traditional IHSS method. Recently, a sequential exhaustive extraction (SEE) process has been shown to be capable of isolating and separating the major components of the classically defined HSs from the soils of the temperate and tropical regions. The SEE system was used in the present study to isolate the HA/FA and Hu fractions from a subtropical volcanic Taiwanese soil. Chemical and compositional properties of these extracts were then compared with similarly obtained isolates from soils from the different climatic regions. Increases in the aliphatic relative to aromatic carbon contents were observed for both the HA and FA fractions when the pH values of the extraction media were increased. HAs and FAs isolated using the SEE method have spectroscopic profiles similar to those from the IHSS isolate; however, the cumulative extraction efficiency (%) of the SEE method (65 %) for the volcanic soil was much higher than for the traditional IHSS method (33 %). When the residual volcanic soil, following extractions once, three, and eight times with 0.1 M NaOH were then extracted with dimethyl sulphoxide (DMSO) plus concentrated sulphuric acid (the final solvent in the SEE sequence) it was seen that the content of crystalline polymethylene hydrocarbon (33 ppm 13C-NMR resonance in the Hu (or DMSO/acid)) extract increased relative to the amorphous methylene (30 ppm). That highlights the difficulty in dissolving the more

  10. [Nitrate nitrogen leaching and residue of humic acid fertilizer in field soil].

    PubMed

    Liu, Fang-chun; Xing, Shang-jun; Duan, Chun-hua; Du, Zhen-yu; Ma, Hai-lin; Ma, Bing-yao

    2010-07-01

    To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.

  11. The influence of humic acids derived from earthworm-processed organic wastes on plant growth.

    PubMed

    Atiyeh, R M; Lee, S; Edwards, C A; Arancon, N Q; Metzger, J D

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1,000, 2,000, and 4,000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1,000, and 4,000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1,000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates.

  12. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids.

    PubMed

    Vargas, Carmen; Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Moliner, Ana

    2016-07-01

    Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils.

  13. Influence of humic acid applications on soil physicochemical properties

    NASA Astrophysics Data System (ADS)

    Gümüş, İ.; Şeker, C.

    2015-09-01

    Soil structure is often said to be the key to soil productivity since a fertile soil, with desirable soil structure and adequate moisture supply, constitutes a productive soil. Soil structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root penetration and crop yield. The objective of this work is to study, humic acid (HA) application on some physical and chemical properties in weak structured soils investigated. The approach involved establishing a plot experiment in the laboratory conditions. Different rates of HA (control, 0.5, 1, 2 and 4 %) were applied to soil at three incubation periods (21, 42 and 62 days). At the end of the each incubation period, the changes in physicochemical properties were measured. Generally, HA addition increased EC values at the all incubation periods. HA applications decreased soil modulus of rupture. Application of HA at the rate of 4 % was significantly increased soil organic carbon contents. HA applications at the rate of 4 % significantly increased both mean soil total nitrogen content and aggregate stability after at three incubation periods (p < 0.05). Therefore, HA was potential to improve structure of soil in short term.

  14. Spectroscopic and potentiometric studies on derivatized natural humic acid.

    PubMed

    Andjelkovic, Tatjana; Perovic, Jelica; Purenovic, Milovan; Blagojevic, Srdjan; Nikolic, Ruzica; Andjelkovic, Darko; Bojic, Aleksandar

    2006-12-01

    Isolated soil humic acid (HA) and commercial Aldrich HA were derivatized by esterification with methanol-thionyl and acetylation with acetic anhidride, in order to obtain derivatives with selectively blocked carboxyl and phenol groups, respectively. Results obtained by FT-IR spectroscopy and potentiometry show that the methanol-thionyl procedure is a selective, specific and efficient route for blocking carboxyl groups. The good correlation between results obtained by direct potentiometry after HA esterification and by classical calcium-acetate and baryta exchange methods suggests that esterification followed by direct acid-base potentiometric titration can be used as a method for the estimation of carboxyl and phenol group contents. Phenol groups can not be specifically identified by the acetylation method, due to the low selectivity of the acetylation method. The average values of apparent and intrinsic pK of underivatized and derivatized HAs confirm decrease in ionizable groups content due to derivatization and their values are related to the different chemical structures of the acids.

  15. Toxic substances handbook

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  16. Substance use - marijuana

    MedlinePlus

    Substance abuse - marijuana; Drug abuse - marijuana; Drug use - marijuana; Cannabis; Grass; Hashish; Mary Jane; Pot; Weed ... several minutes. If you eat foods containing the drug as an ingredient, such as brownies, you may ...

  17. Substance use - phencyclidine (PCP)

    MedlinePlus

    PCP; Substance abuse - phencyclidine; Drug abuse - phencyclidine; Drug use - phencyclidine ... PCP is a mind-altering drug. This means it acts on your brain (central nervous system) and changes your mood, behavior, and the way you relate to ...

  18. Toxic substances alert program

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  19. Substance use during pregnancy

    PubMed Central

    Forray, Ariadna

    2016-01-01

    Prenatal substance use is a critical public health concern that is linked with several harmful maternal and fetal consequences. The most frequently used substance in pregnancy is tobacco, followed by alcohol, cannabis and other illicit substances. Unfortunately, polysubstance use in pregnancy is common, as well as psychiatric comorbidity, environmental stressors, and limited and disrupted parental care, all of which can compound deleterious maternal and fetal outcomes. There are few existing treatments for prenatal substance use and these mainly comprise behavioral and psychosocial interventions. Contingency management has been shown to be the most efficacious of these. The purpose of this review is to examine the recent literature on the prenatal use of tobacco, alcohol, cannabis, stimulants, and opioids, including the effects of these on maternal and fetal health and the current therapeutic options. PMID:27239283

  20. Supervision: Substance and Style

    ERIC Educational Resources Information Center

    Gellerman, Saul W.

    1976-01-01

    Argues that managerial style and substance are inextricably intertwined, illustrating the discussion with excerpts from an extensive study and job analysis of first-line supervisors in a food packaging plant. (JG)

  1. Organic substances in water

    USGS Publications Warehouse

    Greeson, Phillip E.

    1981-01-01

    This is the third of several compilations of briefing papers on water quality by the U.S. Geological Survey. Each briefing paper is prepared in a simple, nontechnical, easy-to-understand manner. This U.S. Geological Survey Circular contains papers on selected organic substances in water. Briefing papers are included on ' Why study organic substances in water. ', ' Taste and odor in water ', and ' Classification and fractionation of organic solutes in natural waters'. (USGS)

  2. PTSD and Substance Abuse

    DTIC Science & Technology

    2014-10-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Substance use disorders (SUD) and posttraumatic stress disorder (PTSD) are...Appendix……………………………………………………………………………. 10-end INTRODUCTION Substance use disorders (SUD) and posttraumatic stress disorder (PTSD...International Society for Traumatic Stress Studies “Resilience After Trauma: From Surviving to Thriving” Annual Meeting 7-9 November 2013. Currently

  3. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions.

    PubMed

    Yang, Shubin; Hu, Jun; Chen, Changlun; Shao, Dadong; Wang, Xiangke

    2011-04-15

    This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.

  4. Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process.

    PubMed

    Watson, Malcolm Alexander; Tubić, Aleksandra; Agbaba, Jasmina; Nikić, Jasmina; Maletić, Snežana; Molnar Jazić, Jelena; Dalmacija, Božo

    2016-07-15

    Interactions between arsenic and natural organic matter (NOM) are key lim