Science.gov

Sample records for humidity perceived comfort

  1. The effect of structures on indoor humidity--possibility to improve comfort and perceived air quality.

    PubMed

    Simonson, C J; Salonvaara, M; Ojanen, T

    2002-12-01

    The research presented in this paper shows that moisture transfer between indoor air and hygroscopic building structures can generally improve indoor humidity conditions. This is important because the literature shows that indoor humidity has a significant effect on occupant comfort, perceived air quality (PAQ), occupant health, building durability, material emissions, and energy consumption. Therefore, it appears possible to improve the quality of life of occupants when appropriately applying hygroscopic wood-based materials. The paper concentrates on the numerical investigation of a bedroom in a wooden building located in four European countries (Finland, Belgium, Germany, and Italy). The results show that moisture transfer between indoor air and the hygroscopic structure significantly reduces the peak indoor humidity. Based on correlations from the literature, which quantify the effect of temperature and humidity on comfort and PAQ for sedentary adults, hygroscopic structures can improve indoor comfort and air quality. In all the investigated climates, it is possible to improve the indoor conditions such that, as many as 10 more people of 100 are satisfied with the thermal comfort conditions (warm respiratory comfort) at the end of occupation. Similarly, the percent dissatisfied with PAQ can be 25% lower in the morning when permeable and hygroscopic structures are applied.

  2. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer.

    PubMed

    Winett, R A; Hatcher, J W; Fort, T R; Leckliter, I N; Love, S Q; Riley, A W; Fishback, J F

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62 degrees F when home and about 59 degrees F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75 degrees F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior

  3. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer

    PubMed Central

    Winett, Richard A.; Hatcher, Joseph W.; Fort, T. Richard; Leckliter, Ingrid N.; Love, Susan Q.; Riley, Anne W.; Fishback, James F.

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62°F when home and about 59°F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75°F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior change, and energy

  4. Perceived Competence and Comfort in Respiratory Protection

    PubMed Central

    Burgel, Barbara J.; Novak, Debra; Burns, Candace M.; Byrd, Annette; Carpenter, Holly; Gruden, MaryAnn; Lachat, Ann; Taormina, Deborah

    2015-01-01

    In response to the Institute of Medicine (2011) report Occupational Health Nurses and Respiratory Protection: Improving Education and Training, a nationwide survey was conducted in May 2012 to assess occupational health nurses’ educational preparation, roles, responsibilities, and training needs in respiratory protection. More than 2,000 occupational health nurses responded; 83% perceived themselves as competent, proficient, or expert in respiratory protection, reporting moderate comfort with 12 respiratory program elements. If occupational health nurses had primary responsibility for the respiratory protection program, they were more likely to perceive higher competence and more comfort in respiratory protection, after controlling for occupational health nursing experience, highest education, occupational health nursing certification, industry sector, Association of Occupational Health Professionals in Healthcare membership, taking a National Institute for Occupational Safety and Health spirometry course in the prior 5 years, and perceiving a positive safety culture at work. These survey results document high perceived competence and comfort in respiratory protection. These findings support the development of targeted educational programs and interprofessional competencies for respiratory protection. PMID:23429638

  5. Thermal Comfort in the Hot Humid Tropics of Australia

    PubMed Central

    Wyndham, C. H.

    1963-01-01

    Day and night comfort votes were recorded from Caucasian residents at Weipa, a mission station in the hot humid tropics of North Queensland, Australia. The limit of day comfort for more than 50% of the men was 81·5°F. (27·5°C.) “normal” corrected effective temperature; the night limit was 78·0°F. (25·5°C.). Day comfort limits correlated well with air conditions at which sweat was apparent: night limits correlated with the amount of bed covering. Evidence of a change over 14 days in day comfort limit was found. Limitations in the effective temperature scale for expressing the “oppressive nature” of night air conditions are pointed out. Criticism is voiced of the use of dry bulb temperature instead of the effective temperature scale in conditions of high wet bulb temperatures with high relative humidity, such as in the hot humid tropics. PMID:14002126

  6. Comfort in High-Performance Homes in a Hot-Humid Climate

    SciTech Connect

    Poerschke, A.; Beach, R.

    2016-01-22

    "9IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees F for 5% of the time. For 80% of the time, the rooms in each house were within 4 degrees F of each other. Additionally, the impact of system runtime on comfort is discussed. Finally, measurements made at the thermostat were used to better understand the occupant operation of each cooling system's thermostat setpoint. Builders were questioned on their perceived impact of offering a comfort and performance guarantee. Their feedback, which generally indicates a positive perception, has been summarized in the report.

  7. The effect of human-mattress interface's temperature on perceived thermal comfort.

    PubMed

    Califano, R; Naddeo, A; Vink, P

    2017-01-01

    In recent years, methods that allow for an objective evaluation of perceived comfort, in terms of postural, physiological, cognitive and environmental comfort, have received a great deal of attention from researchers. This paper focuses on one of the factors that influences physiological comfort perception: the temperature difference between users and the objects with which they interact. The first aim is to create a measuring system that does not affect the perceived comfort during the temperatures' acquisition. The main aim is to evaluate how the temperature at the human-mattress interface can affect the level of perceived comfort. A foam mattress has been used for testing in order to take into account the entire back part of the human body. The temperature at the interface was registered by fourteen 100 Ohm Platinum RTDs (Resistance Temperature Detectors) placed on the mattress under the trunk, the shoulders, the buttocks, the legs, the thighs, the arms and the forearms of the test subject. 29 subjects participated in a comfort test in a humidity controlled environment. The test protocol involved: dress-code, anthropometric-based positioning on mattress, environment temperature measuring and an acclimatization time before the test. At the end of each test, each of the test subject's thermal sensations and the level of comfort perception were evaluated using the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) scale. The data analyses concerned, in the first instance, correlations between the temperature at the interface and comfort levels of the different parts of the body. Then the same analyses were performed independently of the body parts being considered. The results demonstrated that there was no strong correlation among the studied variables and that the total increase of temperature at interface is associated with a reduction in comfort.

  8. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    PubMed Central

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  9. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    PubMed

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  10. Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

  11. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  12. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions.

  13. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2017-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  14. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador.

    PubMed

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2017-03-10

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  15. Comfort in High-Performance Homes in a Hot-Humid Climate

    SciTech Connect

    Poerschke, A.; Beach, R.

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  16. Measured Cooling Season Results Relating the Impact of Mechanical Ventilation on Energy, Comfort, and Indoor Air Quality in Humid Climates

    SciTech Connect

    Martin, Eric; Amos, Bryan; McIlvaine, Janet; Chasar, David; Widder, Sarah H.; Fonorow, Ken

    2014-08-22

    Conference Paper for ACEEE Summer Study in Buildings discussing results to date of a project evaluating the impact of ventialtion on energy use, comfort, durability, and cost in the hot humid climate.

  17. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.

    PubMed

    Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping

    2014-11-01

    Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.

  18. Effect of climate change on outdoor thermal comfort in humid climates

    PubMed Central

    2014-01-01

    Background Galicia, in northwest Spain, experiences warm summers and winters. However, the higher relative humidity that prevails the whole year through and the location of the summer hot points are related to real weather heat stroke in the hottest season. However, Planet Global Heating was recently analyzed for the climate in Galicia. Climate change was found to be able to trigger effects that involve a new situation with new potential regions of risk. In this paper, 50 weather stations were selected to sample the weather conditions in this humid region, over the last 10 years. From these results, new regions with a potential for heat stroke risk in the next 20 years were identified using the humidex index. Results Results reveal that during the last 10 years, the winter season presents more comfortable conditions, whereas the summer season presents the highest humidex value. Further, the higher relative humidity throughout the whole year reveals that the humidex index clearly depends upon the outdoor temperature. Conclusions Global Planet Heating shows a definite effect on the outdoor comfort conditions reaching unbearable degrees in the really hottest zones. Therefore, this effect will clearly influence tourism and risk prevention strategies in these areas. PMID:24517127

  19. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    PubMed

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2016-10-18

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.

  20. Applying outdoor environment to develop health, comfort, and energy saving in the office in hot-humid climate.

    PubMed

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2-23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  1. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    PubMed Central

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  2. Perceived Comfort of Indoor Environment and Users' Performance in Office Building with Smart Elements - case Study

    NASA Astrophysics Data System (ADS)

    Pilipová, Ivana; Vilčeková, Silvia

    2013-11-01

    A greater degree of awareness of comfort and productivity of building users according to post-occupancy evaluation and feedback of users in intelligent buildings is necessary. This report presents a summary of the results from a physical measurements, a post-occupancy evaluation study on perceived comfort of indoor environment and self-evaluation of occupant's performance in the new multifunctional 5 floor-building in city of Kosice, Slovakia. There were investigated degree of perceived comfort and user's performance with regard to objective measurement, respondents' response and building character. This case study has highlighted that influence of monitored factors of building with smart elements is positively received and wasn't determined their negative impact on perceived comfort of indoor environment and occupants' performance. Results show that respondents are mostly satisfied with their indoor environment conditions of workplace. Interviews with respondents detected they have not been perceived (negative) factors in workplace because they have been too concentric on the work and they have not felt discomfort.

  3. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Emmanuel, Rohinton

    2006-11-01

    The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city’s coastal strip would allow the sea breeze to penetrate further into the city.

  4. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    PubMed

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-14

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  5. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  6. Thermal Comfort and Thermal Sensation During Exposure to Hot, Hot-Humid and Thermoneutral Environments

    DTIC Science & Technology

    1998-01-01

    than COND 2(6 +/- 2 W) and COND 3 (11 +/- 5 W, p < 0.05). The thermal comfort and thermal sensation assessments reflected the physiological responses...surface was related to thermal comfort (R2 = 0.94. This research provided evidence that skin wettedness predicted thermal comfort effectively in all...environments tested. The subjective assessment of thermal comfort discriminated between all environments and the heat index derived from the USARIEM

  7. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    PubMed

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China.

  8. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  9. Technology Solutions Case Study: Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier

    SciTech Connect

    2013-11-01

    In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the Consortium of Advanced Residential Buildings (CARB) team monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74°-80°F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

  10. Energy Extra: Energy Savings vs. Comfort - and the Effect of Humidity.

    ERIC Educational Resources Information Center

    CEFP Journal, 1979

    1979-01-01

    Proper humidity will, in a large number of cases, save money for the user. This saving could show up directly because of reduced infiltration and lower thermostat settings. It could show up indirectly in reduced costs for maintenance and preservation and in increased productivity and decreased absenteeism. (Author)

  11. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.

    PubMed

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3 degrees C and 27.7 degrees C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0-31.6 degrees C) was wider than that in air-conditioned buildings (25.1-30.3 degrees C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9 degrees C and 27.3 degrees C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4 degrees C cooler than neutral temperatures. This result suggests that people of hot climates may use words like "slightly cool" to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants' comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26 degrees C or even higher in air-conditioned buildings was confirmed as making

  12. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation

  13. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  14. Human thermal comfort conditions and urban planning in hot-humid climates—The case of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  15. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    PubMed

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  16. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore

    NASA Astrophysics Data System (ADS)

    de Dear, R. J.; Leow, K. G.; Foo, S. C.

    1991-12-01

    Thermal comfort field experiments were conducted in Singapore in both naturally ventilated highrise residential buildings and air conditioned office buildings. Each of the 818 questionnaire responses was made simultaneously with a detailed set of indoor climatic measurements, and estimates of clothing insulation and metabolic rate. Results for the air conditioned sample indicated that office buildings were overcooled, causing up to one-third of their occupants to experience cool thermal comfort sensations. These observations in air conditioned buildings were broadly consistent with the ISO, ASHRAE and Singapore indoor climatic standards. Indoor climates of the naturally ventilated apartments during the day and early evening were on average three degrees warmer than the ISO comfort standard prescriptions, but caused much less thermal discomfort than expected. Discrepancies between thermal comfort responses in apartment blocks and office buildings are discussed in terms of contemporary perceptual theory.

  17. The influence of active seating on car passengers' perceived comfort and activity levels.

    PubMed

    Hiemstra-van Mastrigt, S; Kamp, I; van Veen, S A T; Vink, P; Bosch, T

    2015-03-01

    New technologies have led to an increasingly sedentary lifestyle. Sedentary behaviour is characterised by physical inactivity and is associated with several health risks. This excessive sitting does not only take place in the office or at home, but also during daily commute. Therefore, BMW AG developed an active seating system for the back seat of a car, consisting of sensors in the back rest that register upper body movements of the passenger, with which the passenger controls a game. This study evaluated three different aspects of active seating compared to other tasks (reading, working on laptop, and gaming on tablet). First, discomfort and comfort perception were measured in a 30-minute driving test. Discomfort was very low for all activities and participants felt significantly more challenged, more fit and more refreshed during active seating. Second, heart rate was measured, indicating a light intensity, but nevertheless non-sedentary, activity. Third, average and variability in activity of six postural muscles was measured by electromyography (EMG), showing a higher muscle activity and higher muscle variability for active seating compared to other activities. Active seating might stimulate movements, thereby increasing comfort and well-being.

  18. The Reliability and Validity of the Perceived Stigmatization Questionnaire (PSQ) and the Social Comfort Questionnaire (SCQ) among an Adult Burn Survivor Sample

    ERIC Educational Resources Information Center

    Lawrence, John W.; Fauerbach, James A.; Heinberg, Leslie J.; Doctor, Marion; Thombs, Brett D.

    2006-01-01

    In this study, 361 adult burn survivors completed the Perceived Stigmatization Questionnaire (PSQ), the Social Comfort Questionnaire (SCQ), and other measures. Both the PSQ and SCQ had good internal consistency indices. Factor analysis of the PSQ yielded 3 factors (absence of friendly behavior, confused/staring behavior, and hostile behavior). The…

  19. Perceived exertion, comfort and working technique in professional computer users and associations with the incidence of neck and upper extremity symptoms

    PubMed Central

    2012-01-01

    Background The aim of this study was to investigate whether perceived exertion, perceived comfort and working technique is associated with the incidence of neck and upper extremity symptoms among professional computer users. Methods At baseline a self-administered questionnaire was distributed to 853 participants from 46 different work sites (382 men and 471 women) who, at baseline, had been free from neck and upper extremity symptoms during the preceding month. Work-related exposures, individual factors, and symptoms from the neck and upper extremities were assessed. Observations of working technique were performed by ergonomists using an ergonomic checklist. Incidence data were collected by means of 10 monthly questionnaires, asking for information on the occurrence of neck, shoulder and arm/hand symptoms. Perceived exertion was rated on a modified Borg RPE scale ranging from 0 (very, very light) to 14 (very, very strenuous). Perceived comfort was rated on a 9-point scale ranging from -4 (very, very poor) to +4 (very, very good) in relation to the chair, computer screen, keyboard, and computer mouse. Results The median follow up time was 10.3 months. The incidence of symptoms from the neck, shoulders and arm/hands were 50, 24 and 34 cases per 100 person years, respectively. Higher perceived exertion in the neck, shoulder or arm/hands was associated with an increased risk of developing symptoms in the corresponding body region. Moreover, a dose-response relationship between the level of exertion and the risk of developing symptoms was recorded for all three regions. There was an association between low comfort and an increased risk for neck symptoms, but not for shoulder and arm/hand symptoms, although a trend towards such an association (not statistically significant) could be seen. Working technique was, in this study, not associated with the risk of developing symptoms in any of the investigated body regions. Conclusion There was a strong association between

  20. Evaluation of forearm support provided by the Workplace Board on perceived tension, comfort and productivity in pregnant and non-pregnant computer users.

    PubMed

    Slot, Tegan; Charpentier, Karine; Dumas, Geneviève; Delisle, Alain; Leger, Andy; Plamondon, André

    2009-01-01

    The aim of the study was to evaluate the effect of forearm support provided by the Workplace Board on perceived tension, comfort and productivity among pregnant and non-pregnant female computer workers. Ten pregnant and 18 non-pregnant women participated in the study. Participants completed three sets of tension/discomfort questionnaires at two week intervals. The first set was completed prior to any workstation intervention; the second set was completed after two weeks working with an ergonomically adjusted workstation; the third set was completed after two weeks working with the Workplace Board integrated into the office workstation. With the Workplace Board, decreased perceived tension was reported in the left shoulder, wrist and low back in non-pregnant women only. The Board was generally liked by all participants, and increased comfort and productivity in all areas, with the exception of a negative effect on productivity of general office tasks. The board is suitable for integration in most office workstations and for most users, but has no special benefits for pregnant women.

  1. Canine Comfort: Pet Affinity Buffers the Negative Impact of Ambivalence over Emotional Expression on Perceived Social Support.

    PubMed

    Bryan, Jennifer L; Quist, Michelle C; Young, Chelsie M; Steers, Mai-Ly N; Foster, Dawn W; Lu, Qian

    2014-10-01

    This study evaluated pet affinity as a buffer between ambivalence over emotional expression (AEE) and social support. AEE occurs when one desires to express emotions but is reluctant to do so and is related to negative psychological outcomes. Individuals high in AEE may have difficulty receiving social support and thus may not gain accompanying benefits. Social support has been associated with positive health outcomes, and pet support is positively associated with human social support. The present study explores the potential protective effect of pet affinity. One hundred ninety-eight undergraduate dog owners completed measures assessing perceived social support, pet affinity, and AEE. AEE was expected to be negatively associated with social support, and pet affinity was expected to buffer the negative effects of AEE on social support. We found that AEE was negatively associated with perceived social support. An interaction between pet affinity and AEE emerged such that the negative association between AEE and social support was weaker among those higher in pet affinity. Thus, at high levels of AEE, those who felt a close connection with their pets reported more perceived social support than those less connected with their pets. Overall, these findings emphasize the potential benefits of pet affinity.

  2. Canine Comfort: Pet Affinity Buffers the Negative Impact of Ambivalence over Emotional Expression on Perceived Social Support

    PubMed Central

    Bryan, Jennifer L.; Quist, Michelle C.; Young, Chelsie M.; Steers, Mai-Ly N.; Foster, Dawn W.; Lu, Qian

    2015-01-01

    This study evaluated pet affinity as a buffer between ambivalence over emotional expression (AEE) and social support. AEE occurs when one desires to express emotions but is reluctant to do so and is related to negative psychological outcomes. Individuals high in AEE may have difficulty receiving social support and thus may not gain accompanying benefits. Social support has been associated with positive health outcomes, and pet support is positively associated with human social support. The present study explores the potential protective effect of pet affinity. One hundred ninety-eight undergraduate dog owners completed measures assessing perceived social support, pet affinity, and AEE. AEE was expected to be negatively associated with social support, and pet affinity was expected to buffer the negative effects of AEE on social support. We found that AEE was negatively associated with perceived social support. An interaction between pet affinity and AEE emerged such that the negative association between AEE and social support was weaker among those higher in pet affinity. Thus, at high levels of AEE, those who felt a close connection with their pets reported more perceived social support than those less connected with their pets. Overall, these findings emphasize the potential benefits of pet affinity. PMID:25960586

  3. Building America Best Practices Series: Volume 4; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Mixed-Humid Climate

    SciTech Connect

    2005-09-01

    This guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the mixed-humid climate region.

  4. Building America Best Practices Series: Volume 1; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot and Humid Climate

    SciTech Connect

    2004-12-01

    This Building America Best Practices guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot and humid climate.

  5. Building America Best Practices Series: Volume 4; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Mixed-Humid Climate

    SciTech Connect

    Baechler, M. C.; Taylor, Z. T.; Bartlett, R.; Gilbride, T.; Hefty, M.; Steward, H.; Love, P. M.; Palmer, J. A.

    2005-09-01

    This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the mixed-humid climate region. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builders team-from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  6. Building America Best Practices Series: Volume 1; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot and Humid Climate

    SciTech Connect

    Baechler, M. C.; Love, P. M.

    2004-11-01

    This Building America Best Practices guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot and humid climate. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  7. Outdoor thermal comfort.

    PubMed

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  8. Physiological comfort of biofunctional textiles.

    PubMed

    Bartels, Volkmar T

    2006-01-01

    Statistics show that the wear comfort is the most important property of clothing demanded by users and consumers. Hence, biofunctional textiles only have a high market potential, if they are comfortable. In this work it is shown how the thermophysiological and skin sensorial wear comfort of biofunctional textiles can be measured effectively by means of the Skin Model and skin sensorial test apparatus. From these measurements, wear comfort votes can be predicted, assessing a textile's wear comfort in practice. These wear comfort votes match exactly the subjective perceptions of test persons. As a result validated by wearer trials with human test subjects, biofunctional textiles can offer the same good wear comfort as classical, non-biofunctional materials. On the other hand, some of the biofunctional treatments lead to a perceivably poorer wear comfort. In particular, the skin sensorial comfort is negatively affected by hydrophobic, smooth (flat) surfaces that easily cling to sweat-wetted skin, or which tend to make textiles stiffer. As guidelines for the improvement of the thermophysiological or skin sensorial wear comfort, it is recommended to use hydrophilic treatments in a suitable concentration and spun yarns instead of filaments.

  9. Optimization of health-care organization and perceived improvement of patient comfort by switching from intra-venous BU four-times-daily infusions to a once-daily administration scheme in adult hematopoietic stem cell recipients.

    PubMed

    Xhaard, A; Rzepecki, P; Valcarcel, D; Santarone, S; Fürst, S; Serrano, D; De Angelis, G; Krüger, W; Scheid, C

    2014-04-01

    Previous studies have shown an equivalent pharmacokinetic profile between four-times-daily (4QD) and once-daily (QD) administration of intra-venous (IV) BU, without increased toxicity. We assess the impact of a switch in IV BU from a 4QD to a QD schedule, in terms of health-care organization, staff working conditions, quality of care dispensed and perceived patient comfort. Clinicians, nurses and pharmacists from nine allogeneic transplantation units in five European countries were interviewed face to face. Overall perception of QD versus 4QD BU was very positive. Both administration schemes were evaluated to be equally efficaciousZ. QD BU was perceived to be safer and more convenient. Clinicians and nurses perceived that patient comfort was improved, due to fewer complications associated with repeated infusions, and avoiding night infusions associated with stress, anxiety and decreased quality of sleep. Switching from 4QD to QD BU had a significant impact on health-care organization, with a better integration in the overall management and usual timelines in the pharmacies and transplantation units. Time spent to prepare and administer BU was significantly reduced, leading to potential financial savings that merit further assessment and would be of particular interest in the current economic climate.

  10. Impact of Photovoltaic Canopy Shade on Outdoor Thermal Comfort in a Hot Desert City

    NASA Astrophysics Data System (ADS)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-04-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade on thermal comfort through microclimate observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. Six stationary sensors under solar canopies and in nearby sun-exposed and tree-shaded locations monitored 5-min temperature and humidity for a year. On selected clear calm days representative of each season, we conducted hourly microclimate transects from 7:00AM to 6:00PM and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on the Likert scale, increasing thermal comfort in all seasons except winter. The shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shade are equally efficient in semi-arid desert environments. Globe temperature explained 50% of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors include adaptation level, gender, thermal comfort vote, thermal preference, season, and time of day. A regression of perceived comfort on Physiological Equivalent Temperature yielded a neutral temperature of 28.6°C. The acceptable comfort range was 19.1°C-38.1°C with a preferred temperature of 20.8°C. Respondents exposed to above neutral temperatures felt more comfortable if they had been in air-conditioning 5 minutes prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas.

  11. Determining the bioclimatic comfort in Kastamonu City.

    PubMed

    Cetin, Mehmet

    2015-10-01

    Bioclimatic comfort defines the optimal climatic conditions in which people feel healthy and dynamic. Bioclimatic comfort mapping methods are useful to urban managers and planners. For the purposes of planning, climatic conditions, as determined by bioclimatic comfort assessments, are important. Bioclimatic components such as temperature, relative humidity, and wind speeds are important in evaluating bioclimatic comfort. In this study of the climate of Kastamonu province, the most suitable areas in terms of bioclimatic comfort have been identified. In this context, climate values belonging to the province of Kastamonu are taken from a total of nine meteorological stations. Altitude (36-1050 m) between stations is noted for revealing climatic changes. The data collected from these stations, including average temperature, relative humidity, and wind speed values are transferred to geographical information system (GIS) using ArcMap 10.2.2 software. GIS maps created from the imported data has designated the most suitable comfort areas in and around the city of Kastamonu. As a result, the study shows that Kastamonu has suitable ranges for bioclimatic comfort zone. The range of bioclimatic comfort value for Kastamonu is 17.6 °C. It is between a comfort ranges which is 15-20 °C. Kastamonu City has suitable area for bioclimatic comfort.

  12. Comfort Zone: Model or Metaphor

    ERIC Educational Resources Information Center

    Brown, Mike

    2008-01-01

    The comfort zone model is widespread within adventure education literature. It is based on the belief that when placed in a stressful situation people will respond by overcoming their fear and therefore grow as individuals. This model is often presented to participants prior to activities with a highly perceived sense of risk and challenge which…

  13. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities

    NASA Astrophysics Data System (ADS)

    Ruiz, María Angélica; Correa, Erica Norma

    2015-10-01

    Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje's Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model's energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.

  14. Reduction of Energy Consumption for Air Conditioning While Maintaining Acceptable Human Comfort.

    DTIC Science & Technology

    1988-04-01

    Fanger, 1972). It is not always possible, or, practical, to obtain optimi thermal comfort conditions. Therefore Frofessor Fanger devised an index to...understand the complex interaction of the six key variables that affect human comfort. Thermal comfort is not exclusively a function of air temperature... Thermal comfort also depends on five other, less obvious, parameters: mean radiant temperature, relative air velocity, humidity, activity level, and

  15. [Comfort: a concept analysis].

    PubMed

    Tsai, Jia-Ling; Lee, Ya-Ling; Hu, Wen-Yu

    2012-02-01

    Comfort is an important concept and core value of nursing. The defining attributes, antecedents and consequences of comfort need further analysis and exploration, even though the concept of comfort has been addressed previously in nursing literature. We employed the strategies of concept analysis as described by Walker&Avant (2005) to analyze the concept of comfort. The defining attributes of comfort include: 1) effective communication; 2) family and meaningful relationships; 3) maintaining functionality; 4) self-characteristics; 5) physical symptom relief, states, and interventions; 6) psychological, spiritual activities and states; and 7) a sense of safety and security. Antecedents consist of discomfort, distress and suffering. Consequences consist of (1) met/satisfied needs; (2) increased sense of control; (3) sense of inner peace; (4) a pleasant experience; (5) feeling cared for; (6) relief of symptoms; (7) reduced suffering; (8) decreased disequilibrium; and (9) absence of discomfort. We also outline the construction of cases, empirical references and comfort measurement tools. Analysis found comfort to have multiple dimensions and confirmed it as a clinical issue that should receive greater emphasis and valuation. Findings are hoped to increase nurse understanding of the concept of comfort and enable nurses to evaluate level of comfort and follow up on variations in such using empirical tools. Concept analysis can guide further comfort related interventions and research to benefit patients.

  16. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  17. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  18. Learning in Comfort

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2012-01-01

    Students spend hours a day in classrooms, so it is critical to their learning to have places to sit that are healthful and comfortable. Schools and universities should outfit their classrooms and other learning spaces with furniture that enables students to carry out their school work comfortably and does not detract from their ability to focus…

  19. Thermal comfort following immersion.

    PubMed

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles.

  20. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.

    PubMed

    Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H

    2009-04-01

    Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.

  1. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  2. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX, to evaluate the comfort performance of ductless minisplit heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  3. How factoring in humidity adds value

    SciTech Connect

    Berlin, G. )

    1994-09-01

    Humidity plays a major role in health, comfort, and production. This article is a brief overview of the technologies available and a detailed explanation of how to calculate humidification loads. The problems caused by dry air vary from one building to another and from one area to another. But basically, there are three major problem types: static electricity, poor moisture stability, health and comfort problems. In today's business offices, static electricity can disrupt operations and increase operating costs. In printing facilities, low humidity causes poor ink registration. Also, sheets of paper stick together and jam machines, wasting time and paper. In computer rooms and data processing areas, dry air leads to static electric discharges that cause circuit board failure, dust buildup on heads, and storage tape breakage. Moisture stability impacts industrial processes and the materials they use. In many cases, product and material deterioration is directly related to moisture fluctuations and lack of humidity control. Books, antiques, paper, wood and wood products, and fruits and vegetables are a few items that can be ruined by low or changing humidity. The health impact of low humidity shows up in dry nasal and thread membranes, dry and itchy skin, and irritated eyes. For employees, this means greater susceptibility to colds and other viral infections. The results is higher absenteeism when humidity is low, which translates into lost productivity and profits.

  4. Aircraft passenger comfort experience: underlying factors and differentiation from discomfort.

    PubMed

    Ahmadpour, Naseem; Robert, Jean-Marc; Lindgaard, Gitte

    2016-01-01

    Previous studies defined passengers' comfort based on their concerns during the flight and a set of eight experiential factors such as 'peace of mind', 'physical wellbeing', 'pleasure', etc. One Objective of this paper was to determine whether the factors underlying the passengers' experience of comfort differ from those of discomfort. Another objective was to cross-validate those factors. In the first study, respondents provided written reports of flight comfort and discomfort experiences separately and gave ratings on the impact of the eight factors on each experience. Follow up interviews were also conducted. Significant difference was found between comfort and discomfort ratings for two factors of 'pleasure', denoted by one's concern for stimulation, ambience and exceeded expectations, and 'physical wellbeing' characterized in terms of bodily support and energy. However, there were no significant differences between the comfort and discomfort ratings on the other six factors. The evidence does not support the proposition that passenger comfort and discomfort are underline by different sets of factors. It is therefore suggested that the evaluation of overall passenger comfort experience, as a whole, employ one spectrum ranging from extreme comfort to discomfort. In study two, a pool of comfort descriptors was collected. Those that were less relevant to passenger comfort were eliminated in a number of steps. Factor analysis was used to classify the remaining descriptors, using respondents' ratings on their potential impact on passenger comfort. Seven factors corresponded to the pre-determined passenger comfort factors from previous research, validating those with an exception of 'proxemics' (concerning one's privacy and control over their situation) but it was argued that this is due to the nature of the factor itself, which is context dependent and generally perceived unconsciously.

  5. Thermal comfort of patients in hospital ward areas.

    PubMed Central

    Smith, R. M.; Rae, A.

    1977-01-01

    The patient is identified as being of prime importance for comfort standards in hospital ward areas, other ward users being expected to adjust their dress to suit the conditions necessary for patients comfort. A study to identify the optimum steady state conditions for patients comfort is then described. Although this study raises some doubts as to the applicability of the standard thermal comfort assessment techniques to ward areas, it is felt that its results give a good indication of the steady-state conditions preferred by the patients. These were an air temperature of between 21-5 degrees and 22 degrees C and a relative humidity of between 30% and 70%, where the air velocity was less than 0-1 m/s and the mean radiant temperature was close to air temperature. PMID:264497

  6. Heartwarming memories: Nostalgia maintains physiological comfort.

    PubMed

    Zhou, Xinyue; Wildschut, Tim; Sedikides, Constantine; Chen, Xiaoxi; Vingerhoets, Ad J J M

    2012-08-01

    Nostalgia, a sentimental longing or wistful affection for the past, is a predominantly positive and social emotion. Recent evidence suggests that nostalgia maintains psychological comfort. Here, we propose, and document in five methodologically diverse studies, a broader homeostatic function for nostalgia that also encompasses the maintenance of physiological comfort. We show that nostalgia--an emotion with a strong connotation of warmth--is triggered by coldness. Participants reported stronger nostalgia on colder (vs. warmer) days and in a cold (vs. neutral or warm) room. Nostalgia, in turn, modulates the interoceptive feeling of temperature. Higher levels of music-evoked nostalgia predicted increased physical warmth, and participants who recalled a nostalgic (vs. ordinary autobiographical) event perceived ambient temperature as higher. Finally, and consistent with the close central nervous system integration of temperature and pain sensations, participants who recalled a nostalgic (vs. ordinary autobiographical) event evinced greater tolerance to noxious cold.

  7. Comfortably saving energy

    NASA Astrophysics Data System (ADS)

    Elich, H. J.

    1984-04-01

    A central heating control system saving energy and improving comfort was digitally implemented. Based on control principles and simulation a control algorithm was determined. Two microcomputers are used to process room and boiler sensor data and are connected with each other by two-wire communication. The system provides a low and constant boiler temperature, an accurately controlled room temperature, a built-in pump switch, and the possibility to adjust the temperature four times a day.

  8. Performance Evaluation of a Hot-Humid Climate Community

    SciTech Connect

    Osser, R.; Kerrigan, P.

    2012-02-01

    Project Home Again is a development in New Orleans, LA created to provide new homes to victims of Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness. These techniques include the use of high density spray foam insulation, LoE3 glazing, and supplemental dehumidification to maintain comfortable humidity levels without unnecessary cooling.

  9. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms

    PubMed Central

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447

  10. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    PubMed

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  11. EDUCATION, CHILDREN AND COMFORT.

    ERIC Educational Resources Information Center

    Iowa Univ., Iowa City.

    TWO SIMILAR CLASSROOMS WERE SET UP IN THE LENNOX LIVING LABORATORY, DES MOINES, IOWA, ONE FOR EXPERIMENTAL GROUPS AND ONE FOR CONTROL GROUPS. TEMPERATURE, AIR CIRCULATION AND HUMIDITY CAN BE CONTROLLED AND MEASURED IN BOTH ROOMS. THE ROOMS ARE OF SIMILAR SIZE, LAYOUT AND CONSTRUCTION, THE THERMAL ENVIRONMENT BEING THE ONLY VARIABLE. THE FOLLOWING…

  12. Ride quality evaluation 1: Questionnaire studies of airline passenger comfort

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Jacobson, I. D.

    1974-01-01

    As part of a larger effort to assess passenger comfort in aircraft, two questionnaires were administered: one to ground-based respondents; the other to passengers in flight. Respondents indicated the importance of various factors influencing their satisfaction with a trip, the perceived importance of various physical factors in determining their level of comfort, and the ease of time spent performing activities in flight. The in-flight sample also provided a rating of their level of comfort and of their willingness to fly again. Comfort ratings were examined in relation to (1) type of respondent, (2) type of aircraft, (3) characteristics of the passengers, (4) ease of performing activities, and (5) willingness to fly again.

  13. Comfort evaluation of maternity support garments in a wear trial.

    PubMed

    Ho, S S; Yu, W; Lao, T T; Chow, D H K; Chung, J W; Li, Y

    2008-09-01

    This study aims to evaluate the wear comfort of eight commercially available maternity support garments. The thermophysiological, sensory/tactile and movement comfort were assessed in a wear trial using a 19-item questionnaire. Fourteen pregnant Chinese women aged 32.3 +/- 4.2 years were recruited from a local obstetric clinic. The results show that the tested garments generally provided greater sensory comfort than thermophysiological comfort. The thermophysiological comfort was mainly influenced by the fibre contents and breathability. Significant linear relationships were found between material appearance and hand feel (r = 0.86, p < 0.001), and between non-itchiness and no red mark (r = 0.78, p < 0.001). Movement comfort was influenced by the garment type and style features. Overall, the soft, good-fit, cotton/elastane maternity brief was perceived as the best product. The findings of comfort needs in pregnant women and the effects of various garment attributes would be helpful for the development of maternity support garment design criteria that are required to satisfy critical ergonomic needs. Low back pain during pregnancy is a common and significant health problem. A maternity support garment is regarded as a convenient and safe device to stabilise the lumbar spine so as to relieve pain. However, patient compliance is likely to be affected by discomfort and inconvenience. The results of this study provide guidance for the optimal design of maternity support clothing.

  14. Understanding and Evaluating Human Thermal Comfort at Tertiary Level Using a Computer-Based Laboratory Teaching Tool

    ERIC Educational Resources Information Center

    Pellegrini, Marco

    2014-01-01

    Phase changes in water are experienced in everyday life but students often struggle to understand mechanisms that regulate them. Human thermal comfort is closely related to humidity, evaporative heat loss and heat transfer. The purpose of the present study is to assist students in the evaluation of human thermal comfort. Such a goal is achievable…

  15. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    NASA Astrophysics Data System (ADS)

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-03-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.

  16. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    PubMed Central

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-01-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design. PMID:28281646

  17. Reversible Humidity Sensitive Clothing for Personal Thermoregulation.

    PubMed

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-03-10

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.

  18. Comfort model for automobile seat.

    PubMed

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz

    2012-01-01

    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  19. Heat and humidity buildup under earmuff-type hearing protectors.

    PubMed

    Davis, Rickie R; Shaw, Peter B

    2011-01-01

    A major barrier to effective wear of hearing protection is comfort. This study examined several comfort indicators in the earmuff-type hearing protectors. Twenty subjects wore hearing protectors instrumented with two different temperature/humidity measurement systems (Omega and iButton) while walking a corridor for about 25 min. The instruments recorded the temperature and humidity every 10 s and their results were compared. In addition, skin surface pH was measured at the ear canal entrance before and after the task. Finally, the subject indicated earmuff comfort at the beginning and end of the session. Earmuff comfort decreased significantly over the course of the walking task. Ear canal pH became slightly less acidic, but the change was not statistically significant. The two temperature/humidity systems provided comparable results. Heat increased at about 0.3°F while humidity built up at about 0.5%/min. However, the study found some limitations on the instrumentation. The complexity of the electrical connections and equipment in the Omega probe system led to loss of three subject's data. The iButton device was more robust, but provided only 256 gradations of temperature and relative humidity. Even with its limitations, the iButton device would be a valuable tool for field studies. The present study showed that the buildup of heat and humidity can be modeled using linear equations. The present study demonstrates that relatively inexpensive tools and a low-exertion task can provide important information about the under-earmuff environment, which can inform assumptions about comfort during use.

  20. The HVAC Control Technology Making Energy Saving Compatible with Comfort

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Yonezawa, Kenzo; Murayama, Dai; Nishimura, Nobutaka; Hanada, Yuuichi; Yamazaki, Kenichi

    The new air-conditioning control technology for the energy saving for buildings is proposed. The method is mainly focused on the compatibility of energy savings and comfort. The energy saving is achieved through the next generation air handling unit that controls room humidity without energy loss and the optimal operation of HVAC (Heating, Ventilating and air-conditioning) system, manipulating the supplying airflow temperature to the rooms, room temperature and the humidity. The comfort is kept by the index (PMV: Predicted Mean Vote) that calculated with room temperature, humidity, radiation temperature, wind velocity and so on. In order to find the HVAC system operation conditions that satisfy the comfort and energy saving at the same time, very large-scale nonlinear programming with nonlinear constraints must be solved on real time basis. To make the programming of the system practical, the driving function loaded onto a control computer is introduced. The function is made by the spline interpolation to achieve calculation stable and to adapt to various HVAC operation modes. The effectiveness of the HVAC control technology is proved through a building HVAC data and the simulations using the data.

  1. Honeywell: Comfort and economy

    SciTech Connect

    Lukaszewski, J.

    1995-12-31

    The presentation of the Company starts with having it ranked among the ones operating on the customers` market or those acting on the professional market. But it is not so. Honeywell is beyond such simple criteria. We are a company supplying products, systems and services related with generally conceived automatic control engineering, yet the operational range does comprise so many apparently diversified fields, for instance automatic control in aeronautics, heavy power engineering, building of apartment buildings, detached houses, heat engineering and some others. Nevertheless, our targets are always the same: maximum increase in efficiency and reliability of the process lines controlled by our systems as well as securing the best comfort of work and rest for people who stay in the buildings controlled by our devices. Simultaneously, the utilization of energy sources and the natural environment resources must be as sensible as possible.

  2. Hoof Comfort for Horses

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aquila Equine Enhancement Products, Inc., of Woburn, Massachusetts, developed magnetic hoof protector pads, called "Power Pads," which support and cushion the impact on a horse's hooves and legs to provide comfort and protection against injuries. The pads were tested by Marshall Space Flight Center's Materials and Processing Laboratory for strength and durability. Putting the pads on a horse does not interfere with its natural movement or flexibility and can be compared to a person changing into athletic shoes for a sporting event. The pads are cut to the appropriate size, and then mounted onto a horse's hooves using conventional shoeing methods. Once attached, the pads protect the hard and soft parts of the hoof by cushioning blows against the hard ground. The design also protects the vulnerable "heel" of the hoof. They are a cost-effective way to protect a horse's hooves since they can be reused.

  3. Measuring Relative Humidity.

    ERIC Educational Resources Information Center

    Pinkham, Chester A.; Barrett, Kristin Burrows

    1992-01-01

    Describes four experiments that enable students to explore the phenomena of evaporation and condensation and determine the relative humidity by measuring air temperature and dew point on warm September days. Provides tables to calculate saturation points and relative humidity. (MDH)

  4. From occupying to inhabiting - a change in conceptualising comfort

    NASA Astrophysics Data System (ADS)

    Jaffari, Svenja D.; Matthews, Ben

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  5. Factors associated with comfort level of occupational therapy practitioners in providing low vision services.

    PubMed

    Winner, Sandra; Yuen, Hon K; Vogtle, Laura K; Warren, Mary

    2014-01-01

    OBJECTIVE. We describe the perceived adequacy of educational preparation for and comfort level of occupational therapy practitioners in providing services to clients with low vision and identify factors associated with the practitioners' comfort level. METHOD. One hundred occupational therapists who were not specialists in low vision rehabilitation completed a survey. RESULTS. Fifty-two percent of the respondents perceived that they had received adequate preparation in occupational therapy school to address low vision. Between 54% and 63% of respondents were comfortable performing visual screening and providing interventions for clients with low vision. Multivariable analyses indicated that having received adequate preparation in occupational therapy school, having a partnership with an eye-care professional, and having provided services to a larger percentage of clients with low vision were significantly associated with perceived comfort in providing services to this population. CONCLUSION. Findings provide an initial direction to improve low vision content in occupational therapy education curricula.

  6. Desiccant-assisted air conditioner improves IAQ and comfort

    SciTech Connect

    Meckler, M. )

    1994-10-01

    This article describes a system which offers the advantage of downsizing the evaporator coil and condensing unit capacities for comparable design loads, which in turn provides numerous benefits. Airborne microorganisms, which are responsible for many acute diseases, infections, and allergies, are well protected indoors by the moisture surrounding them. While the human body is generally the host for various bacteria and viruses, fungi can grow in moist places. It has been concluded that an optimum relative humidity (RH) range of 40 to 60 percent is necessary to minimize or eliminate the bacterial, viral, and fungal growth. In addition, humidity also has an effect on air cleanliness--it reduces the presence of dust particles--and on the deterioration of the building structure and its contents. Therefore, controlling humidity is a very important factor to human comfort in minimizing adverse health effects and maximizing the structural longevity of the building.

  7. Evaporative cooling: Thermal comfort and its energy implications in California climates

    NASA Astrophysics Data System (ADS)

    Xu, Tengfang

    1998-09-01

    Evaporative cooling is more energy efficient than conventional air conditioning for comparable cooling, especially in arid areas such as Arizona, Colorado and Utah. In California, designers have not widely accepted the technology largely because of concerns about comfort and health. There is little actual quantitative information about thermal comfort in evaporatively cooling buildings. To advance the technology, it is necessary to address thermal comfort under the elevated humidities in such buildings. The objectives of this study are to (1) measure the occupant's reactions to the thermal conditions within evaporatively cooled buildings in California, (2) quantify acceptability limits applicable to evaporatively cooled spaces, (3) predict the indoor conditions and energy consumption of a prototypical evaporatively cooled building under different California climates, and (4) draw conclusions about the potential of the technology. The primary approach was to carry out field studies of thermal comfort in evaporatively cooled office and classroom buildings in inland California. The indoor environmental conditions were measured and compared to occupants' subjective votes of comfort and acceptability. These were compared with current ASHRAE comfort standards, and used to test the validity of the comfort zones' boundaries. Field results were generalized by using the DOE-2 program to simulate both the indoor conditions and energy savings produced by evaporative cooling in three climates. The field studies find little impact of humidity on building occupants' thermal comfort. The limit of 60% relative humidity was clearly too restrictive for these evaporatively cooled spaces, and a looser limit is needed. The humidities measured in this study were however not high enough to verify the appropriateness of the 20sb°C wet-bulb temperature limit in ASHRAE Standard 55-1995. Adaptive opportunities of achieving thermal comfort were discovered, suggesting a possible wider zone of

  8. Thermal comfort: research and practice.

    PubMed

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  9. Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus tool equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental

  10. Averting comfortable lifestyle crises.

    PubMed

    Bilton, Rod

    2013-01-01

    : alternative non-sugar sweeteners; toxic side-effects of aspartame. Stevia and xylitol as healthy sugar replacements; the role of food processing in dietary health; and beneficial effects of resistant starch in natural and processed foods. The rise of maize and soya-based vegetable oils have led to omega-6 fat overload and imbalance in the dietary ratio of omega-3 to omega-6 fats. This has led to toxicity studies with industrial trans fats; investigations on health risks associated with stress and comfort eating; and abdominal obesity. Other factors to consider are: diet, cholesterol and oxidative stress, as well as the new approaches to the chronology of eating and the health benefits of intermittent fasting.

  11. Development of Light Powered Sensor Networks for Thermal Comfort Measurement.

    PubMed

    Lee, Dasheng

    2008-10-16

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  12. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  13. Assessment of thermal comfort in a naturally ventilated residential terrace house

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Tap, Masine Md.; Salimin, Khairul Amry Mohd

    2012-06-01

    In hot and humid climates thermal discomfort is a major problem to the occupants of many residential terrace houses especially when they are not equipped with an air-conditioning system. This paper presents a study on an assessment of the level of thermal comfort in a naturally ventilated residential terrace house in Malaysia using computational fluid dynamics (CFD) method. Actual measurements were made to obtain the average air temperature, relative humidity and air flow pattern in various sections of the house. CFD simulations were conducted on a simplified model of the house to predict and visualize the temperature distribution and air flow pattern and its velocity in the house. The level of thermal comfort in the house was found to be well outside the comfort limits as specified by ASHRAE standards.

  14. A comparison of suit dresses and summer clothes in the terms of thermal comfort

    PubMed Central

    2013-01-01

    Background Fanger’s PMV equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, relative air velocity, humidity, activity level and clothing insulation. Methods This paper contains a comparison of suit dresses and summer clothes in terms of thermal comfort, Fanger’s PMV equation. Studies were processed in the winter for an office, which locates in Ankara, Turkey. The office was partitioned to fifty square cells. Humidity, relative air velocity, air temperature and mean radiant temperature were measured on the centre points of these cells. Thermal comfort analyses were processed for suit dressing (Icl = 1 clo) and summer clothing (Icl = 0.5 clo). Results Discomfort/comfort in an environment for different clothing types can be seen in this study. The relationship between indoor thermal comfort distribution and clothing type was discussed. Graphics about thermal comfort were sketched according to cells. Conclusions Conclusions about the thermal comfort of occupants were given by PMV graphics. PMID:24355097

  15. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    NASA Astrophysics Data System (ADS)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  16. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan.

    PubMed

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  17. Humidity without Mystification

    ERIC Educational Resources Information Center

    Staver, Allen E.

    1977-01-01

    Demonstrates how a simple graph can be effectively used in teaching the concept, measurement, and use of humidity. Science activities for upper elementary, secondary, and higher education students are suggested and definitions of terms are presented. (Author/DB)

  18. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  19. Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing.

    PubMed

    Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar

    2015-01-01

    American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance.

  20. An analysis of influential factors on outdoor thermal comfort in summer

    NASA Astrophysics Data System (ADS)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  1. An analysis of influential factors on outdoor thermal comfort in summer.

    PubMed

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  2. Passenger comfort technology for system decision making

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Decisions requiring passenger comfort technology were shown to depend on: the relationship between comfort and other factors (e.g., cost, urgency, alternate modes) in traveler acceptance of the systems, serving a selected market require technology to quantify effects of comfort versus offsetting factors in system acceptance. Public predict the maximum percentage of travelers who willingly accept the overall comfort of any trip ride. One or the other of these technology requirements apply to decisions on system design, operation and maintenance.

  3. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation ( P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.

  4. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon.

    PubMed

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation (P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.

  5. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems

    PubMed Central

    Yun, Jaeseok; Won, Kwang-Ho

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004

  6. Optical humidity sensor

    DOEpatents

    Tarvin, Jeffrey A.

    1987-01-01

    An optical dielectric humidity sensor which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors.

  7. Optical humidity sensor

    DOEpatents

    Tarvin, J.A.

    1987-02-10

    An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.

  8. Assessment of man's thermal comfort in practice

    PubMed Central

    Fanger, P. O.

    1973-01-01

    Fanger, P. O. (1973).British Journal of Industrial Medicine,30, 313-324. Assessment of man's thermal comfort in practice. A review is given of existing knowledge regarding the conditions for thermal comfort. Both physiological and environmental comfort conditions are discussed. Comfort criteria are shown diagrammatically, and their application is illustrated by numerous practical examples. Furthermore, the effect on the comfort conditions of age, adaptation, sex, seasonal and circadian rhythm, and unilateral heating or cooling of the body is discussed. The term `climate monotony' is considered. A method is recommended for the evaluation of the quality of thermal environments in practice. Images PMID:4584998

  9. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  10. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  11. Hands-on Humidity.

    ERIC Educational Resources Information Center

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  12. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  13. A Study of Student Consultants' Comfort Levels with Research-Related Tasks

    ERIC Educational Resources Information Center

    Holler Phillips, Carissa M.

    2011-01-01

    Student consulting is a form of problem-based learning through which students work on strategic issues for organizations. To explore how students perceive their research-related tasks, 15 student consultants were asked to evaluate their comfort levels with seven tasks--adapted from the Association of College and Research Libraries' Information…

  14. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions.

    PubMed

    Gillis, D Jason; House, James R; Tipton, Michael J

    2010-10-01

    Menthol has recently been added to various cooling products that claim to enhance athletic performance. This study assessed the effect of two such solutions during exercise in warm, humid conditions. Twelve participants (22 ± 2.9 years; VO2peak 47.4 ± 6.2 mL kg(-1) min(-1)) completed a peak power (PO(peak)) test and three separate exercise bouts in 30°C and 70% relative humidity after being sprayed with 100 mL of water containing either 0.05 or 0.2% l-menthol, or a control spray. During each trial, participants underwent 15 min of rest, spraying, 15 min of rest and 45 min of exercise at 45% of PO(peak). The following variables were measured: rectal temperature (T (re)), sweat rate (SR), skin blood flow (SBF), heart rate (HR), thermal comfort (TC) and sensation (TS) votes, irritation (IRR) and rating of perceived exertion (RPE). Mean skin (MST) and body temperatures (Tbody) were calculated. There was no significant difference in MST, Tbody SR, SBF, HR, TC or RPE between conditions. Spraying with 0.2% menthol significantly (P < 0.05) elevated T (re) by 0.2°C compared to the other conditions. Both menthol sprays caused participants to feel significantly cooler than control spraying (P = 0.001), but 0.2% spraying induced significantly cooler sensations (P = 0.01) than 0.05% spraying. Both menthol sprays induced greater irritation (P < 0.001) than control spraying. These findings suggest that 0.05% menthol spraying induced cooler upper body sensations without measurable thermoregulatory impairment. T (re) was significantly elevated with 0.2% spraying. Irritation persisted with both menthol sprays while TC remained unchanged, suggesting a causal relationship. The use in sport of a spray similar to those tested here remains equivocal.

  15. Induced Air Movement for Wide-Span Schools in Humid Asia. Educational Building Digest 9.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Schools in the hot and humid zones of the Asian region are narrow to ensure good ventilation. The purpose of this report is to show that it is possible, through appropriate design, to obtain sufficient breeze for thermal comfort in buildings as wide as 15 meters. Some of the conclusions of a study of the subject are summarized. The summary is…

  16. Thermal Comfort Testing for Vehicle Operator/Passenger Workspaces (Truck Cabs)

    DTIC Science & Technology

    2007-10-09

    This TOP describes the procedure to quantify the thermal comfort of a truck cab in temperatures as hot and humid as possible. Facilities, instrumentation, health and safety, test conditions, test procedures, data required, and presentation of data will be discussed in this TOP. This TOP will supplement the following TOPs: TOP 1-1-006, TOP 2-2-508, TOP 2-4-001, and TOP 10-1-003.

  17. Measurement Uncertainty Budget of the PMV Thermal Comfort Equation

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2016-05-01

    Fanger's predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of Ta, hc, T_{mrt}, T_{cl}, and Pa is given in this study. And the uncertainty budgets for hc, T_{cl}, and Pa are given in this study.

  18. Effects of shoe sole hardness on plantar pressure and comfort in older people with forefoot pain.

    PubMed

    Lane, Tamara J; Landorf, Karl B; Bonanno, Daniel R; Raspovic, Anita; Menz, Hylton B

    2014-01-01

    Plantar forefoot pain is common in older people and is related to increased peak pressures under the foot during gait. Variations in the hardness of the shoe sole may therefore influence both the magnitude of loading under the foot and the perceived comfort of the shoe in this population. The aim of this investigation was to determine the effect of varying shoe sole hardness on plantar pressures and comfort in older people with forefoot pain. In-shoe plantar pressures under the forefoot, midfoot and rearfoot were recorded from 35 older people (mean age 73.2, SD 4.5 years) with current or previous forefoot pain using the pedar-X(®) system. Participants walked at their normal comfortable speed along an 8m walkway in shoes with three different levels of sole hardness: soft (Shore A25), medium (Shore A40) and hard (Shore A58). Shoe comfort was measured on a 100mm visual analogue scale. There were statistically significant differences in peak pressure of between 5% and 23% across the forefoot, midfoot and rearfoot (p<0.01). The hard-soled shoe registered the highest peak pressures and the soft-soled shoe the lowest peak pressures. However, no differences in comfort scores across the three shoe conditions were observed. These findings demonstrate that as shoe sole hardness increases, plantar pressure increases, however this does not appear to have a significant effect on shoe comfort.

  19. Perceived Parenting

    ERIC Educational Resources Information Center

    Wouters, Sofie; Doumen, Sarah; Germeijs, Veerle; Colpin, Hilde; Verschueren, Karine

    2013-01-01

    Contingent self-esteem (i.e., the degree to which one's self-esteem is dependent on meeting particular conditions) has been shown to predict a wide range of psychosocial and academic problems. This study extends previous research on contingent self-esteem by examining the predictive role of perceived parenting dimensions in a sample of early…

  20. Thermal Comfort and Strategies for Energy Conservation.

    ERIC Educational Resources Information Center

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  1. Selected Sports Bras: Overall Comfort and Support.

    ERIC Educational Resources Information Center

    Lawson, LaJean; Lorentzen, Deana

    This study evaluated currently marketed sports bras on subjective measures of comfort and support both within an entire group of women and within cup sizes, correlated the subjective measures of comfort and support with previously reported biomechanical findings of support on the same bras, and further developed empirically based guidelines for…

  2. Climate change and thermal comfort in Hong Kong

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Shing Calvin; Hart, Melissa Anne

    2014-03-01

    Thermal comfort is a major issue in cities and it is expected to change in the future due to the changing climate. The objective of this paper is to use the universal thermal comfort index (UTCI) to compare the outdoor thermal comfort in Hong Kong in the past (1971-2000) and the future (2046-2065 and 2081-2100). The future climate of Hong Kong was determined by the general circulation model (GCM) simulations of future climate scenarios (A1B and B1) established by the Intergovernmental Panel on Climate Change (IPCC). Three GCMs were chosen, GISS-ER, GFDL-CM2.1 and MRI-CGCM2.3.2, based on their performance in simulating past climate. Through a statistical downscaling procedure, the future climatic variables were transferred to the local scale. The UTCI is calculated by four predicted climate variables: air temperature, wind speed, relative humidity and solar radiation. After a normalisation procedure, future UTCI profiles for the urban area of Hong Kong were created. Comparing the past UTCI (calculated by observation data) and future UTCI, all three GCMs predicted that the future climate scenarios have a higher mode and a higher maximum value. There is a shift from `No Thermal Stress' toward `Moderate Heat Stress' and `Strong Heat Stress' during the period 2046-2065, becoming more severe for the later period (2081-2100). Comparing the two scenarios, B1 exhibited similar projections in the two time periods whereas for A1B there was a significant difference, with both the mode and maximum increasing by 2 °C from 2046-2065 to 2081-2100.

  3. Climate change and thermal comfort in Hong Kong.

    PubMed

    Cheung, Chi Shing Calvin; Hart, Melissa Anne

    2014-03-01

    Thermal comfort is a major issue in cities and it is expected to change in the future due to the changing climate. The objective of this paper is to use the universal thermal comfort index (UTCI) to compare the outdoor thermal comfort in Hong Kong in the past (1971-2000) and the future (2046-2065 and 2081-2100). The future climate of Hong Kong was determined by the general circulation model (GCM) simulations of future climate scenarios (A1B and B1) established by the Intergovernmental Panel on Climate Change (IPCC). Three GCMs were chosen, GISS-ER, GFDL-CM2.1 and MRI-CGCM2.3.2, based on their performance in simulating past climate. Through a statistical downscaling procedure, the future climatic variables were transferred to the local scale. The UTCI is calculated by four predicted climate variables: air temperature, wind speed, relative humidity and solar radiation. After a normalisation procedure, future UTCI profiles for the urban area of Hong Kong were created. Comparing the past UTCI (calculated by observation data) and future UTCI, all three GCMs predicted that the future climate scenarios have a higher mode and a higher maximum value. There is a shift from 'No Thermal Stress' toward 'Moderate Heat Stress' and 'Strong Heat Stress' during the period 2046-2065, becoming more severe for the later period (2081-2100). Comparing the two scenarios, B1 exhibited similar projections in the two time periods whereas for A1B there was a significant difference, with both the mode and maximum increasing by 2°C from 2046-2065 to 2081-2100.

  4. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-03-07

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  5. Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2007-01-01

    Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

  6. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate.

    PubMed

    Md Din, Mohd Fadhil; Lee, Yee Yong; Ponraj, Mohanadoss; Ossen, Dilshan Remaz; Iwao, Kenzo; Chelliapan, Shreeshivadasan

    2014-04-01

    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.

  7. Perceptions of temperature, moisture and comfort in clothing during environmental transients.

    PubMed

    Li, Y

    2005-02-22

    A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.

  8. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    PubMed

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions.

  9. Classification of thermal environments for comfort assessment.

    PubMed

    Lenzuni, Paolo; Freda, Daniela; Del Gaudio, Michele

    2009-06-01

    According to ISO 7730:2005, classification is a mandatory precondition for thermal comfort assessment since the appropriate criterion depends on which category the specific work situation (SWS) investigated belongs to. Unfortunately, while the standard does include three different comfort criteria, it does not indicate how the appropriate criterion should be selected. This paper presents a classification scheme that allows thermal comfort assessment to be reliably performed in any environment. The model is based on an algorithm that calculates a score by means of a weighted product of three quantities, each one taking care of a specific, highly relevant element: the subject's thermal sensitivity, the accuracy required for carrying out the task and the practicality of thermal control. The scheme's simple modular structure can easily accommodate both changes and additions, should other hypothetical elements be identified to be as relevant to the classification scheme. The model presented allows a modulation of comfort levels across different social groups. It is so possible to provide extra care for children, elderly, pregnant women, disabled and other 'weak' categories, as required by ISO/TS 14415:2005, by setting the highest comfort level. Finally, it also widens the options for simultaneously establishing comfort conditions for different individuals performing different tasks in the same area and clarifies whose comfort should be pursued with the highest priority.

  10. Improving irrigation management for humid and sub-humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal to develop solutions to broad water management problems with application to humid and sub-humid areas in the USA and the world. Our interdisciplinary team optimizes production systems for irrigated ...

  11. Improving irrigation management for humid and sub-humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal to develop solutions to broad water management problems with application to humid and sub-humid areas in the USA and the world. Our interdisciplinary team evaluates and optimizes production systems ...

  12. Visual comfort evaluated by opponent colors

    NASA Astrophysics Data System (ADS)

    Sagawa, Ken

    2002-06-01

    This study aimed to evaluate psychological impression of visual comfort when we see an image of ordinary colored scene presented in a color display. Effects of opponent colors, i.e. red, green, yellow and blue component, on the subjective judgement on visual comfort to the image were investigated. Three kinds of psychological experiment were designed to see the effects and the results indicated that the red/green opponent color component was more affecting than the yellow-blue one, and red color in particular was the most affecting factor on visual comfort.

  13. Thermal aspects of vehicle comfort.

    PubMed

    Holmér, I; Nilsson, H; Bohm, M; Norén, O

    1995-07-01

    The combined thermal effects of convection, radiation and conduction in a vehicle compartment need special measuring equipment accounting for spatial and temporal variations in the driver space. The most sophisticated equipment measures local heat fluxes at defined spots or areas of a man-shaped manikin. Manikin segment heat fluxes have been measured in a variety of vehicle climatic conditions (heat, cold, solar radiation etc.) and compared with thermal sensation votes and physiological responses of subjects exposed to the same conditions. High correlation was found for segment fluxes and mean thermal vote (MTV) of subjects for the same body segments. By calibrating the manikin under homogenous, wind still conditions, heat fluxes could be converted (and normalised) to an equivalent homogenous temperature (EHT). Regression of MTV-values on EHT-values was used as basis for the derivation of a comfort profile, specifying acceptable temperature ranges for 19 different body segments. The method has been used for assessment of the thermal climate in trucks and crane cabins in winter and summer conditions. The possibility for spatial resolution of thermal influences (e.g. by solar radiation or convection currents) appeared to be very useful in the analysis of system performance. Ventilation of driver's seats is a technical solution to reducing insulation of thigh, seat and back areas of the body. Constructions, however, may vary in efficiency. In one system seat ventilation allowed for almost 2 degrees C higher ambient conditions for unchanged general thermal sensation, in addition to the pronounced local effect. In a recent study the effects of various technical measures related to cabin design and HVAC-systems have been investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Humidity Graphs for All Seasons.

    ERIC Educational Resources Information Center

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  15. Report Card on Humidity Control.

    ERIC Educational Resources Information Center

    Fischer, John C.; Bayer, Charlene

    2003-01-01

    Reports on an investigation of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62-1999 on outdoor ventilation rates and space humidity levels for schools. Examined conventional cooling versus desiccant-based systems designed to control indoor humidity levels. Discusses the effectiveness of systems…

  16. Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon

    2015-05-01

    Although autostereoscopic display is considered to be mainstream in the three-dimensional (3-D) display market for the near future, practical quality problems still exist due to various challenges such as the accommodation-vergence conflict and crosstalk. A number of studies have shown that these problems reduce the visual comfort and reliability of the perceived workload. We present two experiments for investigating the effect of parallax distribution, which affects the behavior of the accommodation and vergence responses and crosstalk on visual comfort in autostereoscopic display. We measured the subjective visual scores and perceived depth position for watching under various conditions that include foreground parallax, background parallax, and crosstalk levels. The results show that the viewers' comfort is significantly influenced by parallax distribution that induces a suitable conflict between the accommodation and vergence responses of the human visual system. Moreover, we confirm that crosstalk changes significantly affect visual comfort in parallax barrier autostereoscopic display. Consequently, the results can be used as guidelines to produce or adjust the 3-D image in accordance with the characteristics of parallax barrier autostereoscopic display.

  17. Evaluation of Comfort Liners for Pilot Helmets.

    DTIC Science & Technology

    1994-09-01

    coated open-cell foam system called a Thermoformed Liner (TFL) by Kaiser Electronics. Coefficient of friction, compression and creep data are generated on each of the II helmet comfort liner materials.

  18. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics.

    PubMed

    Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika

    2012-01-01

    The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m(-2) (who is walking at 4 km h(-1) on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being--via PMV--directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

  19. Models for the indices of thermal comfort.

    PubMed

    Streinu-Cercel, Adrian; Costoiu, Sergiu; Mârza, Maria; Streinu-Cercel, Anca; Mârza, Monica

    2008-01-01

    The current paper propose the analysis and extension formulation required for establishing decision in the management of the medical national system from the point of view of quality and efficiency such as: conceiving models for the indices of thermal comfort, defining the predicted mean vote (on the thermal sensation scale) "PMV", defining the metabolism "M", heat transfer between the human body and the environment, defining the predicted percent of dissatisfied people "PPD", defining all indices of thermal comfort.

  20. Humidity micro switch based on humidity-sensitive polymers

    NASA Astrophysics Data System (ADS)

    Bellmann, C.; Steinke, A.; Frank, T.; Gerlach, G.

    2015-04-01

    We present recent results on a binary threshold sensor based on the binary zero-power sensor (BIZEPS) platform which is able to use the energy provided directly from the measured relative humidity of the ambient air to mechanically switch an electrical micro contact. This zero-power switch behavior is realized by using the humidity-sensitive volume swelling of a polymer layer as the detection element deflecting a mechanically deformable silicon boss structure, thus closing the electrical contacts of the switch. For the humidity-sensitive sensor switch considered here, a humidity-sensitive hydrogel blend of poly(vinyl alcohol) and poly(acryl acid) was used. The sensitive part affected by the measurand is completely separated from the electrical part, thus providing long-term stability. By using an inverse silicone stamping technique the polymer layer with a thickness of about 15 μm was patterned on test structures possessing a thin silicon flexure plate of 5 mm x 5 mm in size and 20 μm in thickness. Reproducible deformations of up to 15 … 24 μm has been measured. Investigations of the swelling kinetics showed for several discrete relative humidity values a saturation of the water load. The time to reach this saturation state is reduced from 5 hours down to approx. 20 min by increasing the relative humidity beyond the threshold value of 70% r.H. A significant influence of the temperature to the humidity load could not be observed.

  1. The social comfort of wearable technology and gestural interaction.

    PubMed

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  2. Dynamic thermal environment and thermal comfort.

    PubMed

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  3. Data on the acoustic comfort of passengers in railroad cars and soundproofing recommendations

    NASA Technical Reports Server (NTRS)

    Tomescu, C.; Vrasti, R.

    1974-01-01

    Acoustic passenger comfort in railroad cars is represented by the following values: Total noise level in db, octave sound spectrum in db, and indices of intelligibility. The noise level perceived inside the car results from two components: one due to the penetration of air noise, and another due to the transmission of vibrations through solids. Measurement results show the necessity of improving bogie and bogie-body connections, intensification of soundproofing of the floor, adaption of windows with double panes, etc.

  4. Urban heat island and differences in outdoor comfort levels in Glasgow, UK

    NASA Astrophysics Data System (ADS)

    Krüger, Eduardo; Drach, Patricia; Emmanuel, Rohinton; Corbella, Oscar

    2013-04-01

    From extensive outdoor comfort campaigns, preliminary outdoor comfort ranges have been defined for the local population of Glasgow, UK, in terms of two thermal indices: `Temperature Humidity Sun Wind' (THSW) and `Physiological Equivalent Temperature' (PET). A series of measurements and surveys was carried out from winter through summer 2011 during 19 monitoring campaigns. For data collection, a Davis Vantage Pro2 weather station was used, which was equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer. From concurrent measurements using two weather stations, one located close to the city core and another located at a rural setting, approximately at a 15-km distance from the urban area of Glasgow, comparisons were made with regard to thermal comfort levels and to urban-rural temperature differences for different periods of the year. It was found that the two selected thermal indices (THSW and PET) closely correlate to the actual thermal sensation of respondents. Moreover, results show that the urban site will have fewer days of cold discomfort, more days of `neutral' thermal sensation and slightly higher warm discomfort. The most frequent urban heat island intensity was found to be around 3° C, whereas the fraction of cooling to heating degree-hours for a T base of 65 °F was approximately 1/12th.

  5. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  6. College Students' Comfort Level Discussing Death with Faculty and Perceptions of Faculty Support for Grief-Affected Students

    ERIC Educational Resources Information Center

    Hedman, A. S.

    2012-01-01

    Students' comfort discussing death with faculty, views regarding faculty's likelihood to provide accommodations to grief-affected students, and perceived empathy of faculty were assessed. Undergraduate students (n = 371) attending a Midwestern university completed the Student Survey on Grief Issues. Twenty-six percent reported the death of at…

  7. Thermal comfort in urban green spaces: a survey on a Dutch university campus

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; de Groot, Rudolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed in five different green spaces. We aimed to analyze people's thermal comfort perception and preference in outdoor urban green spaces, and to specify the combined effects between the thermal environmental and personal factors. The results imply that non-physical environmental and subjective factors (e.g., natural view, quiet environment, and emotional background) were more important in perceiving comfort than the actual thermal conditions. By applying a linear regression and probit analysis, the comfort temperature was found to be 22.2 °C and the preferred temperature was at a surprisingly high 35.7 °C. This can be explained by the observation that most respondents, who live in temperate regions, have a natural tendency to describe their preferred state as "warmer" even when feeling "warm" already. Using the Kruskal-Wallis H test, the four significant factors influencing thermal comfort were people's exposure time in green spaces, previous thermal environment and activity, and their thermal history. However, the effect of thermal history needs further investigation due to the unequal sample sizes of respondents from different climate regions. By providing evidence for the role of the objective and subjective factors on human thermal comfort, the relationship between UGI, microclimate, and thermal comfort can assist urban planning to make better use of green spaces for microclimate regulation.

  8. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.

    PubMed

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-12-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  9. Thermal comfort in urban green spaces: a survey on a Dutch university campus.

    PubMed

    Wang, Yafei; de Groot, Rudolf; Bakker, Frank; Wörtche, Heinrich; Leemans, Rik

    2017-01-01

    To better understand the influence of urban green infrastructure (UGI) on outdoor human thermal comfort, a survey and physical measurements were performed at the campus of the University of Groningen, The Netherlands, in spring and summer 2015. Three hundred eighty-nine respondents were interviewed in five different green spaces. We aimed to analyze people's thermal comfort perception and preference in outdoor urban green spaces, and to specify the combined effects between the thermal environmental and personal factors. The results imply that non-physical environmental and subjective factors (e.g., natural view, quiet environment, and emotional background) were more important in perceiving comfort than the actual thermal conditions. By applying a linear regression and probit analysis, the comfort temperature was found to be 22.2 °C and the preferred temperature was at a surprisingly high 35.7 °C. This can be explained by the observation that most respondents, who live in temperate regions, have a natural tendency to describe their preferred state as "warmer" even when feeling "warm" already. Using the Kruskal-Wallis H test, the four significant factors influencing thermal comfort were people's exposure time in green spaces, previous thermal environment and activity, and their thermal history. However, the effect of thermal history needs further investigation due to the unequal sample sizes of respondents from different climate regions. By providing evidence for the role of the objective and subjective factors on human thermal comfort, the relationship between UGI, microclimate, and thermal comfort can assist urban planning to make better use of green spaces for microclimate regulation.

  10. Thermal environment assessment reliability using temperature--humidity indices.

    PubMed

    d'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2011-01-01

    A reliable assessment of the thermal environment should take into account the whole of the six parameters affecting the thermal sensation (air temperature, air velocity, humidity, mean radiant temperature, metabolic rate and thermo-physical properties of clothing). Anyway, the need of a quick evaluation based on few measurements and calculations has leaded to like best temperature-humidity indices instead of rational methods based on the heat balance on the human body. Among these, Canadian Humidex, preliminarily used only for weather forecasts, is becoming more and more widespread for a generalized assessment of both outdoor and indoor thermal environments. This custom arouses great controversies since using an index validated in outdoor conditions does not assure its indoor reliability. Moreover is it really possible to carry out the thermal environment assessment ignoring some of variables involved in the physiological response of the human body? Aiming to give a clear answer to these questions, this paper deals with a comparison between the assessment carried out according to the rational methods suggested by International Standards in force and the Humidex index. This combined analysis under hot stress situations (indoor and outdoor) has been preliminarily carried out; in a second phase the study deals with the indoor comfort prediction. Obtained results show that Humidex index very often leads to the underestimation of the workplace dangerousness and a poor reliability of comfort prediction when it is used in indoor situations.

  11. Thermal comfort investigation on a naturally ventilated two- storey residential house in Malaysia

    NASA Astrophysics Data System (ADS)

    Malek, N. A.; Khairuddin, M. H.; Rosli, M. F.

    2015-09-01

    This paper presents a case study to investigate the human thermal comfort on a naturally ventilated two-storey residential house in Malaysia. Three parameters were investigated in this study, namely the air temperature, air velocity and air humidity. These parameters were measured using the appropriate measuring device to obtain the actual data and compared with simulation results. The level of thermal comfort in the house was found to be poor as the parameters measured are over the limits specified by ASHRAE standards. Simulation on the model of the house was performed using the Computational Fluid Dynamics (CFD) commercial code, FLUENT to visualize the temperature distribution and air flow pattern and velocity in the house. The error between these two sets of data was acceptable and thus the simulation used in this study was validated. Comparison was also made in the CFD simulation to see the effects of using a ceiling fan installed in the house and without ceiling fan. The level of thermal comfort was poor in both cases as it did not satisfy the standards set by ASHRAE but more uniform temperature distribution inside the house was found when the ceiling fan was turned on. The thermal comfort level became critical in the afternoon as during this period, the house receives direct sunlight which causes the temperature inside the house to increase. Although the mechanical ventilation devices did not help to improve the thermal comfort in the house being studied, the CFD simulation results can be used by building designers to further improve the level of thermal comfort in naturally ventilated residential houses.

  12. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  13. Combined comfort model of thermal comfort and air quality on buses in Hong Kong.

    PubMed

    Shek, Ka Wing; Chan, Wai Tin

    2008-01-25

    Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air

  14. Gas and humidity sensing element

    SciTech Connect

    Komine, Y.; Sawada, T.

    1984-06-26

    A gas and humidity sensing element in a single integral structure made of a base plate of apatite ceramics, on which a particular metal oxide such as tin oxide, zinc oxide, or composite oxide of titanium and niobium is provided. The sensing element has a function of sensing gas and humidity with outstanding sensitivity to bad smell gas and alcoholic gas, in which the humidity is sensed and measured by variations in electrical resistance of the apatite ceramic base plate and the bad smell gas such as hydrogen sulfide, methyl mercaptan, etc. is sensed and measured by variations in electrical resistance of the metal oxide.

  15. Thermal Comfort Strategies: A Report on Cellulose Insulation.

    DTIC Science & Technology

    1996-12-01

    comfort, saves energy, controls moisture, increases indoor air quality, and, in general, increases user satisfaction. Thermal comfort is an important...productivity could mean an annual savings of $1 billion. This report presents thermal comfort strategies relating to the use of cellulose insulation...insulation are described. The report also discusses technical issues involved in general thermal comfort strategies, including: (1) infiltration, (2

  16. Interracial Social Comfort and Its Relationship to Adjustment to College

    ERIC Educational Resources Information Center

    McDonald, Scott D.; Vrana, Scott R.

    2007-01-01

    The present study examined the effects of interracial social comfort on college adjustment for 45 Black and 82 White students at a predominantly-White university. Black students reporting more comfort with Whites, regardless of level of comfort with Blacks, experienced better college adjustment. Furthermore, more social comfort with Blacks…

  17. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    PubMed

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension.

  18. Physiological responses during continuous work in hot dry and hot humid environments in Indians

    NASA Astrophysics Data System (ADS)

    Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.

    1984-06-01

    Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the

  19. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    SciTech Connect

    Regnier, Cindy

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  20. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  1. Humidity profiles over the ocean

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, Wenqing; Niiler, Pearn P.

    1991-01-01

    The variabilities of atmospheric humidity profile over oceans from daily to interannual time scales were examined using 9 years of daily and semidaily radiosonde soundings at island stations extending from the Arctic to the South Pacific. The relative humidity profiles were found to have considerable temporal and geographic variabilities, contrary to the prevalent assumption. Principal component analysis on the profiles of specific humidity were used to examine the applicability of a relation between the surface-level humidity and the integrated water vapor; this relation has been used to estimate large-scale evaporation from satellite data. The first principal component was found to correlate almost perfectly with the integrated water vapor. The fractional variance represented by this mode increases with increasing period. It reaches approximately 90 percent at two weeks and decreases sharply, below one week, down to approximately 60 percent at the daily period. At low frequencies, the integrated water vapor appeared to be an adequate estimator of the humidity profile and the surface-level humidity. At periods shorter than a week, more than one independent estimator is needed.

  2. 40% Whole-House Energy Savings in the Hot-Humid Climate

    SciTech Connect

    none,

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  3. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    SciTech Connect

    Baechler, Michael C.; Gilbride, T. L.; Hefty, M. G.; Cole, P. C.; Adams, K.; Butner, R. S.; Ortiz, S. J.; Love, Pat M.

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  4. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

    NASA Astrophysics Data System (ADS)

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  5. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest.

    PubMed

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s(-1)), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m(-2). Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  6. Extending end-state comfort effect: do we consider the beginning state comfort of another?

    PubMed

    Gonzalez, David A; Studenka, Breanna E; Glazebrook, Cheryl M; Lyons, Jim L

    2011-03-01

    Sharing a drink or passing a tool to another person is frequently done in our daily lives. However, a second thought is rarely given about how the object should be handed; instead we pay attention to other factors (e.g., the company). This interaction (handing a tool to someone) is interesting, since it may give insight to how motor intentions are predicted. Research has demonstrated that individuals exhibit an end-state comfort effect when manipulating objects, and it is of interest to determine how this is applied to a joint-action paradigm. The purpose of this experiment was to determine if participants would anticipate the confederate's postural requirements and pass tools in a manner that allowed the confederate to have beginning state comfort and thus facilitate the motion sequence as a whole. That is, would the participant incur the cost of the movement by adopting an awkward posture to facilitate the use of the tool by the confederate? The results demonstrated that participants allowed the confederate to adopt a comfortable beginning state comfort on 100% of the trials for all the tools. However, the participants did not sacrifice end-state comfort, demonstrating that the participants were able to plan ahead to both maximize their own end-state comfort and the beginning state comfort of the confederate.

  7. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    PubMed Central

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners. PMID:23476674

  8. Screening in humid air plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  9. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  10. Infants and Toddlers: Soothing and Comforting Babies

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2004-01-01

    Babies thrive on security. In early months, secure feelings stem from being warm, cuddled closely, and comfortable in their tummies (and in having clean bottoms!). In this article, the author discusses how to soothe infants and toddlers. The strategies to help ease babies' distress are described. Some of the recommended strategies include: (1) to…

  11. [Thermal comfort in perioperatory risk's evaluation].

    PubMed

    Masia, M D; Dettori, M; Liperi, G; Deriu, G M; Posadino, S; Maida, G; Mura, I

    2009-01-01

    Studies till now conducted about operating rooms' microclimate have been focused mainly on operators' thermal comfort, considering that uneasiness conditions may compromise their working performance. In last years, nevertheless, the anesthesiologic community recalled attention on patients' risks determined by perioperatory variations of normothermia, underlining the necessity of orientating studies to individuate microclimate characteristics act to guarantee thermal comfort of the patient too. Looking at these considerations, a study has been conducted in the operating rooms of the hospital-university Firm and the n.1 USL of Sassari, finalized, on one hand, to determinate microclimate characteristics of the operating blocks and to evaluate operators' and patients' thermal comfort, on the other to individuate, through a software simulation, microclimate conditions that ensure contemporarily thermal comfort for both the categories. Results confirm the existence of a thermal "gap" among operators and patients, these last constantly submitted to "cold-stress", sometimes very accentuated. So, we underline microclimate's importance in operating rooms, because there are particular situations that can condition perioperatory risks. Moreover it can be useful to integrate risk's classes of the American Society of Anestesiology (ASA) with a score attributed to the PMV/PPD variation, reaching more real operatory risk indicators.

  12. Helping Children Feel Comfortable and Calm

    ERIC Educational Resources Information Center

    Honig, Alice Sterling; Miller, Susan A.; Church, Ellen Booth

    2006-01-01

    This article presents calming activities and routines for children at different ages and stages. Honig discusses the different stages of arousal for children ages 0-2 and gives suggestions for ways to sooth fussy babies. Miller discusses calming activities and comforting environments for children ages 3-4, and recommends activities that require…

  13. Photogated humidity-driven motility

    PubMed Central

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-01-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min−1. The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids. PMID:26067649

  14. Photogated humidity-driven motility.

    PubMed

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-11

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min(-1). The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  15. Photogated humidity-driven motility

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min-1. The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  16. Evaluation of thermal comfort conditions in Ourmieh Lake, Iran

    NASA Astrophysics Data System (ADS)

    Farajzadeh, Hassan; Matzarakis, Andreas

    2012-02-01

    Research in developing countries concerning the relationship of weather and climate conditions with tourism shows a high importance not only because of financial aspects but also an important part of the region's tourism resource base. Monthly mean air temperature, relative humidity, precipitation, vapor pressure, wind velocity, and cloud cover for the period 1985-2005 data collected from four meteorological stations Tabriz, Maragheh, Orumieh, and Khoy were selected. The purpose of this study is to determine the most suitable months for human thermal comfort in Ourmieh Lake, a salt sea in the northwest of Iran. To achieve this, the cooling power and physiologically equivalent temperature (PET) calculated by the RayMan model and the Climate Tourism/Transfer Information Scheme (CTIS) were used. The results based on cooling power indicate that the most favorable period for tourism, sporting, and recreational activities in Ourmieh Lake is between June and October and based on PET between June to September. In addition, the CTIS shows a detailed quantification of the relevant climate-tourism factors.

  17. Ultrafast graphene oxide humidity sensors.

    PubMed

    Borini, Stefano; White, Richard; Wei, Di; Astley, Michael; Haque, Samiul; Spigone, Elisabetta; Harris, Nadine; Kivioja, Jani; Ryhänen, Tapani

    2013-12-23

    Sensors allow an electronic device to become a gateway between the digital and physical worlds, and sensor materials with unprecedented performance can create new applications and new avenues for user interaction. Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times). This opens the door to various applications, such as touchless user interfaces, which we demonstrate with a 'whistling' recognition analysis.

  18. An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-01-01

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment. PMID:26959035

  19. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    SciTech Connect

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  20. Caregivers’ understanding of dementia predicts patients’ comfort at death: a prospective observational study

    PubMed Central

    2013-01-01

    Background Patients with dementia frequently do not receive adequate palliative care which may relate to poor understanding of the natural course of dementia. We hypothesized that understanding that dementia is a progressive and terminal disease is fundamental to a focus on comfort in dementia, and examined how family and professional caregivers’ understanding of the nature of the disease was associated with patients’ comfort during the dying process. Methods We enrolled 372 nursing home patients from 28 facilities in The Netherlands in a prospective observational study (2007 to 2010). We studied both the families and the physicians (73) of 161 patients. Understanding referred to families’ comprehension of complications, prognosis, having been counseled on these, and perception of dementia as “a disease you can die from” (5-point agreement scale) at baseline. Physicians reported on this perception, prognosis and having counseled on this. Staff-assessed comfort with the End-of-Life in Dementia - Comfort Assessment in Dying (EOLD-CAD) scale. Associations between understanding and comfort were assessed with generalized estimating equations, structural equation modeling, and mediator analyses. Results A family’s perception of dementia as “a disease you can die from” predicted higher patient comfort during the dying process (adjusted coefficient −0.8, 95% confidence interval (CI): −1.5; -0.06 point increment disagreement). Family and physician combined perceptions (−0.9, CI: −1.5; -0.2; 9-point scale) were also predictive, including in less advanced dementia. Forty-three percent of the families perceived dementia as a disease you can die from (agreed completely, partly); 94% of physicians did. The association between combined perception and higher comfort was mediated by the families’ reporting of a good relationship with the patient and physicians’ perception that good care was provided in the last week. Conclusions Awareness of the terminal

  1. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress

    NASA Astrophysics Data System (ADS)

    Berman, A.; Horovitz, Talia; Kaim, M.; Gacitua, H.

    2016-10-01

    The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.

  2. Purpose in life as a resource for increasing comfort with ethnic diversity.

    PubMed

    Burrow, Anthony L; Stanley, Maclen; Sumner, Rachel; Hill, Patrick L

    2014-11-01

    Emerging demographic trends signal that White Americans will soon relinquish their majority status. As Whites' acclimation to an increasingly diverse society is poised to figure prominently in their adjustment, identifying sources of greater comfort with diversity is important. Three studies (N = 519) revealed evidence that purpose in life bolsters comfort with ethnic diversity among White adults. Specifically, dispositional purpose was positively related to diversity attitudes and attenuated feelings of threat resulting from viewing demographic projections of greater diversity. In addition, when primed experimentally, purpose attenuated participants' preferences for living in an ethnically homogeneous-White city, relative to a more diverse city when shown maps displaying ethno-demographic information. These effects persisted after controlling for positive affect and perceived connections to ethnic out-groups, suggesting the robust influence of purpose. Potential benefits of situating purpose as a unique resource for navigating an increasingly diverse society are discussed.

  3. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    DOEpatents

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  4. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  5. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  6. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  7. Walking after Stroke: Comfortable versus Maximum Safe Speed.

    ERIC Educational Resources Information Center

    Bohannon, Richard W.

    1992-01-01

    This study attempted to (1) determine whether stroke patients (n=20) can safely increase their walking speed above that of comfortable walking; (2) describe the relationship between comfortable and maximum safe walking speed; and (3) examine correlations between maximum and comfortable speeds and a functional walking score. Subjects were able to…

  8. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists

    NASA Astrophysics Data System (ADS)

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects ( n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences ( p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  9. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists.

    PubMed

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects (n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences (p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  10. Investigation of comfort related aspects of noise in an aircraft cabin simulator

    NASA Astrophysics Data System (ADS)

    Weber, Reinhard; Baumann, Ingo; Freese, Nils; Mellert, Volker

    2004-05-01

    In the frame of the multinational European project HEACE Health effects of aircraft cabin environment [www.heace.org] experiments have been carried out to investigate the effects of different environmental factors in an aircraft on performance, comfort and health of flight and cabin crew. Tests were run in aircraft cabin simulators where temperature, humidity and sound could be adjusted in a controlled manner because only limited possibility exists of systematically changing these factors in-flight. In a multi-factorial 3×3×3 design these tests simulated real flights with real cabin crew that was hired for the test and passenger. The research on passengers responses was done in cooperation with the European FACE Technology Platform (FACE Friendly aircraft cabin environment). This paper focuses on the effects of noise on the comfort on the cabin crew. It presents unexpected order effects of noise assessments and reports on the dependency of the ratings of noise and of other environmental factors on the assessed comfort. [The investigation is granted by the EU-Commission under HEACE G4RC-CT-2001-00611.

  11. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow

    PubMed Central

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous ‘components’. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].1 The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.1 Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude. PMID:27226992

  12. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow.

    PubMed

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous 'components'. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].(1) The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.(1) Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude.

  13. Too real for comfort? Uncanny responses to computer generated faces

    PubMed Central

    MacDorman, Karl F.; Green, Robert D.; Ho, Chin-Chang; Koch, Clinton T.

    2014-01-01

    As virtual humans approach photorealistic perfection, they risk making real humans uncomfortable. This intriguing phenomenon, known as the uncanny valley, is well known but not well understood. In an effort to demystify the causes of the uncanny valley, this paper proposes several perceptual, cognitive, and social mechanisms that have already helped address riddles like empathy, mate selection, threat avoidance, cognitive dissonance, and psychological defenses. In the four studies described herein, a computer generated human character’s facial proportions, skin texture, and level of detail were varied to examine their effect on perceived eeriness, human likeness, and attractiveness. In Study I, texture photorealism and polygon count increased human likeness. In Study II, texture photorealism heightened the accuracy of human judgments of ideal facial proportions. In Study III, atypical facial proportions were shown to be more disturbing on photorealistic faces than on other faces. In Study IV, a mismatch in the size and texture of the eyes and face was especially prone to make a character eerie. These results contest the depiction of the uncanny valley as a simple relation between comfort level and human likeness. This paper concludes by introducing a set of design principles for bridging the uncanny valley. PMID:25506126

  14. Too real for comfort? Uncanny responses to computer generated faces.

    PubMed

    MacDorman, Karl F; Green, Robert D; Ho, Chin-Chang; Koch, Clinton T

    2009-05-01

    As virtual humans approach photorealistic perfection, they risk making real humans uncomfortable. This intriguing phenomenon, known as the uncanny valley, is well known but not well understood. In an effort to demystify the causes of the uncanny valley, this paper proposes several perceptual, cognitive, and social mechanisms that have already helped address riddles like empathy, mate selection, threat avoidance, cognitive dissonance, and psychological defenses. In the four studies described herein, a computer generated human character's facial proportions, skin texture, and level of detail were varied to examine their effect on perceived eeriness, human likeness, and attractiveness. In Study I, texture photorealism and polygon count increased human likeness. In Study II, texture photorealism heightened the accuracy of human judgments of ideal facial proportions. In Study III, atypical facial proportions were shown to be more disturbing on photorealistic faces than on other faces. In Study IV, a mismatch in the size and texture of the eyes and face was especially prone to make a character eerie. These results contest the depiction of the uncanny valley as a simple relation between comfort level and human likeness. This paper concludes by introducing a set of design principles for bridging the uncanny valley.

  15. Humidity and Buildings. Technical Paper No. 188.

    ERIC Educational Resources Information Center

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  16. Thermal sensations and comfort investigations in transient conditions in tropical office.

    PubMed

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that

  17. Associations between Parents' Perceived Air Quality in Homes and Health among Children in Nanjing, China.

    PubMed

    Qian, Hua; Zheng, Xiaohong; Zhang, Min; Weschler, Louise; Sundell, Jan

    2016-01-01

    The increasing prevalence of respiratory diseases in Chinese children has focused attention on indoor environmental quality. We investigated associations between perceived air quality in domestic environments and children's allergic diseases with a questionnaire survey study. A total of 4017 children aged 1-8 years old from 23 kindergartens in urban, suburban and industrial areas in Nanjing were randomly recruited for this study. Parents' perceived odors, including stuffy odor, unpleasant odor, pungent odor, moldy odor, humid air and dry air were found to be associated with asthma, wheeze, dry cough and rhinitis (P < 0.05). Both perceived dry and humid air were found to be positively associated with dampness indices, and we present evidence that the sensation of dryness may not be due to the actual indoor relative humidity, but rather to indoor air irritants. Parents' perception of odors and relative humidity may be indicators of environment pollutants, which are likely the real factors associated with children's allergic diseases.

  18. Hospital perceived value.

    PubMed

    Moliner, Miguel A

    2006-01-01

    The creation, distribution and communication of value have been considered to be the key element of marketing (American Marketing Association, 2004, www.marketingpower.com). The aim of this article is to identify the indicators of perceived value in a hospital context. The results show that perceived quality and emotions are key dimensions of perceived value.

  19. Downscaling humidity with Localized Constructed Analogs (LOCA) over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Pierce, D. W.; Cayan, D. R.

    2016-07-01

    Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health and energy demand) are within ~5 % of observed, while extreme minimum values (relevant to agriculture and wildfire) are within ~15 %. The asymmetry between extreme maximum and minimum errors is largely due to residual errors in the bias correction of extreme minimum values. The temporal standard deviations of downscaled daily specific humidity values have a mean error of ~1 % and RMS error of ~3 %. LOCA increases spatial coherence in the final downscaled field by ~13 %, but the downscaled coherence depends on the spatial coherence in the data being downscaled, which is not addressed by bias correction. Temporal correlations between daily, monthly, and annual time series of the original and downscaled data typically yield values >0.98. LOCA captures the observed correlations between temperature and specific humidity even when the two are downscaled independently.

  20. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  1. Uncertainty Analysis of Thermal Comfort Parameters

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  2. Examining therapist comfort in delivering family therapy in home and community settings: development and evaluation of the Therapist Comfort Scale.

    PubMed

    Glebova, Tatiana; Foster, Sharon L; Cunningham, Phillippe B; Brennan, Patricia A; Whitmore, Elizabeth

    2012-03-01

    This study reports on the development and psychometric properties of a new measure assessing therapist comfort in the home treatment context and the relationship between therapist comfort, related process variables, and therapist characteristics. Data were drawn from a longitudinal evaluation of 185 families treated by 51 therapists using Multisystemic Therapy (MST). Therapist comfort was measured at four time points. Psychometric evaluation indicated that the measure was internally and temporally consistent. Examination of the measure's validity indicated that therapists' feelings of safety and comfort during the provision of home-based treatment were associated with family neighborhood characteristics and family socioeconomic factors. Furthermore, the therapist's reported level of alliance (as measured by the Emotional Bonding subscale of the Working Alliance Inventory) was related to her/his feeling of comfort. Analyses also indicated that therapists with greater belief in the clinical utility of the MST model felt more comfortable when delivering MST. Together the results suggest that economically disadvantaged families treated in home and community settings may be most at risk for erosions in the therapeutic relationship over time as a function of lower therapist comfort. Because therapist comfort was associated with therapeutic alliance-a factor found to be associated with clinical outcomes across studies and treatment models-findings imply that psychotherapists should regularly examine their own level of comfort, especially when providing services in nontraditional settings, and that therapist comfort should be routinely assessed as part of clinical supervision and training.

  3. Variable Speed Heat Pump Sizing Guide for Mixed-Humid Climates

    SciTech Connect

    Munk, Jeffrey D; Odukomaiya, Adewale; Jackson, Roderick K; Boudreaux, Philip R

    2015-03-01

    The similarities and differences between different capacity units in a model family will vary depending on the manufacturer. These unit specific details are critical to choosing the VSHP capacity that will yield the highest energy savings without compromising comfort. In addition, the house construction, climate, and occupant behavior will influence the balance of the heating and cooling load on the house as well as the sensible and latent cooling demand. All of these factors need to be considered when trying to select the proper unit for the highest energy savings. Based on the simulations performed in this study, it is likely that VSHPs with an enhanced dehumidification mode can be sized up to two times the cooling load of the house without any reduction in comfort when compared to a single speed heat pump assuming a typical home and occupant behavior in the mixed-humid and cold climates.

  4. Building Comfort Analysis Using BLAST: A Case Study

    DTIC Science & Technology

    1991-09-01

    Thermodynamics (BLAST) computer program includes the ability to model comfort parameters in addition to evalu- ating building energy performance. This study...new feature of the Building Loads Analysis and Systems Thermodynamics (BLAST) computer program includes the ability to model comfort parameters in...Systems Thermodynamics (BLAST) computer program to examine a facility’s comfort parameters. BLAST is a comprehensive hour-by-hour simulation program

  5. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  6. VAB Temperature and Humidity Study

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  7. Passenger comfort response times as a function of aircraft motion

    NASA Technical Reports Server (NTRS)

    Rinalducci, E. J.

    1975-01-01

    The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.

  8. A model to assess the comfort of automotive seat cushions.

    PubMed

    Jiaxing, Zhan; Fard, Mohammad; Jazar, Reza

    2014-01-01

    A large number of independent and interacting factors affect seating comfort such as seat shape, stability, lumbar support and seat height. Although many subjective comfort studies have been conducted, few of them considered seating comfort from its subassembly level. This paper analyzed the automotive seat cushion designed with geared four-bar linkage for the seat height adjustment. The operation torque and lift distance of this mechanism was investigated as 2 major comfort factors. Ten cushions with this kind of design in the market were compared and assessed.

  9. Progress in thermal comfort research over the last twenty years.

    PubMed

    de Dear, R J; Akimoto, T; Arens, E A; Brager, G; Candido, C; Cheong, K W D; Li, B; Nishihara, N; Sekhar, S C; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-12-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based determinism of Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model. Another noticeable shift has been from the undesirable toward the desirable qualities of air movement. Additionally, sophisticated models covering the physics and physiology of the human body were developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we deliver comfortable indoor environments. These trends, in turn, continue setting the directions for contemporary thermal comfort research for the next decades.

  10. Regional differences in temperature sensation and thermal comfort in humans.

    PubMed

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  11. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    PubMed

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  12. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  13. Energy Retrofit Field Study and Best Practices in a Hot-Humid Climate

    SciTech Connect

    McIlvaine, K.; Sutherland, K.; Martin, E.

    2013-03-01

    Energy efficiency improvement as a component of comprehensive renovation was investigated under U.S. Department of Energy (DOE) funding of the Building America Partnership for Improved Residential Construction (BA-PIRC). Researchers at the Florida Solar Energy Center (FSEC) worked with affordable housing partners renovating foreclosed homes built from the 1950's through the 2000's in the hot-humid climate (within the Southern census region), primarily in Florida. Researchers targeted a 30% improvement in whole-house energy efficiency along with the health and safety, durability, and comfort guidelines outlined in DOE's Builders Challenge Program (Version 1) Quality Criteria.

  14. The effect of slightly warm temperature on work performance and comfort in open-plan offices - a laboratory study.

    PubMed

    Maula, H; Hongisto, V; Östman, L; Haapakangas, A; Koskela, H; Hyönä, J

    2016-04-01

    The aim of the study was to determine the effect of a temperature of 29°C on performance in tasks involving different cognitive demands and to assess the effect on perceived performance, subjective workload, thermal comfort, perceived working conditions, cognitive fatigue, and somatic symptoms in a laboratory with realistic office environment. A comparison was made with a temperature of 23°C. Performance was measured on the basis of six different tasks that reflect different stages of cognitive performance. Thirty-three students participated in the experiment. The exposure time was 3.5 h in both thermal conditions. Performance was negatively affected by slightly warm temperature in the N-back working memory task. Temperature had no effect on performance in other tasks focusing on psychomotor, working memory, attention, or long-term memory capabilities. Temperature had no effect on perceived performance. However, slightly warm temperature caused concentration difficulties. Throat symptoms were found to increase over time at 29°C, but no temporal change was seen at 23°C. No effect of temperature on other symptoms was found. As expected, the differences in thermal comfort were significant. Women perceived a temperature of 23°C colder than men.

  15. Patient comfort during flexible and rigid cystourethroscopy

    PubMed Central

    Zdrojowy, Romuald; Wojciechowska, Joanna; Kościelska, Katarzyna; Dembowski, Janusz; Matuszewski, Michał; Tupikowski, Krzysztof; Małkiewicz, Bartosz; Kołodziej, Anna

    2016-01-01

    Introduction Cystourethroscopy (CS) is an endoscopic method used to visualize the urethra and the bladder. Aim In this study, we prospectively evaluated pain in men undergoing cyclic cystoscopic assessment with rigid and flexible instruments after transurethral resection of bladder tumor (TURB). Material and methods One hundred and twenty male patients who were under surveillance after a TURB procedure due to urothelial cell carcinoma and who had undergone at least one rigid cystourethroscopy in the past were enrolled in the trial. Patients were prospectively randomized to age-matched groups for flexible (group F) or rigid (group R) CS. Patient's comfort was evaluated on an 11-grade scale, ranging from 0 (free from pain) to 10 points (unbearable pain). Results The patients described the pain during the previous rigid CS as ranging from 4 to 10 (mean: 6.8) in group F and from 0 to 10 (mean: 5.8) in group R. Group R patients described the pain during the current rigid CS as ranging from 0 to 10 (mean: 5.7). No mean change in the grade was observed between the two pain descriptions (no change 11 patients, weaker pain 25 patients, stronger pain 24 patients, gamma 0.51, p < 0.0001). Group F described the pain as 1 to 5 (mean: 2.1). In the case of flexible CS the pain experience was greatly lowered compared to the previous rigid CS. All flexible CS patients reported lowered pain (by 1 to 9 grades). Patients’ age did not influence the comfort of the flexible CS or the change in pain level. Conclusions Flexible CS is better tolerated than rigid cystoscopy by male patients regardless of patients’ age. PMID:27458489

  16. University of the humid tropics

    NASA Astrophysics Data System (ADS)

    The creation of a foundation called the University of the Humid Tropics (UNITROP) was announced by Brazilian atmospheric scientist Luiz Carlos Molion at the AGU Chapman Conference on Global Biomass Burning, held March 23 in Williamsburg, Va. The headquarters for UNITROP is in Manaus, Amazonia, Brazil. UNITROP is not a university in a narrow sense, but an institution created and run by scientists with the purpose of understanding Amazonia and developing it socio-economically in harmony with its environment, Molion said.The scientific objectives of UNITROP are: Research: Promote, organize and fund researchers and research in Amazonia, encompassing all branches of science, from social and aboriginal issues to biogeophysicalchemical processes, and leading to an integrated understanding of the tropical forest environment and its transformation.

  17. No calorie comfort: Viewing and drawing "comfort foods" similarly augment positive mood for those with depression.

    PubMed

    Privitera, Gregory J; Welling, Deeanna; Tejada, Gabriela; Sweazy, Nicole; Cuifolo, Kayla N; King-Shepard, Quentin W; Doraiswamy, P Murali

    2016-12-12

    Based on behavioral and neurobiological data, we tested the hypothesis that viewing/drawing visual images of comfort foods in the absence of eating will increase positive mood and that this effect is augmented for those with clinical symptoms of depression. A counterbalanced design was used for 60 participants with and without clinical symptoms in two variations: food image and food art. In each variation, participants viewed/drew foods high or low in fat/sugar; pre-post mood was recorded. Results show a consistent pattern: viewing/drawing comfort foods [food image (95% confidence interval): 2.72-4.85; food art (95% confidence interval): 2.65-4.62] and fruits [food image (95% confidence interval): 1.20-2.23; food art (95% confidence interval): 1.51-2.56] enhanced mood. For comfort foods, mood was augmented for those with clinical symptoms of depression [food image (95% confidence interval): 0.95-3.59; food art (95% confidence interval): 0.97-3.46]. Findings corroborate previous data and reveal a novel finding of augmented mood increases for those with clinical symptoms.

  18. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.

  19. THERMAL COMFORT IN RELATION TO MEAN SKIN TEMPERATURE,

    DTIC Science & Technology

    Nude men were exposed to a range of ambient temperatures and were brought to a condition of thermal comfort by adjustment of the incident radiation...was evident that mean skin temperature, per se, was not a dependable criterion of thermal comfort . (Author)

  20. Comfort Food: Nourishing Our Collective Stomachs and Our Collective Minds

    ERIC Educational Resources Information Center

    Troisi, Jordan D.; Wright, Julian W. C.

    2017-01-01

    Food is a powerful motivator in human functioning--it serves a biological need, as emotional support, and as a cultural symbol. Until recently, the term "comfort food" has been inadequately and unscientifically defined. In addition, the popular media have oversimplified the concept of comfort food as purely unhealthy food, often consumed…

  1. The Digital Divide in Classrooms: Teacher Technology Comfort and Evaluations

    ERIC Educational Resources Information Center

    Dornisch, Michele

    2013-01-01

    A disconnect exists between students' comfort with using technology for learning and teachers' comfort in using technology for teaching. Students report the desire for more engaging technology-based assignments. Teachers cite multiple reasons for their hesitancy to use technology in their teaching. The current study investigates whether…

  2. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  3. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Comfort cooling certificate and... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.511 Comfort cooling certificate and information. (a) The manufactured home manufacturer...

  4. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Comfort cooling certificate and... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.511 Comfort cooling certificate and information. (a) The manufactured home manufacturer...

  5. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  6. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  7. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  8. 24 CFR 3280.507 - Comfort heat gain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.507 Comfort heat... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Comfort heat gain. 3280.507 Section 3280.507 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  9. Technical Highlight: Evaluation of Humidity Control Options in Hot-Humid Climate Homes

    SciTech Connect

    none,

    2011-12-01

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls.

  10. Residual limb skin temperature and thermal comfort in people with amputation during activity in a cold environment.

    PubMed

    Segal, Ava D; Klute, Glenn K

    2016-01-01

    Thermal comfort remains a common problem for people with lower-limb amputation. Both donning a prosthesis and engaging in activity at room temperature can increase residual limb skin temperature; however, the effects of activity on skin temperature and comfort in more extreme environments remain unknown. We examined residual limb skin temperatures and perceived thermal comfort (PTC; 11-point Likert scale) of participants with unilateral transtibial amputation (n = 8) who were snowshoeing in a cold environment. Residual limb skin temperature increased by 3.9°C [3.0°C to 4.7°C] (mean difference [95% confidence interval (CI)], p < 0.001) after two 30 min exercise sessions separated by a 5 min rest session. Minimal cooling (-0.2°C [-1.1°C to 0.6°C]) occurred during the rest period. Similar changes in PTC were found for the residual limb, intact limb, and whole body, with a mean scale increase of 1.6 [1.1 to 2.1] and 1.3 [0.8 to 1.8] for the first and second exercise sessions, respectively (p < 0.001). Activity in a cold environment caused similar increases in residual limb skin temperature as those found in studies conducted at room temperature. Participants with amputation perceived warming as their skin temperature increased during exercise followed by the perception of cooling during rest, despite minimal associated decreases in skin temperature.

  11. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian(R) Homes(R) constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  12. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian® Homes constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  13. Development of indoor environmental index: Air quality index and thermal comfort index

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.

  14. Spatial variability of chilling temperature in Turkey and its effect on human comfort

    NASA Astrophysics Data System (ADS)

    Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.

    2005-03-01

    Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.

  15. Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK

    NASA Astrophysics Data System (ADS)

    Krüger, Eduardo; Drach, Patricia; Emmanuel, Rohinton; Corbella, Oscar

    2013-07-01

    To understand thermal preferences and to define a preliminary outdoor comfort range for the local population of Glasgow, UK, an extensive series of measurements and surveys was carried out during 19 monitoring campaigns from winter through summer 2011 at six different monitoring points in pedestrian areas of downtown Glasgow. For data collection, a Davis Vantage Pro2 weather station equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer was employed. Predictions of the outdoor thermal index PET (physiologically equivalent temperature) correlated closely to the actual thermal votes of respondents. Using concurrent measurements from a second Davis Vantage Pro2 weather station placed in a rural setting approximately 15 km from the urban area, comparisons were drawn with regard to daytime thermal comfort levels and urban-rural temperature differences (∆Tu-r) for the various sites. The urban sites exhibited a consistent lower level of thermal discomfort during daytime. No discernible effect of urban form attributes in terms of the sky-view factor were observed on ∆Tu-r or on the relative difference of the adjusted predicted percentage of dissatisfied (PPD*).

  16. Comfort evaluation as the example of anthropotechnical furniture design.

    PubMed

    Vlaović, Zoran; Bogner, Andrija; Grbac, Ivica

    2008-03-01

    Human health is becoming an increasingly important issue in contemporary hectic lifestyle imposed at work and by struggle to save time and money. Sitting comfort and quality of chairs which we use for the most of our time have, thus, become essential for healthy lifestyle. Sitting discomforts arise from prolonged sitting on the inappropriate chairs, which failing to provide sufficient support to the body cause discomfort and tiring. The studies of the office chair constructions have identified differences in perception of comfort provided by different types of seats. Four seat constructions and the comfort they provide to the sitters were compared by means of subjective indicators. After a two-day sitting on each of the studied chairs the subjects scored their perception of comfort and discomfort, using the questionnaire with 17 statements. Constructional forms and materials which contributed more to the sense of comfort by minimizing fatigue and pains developed by sitting were determined.

  17. Evaluation of Thermal Comfort and Contamination Control for a Cleanroom

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Jen; Zheng, Yin-Rui; Lai, Chi-Ming; Chiang, Che-Ming

    There has been a substantial increase in the working environment of cleanroom. Special garments are therefore dressed in all cleanrooms to control particles and microbiological contamination dispersed from personnel in cleanrooms. However, more tightly-woven fabrics of cleanroom garments will result in thermal comfort dissatisfaction. In this study, field tests of a cleanroom have been carried out in our newly constructed MEMS laboratory. The ASHRAE thermal comfort code was conducted to investigate thermal comfort of personnel based on field-testing data consequently. Furthermore, the effects of clothing on thermal comfort and contamination control have been assessed comprehensively. The results from computer simulation and field tests indicated that there existed optimum compromise between the predicted mean vote and airborne particle counts under different cleanroom garments. The contamination control could be achieved by proper types of garments with satisfied thermal comfort of predict mean vote between 0.5-1.0.

  18. An Analysis of Some Observations of Thermal Comfort in an Equatorial Climate

    PubMed Central

    Webb, C. G.

    1959-01-01

    The analysis is introduced by a brief account of the development of work on thermal comfort. The observations, which are fully described in relation to the interior climates which were experienced, were made in Singapore in 1949-50. The climate of Singapore is typical of the equator, being warm, damp and windless; and the annual variation is almost negligible. Buildings are unheated, of an open type, and shaded from the sun and sky. A multiple regression equation has been derived, giving the thermal effect on a number of subjects of variations in the air temperature, the water vapour pressure, and the air velocity within the ranges experienced. The implications of the equation are discussed, and a climatic index is derived from it which is similar in definition to the widely used “effective temperature” scale, but shows a better correlation with thermal sensation. The new index is named the Singapore index. At a further stage the thermal sensation scale is simplified for the purpose of probit analysis. The probit regressions of discomfort due to warmth and cold are separately given in relation to the new index, and are combined to yield a thermal comfort graph from which the optimum is obtained and explored. A comfort chart for the rapid assessment of these humid climates is supplied, and an alternative form of the index equation is given which is more suitable for rapid calculation. It appears desirable in an equatorial climate to attempt to minimize discomfort by allowing to some extent for individual thermal requirements, and the benefits of a suitable climatic spread within a room are described. PMID:13843256

  19. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  20. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne.

    PubMed

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2016-01-06

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden (n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, 'Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being 'warm' or 'hot'. At 'hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  1. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne

    NASA Astrophysics Data System (ADS)

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2016-01-01

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden (n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, `Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being `warm' or `hot'. At `hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  2. 33 CFR 165.809 - Security Zones; Port of Port Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi Inner Harbor, Corpus Christi, TX. 165... Lavaca-Point Comfort, Point Comfort, TX and Port of Corpus Christi Inner Harbor, Corpus Christi, TX. (a) Location. The following area is designated as a security zone: all waters of the Corpus Christi...

  3. A Roadmap for Humidity and Moisture Measurement

    NASA Astrophysics Data System (ADS)

    Bell, S.; Benyon, R.; Böse, N.; Heinonen, M.

    2008-10-01

    An initial roadmap for humidity and related measurements was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. The conclusions address both humidity (for which standards and traceability methodologies exist, but need to be developed) and moisture content of materials (for which measurement traceability is more problematic and is not so well developed in general). The roadmap represents a shared vision of how humidity and moisture measurements and standards should develop over the next 15 years to meet future needs, open to revision as needs and technologies evolve. The roadmap identifies the main social and economic triggers that drive developments in humidity and moisture measurements and standards—notably, global warming and advanced manufacturing processes. Stemming from these triggers, key targets that require improved humidity and moisture measurements are identified. In view of global warming, one key target is the development of improved models of climate through improved measurements of atmospheric water vapor. A further target is the reduction of carbon emissions through humidity measurement to optimize industrial heat treatment and combustion processes, and through humidity and moisture measurements to achieve energy-efficient buildings. For high-performance manufacturing, one key target is improved precision control of manufacturing processes through better humidity and moisture measurements. Another key target is contaminant-free manufacture in industries such as microelectronics, through high-purity gases of known moisture content at the parts-per-trillion level. To enable these outcomes, the roadmap identifies the advances needed in measurement standards. These include the following: improved trace humidity standards; new humidity standards to cover high temperatures and pressures, steam, and non-air gases; and improved standards for moisture content of

  4. Equivalent comfort contours for vertical vibration of steering wheels: effect of vibration magnitude, grip force, and hand position.

    PubMed

    Morioka, Miyuki; Griffin, Michael J

    2009-09-01

    Vehicle drivers receive tactile feedback from steering-wheel vibration that depends on the frequency and magnitude of the vibration. From an experiment with 12 subjects, equivalent comfort contours were determined for vertical vibration of the hands at two positions with three grip forces. The perceived intensity of the vibration was determined using the method of magnitude estimation over a range of frequencies (4-250 Hz) and magnitudes (0.1-1.58 ms(-2) r.m.s.). Absolute thresholds for vibration perception were also determined for the two hand positions over the same frequency range. The shapes of the comfort contours were strongly dependent on vibration magnitude and also influenced by grip force, indicating that the appropriate frequency weighting depends on vibration magnitude and grip force. There was only a small effect of hand position. The findings are explained by characteristics of the Pacinian and non-Pacinian tactile channels in the glabrous skin of the hand.

  5. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

    NASA Astrophysics Data System (ADS)

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  6. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.

    PubMed

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  7. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong.

    PubMed

    Cheng, Vicky; Ng, Edward; Chan, Cecilia; Givoni, Baruch

    2012-01-01

    This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments--an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index--physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.

  8. Building for the Pacific Rim Countries. Energy-efficient building strategies for hot, humid climates

    SciTech Connect

    Sheinkopf, K.

    1991-09-01

    This book has been published by the Solar Energy Industries Association (SEIA), the US trade association of the solar thermal, photovoltaic, and passive solar manufacturers, distributors, and component suppliers. Its purpose is to help architects, builders, and developers construct energy-efficient homes in hot humid climates like the Pacific Rim Countries, and to allow occupants of these homes to enjoy enhanced comfort without reliance on mechanical air-conditioning systems. Two important factors are addressed in this book. First, the past few years have seen a tremendous increase in practical applications of new research. The current popularity of ceiling paddle fans, attic radiant barriers and natural daylighting attest to the importance of keeping up with the latest concepts in energy-reduction and comfort-awareness. Professionals who have been in the field for the past few years may be unaware of the latest research findings--some of which dramatically alter prior thinking on such subjects as natural ventilation or mechanical air conditioning. The second factor is the importance of site-specific characteristics, which greatly affect building strategies and designs. A thorough understanding of the climate is a prerequisite to good building design. Such factors as temperature, humidity, wind speed and direction, and solar radiation must be understood and properly integrated into the design for the home to be truly energy-efficient.

  9. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  10. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  11. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  12. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  13. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  14. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  15. Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Ndetto, Emmanuel L.; Matzarakis, Andreas

    2017-01-01

    Dar es Salaam, Tanzania, is a typical African city along the Indian Ocean coast, and therefore an important urban area to examine human thermal perception in the hot-humid tropical climate. Earlier research on human bioclimate at Dar es Salaam indicated that heat stress prevails during the hot season from October to March, peaking between December and February, particularly the early afternoons. In order to assess the human thermal perception and adaptation, two popular places, one at an urban park and another at a beach environment, were selected and questionnaire surveys were conducted in August-September 2013 and January 2014, concurrently with local micro-meteorological measurements at survey locations. The thermal conditions were quantified in terms of the thermal index of the physiologically equivalent temperature (PET) using the micro-scale climate model RayMan. The thermal comfort range of human thermal comfort and the local thermal adaptive capacity were determined in respect to the thermal index by binning thermal sensation votes. The thermal comfort range was found to be well above that in temperate climates at about 23-31 °C of PET. The study could significantly contribute to urban planning in Dar es Salaam and other coastal cities in the tropics.

  16. Evaluation of thermal comfort, physiological, hematological, and seminal features of buffalo bulls in an artificial insemination station in a tropical environment.

    PubMed

    Barros, Daniel Vale; Silva, Lilian Kátia Ximenes; de Brito Lourenço, José; da Silva, Aluizio Otávio Almeida; E Silva, André Guimarães Maciel; Franco, Irving Montanar; Oliveira, Carlos Magno Chaves; Tholon, Patrícia; Martorano, Lucieta Guerreiro; Garcia, Alexandre Rossetto

    2015-06-01

    This study aimed to assess the variation over time in thermal comfort indices and the behavior of physiological parameters related to thermolysis, blood parameters, and semen in natura of buffalo bulls reared in tropical climate. The study was carried out in an artificial insemination station under a humid tropical climate (Afi according to Köppen). Ten water buffalo bulls (Bubalus bubalis) were used during the 5 months (April to August) of study. The environmental Temperature Humidity Index (THId) and the pen microclimate Temperature Humidity Index (THIp) were calculated. Every 25 days, respiratory rate (RR), heart rate (HR), rectal temperature (RT), and Benezra's thermal comfort index (BTCI) were assessed in the morning and in the afternoon. A blood assay was performed every month, while semen was collected weekly. THIp did not vary over the months (P > 0.05) and was higher in the afternoon than in the morning (77.7 ± 2.6 versus 81.8 ± 2.1, P < 0.05). RR, HR, and BTCI significantly increased over the months and were different between the periods of the day (P > 0.05) but within the physiological limits. RT varied between the periods of the day and decreased over the months, being the lowest in August (37.8 ± 0.7 °C), time-impacted hematocrit, mean corpuscular volume, hemoglobin levels, and spermatic gross motility and vigor (P < 0.05). Thus, buffalo bulls reared under a humid tropical climate may have variations in thermal comfort during the hotter periods but are able to efficiently activate thermoregulatory mechanisms and maintain homeothermy, hence preserving their physiological and seminal parameters at normal levels.

  17. Acute acetaminophen ingestion does not alter core temperature or sweating during exercise in hot-humid conditions.

    PubMed

    Coombs, G B; Cramer, M N; Ravanelli, N M; Morris, N B; Jay, O

    2015-06-01

    Acute acetaminophen (ACT) ingestion has been reported to reduce thermal strain during cycling in the heat. In this study, nine active participants ingested 20 mg of ACT per kg of total body mass (ACT) or a placebo (PLA), 60 min prior to cycling at a fixed rate of metabolic heat production (ACT: 8.3 ± 0.3 W/kg; PLA: 8.5 ± 0.5 W/kg), which was equivalent to 55 ± 6% VO2max , for 60 min at 34.5 ± 0.1 °C, 52 ± 1% relative humidity. Resting rectal temperature (Tre ; ACT: 36.70 ± 0.17 °C; PLA: 36.80 ± 0.16 °C, P = 0.24), esophageal temperature (Tes ; ACT: 36.54 ± 0.22 °C; PLA: 36.61 ± 0.17 °C, P = 0.50) and mean skin temperature (Tsk ; ACT: 34.00 ± 0.14 °C; PLA: 33.96 ± 0.20 °C, P = 0.70) were all similar among conditions. At end-exercise, no differences in ΔTre (ACT: 1.12 ± 0.15 °C; PLA: 1.11 ± 0.21 °C, P = 0.92), ΔTes (ACT: 0.90 ± 0.28 °C; PLA: 0.88 ± 0.23 °C, P = 0.84), ΔTsk (ACT: 0.80 ± 0.39 °C; PLA: 0.70 ± 0.46 °C, P = 0.63), mean local sweat rate (ACT: 1.02 ± 0.15 mg/cm(2) /min; PLA: 1.02 ± 0.13 mg/cm(2) /min, P = 0.98) and whole-body sweat loss (ACT: 663 ± 83 g; PLA: 663 ± 77 g, P = 0.995) were evident. Furthermore, ratings of perceived exertion and thermal sensation and thermal comfort were not different between ACT and PLA conditions. In conclusion, ACT ingested 60 min prior to moderate intensity exercise in hot-humid conditions does not alter physiologic thermoregulatory control nor perceived strain.

  18. Electrical vestibular stimuli to enhance vestibulo-motor output and improve subject comfort.

    PubMed

    Forbes, Patrick A; Dakin, Christopher J; Geers, Anoek M; Vlaar, Martijn P; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    Electrical vestibular stimulation is often used to assess vestibulo-motor and postural responses in both clinical and research settings. Stochastic vestibular stimulation (SVS) is a recently established technique with many advantages over its square-wave counterpart; however, the evoked muscle responses remain relatively small. Although the vestibular-evoked responses can be enhanced by increasing the stimulus amplitude, subjects often perceive these higher intensity electrical stimuli as noxious or painful. Here, we developed multisine vestibular stimulation (MVS) signals that include precise frequency contributions to increase signal-to-noise ratios (SNR) of stimulus-evoked muscle and motor responses. Subjects were exposed to three different MVS stimuli to establish that: 1) MVS signals evoke equivalent vestibulo-motor responses compared to SVS while improving subject comfort and reducing experimentation time, 2) stimulus-evoked vestibulo-motor responses are reliably estimated as a linear system and 3) specific components of the cumulant density time domain vestibulo-motor responses can be targeted by controlling the frequency content of the input stimulus. Our results revealed that in comparison to SVS, MVS signals increased the SNR 3-6 times, reduced the minimum experimentation time by 85% and improved subjective measures of comfort by 20-80%. Vestibulo-motor responses measured using both EMG and force were not substantially affected by nonlinear distortions. In addition, by limiting the contribution of high frequencies within the MVS input stimulus, the magnitude of the medium latency time domain motor output response was increased by 58%. These results demonstrate that MVS stimuli can be designed to target and enhance vestibulo-motor output responses while simultaneously improving subject comfort, which should prove beneficial for both research and clinical applications.

  19. 68. Smart view recreation area comfort station with postandrail fence ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Smart view recreation area comfort station with post-and-rail fence reflecting Appalachian culture. Facing west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  20. A correct enthalpy relationship as thermal comfort index for livestock.

    PubMed

    Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares

    2011-05-01

    Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

  1. Medical comforts during the heroic age of Antarctic exploration.

    PubMed

    Guly, H R

    2013-04-01

    In the literature of the exploration of the Antarctic in the early 20th century, there are many references to 'medical comforts'. While 'medical comforts' was sometimes used as a euphemism for alcoholic beverages, the term, which originated in the army, covered all foods and drinks used for the treatment and prevention of illness and during convalescence. This article describes the use of medical comforts during the Antarctic expeditions of the so called 'heroic age'. Apart from alcohol, medical comforts included beef extracts, milk extracts and arrowroot. These products were extensively advertised to the medical and nursing professions and to the general public and the Antarctic connection was sometimes used in the advertising. The products were largely devoid of vitamins and their use may have contributed to some of the disease that occurred on these expeditions.

  2. Creating high performance buildings: Lower energy, better comfort

    NASA Astrophysics Data System (ADS)

    Brager, Gail; Arens, Edward

    2015-03-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64-84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  3. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  4. Patient Evaluation of Emotional Comfort Experienced (PEECE): developing and testing a measurement instrument

    PubMed Central

    Lester, L; Bulsara, C; Petterson, A; Bennett, K; Allen, E; Joske, D

    2017-01-01

    Objectives The Patient Evaluation of Emotional Comfort Experienced (PEECE) is a 12-item questionnaire which measures the mental well-being state of emotional comfort in patients. The instrument was developed using previous qualitative work and published literature. Design Instrument development. Setting Acute Care Public Hospital, Western Australia. Participants Sample of 374 patients. Interventions A multidisciplinary expert panel assessed the face and content validity of the instrument and following a pilot study, the psychometric properties of the instrument were explored. Main outcome measures Exploratory and confirmatory factor analysis assessed the underlying dimensions of the PEECE instrument; Cronbach's α was used to determine the reliability; κ was used for test–retest reliability of the ordinal items. Results 2 factors were identified in the instrument and named ‘positive emotions’ and ‘perceived meaning’. A greater proportion of male patients were found to report positive emotions compared with female patients. The instrument was found to be feasible, reliable and valid for use with inpatients and outpatients. Conclusions PEECE was found to be a feasible instrument for use with inpatient and outpatients, being easily understood and completed. Further psychometric testing is recommended. PMID:28122833

  5. Quiet comfort: noise, otherness, and the mobile production of personal space.

    PubMed

    Hagood, Mack

    2011-01-01

    Marketing, news reports, and reviews of Bose QuietComfort noise-canceling headphones position them as essential gear for the mobile rational actor of the neoliberal market—the business traveler. This article concerns noise-canceling headphones’ utility as soundscaping devices, which render a sense of personal space by mediating sound. The airplane and airport are paradoxical spaces in which the pursuit of freedom impedes its own enjoyment. Rather than fight the discomforts of air travel as a systemic problem, travelers use the tactic of soundscaping to suppress the perceived presence of others. Attention to soundscaping enables the scholar to explore relationships between media, space, freedom, otherness, and selfhood in an era characterized by neoliberalism and increased mobility. Air travel is a moment in which people with diverse backgrounds, beliefs, and bodies crowd together in unusually close proximity. Noise is the sound of individualism and difference in conflict. Noise is othered sound, and like any type of othering, the perception of noise is socially constructed and situated in hierarchies of race, class, age, and gender. The normative QuietComfort user in media representations is white, male, rational, monied, and mobile; women, children, and “chatty” passengers are cast as noisemakers. Moreover, in putting on noise-canceling headphones, diverse selves put on the historically Western subjectivity that has been built into their technology, one that suppresses the noise of difference in favor of the smooth circulation of people, information, and commodities.

  6. Effects of environmental intervention on sedentary time, musculoskeletal comfort and work ability in office workers.

    PubMed

    Gao, Ying; Nevala, Nina; Cronin, Neil J; Finni, Taija

    2016-09-01

    Sit-stand workstations offer a potential strategy to reduce prolonged occupational sitting. This controlled intervention study examined the effects of an environmental intervention on occupational sedentary time, musculoskeletal comfort and work ability, and the usability of sit-stand workstations in office work via a self-reported questionnaire. The intervention group (n = 24) used sit-stand workstations during the 6-month intervention period, and the control group (n = 21) used traditional sitting workstations. The results showed that working at sit-stand workstations can reduce sitting time significantly compared to control workstations (-6.7% vs. 5.0%, p = .019), which is reallocated mostly to standing (r = -0.719, p < .001). Sit-stand workstations improved perceived musculoskeletal comfort in the neck and shoulders (p = .028), as well as work ability (p = .022). The majority of intervention subjects rated sit-stand workstation adjustability as good (83.3%), and 75.0% were satisfied with the workstation. About 41.7% of the intervention participants, who were exclusively female, used the sit-stand function on a daily basis. While the environmental change alone was effective, it is likely that promoting the daily use of sit-stand workstations with counselling would lead to even more substantial positive effects.

  7. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity

  8. Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ma, J.; Ng, E.; Yuan, C.; Lai, A.

    2015-12-01

    Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.

  9. Study of weather and thermal comfort influence on sport performance: prognostic analysis applied to Rio de Janeiro's city marathon

    NASA Astrophysics Data System (ADS)

    Pallotta, M.; Herdies, D. L.; Gonçalves, L. G.

    2013-05-01

    There is nowadays a growing interest in the influence and impacts of weather and climate in human life. The weather conditions analysis shows the utility of this type of tool when applied in sports. These conditions act as a differential in strategy and training, especially for outdoor sports. This study had as aim objective develop weather forecast and thermal comfort evaluation targeted to sports, and hoped that the results can be used to the development of products and weather service in the Olympic Games 2016 in Rio de Janeiro City. The use of weather forecast applied to the sport showed to be efficient for the case of Rio de Janeiro City Marathon, especially due to the high spatial resolution. The WRF simulations for the three marathons studied showed good results for temperature, atmospheric pressure, and relative humidity. On the other hand, the forecast of the wind showed a pattern of overestimation of the real situation in all cases. It was concluded that the WRF model provides, in general, more representative simulations from 36 hours in advance, and with 18 hours of integration they were even better, describing efficiently the synoptic situation that would be found. A review of weather conditions and thermal comfort at specific points of the marathon route showed that there are significant differences between the stages of the marathon, which makes possible to plan the competition strategy under the thermal comfort. It was concluded that a relationship between a situation more thermally comfortable (uncomfortable) and the best (worst) time in Rio de Janeiro City Marathon

  10. Apparatus and methods for humidity control

    NASA Technical Reports Server (NTRS)

    Dinauer, William R. (Inventor); Otis, David R. (Inventor); El-Wakil, Mohamed M. (Inventor); Vignali, John C. (Inventor); Macaulay, Philip D. (Inventor)

    1994-01-01

    Apparatus is provided which controls humidity in a gas. The apparatus employs a porous interface that is preferably a manifolded array of stainless steel tubes through whose porous surface water vapor can pass. One side of the porous interface is in contact with water and the opposing side is in contact with gas whose humidity is being controlled. Water vapor is emitted from the porous surface of the tubing into the gas when the gas is being humidified, and water vapor is removed from the gas through the porous surfaces when the gas is being dehumidified. The temperature of the porous interface relative to the gas temperature determines whether humidification or dehumidification is being carried out. The humidity in the gas is sensed and compared to the set point humidity. The water temperature, and consequently the porous interface temperature, are automatically controlled in response to changes in the gas humidity level above or below the set point. Any deviation from the set point humidity is thus corrected.

  11. The effects of excessive humidity.

    PubMed

    Williams, R B

    1998-06-01

    Humidification devices and techniques can expose the airway mucosa to a wide range of gas temperatures and humidities, some of which are excessive and may cause injury. Humidified gas is a carrier of both water and energy. The volume of water in the gas stream depends on whether the water is in a molecular form (vapor), particulate form (aerosol), or bulk form (liquid). The energy content of gas stream is the sum of the sensible heat (temperature) of the air and any water droplets in it and the heat of vaporization (latent energy) of any water vapor present. Latent heat energy is much larger than sensible heat energy, so saturated air contains much more energy than dry air. Thus every breath contains a water volume and energy (thermal) challenge to the airway mucosa. When the challenge exceeds the homeostatic mechanisms airway dysfunction begins, starting at the cellular and secretion level and progressing to whole airway function. A large challenge will result in quick progression of dysfunction. Early dysfunction is generally reversible, however, so large challenges with short exposure times may not cause irreversible injury. The mechanisms of airway injury owing to excess water are not well studied. The observation of its effects lends itself to some general conclusions, however. Alterations in the ventilation-perfusion ratio, decrease in vital capacity and compilance, and atelectasis are suggestive of partial or full occlusion of small airways. Changes in surface tension and alveolar-arterial oxygen gradient are consistent with flooding of alveoli. There also may be osmotic challenges to mucosal cell function as evidenced by the different reaction rates with hyper- and hypotonic saline. The reaction to nonisotonic saline also may partly explain increases in specific airway resistance. Aerosolized water and instilled water may be hazardous because of their demonstrated potential for delivering excessive water to the airway. Their use for airway humidification or

  12. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort.

    PubMed

    Chen, Te-Hung; Chen, Wan-Ping; Wang, Mao-Jiun J

    2014-01-01

    The function of cleanroom clothing is to protect the product from contamination by people, and to dissipate electrostatic discharge. People in the cleanroom work environment often complain about the discomforts associated with the wearing of cleanroom clothing. The purpose of this study is to investigate the effect of air permeability and water vapor permeability of cleanroom clothing on the subject's physiological and subjective responses. Five male and five female subjects participated in this study. The experimental goal was to simulate the operator's regular tasks in a semiconductor manufacturing cleanroom. Each subject completed three treatment combinations with three different cleanroom clothing types. A three-factor experiment was designed (significance level p = 0.05). The independent variables included gender, cleanroom clothing, and duration. The dependent measures included heart rate, core temperature, skin temperature, micro-climate relative humidity, micro-climate temperature, and subjective responses. A total of 40 min was involved for each treatment condition. The results indicate that skin temperature, micro-climate temperature and micro-climate relative humidity were lower while wearing cleanroom clothing with high air permeability and high water vapor permeability. The significant gender difference was found in skin temperature. As the task time increased, the micro-climate temperature also increased but the micro-climate relative humidity decreased at first and then increased. In addition, the physiological responses showed significant positive correlations with the subjective perception of clothing comfort. The findings of this study may provide useful information for cleanroom clothing design and selection.

  13. Using the Comfortability-in-Learning Scale to Enhance Positive Classroom Learning Environments

    ERIC Educational Resources Information Center

    Kiener, Michael; Green, Peter; Ahuna, Kelly

    2014-01-01

    A goal of higher education is to advance learning. This study examined the role "comfortability" plays in that process. Defined as the level of comfort students experience with their classmates, instructor, and course material, comfortability addresses how secure a student feels in the classroom. Comfortability was assessed multiple…

  14. Human comfort response to random motions with a dominant transverse motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  15. Human comfort response to random motions with a dominant longitudinal motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  16. Ceiling fans as extenders of the summer comfort envelope

    SciTech Connect

    Rohles, F.M.; Jones, B.W.; Konz, S.A.

    1983-01-01

    The ASHRAE Standard 55-1981 specifies temperature limits or zones for winter and summer comfort. It states that the upper limit of the summer comfort zone, which is 79/sup 0/F or 26/sup 0/C, can be extended to 82/sup 0/F or 28/sup 0/C with air velocities of 160 fpm or 0.8 m/s. The manufacturers of ceiling fans claim comfort may be obtained at velocities considerably below the 160 fpm (0.8 m/s) level. They further claim that 82/sup 0/F (28/sup 0/C) with a ceiling fan will provide the same amount of comfort as 75/sup 0/F (24/sup 0/C) without a fan. Since ceiling fans require less than a penny per hour to operate, their use, as opposed to air conditioning, could represent a large energy savings without affecting human comfort. The National Bureau of Standards suggests a reduction in air conditioning demand of 3%//sup 0/F (5.4%/C). Thus the energy saving provided by 140 fpm (0.7 m/s) from a ceiling fan would be 5.6/sup 0/F X 3%//sup 0/F = 17%. Thus it was concluded that a ceiling fan may extend the upper limit of the summer comfort envelope from 79/sup 0/F (26/sup 0/C) to 85/sup 0/F (29/sup 0/C) (the equivalent temperature on any specific situation depends on the velocity of the air on the person). The results suggest that the turbulent and variable characteristics of the air plume of the ceiling fan may be its major comfort-producing feature.

  17. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous

  18. The Russian National Standard of Gases Humidity and Traceability System of Humidity Measurements

    NASA Astrophysics Data System (ADS)

    Dubovikov, N. I.; Podmurnaya, O. A.; Skryabikov, N. P.; Sokov, I. A.; Vinge, A. F.

    2016-05-01

    The Russian national humidity standard of gases has been modernized in order to increase the number of reproducible quantities of humidity (relative humidity, dew/frost-point temperature, mole fraction) and to extend the humidity and operating temperature ranges. The basis of the standard comprises two humidity generators with operating temperature ranges from 5 ^{circ }hbox {C} to 90 ^{circ }hbox {C} and from -60 ^{circ }hbox {C} to 15 ^{circ }hbox {C}. The common working range (from 5 ^{circ }hbox {C} to 15 ^{circ }hbox {C}) allows comparison of the generators. The generators use the two-pressure method to generate humid gas defined in terms of the relative humidity (from 5 %rh to 98 %rh at temperatures from 90 ^{circ }hbox {C} to -60 ^{circ }hbox {C}) and the one-pressure (or phase equilibrium) method to generate humid gas defined in terms of the vapor mole fraction (from 0.6 ppm to 700× 103 ppm) and dew/frost-point temperature (from -79 ^{circ }hbox {C} to 90 ^{circ }hbox {C}). The expanded uncertainty in the relative humidity is no more than 0.2 %rh, no more than 1.2 % in the vapor mole fraction, and no more than 0.12 ^{circ }hbox {C} in the dew/frost-point temperature. The ordinary hygrometers are traceable to the national primary standard in accordance with the state hierarchical chain for measuring means of gas humidity. The state hierarchical chain consists of three branches for means of measurements: (a) mole fraction, (b) dew/frost-point temperature, and (c) relative humidity with each branch represented as the scheme: primary standard-secondary standard-working standard-ordinary hygrometer. Calibration and verification of working standards and ordinary hygrometers, and their traceability to the primary standard use methods of (i) direct measurements, (ii) direct comparison, or (iii) comparison with a comparator.

  19. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  20. An Intervention to Improve the Comfort And Satisfaction of Nurses in the Telephone Triage of Child Maltreatment Calls.

    PubMed

    Hunter, Julie

    2015-01-01

    Nurses are mandated reporters of actual or suspected child maltreatment or the threat thereof. The purpose of this quality improvement project was to determine the knowledge and comfort of nurses in telephone triage in pediatric clinics when dealing with suspected or actual child abuse calls. Nurses (N = 17) from three pediatric primary care clinics and one specialty care orthopedic clinic were surveyed. Based on results of the survey showing a lack of knowledge and adequate referral resources perceived by the nursing staff, resources and staff education were developed, along with a script for guiding maltreatment calls toward standardization of care. Following the intervention, nurses reported an increased comfort level when doing telephone triage for child maltreatment calls, an increase in knowledge of risk factors for county resources. Further, they reported a substantial shift in opinion about the need for a standardized script when responding to child maltreatment telephone calls. Nurses undertaking telephone triage of high-risk child maltreatment calls can improve their comfort and knowledge through a survey of their needs and directed education and resource development for the management of child maltreatment telephone triage.

  1. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors.

    PubMed

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Cannard, Francis; Guéguen, Nils

    2016-10-01

    Footwear comfort is essential and pressure distribution on the foot was shown as a relevant objective measurement to assess it. However, asperities on the foot sides, especially the metatarsals and the instep, make its evaluation difficult with available equipment. Thus, a sock equipped with textile pressure sensors was designed. Results from the mechanical tests showed a high linearity of the sensor response under incremental loadings and allowed to determine the regression equation to convert voltage values into pressure measurements. The sensor response was also highly repeatable and the creep under constant loading was low. Pressure measurements on human feet associated with a perception questionnaire exhibited that significant relationships existed between pressure and comfort perceived on the first, the third and the fifth metatarsals and top of the instep. Practitioner Summary: A sock equipped with textile sensors was validated for measuring the pressure on the foot top, medial and lateral sides to evaluate footwear comfort. This device may be relevant to help individuals with low sensitivity, such as children, elderly or neuropathic, to choose the shoes that fit the best.

  2. Humidity effects on wire insulation breakdown strength.

    SciTech Connect

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  3. The influence of park size and form on micro climate and thermal comfort

    NASA Astrophysics Data System (ADS)

    Sodoudi, Sahar; Chi, Xiaoli; Müller, Felix; Zhang, Huiwen

    2016-04-01

    The population of urban areas will increase in the next decades and it leads to higher fraction of sealed areas, which will increase the urban heat island intensity. In addition, climate model projections also show that the frequency and the intensity of heat waves and the related heat stress will be higher in the future. Urban Parks are the best key to mitigate the urban heat island and to minimize the local climate change. Due to the lack of free spaces which can be converted to green spaces, this study investigates the influence of urban park forms on the micro climate and thermal comfort. In this study, a central big park has been compared to different numbers of small parks in terms of the cooling effect and thermal comfort. Five different park forms with the same total size have been considered. The results show that the park cooling effect depends not only on the park form, but also on the arrangement of the vegetation inside the park and wind speed and direction. Grassy areas (with 10 and 50 Cm grass), shrubs and hedges as well as trees with small and big canopies have been considered for the simulation. ENVI-MET and Rayman models have been used to simulate the cooling effect, cooled area size, PET and UTCI, respectively. The results for a hot day in Berlin on three different times during day and night will be shown and compared to each other. The effects of Sky view factor and soil humidity (irrigation) have also been discussed.

  4. A preliminary study of patient comfort associated with customised mouthguards

    PubMed Central

    McClelland, C.; Kinirons, M.; Geary, L.

    1999-01-01

    OBJECTIVE: To compare patient perception of custom made mouthguards of ideal and less than ideal designs in terms of their comfort and "wearability". METHOD: A mouthguard of ideal design (A) and one incorporating common design faults of underextension and unadjusted occlusion (B) were provided for 22 active sportsmen and women. They were not informed of the details of the design or the status of the protector. Half the participants were asked to wear mouthguard A first and the other half wore B first, each worn for one hour on two consecutive nights. Questionnaires were used to evaluate and rate the comfort and wearability of each mouthguard. RESULTS: Eighteen people completed the study. The ideal appliance was rated as significantly more retentive and comfortable overall and specifically was more comfortable to lips, gums, and tongue. It was also recognised as being less bulky, less likely to keep the teeth apart, or to cause pain in the jaw muscles. CONCLUSIONS: Comfort is likely to be increased if mouthguards are extended labially to within 2 mm of the vestibular reflection, adjusted to allow even occlusal contact, rounded at the buccal peripheries, and tapered at the palatal edges. 


 PMID:10378071

  5. COMFORT: evaluating a new communication curriculum with nurse leaders.

    PubMed

    Goldsmith, Joy; Wittenberg-Lyles, Elaine

    2013-01-01

    Nursing faculty face increasing instructional demands to keep pace with mounting knowledge and competency requirements for student nurses. In the context of nursing practice, tasks and time pressures detract from the high skill and aptitude expectation of communication. The communication, orientation and opportunity, mindful presence, family, openings, relating, and team (COMFORT) curriculum, an acronym that represents 7 basic nursing communication principles, has been introduced into the communication module of the End-of-Life Nursing Education Consortium, which currently provides the only standardized undergraduate and graduate nurse training in hospice and palliative care. This study examines the potential efficacy of the COMFORT curriculum for everyday communication challenges experienced by members of the Georgia Organization of Nurse Leaders. Participants were prompted to describe communication barriers and then apply an aspect of the COMFORT curriculum to this barrier. Responses revealed primary communication barriers with co-workers and patient/families. Nurses predominantly identified directly correlating components in the COMFORT framework (C-communication, F-family) as solutions to the topics described as barriers. Based on confirmation of extant literature addressing generalist nurse communication challenges, there is support for the inclusion of COMFORT across the nursing curriculum to efficiently and effectively teach communication strategies to nurses.

  6. Coupling of the Models of Human Physiology and Thermal Comfort

    NASA Astrophysics Data System (ADS)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  7. The Physiological Basis for Thermal Comfort in Different Climates; a Preliminary Study (De fysiologische basis voor thermisch comfort onder diverse klimatologische omstandigheden; een voorstudie),

    DTIC Science & Technology

    2007-11-02

    Thermal comfort is very important for optimal functioning of humans. It gives information about the thermal state of the body, by which the human...receptors and sending efferent information to the effectors by which the body controls its temperature. Thermal comfort is determined by the temperature...global thermal comfort are core temperature, temperature of the extremities and temperature of the environment. In local thermal comfort and pain

  8. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  9. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  10. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  11. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  12. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three

  13. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  14. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  15. Ultrasonic detection of atmospheric humidity variations

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles

    2001-03-01

    The small variation of the speed of sound in air with water vapor concentration is evaluated as a method of measuring atmospheric humidity. Laboratory acoustic phase measurements were made, using inexpensive piezoelectric transducers and electret microphones with dew point temperature independently monitored in the same enclosure. Phase variations from an acoustic path gave fair agreement with the measured humidity variations, when temperature and cross-wind variations were removed. Thermal stabilization and filtering were necessary to reduce the random phase noise contributions from the detectors, leading to errors in mean vapor pressure of ˜5 mbar at 20 °C. The approach is therefore more suited to determine turbulent humidity fluctuations, for meteorological latent heat flux measurements.

  16. Self-reported health and comfort in 'modern' office buildings: first results from the European OFFICAIR study.

    PubMed

    Bluyssen, P M; Roda, C; Mandin, C; Fossati, S; Carrer, P; de Kluizenaar, Y; Mihucz, V G; de Oliveira Fernandes, E; Bartzis, J

    2016-04-01

    In the European research project OFFICAIR, a procedure was developed to determine associations between characteristics of European offices and health and comfort of office workers, through a checklist and a self-administered questionnaire including environmental, physiological, psychological, and social aspects. This procedure was applied in 167 office buildings in eight European countries (Portugal, Spain, Italy, Greece, France, Hungary, the Netherlands, and Finland) during the winter of 2011-2012. About 26 735 survey invitation e-mails were sent, and 7441 office workers were included in the survey. Among respondents who rated an overall comfort less than 4 (23%), 'noise (other than from building systems)', air 'too dry', and temperature 'too variable' were the main complaints selected. An increase of perceived control over indoor climate was positively associated with the perceived indoor environment quality. Almost one-third of office workers suffered from dry eyes and headache in the last 4 weeks. Physical building characteristics were associated with occupants' overall satisfaction (acoustical solutions, mold growth, complaints procedure, cleaning activities) and health (number of occupants, lack of operable windows, presence of carpet and cleaning activities). OFFICAIR project provides a useful database to identify stressors related to indoor environmental quality and office worker's health.

  17. Analysis of impact of suspension rubber mounts on ride comfort

    NASA Astrophysics Data System (ADS)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  18. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  19. Alternating pressure mattresses: comfort and quality of sleep.

    PubMed

    Grindley, A; Acres, J

    Comfort is particularly important for patients with terminal illness where the priority is to maximize quality of life. Equally important is effective pressure area care, as such patients are at high risk of developing pressure sores because of their poor general condition (Bale and Regnard, 1995). The present randomized controlled study set in a hospice focused on the development of methodology for assessing patient comfort and quality of sleep and used this to compare two widely used, alternating air pressure mattresses (the Nimbus II and the Pegasus Airwave). The Nimbus II mattress performed consistently better than the Pegasus Airwave in terms of patient comfort and quality of sleep. Features of the Nimbus II that may explain its better performance include less extreme changes in pressure, lower peak inflation pressures and the ability to automatically vary the pressure to suit the patient's position and weight.

  20. Heat or humidity, which triggers tree phenology?

    NASA Astrophysics Data System (ADS)

    Laube, Julia; Sparks, Tim H.; Estrella, Nicole; Menzel, Annette

    2014-05-01

    An overwhelming number of studies confirm that temperature is the main driver for phenological events such as leafing, flowering or fruit ripening, which was first discovered by Réaumur in 1735. Since then, several additional factors which influence onset dates have been identified, such as length of the chilling period, photoperiod, temperature of the previous autumn, nutrient availability, precipitation, sunshine and genetics (local adaptations). Those are supposed to capture some of the remaining, unexplained variance. But our ability to predict onset dates remains imprecise, and our understanding of how plants sense temperature is vague. From a climate chamber experiment on cuttings of 9 tree species we present evidence that air humidity is an important, but previously overlooked, factor influencing the spring phenology of trees. The date of median leaf unfolding was 7 days earlier at 90% relative humidity compared to 40% relative humidity. A second experiment with cuttings shows that water uptake by above-ground tissue might be involved in the phenological development of trees. A third climate chamber experiment suggests that winter dormancy and chilling might be linked to dehydration processes. Analysis of climate data from several meteorological stations across Germany proves that the increase in air humidity after winter is a reliable signal of spring, i.e. less variable or susceptible to reversal compared to temperature. Finally, an analysis of long-term phenology data reveals that absolute air humidity can even be used as a reliable predictor of leafing dates. Current experimental work tries to elucidate the involved foliar uptake processes by using deuterium oxide marked water and Raman spectroscopy. We propose a new framework, wherein plants' chilling requirements and frost tolerance might be attributed to desiccation processes, while spring development is linked to re-humidification of plant tissue. The influence of air humidity on the spring

  1. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  2. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions.

    PubMed

    Kwon, JuYoun; Choi, Jeongwha

    2013-07-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  3. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  4. A review of ride comfort studies in the United Kingdom

    NASA Technical Reports Server (NTRS)

    Griffin, M. J.

    1975-01-01

    United Kingdom research which is relevant to the assessment of vehicle ride comfort was reviewed. The findings reported in approximately 80 research papers are outlined, and an index to the areas of application of these studies is provided. The data obtained by different research groups are compared, and it is concluded that, while there are some areas of general agreement, the findings obtained from previous United Kingdom research are insufficient to define a general purpose ride comfort evaluation procedure. The degree to which United Kingdom research supports the vibration evaluation procedure defined in the current International Standard on the evaluation of human exposure to whole-body vibration is discussed.

  5. Comfort Theory: a unifying framework to enhance the practice environment.

    PubMed

    Kolcaba, Katharine; Tilton, Colette; Drouin, Carol

    2006-11-01

    The application of theory to practice is multifaceted. It requires a nursing theory that is compatible with an institution's values and mission and that is easily understood and simple enough to guide practice. Comfort Theory was chosen because of its universality. The authors describe how Kolcaba's Comfort Theory was used by a not-for-profit New England hospital to provide a coherent and consistent pattern for enhancing care and promoting professional practice, as well as to serve as a unifying framework for applying for Magnet Recognition Status.

  6. Comfort, hygiene, and safety in veterinary palliative care and hospice.

    PubMed

    Downing, Robin; Adams, Valarie Hajek; McClenaghan, Ann P

    2011-05-01

    Hygiene, comfort, and safety during pet palliative care and hospice are usually straightforward. The veterinary health care team must coordinate care to ensure that the pet and the family are fully informed and engaged in the process. End-of-life issues, euthanasia, and death are typically not everyday concerns for the pet owner. Pet owners and veterinary patients rely on the veterinary health care team to help create the structure within which the pet will die. The veterinary team can give the family-pet unit the gift of structure and multifaceted comfort. The veterinary profession must take seriously this unique niche of care.

  7. Modeling of the thermal comfort in vehicles using COMSOL multiphysics

    NASA Astrophysics Data System (ADS)

    Gavrila, Camelia; Vartires, Andreea

    2016-12-01

    The environmental quality in vehicles is a very important aspect of building design and evaluation of the influence of the thermal comfort inside the car for ensuring a safe trip. The aim of this paper is to modeling and simulating the thermal comfort inside the vehicles, using COMSOL Multiphysics program, for different ventilation grilles. The objective will be the implementing innovative air diffusion grilles in a prototype vehicle. The idea behind this goal is to introduce air diffusers with a special geometry allowing improving mixing between the hot or the cold conditioned air introduced in the cockpit and the ambient.

  8. Objective and subjective evaluation of the acoustic comfort in classrooms.

    PubMed

    Zannin, Paulo Henrique Trombetta; Marcon, Carolina Reich

    2007-09-01

    The acoustic comfort of classrooms in a Brazilian public school has been evaluated through interviews with 62 teachers and 464 pupils, measurements of background noise, reverberation time, and sound insulation. Acoustic measurements have revealed the poor acoustic quality of the classrooms. Results have shown that teachers and pupils consider the noise generated and the voice of the teacher in neighboring classrooms as the main sources of annoyance inside the classroom. Acoustic simulations resulted in the suggestion of placement of perforated plywood on the ceiling, for reduction in reverberation time and increase in the acoustic comfort of the classrooms.

  9. Environmental and comfort upgrading through lean technologies in informal settlements: Case study in Nairobi, Kenia and New Delhi, India

    NASA Astrophysics Data System (ADS)

    De Angelis, Enrico; Tagliabue, Lavinia Chiara; Zecchini, Paolo; Milanesi, Mattia

    2016-07-01

    Informal settlements, namely slums (or bidonville or favelas) are one of the stronger challenge for urban context in developing countries. The increase of urban population leads to a widespread poverty and critical life conditions for a large segment of population, in particular in Sub-Saharan Africa, where a high percentage of people lives in informal settlements. The problems in slums are multiple: people suffer malnutrition and poor sanitation, flooding or drought, and live in shelters providing no thermal comfort in many days of the year, furthermore scarce and highly polluting energy sources are available. Climate change and an unavoidable heat island effect make these living conditions nearly catastrophic. This paper focuses on the main characters of these slums and on how to what promote the improvement of living conditions with a lean, low cost, low impact, feasible upgrading of the housing or more properly shelters. The subject of the analysis is the Mathare 4A Upgrading Programme in the city of Nairobi, Kenya, one of the highest slum-dwellers growing rate. The technological solutions applied in this context have been verified in a different climate condition such as the city of New Delhi, India where the phenomenon of the slums is significantly burdensome. The analysis of the comfort conditions inside a type housing has been carried out using hourly weather data and dynamic heat transfer simulation, without any HVAC system and striving only natural ventilation. Data about internal temperature and relative humidity conditions have been applied to evaluate the comfort hours using the Predicted Mean Vote method, the adaptive thermal comfort principles and the bioclimatic charts for the two climates in Nairobi and New Delhi. The percentage of hours within the comfort range and the amount of degree-hours exceeding comfort values showed for different upgrading strategies, how it is possible to deeply influence the living conditions by technological and

  10. Group 3: Humidity, Temperature and Voltage (Presentation)

    SciTech Connect

    Wohlgemuth, J.

    2013-09-01

    This is a summary of the work of Group 3 of the International PV QA Task Force. Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  11. Low Relative Humidity in the Atmosphere

    DTIC Science & Technology

    1989-01-01

    comparable magnitude can occur with chinook ( foehn ) winds. iiI TABLE OF CONTENTS Page LIST OF TABLES ................................ ......... 1. INTRODUCTION...very low relative humidities. occasionally occur in association with strong winds in the lee of most mountain ranges. These winds are called foehns in

  12. [Relative humidity and acari. An intervention study].

    PubMed

    Pascual Izaola, A; Sánchez Milla, J J; Mateo Garmilla, J I; Antépara, I

    1995-01-01

    In this work we collect the results of the variation of the variable "rechange of the wind with the exterior" in the three possibilities of a bedroom: --close window, semi close and totally open. And we unite the relation that we already know between the prevail of acariens (Dermatophagoides) and the relative humidity of the wind in a Bilbao city's house.

  13. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  14. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  15. Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel

    NASA Astrophysics Data System (ADS)

    Potchter, Oded; Cohen, Pninit; Bitan, Arieh

    2006-10-01

    This study examines the climatic behavior of different designs of urban parks during hot and humid summer conditions, and their influence on human comfort in Tel Aviv, Israel. The research was conducted in three different types of urban parks: a park with grass and a few low trees, a park with medium sized trees and a park with high and wide-canopied trees. The results showed that an urban park that contains high trees with a wide canopy has the maximum cooling effect during daytime, reduces temperatures by up to 3.5 °C and lowers heat stress values despite increasing relative humidity values. An urban park that contains dense, medium sized trees can also reduce temperatures during daytime by up to 2.5 °C as well as slightly lower heat stress. However, during nighttime it can create uncomfortable climatic conditions owing to the reduction of wind velocity and increase in relative humidity. An urban park covered with grass can be warmer and sometimes even more humid than the built-up area during the day, which increases heat stress values.

  16. Highly sensitive humidity sensing properties of carbon quantum dots films

    SciTech Connect

    Zhang, Xing; Ming, Hai; Liu, Ruihua; Han, Xiao; Kang, Zhenhui; Liu, Yang; Zhang, Yonglai

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ► The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ► The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humidity sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.

  17. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  18. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity.

    PubMed

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  19. Teaching Children about Aspects of Comfort in the Built Environment

    ERIC Educational Resources Information Center

    Kowaltowski, Doris C. C. K.; Filho, Francisco Borges; Labaki, Lucila C.; Pina, Silvia A. Mikami G.; Bernardi, Nubia

    2004-01-01

    This article presents specific teaching material for the primary school level that introduces basic concepts of environmental comfort. The authors developed 2 booklets to make children aware of the built environment. Following a postoccupancy evaluation of state schools in the city of Campinas, in the state of Sao Paulo, Brazil, the research team…

  20. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    PubMed

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  1. Test Anxiety, Test Comfort and Student Achievement Test Performance.

    ERIC Educational Resources Information Center

    Fyans, Leslie J., Jr.

    The Illinois Inventory of Educational Progress (IIEP) Test Comfort Scale was administered and test results were studied in terms of student achievement and correlates of achievement. Using the revised, seven-item scale, it was determined that: in grade 4, there was no main significant effect for sex or ethnic differences, although Orientals and…

  2. Assessing Thermal Comfort of Broiler Chicks During Brooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper management of the thermal environment during brooding is essential to performance in broilers. Brooding programs used in the broiler industry are prescriptive, but little information exists about thermal comfort in chicks. Identifying thermal conditions that chicks prefer would allow for be...

  3. The correlation between thermal comfort in buildings and fashion products.

    PubMed

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  4. A novel medical bandage with enhanced clothing comfort

    NASA Astrophysics Data System (ADS)

    Oğlakcioğlu, N.; Sari, B.; Bedez Üte, T.; Marmarali, A.

    2016-07-01

    Compression garments are special textile products which apply a pressure on needed body zones for supporting medical, sport or casual activities. Medical bandages are a group of these garments and they have a very common usage for compression effect on legs or arms. These bandages are generally produced by using synthetic raw materials such as polyamide or polyester fibres. Medical bandages are in contact with skin. Even if the synthetic fibres are used, they may cause both comfort and health problems like allergies. Nowadays in textile sector, the expectations of clients include using of natural fibres as far as possible in all garments. Natural fibres have good advantages such as breathability, softness, moisture management ability, non-allergenic and ecologic structure and these characteristics present optimum utilization conditions. In this study, tubular medical bandages were manufactured by using core spun yarns (sheath fibres are selected as tencel, bamboo and cotton, core material is elastane) and their pressure and comfort (air and water vapour permeability) characteristics were investigated. The results indicated that the bandages have good comfort abilities beside adequate pressure values for compression effect. These garments can constitute a new production field for medical bandages with their comfort properties in addition to pressure characteristics.

  5. Tecnology innovation related to comfort on commercial vehicles.

    PubMed

    Martini, M; Ferrero, D

    2012-01-01

    The scope of this article is to show the Iveco activity in terms of comfort improvement in all its product Portfolio, focusing on innovation research and realization of tools to get better the life of the driver on commercial vehicles. Comfort related to the ergonomics, thermal, vibrational comfort and after-treatment system in order to improve the life of driver and passengers. It is to remember that Commercial vehicles have different use from a car. For example an heavy truck cabin is not only a place where to drive 8 hours a day, but it is at the same time, an office, a place where to eat, where to sleep and to have a rest. The effort in the last 10 years of Iveco is to improve the comfort of the life of the drivers, utilizing continuous research in standards and innovative systems in order to increase the security and life improvement, focusing also on worldwide legislation as a partner in European committees for health and safety.

  6. Managing in a Change Environment: From Coping to Comfort.

    ERIC Educational Resources Information Center

    Goble, David S.

    1997-01-01

    Discusses the accelerating pace of change that librarians must cope with and suggests looking to the private sector for strategies to become more comfortable with change. Describes the five disciplines comprising the learning organization culture: systems thinking, personal mastery, mental models, shared vision, and team learning. (LRW)

  7. Measurements and simulation on the comfort of forklifts

    NASA Astrophysics Data System (ADS)

    Verschoore, R.; Pieters, J. G.; Pollet, I. V.

    2003-09-01

    In order to determine the influence of some parameters of a forklift such as the road profile, the tyre characteristics, the riding comfort, etc., measurements carried out on a forklift with different tyres and seats were evaluated using different standards and methods. In addition, a simulation model was developed and used to investigate the influence of these parameters. Simulations and test run results showed good agreement. The comparison of the results obtained with several methods of comfort evaluation and a series of tests showed that they nearly all resulted in the same classification. However, the results obtained with different methods could not always be compared among themselves. Solid tyres were found to be more comfortable than pneumatic ones because of their high damping. The negative influence of higher stiffness was smaller than the positive influence of higher damping. The simulations pointed out that for a global general investigation about comfort, the influence of the horizontal tyre stiffness and damping can be neglected. Also the seat characteristics could be linearized. When the stability of the forklift has to be investigated, the horizontal forces must also be considered.

  8. Affordable comfort 95 - investing in our energy future

    SciTech Connect

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  9. Effect of neck warming and cooling on thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Chambers, A. B.

    1972-01-01

    The potential use of local neck cooling in an area superficial to the cerebral arteries was evaluated by circulating cold or hot water through two copper disks held firmly against the neck. Subjective responses indicated that neck cooling improves the thermal comfort in a hot environment.

  10. Managing breathlessness: providing comfort at the end of life.

    PubMed

    Tice, Martha A

    2006-04-01

    Dyspnea is a common symptom at the end of life. It occurs as the result of a complex mix of physical, biochemical, and perceptual components. When patients and their healthcare providers focus on the "numbers" related to oxygenation, rather than comfort, the individual's quality of life can suffer.

  11. Dew Point Evaporative Comfort Cooling: Report and Summary Report

    SciTech Connect

    Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

    2012-11-01

    The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

  12. Beyond the Comfort Zone: Lessons of Intercultural Service

    ERIC Educational Resources Information Center

    Urraca, Beatriz; Ledoux, Michael; Harris, James T., III

    2009-01-01

    This article describes an international service-learning project in Bolivia undertaken by faculty and students from Widener University. The authors examine characteristics of the student group, trip preparation, and lessons learned from the experience. The article discusses the American cultural biases that emphasize personal comfort and…

  13. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.

    PubMed

    Shen, Xianghao; Feng, Shumin; Li, Zhenning; Hu, Baoyu

    2016-01-01

    Although bus comfort is a crucial indicator of service quality, existing studies tend to focus on passenger load and ignore in-vehicle time, which can also affect passengers' comfort perception. Therefore, by conducting surveys, this study examines passengers' comfort perception while accounting for both factors. Then, using the survey data, it performs a two-way analysis of variance and shows that both in-vehicle time and passenger load significantly affect passenger comfort. Then, a bus comfort model is proposed to evaluate comfort level, followed by a sensitivity analysis. The method introduced in this study has theoretical implications for bus operators attempting to improve bus service quality.

  14. Indoor air quality assessment of daycare facilities with carbon dioxide, temperature, and humidity as indicators.

    PubMed

    Ferng, Shiaw-Fen; Lee, Li-Wen

    2002-11-01

    Poor indoor air quality (IAQ) in daycare facilities affects both attending children and care providers. Incident rates of upper-respiratory-tract infections have been reported to be higher in children who attend daycare. Excessive carbon dioxide (CO2) exposure can cause several health effects and even sudden infant death. For this study, 26 facilities were randomly selected in a Midwestern county of the United States. CO2, room temperature, and relative humidity were used as indicators for IAQ and comfort levels. These IAQ parameters were continuously monitored for eight hours at each facility by a direct-reading instrument that was calibrated before each measurement. More than 50 percent of the facilities had an average CO2 level over the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standard of 1,000 parts per million (ppm). For temperature and relative humidity, respectively, 42.3 percent and 15.4 percent of facilities were outside of the ASHRAE-recommended comfort zones. The nap-time average CO2 level was about 117 ppm higher than the non-nap-time level. The increment of the nap-time CO2 level in the sleeping-only room over the level in multipurpose rooms was statistically significant (p < .05). According to stepwise multiple regression analysis, nap-time CO2 level was predicted by CO2 level before occupancy, nap-time average temperature, carbon monoxide, and child density (R2 = .83). It is recommended that an appropriate IAQ standard for daycare facilities be established and that children should not be placed in a completely isolated room during nap time.

  15. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI--a case study in Southern Brazil.

    PubMed

    Bröde, Peter; Krüger, Eduardo L; Rossi, Francine A; Fiala, Dusan

    2012-05-01

    Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.

  16. Thermal comfort assessment in Moscow during the summer 2010

    NASA Astrophysics Data System (ADS)

    Malinina, Elizaveta; Konstantinov, Pavel

    2013-04-01

    Biometeorological indices are used to asses thermal comfort conditions and evaluate the influence of the weather on the human organism and health. Despite of the fact, that some biometeorological indices are already used in weather forecast, the assessment of these indices is especially important during the extreme weather conditions like continuous heat or cold waves. One of the very urgent issues in the applied climatology is the assessment of thermal comfort conditions in the urban areas, because nowadays more than half population of the planet lives there. Especially important is to study thermal comfort conditions in biggest and, thus, densely populated cities, because the effect of heat waves becomes stronger by the urban heat island effect. In July and August 2010 in the biggest city in Russia - Moscow, where more than 11 million people live, the longest and the strongest heat wave as well as the warmest day (29th of July 2010) were recorded since the meteorological observations in Russian capital were started. The main objective of this work is to evaluate the thermal comfort conditions of the warmest day in Moscow. For that purpose several biometeorological indices, particularly PET (physiological equivalent temperature), were analyzed and calculated for the warmest day in Russian capital. The calculations were done for the certain city canyon on the territory of the Moscow State University as well as for the places with natural vegetation. The results were compared with each other and, thus, the complex thermal comfort assessment was done. Also, the results of the calculations for the 29th of July 2010 were compared with the mean meteorological data for this period.

  17. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    NASA Astrophysics Data System (ADS)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  18. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    PubMed

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  19. Data Center Economizer Contamination and Humidity Study

    SciTech Connect

    Shehabi, Arman; Tschudi, William; Gadgil, Ashok

    2007-03-06

    Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE

  20. Students' perceived supervisory needs.

    PubMed

    Dowling, S; Wittkopp, J

    1982-07-01

    One hundred and ninety-one students from six Michigan University speech-language pathology training programs completed a 43-item questionnaire concerning their perceived supervisory needs in five areas: lesson plan and report writing, supervisor observation, conferencing, professional responsibility, and general supervisory practices. Selection criteria for students were academic status, university attended, and earned clinical clock hours. Student's perceptions of positive and negative supervisory practices differed significantly as a function of earned clinical clock hours and site of training. However, there were no differences in perception between undergraduate and graduate students.

  1. Children undergoing cancer treatment describe their experiences of comfort in interviews and drawings.

    PubMed

    Ångström-Brännström, Charlotte; Norberg, Astrid

    2014-01-01

    Children with cancer often undergo a long course of treatment, described as painful, and associated with feelings of discomfort and need of comfort. The aim of this descriptive interview study was to investigate how children, aged 3 to 9 years, undergoing cancer treatment describe their experience of comfort. The children were interviewed and asked to make drawings. Data were content analyzed and four themes were constructed--enduring discomfort, expressing discomfort, finding comfort, and comforting others. The findings show that the children endured discomfort during treatment, and were sometimes able to express it. They found comfort especially from their family and from hospital staff. The children also described that they comforted family members. The findings are in accordance with previous research about children's and adults' accounts of comfort. An incidental finding is that parents were surprised when they listened to the children's accounts of their experience of discomfort and comfort and achieved a better understanding of their children.

  2. Thermal Comfort Project: A Cool Solution to the Nation's Energy Security Challenges

    SciTech Connect

    Not Available

    2002-05-01

    This fact sheet describes how the CTTS thermal comfort project will increase energy security by reducing fuel consumed by auxiliary loads such as air conditioning. It also describes physiological and psychological computer models and thermal comfort manikin.

  3. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments.

    PubMed

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-01-20

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  4. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments

    NASA Astrophysics Data System (ADS)

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-01-01

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  5. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  6. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    NASA Astrophysics Data System (ADS)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  7. Dental Students' Perceived Value of Peer-Mentoring Clinical Leadership Experiences.

    PubMed

    Sheridan, Rachel A; Hammaker, Daniel J; de Peralta, Tracy L; Fitzgerald, Mark

    2016-03-01

    This pilot study compared second- and fourth-year dental students' perceived values of newly implemented clinical leadership experiences (CLEs) at one U.S. dental school during the 2012-13 academic year. In the CLEs, fourth-year (D4) students mentored second-year (D2) dental students during faculty-supervised patient treatment. The two cohorts' perceived value of the experiences was measured with questionnaires consisting of five-point Likert scale questions and open text responses. Out of a total of 114 D2 and 109 D4 students, 46 D2 students and 35 D4 students participated (response rates of 40.4% and 32.1%, respectively). While responses from both cohorts showed they highly valued the CLEs, the D2s perceived greater value: 4.07 (0.53) v. 3.51 (0.95), p<0.003. Both cohorts reported feeling that D4s were prepared to mentor D2s, that the CLEs had educational benefits, and that the CLEs increased their comfort with peer communication. Theme analysis of open text questions revealed that the respondents perceived the D4s were more accessible than faculty and provided guidance and individual attention; the CLEs increased student comfort; the CLEs reinforced D4 skills, knowledge, and confidence; and the CLEs provided management, leadership, and collaborative work experience. Theme analysis also highlighted student concerns about a lack of program structure. Overall, the majority of both groups valued CLEs in their dental education. Particular advantages they perceived were increased comfort, guidance, and attention. Further program development should address student concerns. These results suggest that similar programs should be considered and/or expanded in other dental schools' curricula.

  8. Residential Dehumidification Systems Research for Hot-Humid Climates

    SciTech Connect

    2005-02-01

    Twenty homes were tested and monitored in the hot-humid climate of Houston, Texas, to evaluate the humidity control performance and operating cost of six integrated dehumidification and ventilation systems.

  9. Potato growth in response to relative humidity

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Tibbitts, T. W.; Fitzpatrick, A. H.

    1989-01-01

    Potato plants (Solanum tuberosum L. cvs. Russet Burbank, Norland, and Denali) were grown for 56 days in controlled-environment rooms under continuous light at 20C and 50% or 85% RH. No significant differences in total plant dry weight were measured between the humidity treatments, but plants grown under 85% RH produced higher tuber yields. Leaf areas were greater under 50% RH and leaves tended to be larger and darker green than at 85% RH.

  10. Fiberboard humidity data for 9975 shipping packages

    SciTech Connect

    Daugherty, W. L.

    2015-07-31

    The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis.Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity and temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts.

  11. Fiberboard Humidity Data for 9975 Shipping Packages

    SciTech Connect

    Daugherty, W.

    2015-07-31

    The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity and temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts

  12. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort.

    PubMed

    Sun, Chao; Au, Joe Sau-chuen; Fan, Jintu; Zheng, Rong

    2015-05-01

    This paper reports on novel ventilation design in sports T-shirt, which combines spacer and mesh structure, and experimental evidence on the advantages of design in improving thermal comfort. Evaporative resistance (Re) and thermal insulation (Rc) of T-shirts were measured using a sweating thermal manikin under three different air velocities. Moisture permeability index (i(m)) was calculated to compare the different designed T-shirts. The T-shirts of new and conventional designs were also compared by wearer trials, which were comprised of 30 min treadmill running followed by 10 min rest. Skin temperature, skin relative humidity, heart rate, oxygen inhalation and energy expenditure were monitored, and subjective sensations were asked. Results demonstrated that novel T-shirt has 11.1% significant lower im than control sample under windy condition. The novel T-shirt contributes to reduce the variation of skin temperature and relative humidity up to 37% and 32%, as well as decrease 3.3% energy consumption during exercise.

  13. Associations between Parents’ Perceived Air Quality in Homes and Health among Children in Nanjing, China

    PubMed Central

    Qian, Hua; Zheng, Xiaohong; Zhang, Min; Weschler, Louise; Sundell, Jan

    2016-01-01

    The increasing prevalence of respiratory diseases in Chinese children has focused attention on indoor environmental quality. We investigated associations between perceived air quality in domestic environments and children’s allergic diseases with a questionnaire survey study. A total of 4017 children aged 1–8 years old from 23 kindergartens in urban, suburban and industrial areas in Nanjing were randomly recruited for this study. Parents’ perceived odors, including stuffy odor, unpleasant odor, pungent odor, moldy odor, humid air and dry air were found to be associated with asthma, wheeze, dry cough and rhinitis (P < 0.05). Both perceived dry and humid air were found to be positively associated with dampness indices, and we present evidence that the sensation of dryness may not be due to the actual indoor relative humidity, but rather to indoor air irritants. Parents’ perception of odors and relative humidity may be indicators of environment pollutants, which are likely the real factors associated with children’s allergic diseases. PMID:27191186

  14. Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students

    ERIC Educational Resources Information Center

    Kalpidou, Maria

    2012-01-01

    The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…

  15. Comfort Women in Human Rights Discourse: Fetishized Testimonies, Small Museums, and the Politics of Thin Description

    ERIC Educational Resources Information Center

    Joo, Hee-Jung Serenity

    2015-01-01

    In the last two decades, the issue of comfort women--the women and girls who were forced into sex slavery for the Japanese army before and during WWII--has risen to global attention. Tens of thousands of comfort women (the average estimate is anywhere between 80,000 and 200,000) were confined at comfort stations managed by the Japanese Imperial…

  16. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  17. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  18. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  19. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  20. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  1. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  2. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F....

  3. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  4. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F....

  5. Aircraft sound quality for passenger comfort and enhanced product image

    NASA Astrophysics Data System (ADS)

    Wakefield, Gregory H.; Bultemeier, Eric J.; West, Erik; Angerer, James R.; Bhat, Waman V.

    2005-09-01

    Passenger cabin noise requirements for commercial airplanes are being expanded beyond the traditional focus on noise annoyance and speech intelligibility. There is increasing recognition that the passenger response to the cabin soundscape is much more complex; affecting perceptions of product quality, and impacting fatigue and comfort. Tailoring the soundscape for a preferred cabin environment requires the development of metrics that capture a range of passenger responses. In a preliminary exploration of potential metrics, a series of experiments were undertaken to investigate passenger preference for several classes of stationary and transient sounds within the passenger cabin. The design, implementation, and data analysis for these experiments is discussed, along with the application of results to enhance cabin comfort and to convey product quality. Key findings confirm what has been found in sound quality studies in other industries: sound level alone does not fully account for passenger preference.

  6. Comfort care packs: a little bit of hospice in hospital?

    PubMed

    Oliver, Mark A; Hillock, Sharon; Moore, Carol; Goble, Hannah; Asbury, Nicky

    2010-10-01

    The Comfort Care Pack initiative is an innovation designed to enhance the inpatient experience of end-of-life patients and their carers. The carer is given a pleasantly decorated box containing a variety of items for use by the patient or the carer themselves: snacks, toiletries and items to promote comfort. This project set out to evaluate the impact of these packs by reviewing the returns of the feedback questionnaires included with the packs. From the first 220 packs, 58 questionnaires were returned, giving quantitative and qualitative data. The response to the packs was overwhelmingly positive and they were much valued by the carers. This was the case despite the fact that relatively few of the items were actually used by the recipients. It is suggested that the value of the packs to recipients lies in the gesture of being thought about during what is a difficult time for them. The implications of this are discussed.

  7. Three factors that influence the overall quality of the stereoscopic 3D content: image quality, comfort, and realism

    NASA Astrophysics Data System (ADS)

    Vlad, Raluca; Ladret, Patricia; Guérin, Anne

    2013-01-01

    In today's context, where 3D content is more abundant than ever and its acceptance by the public is probably de_nitive, there are many discussions on controlling and improving the 3D quality. But what does this notion represent precisely? How can it be formalized and standardized? How can it be correctly evaluated? A great number of studies have investigated these matters and many interesting approaches have been proposed. Despite this, no universal 3D quality model has been accepted so far that would allow a uniform across studies assessment of the overall quality of 3D content, as it is perceived by the human observers. In this paper, we are making a step forward in the development of a 3D quality model, by presenting the results of an exploratory study in which we started from the premise that the overall 3D perceived quality is a multidimensional concept that can be explained by the physical characteristics of the 3D content. We investigated the spontaneous impressions of the participants while watching varied 3D content, we analyzed the key notions that appeared in their discourse and identi_ed correlations between their judgments and the characteristics of our database. The test proved to be rich in results. Among its conclusions, we consider of highest importance the fact that we could thus determine three di_erent perceptual attributes ( image quality, comfort and realism ( that could constitute a _rst simplistic model for assessing the perceived 3D quality.

  8. 108. Doughton Park Recreation Area Comfort Station. Instead of trying ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. Doughton Park Recreation Area Comfort Station. Instead of trying to hide this building, it was decided to let it be seen. A salt box design reflecting a mountain building was chosen, it had a sloping split shingle roof matching the hill side with a front porch placed on the lower side. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. When Are Users Comfortable Sharing Locations with Advertisers?

    DTIC Science & Technology

    2010-10-01

    suggest that users’ strong privacy concerns may hinder this potentially invasive form of advertising , as early efforts reach the market . We also find that...When Are Users Comfortable Sharing Locations with Advertisers ? Patrick Gage Kelley, Michael Benisch, Lorrie Faith Cranor, Norman Sadeh October 2010...15213-3890 As smartphones and other mobile computing devices have increased in ubiquity, advertisers have begun to realize a more effective way of

  10. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  11. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  12. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD).

    PubMed

    Linnow, Kirsten; Steiger, Michael

    2007-01-30

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4+/-0.5% RH) and Ca(NO3)2 x 4 H2O (50.8+/-0.7% RH) at 25 degrees C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO3)2 to form Ca(NO3)2 x 2 H2O revealed an equilibrium humidity of 10.2+/-0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications.

  13. Predicting human thermal comfort in a transient nonuniform thermal environment.

    PubMed

    Rugh, J P; Farrington, R B; Bharathan, D; Vlahinos, A; Burke, R; Huizenga, C; Zhang, H

    2004-09-01

    The National Renewable Energy Laboratory has developed a suite of thermal comfort tools to assist in the development of smaller and more efficient climate control systems in automobiles. These tools, which include a 126-segment sweating manikin, a finite element physiological model of the human body, and a psychological model based on human testing, are designed to predict human thermal comfort in transient, nonuniform thermal environments, such as automobiles. The manikin measures the heat loss from the human body in the vehicle environment and sends the heat flux from each segment to the physiological model. The physiological model predicts the body's response to the environment, determines 126-segment skin temperatures, sweat rate, and breathing rate, and transmits the data to the manikin. The psychological model uses temperature data from the physiological model to predict the local and global thermal comfort as a function of local skin and core temperatures and their rates of change. Results of initial integration testing show the thermal response of a manikin segment to transient environmental conditions.

  14. Comfortable and leisurely: Old women on style and dress.

    PubMed

    Lövgren, Karin

    2016-01-01

    This article uses wardrobe interviews with women in the ages of 62-94 to explore transitions and continuities during the life course. During interviews the women have defined their style preferences. One categorization favored by several of them was comfortable. Different meanings were attached to this concept. Practical and convenient outfits were described as increasingly important when aging. Garments that did not expose the body-and its changes with aging-were preferred. The informants talked about the importance of feeling at ease, appropriately dressed for the occasion and situation. They were concerned with feeling nice in their outfits but also stressed becoming more laid-back and prioritizing convenience in their later years. All of these examples had to do with comfort and being comfortable. Uncomfortable clothes were too tight, deemed wrong for the occasion, and unwanted sources of self-consciousness and visibility. Transitions in their style of dress had been gradual, slowly adapting to changes in everyday life as well as in their bodies.

  15. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort.

    PubMed

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output.

  16. Numerical Analysis of Thermal Comfort at Urban Environment

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  17. Numerical Analysis of Thermal Comfort at Open Air Spaces

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  18. Classifying EEG Signals during Stereoscopic Visualization to Estimate Visual Comfort

    PubMed Central

    Frey, Jérémy; Appriou, Aurélien; Lotte, Fabien; Hachet, Martin

    2016-01-01

    With stereoscopic displays a sensation of depth that is too strong could impede visual comfort and may result in fatigue or pain. We used Electroencephalography (EEG) to develop a novel brain-computer interface that monitors users' states in order to reduce visual strain. We present the first system that discriminates comfortable conditions from uncomfortable ones during stereoscopic vision using EEG. In particular, we show that either changes in event-related potentials' (ERPs) amplitudes or changes in EEG oscillations power following stereoscopic objects presentation can be used to estimate visual comfort. Our system reacts within 1 s to depth variations, achieving 63% accuracy on average (up to 76%) and 74% on average when 7 consecutive variations are measured (up to 93%). Performances are stable (≈62.5%) when a simplified signal processing is used to simulate online analyses or when the number of EEG channels is lessened. This study could lead to adaptive systems that automatically suit stereoscopic displays to users and viewing conditions. For example, it could be possible to match the stereoscopic effect with users' state by modifying the overlap of left and right images according to the classifier output. PMID:26819580

  19. The zone of comfort: Predicting visual discomfort with stereo displays.

    PubMed

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M; Banks, Martin S

    2011-07-21

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence-accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence-accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema.

  20. Dataset on daytime outdoor thermal comfort for Belo Horizonte, Brazil.

    PubMed

    Hirashima, Simone Queiroz da Silveira; Assis, Eleonora Sad de; Nikolopoulou, Marialena

    2016-12-01

    This dataset describe microclimatic parameters of two urban open public spaces in the city of Belo Horizonte, Brazil; physiological equivalent temperature (PET) index values and the related subjective responses of interviewees regarding thermal sensation perception and preference and thermal comfort evaluation. Individuals and behavioral characteristics of respondents were also presented. Data were collected at daytime, in summer and winter, 2013. Statistical treatment of this data was firstly presented in a PhD Thesis ("Percepção sonora e térmica e avaliação de conforto em espaços urbanos abertos do município de Belo Horizonte - MG, Brasil" (Hirashima, 2014) [1]), providing relevant information on thermal conditions in these locations and on thermal comfort assessment. Up to now, this data was also explored in the article "Daytime Thermal Comfort in Urban Spaces: A Field Study in Brazil" (Hirashima et al., in press) [2]. These references are recommended for further interpretation and discussion.

  1. Wear/comfort Pareto optimisation of bogie suspension

    NASA Astrophysics Data System (ADS)

    Milad Mousavi Bideleh, Seyed; Berbyuk, Viktor; Persson, Rickard

    2016-08-01

    Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.

  2. The zone of comfort: Predicting visual discomfort with stereo displays

    PubMed Central

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M.; Banks, Martin S.

    2012-01-01

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence–accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence–accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema. PMID:21778252

  3. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.

    PubMed

    Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra

    2015-05-01

    The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places.

  4. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another.

  5. Perceiving persons and groups.

    PubMed

    Hamilton, D L; Sherman, S J

    1996-04-01

    This article analyzes the similarities and differences in forming impressions of individuals and in developing conceptions of groups. In both cases, the perceiver develops a mental conception of the target (individual or group) on the basis of available information and uses that information to make judgments about that person or group. However, a review of existing evidence reveals differences in the outcomes of impressions formed of individual and group targets, even when those impressions are based on the very same behavioral information. A model is proposed to account for these differences. The model emphasizes the role of differing expectancies of unity and coherence in individual and group targets, which in turn engage different mechanisms for processing information and making judgments. Implications of the model are discussed.

  6. Biomechanical and perceived differences between overground and treadmill walking in children with cerebral palsy.

    PubMed

    Jung, Taeyou; Kim, Yumi; Kelly, Luke E; Abel, Mark F

    2016-03-01

    The treadmill is widely used as an instrument for gait training and analysis. The primary purpose of this study was to compare biomechanical variables between overground and treadmill walking in children with cerebral palsy (CP). Perceived differences between the two walking modes were also investigated by comparing self-selected walking speeds. Twenty children with CP performed both overground and treadmill walking at a matched speed for biomechanical comparison using a 3-D motion analysis system. In addition, they were asked to select comfortable and fastest walking speeds under each walking condition to compare perceived differences. Significant differences in spatiotemporal variables were found including higher cadence and shorter stride length during treadmill walking at a matched speed (for all, P<.003). The comparison of joint kinematics demonstrated significant differences between overground and treadmill walking, which showed increases in peak angles of ankle dorsi-flexion, knee flexion/extension, and hip flexion (for all, P<.001), increases in ankle and hip excursions and a decrease in pelvic rotation excursion while walking on treadmill (for all, P<.002). Comparison of perceived difference revealed that children with CP chose significantly slower speeds when asked to select their comfortable and fastest walking speeds on the treadmill as compared to overground (for both, P<.001). Our results suggest that these biomechanical and perceived differences should be considered when using a treadmill for gait intervention or assessment.

  7. Positive impedance humidity sensors via single-component materials

    PubMed Central

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-01-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3−x crystals. The resistance of WO3−x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors. PMID:27150936

  8. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    PubMed

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  9. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  10. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  11. Occupant perception of indoor air and comfort in four hospitality environments.

    PubMed

    Moschandreas, D J; Chu, P

    2002-01-01

    This article reports on a survey of customer and staff perceptions of indoor air quality at two restaurants, a billiard hall, and a casino. The survey was conducted at each environment for 8 days: 2 weekend days on 2 consecutive weekends and 4 weekdays. Before and during the survey, each hospitality environment satisfied ventilation requirements set in ASHRAE Standard 62-1999, Ventilation for Acceptable Indoor Air. An objective of this study was to test the hypothesis: If a hospitality environment satisfies ASHRAE ventilation requirements, then the indoor air is acceptable, that is, fewer than 20% of the exposed occupants perceive the environment as unacceptable. A second objective was to develop a multiple regression model that predicts the dependent variable, the environment is acceptable, as a function of a number of independent perception variables. Occupant perception of environmental, comfort, and physical variables was measured using a questionnaire. This instrument was designed to be efficient and unobtrusive; subjects could complete it within 3 min. Significant differences of occupant environment perception were identified among customers and staff. The dependent variable, the environment is acceptable, is affected by temperature, occupant density, and occupant smoking status, odor perception, health conditions, sensitivity to chemicals, and enjoyment of activities. Depending on the hospitality environment, variation of independent variables explains as much as 77% of the variation of the dependent variable.

  12. Communicating with Patients and their Families about Palliative and End of Life: Comfort and Educational Needs of Staff RNs

    PubMed Central

    Moir, Cheryl; Roberts, Renee; Martz, Kim; Perry, Judith; Tivis, Laura J.

    2016-01-01

    Introduction Effectively discussing palliative care with patients and families requires knowledge and skill. The purpose of this study was to determine perceived needs of inpatient nurses for communicating with patients and families about palliative and end of life care. Method A non-experimental design was utilized. Sixty inpatient nurses completed the End of Life Professional Caregiver survey. Results Effects for years of experience and unit were found [F(9,131.57)=2.22, p=0.0246; Wilk's Λ=0.709 and F(6,110)=2.49, p=0.0269]. For all three domains (Patient and Family-Centered Communication, Cultural and Ethical Values, and Effective Care Delivery) years of nursing experience was positively associated with comfort in communicating about end of life care. Oncology nurses reported were most comfortable with regard to patient and family-centered communication. Discussion The success and sustainability of this service is dependent on education for healthcare providers. Studies are needed to determine best ways to meet this educational challenge. PMID:25815758

  13. Differences in proprioception, muscle force control and comfort between conventional and new-generation knee and ankle orthoses.

    PubMed

    Marchini, A; Lauermann, S P; Minetto, M A; Massazza, G; Maffiuletti, N A

    2014-06-01

    The aim of this study was to compare muscle force control and proprioception between conventional and new-generation experimental orthoses. Sixteen healthy subjects participated in a single-blind controlled trial in which two different types of orthosis were applied to the dominant knee or ankle, while the following variables were evaluated: muscle force control (accuracy), joint position sense, kinesthesia, static balance as well as subjective outcomes. The use of experimental orthoses resulted in better force accuracy during isometric knee extensions compared to conventional orthoses (P=0.005). Moreover, the use of experimental orthoses resulted in better force accuracy during concentric (P=0.010) and eccentric (P=0.014) ankle plantar flexions and better knee joint kinesthesia in the flexed position (P=0.004) compared to conventional orthoses. Subjective comfort (P<0.001) and preference scores were higher with experimental orthoses compared to conventional ones. In conclusion, orthosis type affected static and dynamic muscle force control, kinesthesia, and perceived comfort in healthy subjects. New-generation experimental knee and ankle orthoses may thus be recommended for prophylactic joint bracing during physical activity and to improve the compliance for orthosis use, particularly in patients who require long-term bracing.

  14. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes

    PubMed Central

    2014-01-01

    Background The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Methods Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects’ attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. Results There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Conclusions Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques. PMID:24479892

  15. Preparing for patient-centered care: assessing nursing student knowledge, comfort, and cultural competence toward the Latino population.

    PubMed

    Mayo, Rachel M; Sherrill, Windsor W; Truong, Khoa D; Nichols, Christina M

    2014-06-01

    As the Latino population continues to grow throughout the United States, cultural competence training of nursing students at the baccalaureate level has become a priority. This study aimed to explore undergraduate nursing students' attitudes and beliefs toward Latino patients and their perceived readiness to provide care to Latino patients. A cross-sectional survey was conducted at four major nursing schools in the southeastern United States, which is the region that has seen the highest percentage of growth in the Latino population. Results from multivariable regression suggest that social interaction with Latino individuals and cultural immersion in a Spanish-speaking country predict student knowledge, cultural competence, and comfort with Latino patients. Direct influence by nursing programs, such as clinical experience, coursework, and language proficiency, are positively associated with the designed outcomes, but these relationships are not statistically significant. Our findings suggest that dosage of training matters. Implications for student recruitment, selection, and training are discussed.

  16. Perceived Stress among Deaf Adults

    ERIC Educational Resources Information Center

    Jones, Elaine G.; Ouellette, Sue E.; Kang, Youngmi

    2006-01-01

    The Present Article describes the effectiveness of stress management classes in decreasing perceived stress among Deaf adults. Deaf adults may experience unique stressors, in addition to circumstances associated with increased stress in the general population. The Perceived Stress Scale (S. Cohen, Kamarck, & Mermelstein, 1983) was used as a…

  17. Humidity Testing for Human Rated Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  18. Extension of Humidity Standards to Frost Point

    NASA Astrophysics Data System (ADS)

    Choi, B. I.; Lee, S.-W.; Kim, J. C.; Woo, S. B.

    2015-08-01

    The KRISS low frost-point humidity generator which has been operated by the two-temperature method in the frost-point range from to since 2006 is reformed to a two-temperature, two-pressure type, in order to extend the calibration capability to a frost point of . The temperature and pressure of the saturator were controlled to and 1 MPa, respectively. The water-vapor mole ratio generated by the upgraded humidity generator reached . The uncertainty of the generator was estimated by calculations as well as a series of experiments including the stability of the generated frost point, the saturation efficiency with a varied gas flow rate, and the change of water-vapor mole ratio in the tubing line. The standard uncertainty of the generator is less than at the frost point of and is increased to at the frost point of . The increase in uncertainty is mainly due to the water adsorption/desorption on the internal surface of tubing from the saturator to the hygrometer.

  19. Breadboard CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1976-01-01

    A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.

  20. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow.

    PubMed

    Mogera, Umesha; Sagade, Abhay A; George, Subi J; Kulkarni, Giridhar U

    2014-02-17

    Measuring humidity in dynamic situations calls for highly sensitive fast response sensors. Here we report, a humidity sensor fabricated using solution processed supramolecular nanofibres as active resistive sensing material. The nanofibres are built via self- assembly of donor and acceptor molecules (coronene tetracarboxylate and dodecyl methyl viologen respectively) involved in charge transfer interactions. The conductivity of the nanofibre varied sensitively over a wide range of relative humidity (RH) with unprecedented fast response and recovery times. Based on UV-vis, XRD and AFM measurements, it is found that the stacking distance in the nanofibre decreases slightly while the charge transfer band intensity increases, all observations implying enhanced charge transfer interaction and hence the conductivity. It is demonstrated to be as a novel breath sensor which can monitor the respiration rate. Using two humidity sensors, a breath flow sensor was made which could simultaneously measure RH and flow rate of exhaled nasal breath. The integrated device was used for monitoring RH in the exhaled breath from volunteers undergoing exercise and alcohol induced dehydration.

  1. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow

    PubMed Central

    Mogera, Umesha; Sagade, Abhay A.; George, Subi J.; Kulkarni, Giridhar U.

    2014-01-01

    Measuring humidity in dynamic situations calls for highly sensitive fast response sensors. Here we report, a humidity sensor fabricated using solution processed supramolecular nanofibres as active resistive sensing material. The nanofibres are built via self- assembly of donor and acceptor molecules (coronene tetracarboxylate and dodecyl methyl viologen respectively) involved in charge transfer interactions. The conductivity of the nanofibre varied sensitively over a wide range of relative humidity (RH) with unprecedented fast response and recovery times. Based on UV-vis, XRD and AFM measurements, it is found that the stacking distance in the nanofibre decreases slightly while the charge transfer band intensity increases, all observations implying enhanced charge transfer interaction and hence the conductivity. It is demonstrated to be as a novel breath sensor which can monitor the respiration rate. Using two humidity sensors, a breath flow sensor was made which could simultaneously measure RH and flow rate of exhaled nasal breath. The integrated device was used for monitoring RH in the exhaled breath from volunteers undergoing exercise and alcohol induced dehydration. PMID:24531132

  2. Touch influences perceived gloss

    PubMed Central

    Adams, Wendy J.; Kerrigan, Iona S.; Graf, Erich W.

    2016-01-01

    Identifying an object’s material properties supports recognition and action planning: we grasp objects according to how heavy, hard or slippery we expect them to be. Visual cues to material qualities such as gloss have recently received attention, but how they interact with haptic (touch) information has been largely overlooked. Here, we show that touch modulates gloss perception: objects that feel slippery are perceived as glossier (more shiny).Participants explored virtual objects that varied in look and feel. A discrimination paradigm (Experiment 1) revealed that observers integrate visual gloss with haptic information. Observers could easily detect an increase in glossiness when it was paired with a decrease in friction. In contrast, increased glossiness coupled with decreased slipperiness produced a small perceptual change: the visual and haptic changes counteracted each other. Subjective ratings (Experiment 2) reflected a similar interaction – slippery objects were rated as glossier and vice versa. The sensory system treats visual gloss and haptic friction as correlated cues to surface material. Although friction is not a perfect predictor of gloss, the visual system appears to know and use a probabilistic relationship between these variables to bias perception – a sensible strategy given the ambiguity of visual clues to gloss. PMID:26915492

  3. Indirect health effects of relative humidity in indoor environments.

    PubMed Central

    Arundel, A V; Sterling, E M; Biggin, J H; Sterling, T D

    1986-01-01

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens. PMID:3709462

  4. Indirect health effects of relative humidity in indoor environments

    SciTech Connect

    Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D.

    1986-03-01

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens.

  5. Air quality and thermal comfort levels under extreme hot weather

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Melas, D.; Kambezidis, H. D.

    2015-01-01

    Meteorological (T and RH values) and air pollution data (PM10, NO2 and O3 concentrations) observed in Athens, Thessaloniki and Volos were analyzed to assess the air quality and the thermal comfort conditions and to study their synergy, when extreme hot weather prevailed in Greece during the period 2001-2010. The identification of a heat wave day was based on the suggestion made by the IPCC to define an extreme weather event. According to it, a heat wave day is detected when the daily maximum hourly temperature value exceeds its 90th percentile. This temperature criterion was applied to the data recorded at the cities center. Air quality was assessed at three sites in Athens (city center, near the city center, suburb), at two sites in Thessaloniki (city center, suburb) and at one site in Volos (city center), while thermal comfort conditions were assessed at the cities center. Mean pollution levels during the heat wave days and the non-heat wave days were calculated in order to examine the impact of the extreme hot weather on air quality. For this purpose, the distributions of the common air quality index and the exceedances of the air quality standards in force during the heat wave days and the non-heat wave days were also studied. Additionally, the variation of the daily maximum hourly value of Thom's discomfort index was studied in order to investigate the effect of extreme hot weather on people's thermal comfort. Moreover, the values of the common air quality index and Thom's discomfort index were comparatively assessed so as to investigate their synergy under extreme hot weather.

  6. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments

    NASA Astrophysics Data System (ADS)

    Coutts, Andrew M.; White, Emma C.; Tapper, Nigel J.; Beringer, Jason; Livesley, Stephen J.

    2016-04-01

    Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east-west (E-W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00-10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.

  7. Raoult’s law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

    PubMed Central

    Bowler, Michael G.

    2017-01-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111–114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult’s law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample. PMID:28381983

  8. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  9. Vehicle/guideway interaction and ride comfort in maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

    1993-10-01

    The importance of vehicle/guideway dynamics in maglev systems is discussed. The particular interest associated with modeling vehicle guide-way interactions and explaining response characteristics of maglev systems for a multicar, multiload vehicle traversing on a single- or double-span flexible guideway are considered, with an emphasis on vehicle/guideway coupling effects, comparison of concentrated and distributed loads, and ride comfort. Coupled effects of vehicle/guideway interactions over a wide range of vehicle speeds with various vehicle and guideway parameters are investigated, and appropriate critical vehicle speeds or crossing frequencies are identified.

  10. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  11. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  12. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  13. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  14. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  15. Social presence, satisfaction, and perceived learning of RN-to-BSN students in Web-based nursing courses.

    PubMed

    Cobb, Susan C

    2011-01-01

    The purpose of this study was to assess social presence in online nursing courses and its relationship to student satisfaction and perceived learning. The Social Presence scale and the Satisfaction scale were administered via an Internet survey to students (n = 128) in an online RN-BSN program. Results indicated a strong relationship among satisfaction, social presence, and instructor performance. All subdomains of social presence correlated highly with the satisfaction subdomains, except the communication factor. A strong relationship was found between perceived learning and social presence and comfort with the online course. Overall social presence, instructor performance, and the subdomains of social presence predicted a significant amount of total variance in overall satisfaction and perceived learning. No significant relationships were found between the demographic factors and overall social presence or perceived learning. Results of this study can assist nurse educators in providing optimal online educational experiences for students.

  16. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    NASA Astrophysics Data System (ADS)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  17. EPIC Simulations of Jovian Specific Humidity

    NASA Astrophysics Data System (ADS)

    Dowling, T. E.

    1998-09-01

    The Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model has been expanded to include the specific humidities of H_2O, NH_3, NH_4SH, and CH_4 as optional prognostic variables. This permits us to study the thermodynamical effects of clouds in a global model of the gas-giant atmospheres (active ortho-para hydrogen conversion was already part of the model). We present a report on the effects of including clouds in the Jupiter EPIC model. On the hardware front, the simulations use a new 8-processor Beowulf parallel computer (2600 MHz total CPU). On the software front, the EPIC model's data format has been switched to the netCDF (Network Common Data Format) standard, for which tools exist in IDL, Matlab, and AVS, which makes it easier to analyze results and exchange files.

  18. Effects of Absolute Humidity on Flashover Voltage of Insulators

    NASA Astrophysics Data System (ADS)

    Fujii, Osamu; Hidaka, Kazuhiro; Mizuno, Yukio; Naito, Katsuhiko; Irie, Takashi; Nishikawa, Morio

    Effect of humidity on flashover voltage of three kinds of insulators is experimentally studied for about three years under natural humidity condition. It is found that the existing IEC humidity correction seems to be proper for most insulators regardless of the kinds of applied voltage but that change may be necessary for a cap and pin insulator unit under the application of positive and negative lightning impulse voltages.

  19. Perceived risk, dread, and benefits

    SciTech Connect

    Gregory, R. ); Mendelsohn, R. )

    1993-06-01

    This paper uses regression techniques to take a second look at a classic risk-perception data set originally collected by Paul Slovic, Sarah Lichtenstein, and Baruch Fischhoff. As discussed in earlier studies, the attributes expected mortality, effects on future generations, immediacy, and catastrophic potential all significantly affect risk ratings. However, the authors find that perceived risk and dread show different regression patterns; most importantly, only perceived risk ratings correlate with expected mortality. In addition, average risk ratings are found to be significantly affected by perceived individual benefits, which suggests that perceptions of risk are net rather than gross indicators of harm. 14 refs., 3 tabs.

  20. The Canopy Conductance of a Humid Grassland

    NASA Astrophysics Data System (ADS)

    Lu, C. T.; Hsieh, C. I.

    2015-12-01

    Penman-Monteith equation is widely used for estimating latent heat flux. The key parameter for implementing this equation is the canopy conductance (gc). Recent research (Blaken and Black, 2004) showed that gc could be well parameterized by a linear function of An/ (D0* X0c), where An represents net assimilation, D0 is leaf level saturation deficit, and X0c is CO2 mole fraction. In this study, we tried to use the same idea for estimating gcfor a humid grassland. The study site was located in County Cork, southwest Ireland (51o59''N 8o46''W), and perennial ryegrass (Lolium perenne L.) was the dominant grass species in this area. An eddy covariance system was used to measure the latent heat flux above this humid grassland. The measured gc was calculated by rearranging Penman-Monteith equation combined with the measured latent heat flux. Our data showed that the gc decreased as the vapor pressure deficit and temperature increased. And it increased as the net radiation increased. Therefore, we found out that the best parameterization of gc was a linear function of the product of the vapor deficit, temperature, and net radiation. Also, we used the gc which was estimated by this linear function to predict the latent heat flux by Penman-Monteith equation and compared the predictions with those where the gc was chosen to be a fixed value. Our analysis showed that this simple linear function for gc can improve the latent heat flux predictions (R square increased from 0.48 to 0.66).

  1. Homogenization of global radiosonde humidity data

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Haimberger, Leopold

    2016-04-01

    The global radiosonde network is an important source of upper-air measurements and is strongly connected to reanalysis efforts of the 20th century. However, measurements are strongly affected by changes in the observing system and require a homogenization before they can be considered useful in climate studies. In particular humidity measurements are known to show spurious trends and biases induced by many sources, e.g. reporting practices or freezing of the sensor. We propose to detect and correct these biases in an automated way, as has been done with temperature and winds. We detect breakpoints in dew point depression (DPD) time series by employing a standard normal homogeneity test (SNHT) on DPD-departures from ERA-Interim. In a next step, we calculate quantile departures between the latter and the earlier part near the breakpoints of the time series, going back in time. These departures adjust the earlier distribution of DPD to the latter distribution, called quantile matching, thus removing for example a non climatic shift. We employ this approach to the existing radiosonde network. In a first step to verify our approach we compare our results with ERA-Interim data and brightness temperatures of humidity-sensitive channels of microwave measuring radiometers (SSMIS) onboard DMSP F16. The results show that some of the biases can be detected and corrected in an automated way, however large biases that impact the distribution of DPD values originating from known reporting practices (e.g. 30 DPD on US stations) remain. These biases can be removed but not corrected. The comparison of brightness temperatures from satellite and radiosondes proofs to be difficult as large differences result from for example representative errors.

  2. The Effects of Various Comfort Food on Heart Coherence in Adults

    PubMed Central

    Joseph, Madeline Matar; McIntosh, Mark S.; Joseph, Christine Marie

    2014-01-01

    Background: Some of the nutrients in food are precursors to neurotransmitters, accounting for its effects on mood. Heart coherence (HC), which relates to the optimal psycho-physiological conditions for human body functions, is affected by a person's emotional status. Objectives: (1) To determine the effects of various comfort food on HC and heart rate (HR) in adult females 20 to 50 years of age and (2) to evaluate if body mass index (BMI) has an effect on HC and HR when eating various comfort foods. Methods: The researcher obtained consent from participants after explaining the project. The subjects' height and weight were measured using standardized methods to calculate their BMI. Participants sat in a comfortable chair in a quiet area with a clipped earpiece to measure their heart rate variability (HRV), HR, and HC. Each participant was asked about their favorite comfort food (sweet vs salty). First, the participant imagined eating her favorite comfort food (IFCF) and then was asked to imagine her non-favorite comfort food (INFCF). Finally, the participant ate her favorite comfort food (EFCF) and then ate her non-favorite comfort food (ENFCF). HC scores were recorded in three categories (low, medium, and high) in these four settings. Results: A total of 20 participants completed the study. Paired student's t-tests were used to assess whether the means of the compared groups were statistically different. The data demonstrated that there was a higher HC when participants ate their favorite comfort food than when they ate the non-favorite comfort food (t=−2.912, P<.01) and a higher HC when eating a favorite comfort food than when imaging eating a favorite comfort food (t=−.2408, P<.01). The participants' BMI had a positive correlation between the BMI and low HC (when one increases, the other increases as well) when imagining eating a favorite comfort food (r =.475, P<.05). There was a negative correlation between BMI and medium HC (when one increases, the other

  3. Predicting bicycle setup for children based on anthropometrics and comfort.

    PubMed

    Grainger, Karl; Dodson, Zoe; Korff, Thomas

    2017-03-01

    Bicycling is a popular activity for children. In order for children to enjoy cycling and to minimize injury, it is important that they are positioned appropriately on the bicycle. The purpose of this study was therefore to identify a suitable bicycle setup for children aged between 7 and 16 years which accommodates developmental differences in anthropometrics, flexibility and perceptions of comfort. Using an adjustable bicycle fitting rig, we found the most comfortable position of 142 children aged 7 to 16. In addition, a number of anthropometric measures were recorded. Seat height and the horizontal distance between seat and handlebars were strongly predictable (R(2) > 0.999, p < 0.001 and R(2) = 0.649, p < 0.001 respectively), whilst the predictability of the vertical distance between seat and handlebars was weaker (R(2) = 0.231, p < 0.001). These results have practical implications for children and parents, paediatric researchers and clinicians as well as bicycle manufacturers.

  4. Thermal comfort requirements: A study of people with multiple sclerosis

    SciTech Connect

    Webb, L.H.; Parsons, K.C.; Hodder, S.G.

    1999-07-01

    Existing specifications for thermal comfort in built environments are coming under increased criticism for failing to consider the requirements of specific populations. People with physical disabilities are an example of one such population. This paper presents the results of a study on the thermal comfort requirements of 32 people with multiple sclerosis. Subjects were exposed to three conditions: 18.5 C, PMV = {minus}1.5, slightly cool to cool; 23 C, PMV = 0, neutral; 29 C, PMV = +1.5, slightly warm to warm. Results indicate that people with multiple sclerosis have a wide range of responses to the three experimental conditions. The actual percentage dissatisfied was much higher than predicted by Fange's (1970) predicted percentage dissatisfied. Their preferred environment is slightly warmer than 23 C, PMV = 0, neutral. A subgroup of the population prefers an environment that is slightly cooler than 23 C. Further work is needed to qualify if their preferred environments match that of PMV+1 and PMV{minus}1 and to identify if any of the factors such as age, duration of disability, and medication affect the actual mean vote.

  5. Cotton liners to mediate glove comfort for greenhouse applicators.

    PubMed

    Stone, J; Coffman, C; Imerman, P M; Song, K; Shelley, M

    2005-10-01

    Greenhouse applicators' acceptance of cotton knit gloves worn as liners under nitrile chemical-resistant gloves (CRG) for pesticide application was investigated through a wear study in Iowa and New York. Comfort was assessed by questionnaires and interviews with 10 applicators. Contamination levels of four pesticides on CRG and liners at thumb, forefinger, palm, and cuff locations were determined by chemical analysis using high-performance liquid chromatography or gas chromatography. Applicators reported feeling more comfortable with cotton liners under their CRG than without and that cotton liners were easy to manage. Contamination was significantly greater on nitrile CRG than on cotton liners underneath, but a few liner specimens had measurable contamination. No significant contamination differences were found between right- and left-hand gloves. Contamination varied significantly by hand location, with cuffs least, and by pesticide, with chlorpyrifos most. These results support the Environmental Protection Agency's recommendation that liners should be disposable, but further work on liners and their laundering feasibility seems indicated.

  6. Super stereoscopy technique for comfortable and realistic 3D displays.

    PubMed

    Akşit, Kaan; Niaki, Amir Hossein Ghanbari; Ulusoy, Erdem; Urey, Hakan

    2014-12-15

    Two well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters. The pinholes generate blur-free retinal images so as to enable correct accommodation, while the delivery of multiple parallax images per eye creates an approximate blur effect for defocused objects. Experiments performed with cameras and human viewers indicate that the technique works as desired. In case two, pinholes equipped with color filters per eye are used; the technique can be used on a regular stereoscopic display by only uploading a new content, without requiring any change in display hardware, driver, or frame rate. Apart from some tolerable loss in display brightness and decrease in natural spatial resolution limit of the eye because of pinholes, the technique is quite promising for comfortable and realistic 3D vision, especially enabling the display of close objects that are not possible to display and comfortably view on regular 3DTV and cinema.

  7. Software Compensates Electronic-Nose Readings for Humidity

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    A computer program corrects for the effects of humidity on the readouts of an array of chemical sensors (an "electronic nose"). To enable the use of this program, the array must incorporate an independent humidity sensor in addition to sensors designed to detect analytes other than water vapor. The basic principle of the program was described in "Compensating for Effects of Humidity on Electronic Noses" (NPO-30615), NASA Tech Briefs, Vol. 28, No. 6 (June 2004), page 63. To recapitulate: The output of the humidity sensor is used to generate values that are subtracted from the outputs of the other sensors to correct for contributions of humidity to those readings. Hence, in principle, what remains after corrections are the contributions of the analytes only. The outputs of the non-humidity sensors are then deconvolved to obtain the concentrations of the analytes. In addition, the humidity reading is retained as an analyte reading in its own right. This subtraction of the humidity background increases the ability of the software to identify such events as spills in which contaminants may be present in small concentrations and accompanied by large changes in humidity.

  8. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    PubMed

    Human, Hannelie; Nicolson, Sue W; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  9. The Perceived Utility of Advertising.

    ERIC Educational Resources Information Center

    O'Keefe, Garrett J.; And Others

    1981-01-01

    Reports that audiences found newspaper advertisements to be more useful than those appearing in other media and that the more exposure a person had to a given medium, the more useful s/he perceived its advertisements to be. (FL)

  10. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.; Clear, Robert D.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  11. It Costs to Be Clean and Fit: Energetics of Comfort Behavior in Breeding-Fasting Penguins

    PubMed Central

    Viblanc, Vincent A.; Mathien, Adeline; Saraux, Claire; Viera, Vanessa M.; Groscolas, René

    2011-01-01

    Background Birds may allocate a significant part of time to comfort behavior (e.g., preening, stretching, shaking, etc.) in order to eliminate parasites, maintain plumage integrity, and possibly reduce muscular ankylosis. Understanding the adaptive value of comfort behavior would benefit from knowledge on the energy costs animals are willing to pay to maintain it, particularly under situations of energy constraints, e.g., during fasting. We determined time and energy devoted to comfort activities in freely breeding king penguins (Aptenodytes patagonicus), seabirds known to fast for up to one month during incubation shifts ashore. Methodology/Principal Findings A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage. Conclusion/Significance This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for

  12. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    SciTech Connect

    Withers, Jr., Charles R.

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  13. Influence of free-stall flooring on comfort and hygiene of dairy cows during warm climatic conditions.

    PubMed

    De Palo, P; Tateo, A; Zezza, F; Corrente, M; Centoducati, P

    2006-12-01

    An evaluation of behavioral and hygienic conditions was carried out with 4 materials used as free-stall flooring for dairy cows: polyethylene vinyl acetate (EVA) and polypropylene vinyl acetate (PVA) mats, wood shavings, and solid manure. The free-stall type selected by cows was evaluated in response to changes in environmental temperature and humidity. Two tests were used: 1) a preference test, in which 8 cows were housed in a pen with 32 free stalls and 4 types of flooring; and 2) an aversion test, in which 32 cows were placed in 4 pens, each with 8 free stalls. The free stalls in each pen had a single type of bedding material. These tests showed that the comfort of dairy cows was predominantly influenced by environmental conditions. The preference test for lying showed that cows preferred free-stall floors with EVA mats over those with PVA mats, wood shavings, and solid manure (332.4 +/- 24.0 vs. 130.8 +/- 6.2, 160.9 +/- 23.7, and 102.6 +/- 23.2 min/d, respectively), but under conditions of heat stress, with a temperature-humidity index > 80, they chose wood shavings and solid manure lying areas. These results were confirmed by the aversion test. In all experimental and environmental conditions, the PVA mats were the least suitable. The mats contaminated with organic manure and the free stalls bedded with wood shavings and organic solids did not differ in either the coliform load on the lying surfaces (EVA mats: 290 +/- 25; PVA mats: 306 +/- 33; wood shavings: 290 +/- 39; and solid manure: 305 +/- 23 log(10) cfu/mL) or the total bacterial count in the raw milk (EVA mats: 232 +/- 22; PVA mats: 233 + 24; wood shavings: 221 +/- 24; and solid manure: 220 +/- 25 log(10) cfu/mL). These results demonstrate that the comfort of dairy cows housed in barns with free stalls as resting areas does not depend only on the material used, but also on the value of the material in microenvironmental conditions.

  14. Thermal Manikin Evaluation of Passive and Active Cooling Garments to Improve Comfort of Military Body Armor

    DTIC Science & Technology

    2007-08-01

    increased TM evaporative cooling potential approximately 18%. Military use of these garments could allow for increases in sweat evaporation and overall thermal comfort during operational heat exposure.

  15. Fundamental Study on the Effect of High Frequency Vibration on Ride Comfort

    NASA Astrophysics Data System (ADS)

    Nakagawa, Chizuru; Shimamune, Ryohei; Watanabe, Ken; Suzuki, Erimitsu

    To develop a more suitable method of evaluating ride comfort of high speed trains, a fundamental study was conducted on sensitivity of passengers to various frequencies of vibration with respect to ride comfort. Experiments were performed on 55 subjects using an electrodynamic vibration system that can generate vibrations in the frequency range of 1 to 80 Hz in the vertical direction. Results of experiments indicated that the subjects tend to experience greater discomfort when exposed to high frequency vibrations than that presumed by the conventional Japanese ride comfort assessment method, the "Ride Comfort Level."

  16. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    PubMed

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  17. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity.

    PubMed

    Nguyen, J L; Schwartz, J; Dockery, D W

    2014-02-01

    Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 to April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is nonlinear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). Absolute humidity exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round.

  18. Measuring Humidity in Sealed Glass Encasements

    NASA Technical Reports Server (NTRS)

    West, James W.; Burkett, Cecil G.; Levine, Joel S.

    2005-01-01

    A technique has been devised for measuring the relative humidity levels in the protective helium/water vapor atmosphere in which the Declaration of Independence, the United States Constitution, and the Bill of Rights are encased behind glass panels on display at the National Archives in Washington, DC. The technique is noninvasive: it does not involve penetrating the encasements (thereby risking contamination or damage to the priceless documents) to acquire samples of the atmosphere. The technique could also be applied to similar glass encasements used to protect and display important documents and other precious objects in museums. The basic principle of the technique is straightforward: An encasement is maintained at its normal display or operating temperature (e.g., room temperature) while a portion of its glass front panel is chilled (see Figure 1) until condensed water droplets become visible on the inside of the panel. The relative humidity of the enclosed atmosphere can then be determined as a known function of the dew point, the temperature below which the droplets condense. Notwithstanding the straightforwardness of the basic principle, careful attention to detail is necessary to enable accurate determination of the dew point. In the initial application, the affected portion of the glass panel was cooled by contact with an aluminum plate that was cooled by a thermoelectric module, the exhaust heat of which was dissipated by a heat sink cooled by a fan. A thermocouple was used to measure the interior temperature of the aluminum plate, and six other thermocouples were used to measure the temperatures at six locations on the cooled outer surface of the glass panel (see Figure 2). Thermal grease was applied to the aluminum plate and the thermocouples to ensure close thermal contact. Power was supplied to the thermoelectric module in small increments, based on previous laboratory tests. A small flashlight and a magnifying glass were used to look for water

  19. Effect of relative humidity on fungal colonization of fiberglass insulation.

    PubMed Central

    Ezeonu, I M; Noble, J A; Simmons, R B; Price, D L; Crow, S A; Ahearn, D G

    1994-01-01

    Fiberglass duct liners and fiberglass duct boards from eight buildings whose occupants complained of unacceptable or moldy odors in the air were found to be heavily colonized by fungi, particularly by Aspergillus versicolor. Unused fiberglass was found to be susceptible to fungal colonization in environmental chambers dependent upon relative humidity. No colonization was observed at relative humidities below 50%. Images PMID:8031101

  20. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers...

  1. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are...

  2. Humidity-responsive starch-poly (methyl acrylate) films.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blown films prepared from starch-poly(methyl acrylate) graft copolymers plasticized with urea and water display shrinkage at relative humidities greater than 50%. Shrinkage at relative humidities below approximately 75% is strongly correlated with the urea/starch weight ratio, which controls the eq...

  3. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  4. Simulation and Optimization of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2010-01-01

    Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing non-regenerative lithium hydroxide (LiOH) or regenerative metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 and concomitantly manage humidity levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Experimental results for full-size and sub-scale test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug ow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of ow rates (110-170 SLM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The relationship between swing adsorption cycles for an outlet criterion of 6.0 mm Hg of CO2 partial pressure has been established for each metabolic challenge. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new operational constraints. The advent of the model provides the capacity to apply computer-aided engineering practices to support the ongoing efforts to optimize and mature this technology for future application to space

  5. Simulation and Optimization of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2011-01-01

    Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing either non-regenerative lithium hydroxide (LiOH) or regenerative but heavy metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for spacesuit environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 while concomitantly managing humidity levels through a fully regenerative cycle eliminating constraints imposed with the traditional technologies. Prototype air revitalization units employing this technology have been fabricated in both a rectangular and cylindrical geometry. Experimental results for these test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug flow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of flow rates (110-170 ALM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The testing and model results lend insight into the operational capabilities of these devices as well as the influence the geometry of the device has on performance. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new metabolic conditions. The advent of the model provides the capacity to apply

  6. Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput.

    PubMed

    Xu, Zhen; Jiang, Huawei; Sahu, Binod Bihari; Kambakam, Sekhar; Singh, Prashant; Wang, Xinran; Wang, Qiugu; Bhattacharyya, Madan K; Dong, Liang

    2016-05-01

    This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where

  7. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan.

    PubMed

    Lin, Tzu-Ping; Matzarakis, Andreas

    2008-03-01

    Bioclimate conditions at Sun Moon Lake, one of Taiwan's most popular tourist destinations, are presented. Existing tourism-related climate is typically based on mean monthly conditions of air temperature and precipitation and excludes the thermal perception of tourists. This study presents a relatively more detailed analysis of tourism climate by using a modified thermal comfort range for both Taiwan and Western/Middle European conditions, presented by frequency analysis of 10-day intervals. Furthermore, an integrated approach (climate tourism information scheme) is applied to present the frequencies of each facet under particular criteria for each 10-day interval, generating a time-series of climate data with temporal resolution for tourists and tourism authorities.

  8. Thermal comfort and thermoregulation in manned space flight.

    PubMed

    Yang, Zhen-Zhong; Fei, Jin-Xue; Yu, Xue-Jun

    2013-11-01

    Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the investigation on space thermal environmental physiology. First of all, the application of medical requirements for the crew module design from normal thermal comfort to accidental thermal emergencies in a space craft will be addressed. Then, alterations in the autonomic and behavioral temperature regulation caused by the effect of weightlessness both in space flight and its simulation on the ground are also discussed. Furthermore, countermeasures like exercise training, simulated natural ventilation, encouraged drink, etc., in the protection of thermoregulation during space flight is presented. Finally, the challenge of space thermal environment physiology faced in the future is figured out.

  9. Thermal Comfort Study of a Compact Thermoelectric Air Conditioner

    NASA Astrophysics Data System (ADS)

    Maneewan, S.; Tipsaenprom, W.; Lertsatitthanakorn, C.

    2010-09-01

    This paper evaluates the cooling performance and thermal comfort of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks and fans. Thermal acceptability assessment was performed to find out whether the cooled air met the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard-55’s 80% acceptability criteria. A suitable condition occurred at 1 A current flow with a corresponding cooling capacity of 29.2 W, giving an average cooled air temperature of 28°C and 0.9 m/s cooled air velocity. The coefficient of performance was calculated and found to be ˜0.34. Economic analysis indicates that the payback period is 0.75 years when one compact TE air conditioner unit is used instead of a 1-ton conventional air conditioner.

  10. American style or Turkish chair: the triumph of bodily comfort.

    PubMed

    Çevik, Gülen

    2010-01-01

    This article investigates the reciprocal influence of Ottoman Turkish and American interiors in the development of seating furniture. Seating furniture is unique because it involves a direct and physical interaction between the piece of furniture and the body, while at the same time it is part of a public space where social interactions occur. I will argue that the interactions between the Ottoman Turks and Americans are reflected in the way these traditions modified their seating furniture as they sought to mediate cultural, political and social differences between them. The concept of bodily comfort will serve as a common thread in understanding the origin of the expression "American style" (Amerikan stili or Amerikan tarzı) in modern Turkish language, the "Turkish chairs" in Victorian America in the late nineteenth century and the English language use of words such as sofa, ottoman and divan.

  11. Deceit and dishonesty as practice: the comfort of lying.

    PubMed

    Carter, Melody

    2016-07-01

    Lying and deceit are instruments of power, used by social actors in the pursuit of their practices as they seek to maintain social order. All social actors, nurses included, have deceit and dishonesty within their repertoire of practice. Much of this is benign, well intentioned and a function of being sociable and necessary in the pursuit of social order in the healthcare environment. Lying and deceit from a sociological point of view, is a reflection of the different modes of domination that exist within a social space. French philosopher Pierre Bourdieu theorized about the way that symbolic power works within social space. The social structures and the agency of individual actors moving within it are interrelated and interdependent. Bourdieu's ideas will be used to theorize about real clinical experiences where acts of deceit can be identified and a case example will be presented. Nurses are actors in the social space of clinical care, and their world is complex, challenging, and often fraught with the contradictory demands and choices that reflect and influence their behaviours. An exploration of lying and deceit in nursing as an instrument in the modes of domination that persist enables us to challenge some of the assumptions that are made about the motives that cause or tempt nurses to lie as well as to understand the way on which they are sometimes lied to, according to the acts of domination that exist in the field. Lying or acting dishonestly is a powerful act that is intent on retaining stability and social order and could be seen to be a justification of lying and deceit. However, we need to pause and consider, in whose interests are we striving to create social order? Is it in the end about the comfort of patients or for the comfort of professionals?

  12. The determinants of thermal comfort in cool water.

    PubMed

    Guéritée, J; House, J R; Redortier, B; Tipton, M J

    2015-10-01

    Water-based activities may result in the loss of thermal comfort (TC). We hypothesized that in cooling water, the hands and feet would be responsible. Supine immersions were conducted in up to five clothing conditions (exposing various regions), as well as investigations to determine if a "reference" skin temperature (Tsk) distribution in thermoneutral air would help interpret our findings. After 10 min in 34.5 °C water, the temperature was decreased to 19.5 °C over 20 min; eight resting or exercising volunteers reported when they no longer felt comfortable and which region was responsible. TC, rectal temperature, and Tsk were measured. Rather than the extremities, the lower back and chest caused the loss of overall TC. At this point, mean (SD) chest Tsk was 3.3 (1.7) °C lower than the reference temperature (P = 0.005), and 3.8 (1.5) °C lower for the back (P = 0.002). Finger Tsk was 3.1 (2.7) °C higher than the reference temperature (P = 0.037). In cool and cooling water, hands and feet, already adapted to colder air temperatures, will not cause discomfort. Contrarily, more discomfort may arise from the chest and lower back, as these regions cool by more than normal. Thus, Tsk distribution in thermoneutral air may help understand variations in TC responses across the body.

  13. Transparent Humidity Sensor Using Cross-Linked Polyelectrolyte Membrane

    SciTech Connect

    Zhang, Q.; Smith, James R.; Saraf, Laxmikant V.; Hua, Feng

    2009-07-02

    This paper describes the fabrication of a porous cross-linked polyelectrolyte membrane and the characterization of its humidity sensitivity performance. Electrostatic self-assembly, combined with acid treatment, and post-deposition annealing produced the membrane. The fabrication process offers the ability to control the thickness of the membrane, as well as enabling the engineering of the humidity sensitivity properties. A transparent humidity sensor was fabricated by integrating the membrane between two parallel electrodes. In order to improve the moisture absorption and diffusion, both the polyelectrolyte layer and the electrode were made porous. The membrane was cross-linked to enhance the durability in high humid environments. Such a polyelectrolyte membrane showed high sensitivity to relative humidity variation over a range of 25%–99%. The see-through property of the structure adds extra features and benefits to the sensor.

  14. 43 CFR 8365.2-5 - Public health, safety and comfort.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Public health, safety and comfort. 8365.2-5 Section 8365.2-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.2-5 Public health, safety and comfort. On developed recreation sites and areas, unless...

  15. 43 CFR 8365.2-5 - Public health, safety and comfort.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Public health, safety and comfort. 8365.2-5 Section 8365.2-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.2-5 Public health, safety and comfort. On developed recreation sites and areas, unless...

  16. 43 CFR 8365.1-4 - Public health, safety and comfort.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Public health, safety and comfort. 8365.1-4 Section 8365.1-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.1-4 Public health, safety and comfort. (a) No person shall cause a public disturbance or create...

  17. 43 CFR 8365.2-5 - Public health, safety and comfort.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Public health, safety and comfort. 8365.2-5 Section 8365.2-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.2-5 Public health, safety and comfort. On developed recreation sites and areas, unless...

  18. 43 CFR 8365.1-4 - Public health, safety and comfort.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Public health, safety and comfort. 8365.1-4 Section 8365.1-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.1-4 Public health, safety and comfort. (a) No person shall cause a public disturbance or create...

  19. 43 CFR 8365.2-5 - Public health, safety and comfort.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Public health, safety and comfort. 8365.2-5 Section 8365.2-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.2-5 Public health, safety and comfort. On developed recreation sites and areas, unless...

  20. 43 CFR 8365.1-4 - Public health, safety and comfort.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Public health, safety and comfort. 8365.1-4 Section 8365.1-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.1-4 Public health, safety and comfort. (a) No person shall cause a public disturbance or create...

  1. 43 CFR 8365.1-4 - Public health, safety and comfort.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Public health, safety and comfort. 8365.1-4 Section 8365.1-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... § 8365.1-4 Public health, safety and comfort. (a) No person shall cause a public disturbance or create...

  2. Thermal Comfort and Sensation in Men Wearing a Cooling System Controlled by Skin Temperature

    DTIC Science & Technology

    2007-07-01

    The study was done to determine whether thermal comfort (TC), thermal sensation (TS), and subjective factors gauging environmental stress were...improvement in thermal comfort . Methods: Eight male volunteers exercised at moderate work intensity (425 W) in three microclimate cooling tests. The

  3. Ride comfort analysis with physiological parameters for an e-health train.

    PubMed

    Lee, Youngbum; Shin, Kwangsoo; Lee, Sangjoon; Song, Yongsoo; Han, Sungho; Lee, Myoungho

    2009-12-01

    Transportation by train has numerous advantages over road transportation, especially with regard to energy efficiency, ecological features, safety, and punctuality. However, the contrast in ride comfort between standard road transportation and train travel has become a competitive issue. The ride comfort enhancement technology of tilting trains (TTX) is a particularly important issue in the development of the Korean high-speed railroad business. Ride comfort is now defined in international standards such as UIC13 and ISO2631. The Korean standards such as KSR9216 mainly address physical parameters such as vibration and noise. In the area of ride comfort, living quality parameter techniques have recently been considered in Korea, Japan, and Europe. This study introduces biological parameters, particularly variations in heart rate, as a more direct measure of comfort. Biological parameters are based on physiological responses rather than on purely external mechanical parameters. Variability of heart rate and other physiological parameters of passengers are measured in a simulation involving changes in the tilting angle of the TTX. This research is a preliminary study for the implementation of an e-health train, which would provide passengers with optimized ride comfort. The e-health train would also provide feedback on altered ride comfort situations that can improve a passenger's experience and provide a healthcare service on the train. The aim of this research was to develop a ride comfort evaluation system for the railway industry, the automobile industry, and the air industry. The degree of tilt correlated with heart rate, fatigue, and unrelieved alertness.

  4. Disability and Sexuality: Knowledge, Attitudes, and Level of Comfort among Certified Rehabilitation Counselors

    ERIC Educational Resources Information Center

    Kazukauskas, Kelly A.; Lam, Chow S.

    2010-01-01

    This study investigated certified rehabilitation counselors' (CRCs) attitudes, knowledge, and comfort in addressing disability and sexuality issues. One hundred ninety-nine CRCs completed a modified version of the "Knowledge, Comfort, Approach and Attitudes toward Sexuality Scale" to determine the effect of knowledge and attitudes on level of…

  5. Instrument Development for Measuring Teachers' Attitudes and Comfort in Teaching Human Sexuality

    ERIC Educational Resources Information Center

    Perez, Miguel A.; Luquis, Raffy; Allison, Laura

    2004-01-01

    School based sexuality education remains a hotly debated topic in the United States. Two key areas of this debate focus on teacher preparation to instruct sexuality education and teachers' attitudes and comfort with the subject matter. This article describes the development and psychometric testing of the Teachers' Attitude and Comfort Scale. This…

  6. Participant Comfort with and Application of Inquiry-Based Learning: Results from 4-H Volunteer Training

    ERIC Educational Resources Information Center

    Haugen, Heidi; Stevenson, Anne; Meyer, Rebecca L.

    2016-01-01

    This article explores how a one-time training designed to support learning transfer affected 4-H volunteers' comfort levels with the training content and how comfort levels, in turn, affected the volunteers' application of tools and techniques learned during the training. Results of a follow-up survey suggest that the training participants…

  7. Changing rainfall and humidity within Southeast Texas.

    PubMed

    Smith, Robert Kennedy

    2015-01-01

    Southeast Texas houses a precipitation transition zone between drier conditions to the North and West and some of the wettest parts of the continental U.S. to the East. The Region has seen an increase in its reported normal annual precipitation totals in recent decades. In order to determine if the additional rainfall has been influenced by warming temperatures or is within the variability of the State's long-term drought cycles, several analyses were performed on historical climate data. The analyses answered several questions: Have global and regional climate change models predicted precipitation increases in Southeast Texas and are future increases expected? Do historical monthly precipitation totals at various sites in the region provide clear trends of wetter conditions that can be discerned from long-term drought cycles? Are rainfall patterns changing with less frequent, heavier rain events? Do the reported increases in annual rainfall actually lead to wetter conditions in the region? Climate models have not predicted larger annual average precipitation totals nor do they forecast increases for Southeast Texas. While recent decades may have seen more rain relative to earlier periods, a combined analysis of observation stations across different parts of the Region shows that long-term trends are dependent on when the data is selected relative to a drought cycle. While some stations show larger amounts of rain falling during fewer days, these trends do not hold across all periods. An examination of hourly data does not show an increase in extreme rainfall events or a decrease in the number of hours during which rain has fallen. Even though rainfall has not decreased, average relative humidity has fallen. This suggests that the area is drying even with steady or increasing amounts of rain.

  8. Artificial neural network models as a useful tool to forecast human thermal comfort using microclimatic and bioclimatic data in the great Athens area (Greece).

    PubMed

    Moustris, Kostas P; Tsiros, Ioannis X; Ziomas, Ioannis C; Paliatsos, Athanasios G

    2010-01-01

    The present study deals with the development and application of Artificial Neural Network (ANN) models as a tool for the evaluation of human thermal comfort conditions in the urban environment. ANNs are applied to forecast for three consecutive days during the hot period of the year (May-September) the human thermal comfort conditions as well as the daily number of consecutive hours with high levels of thermal discomfort in the great area of Athens (Greece). Modeling was based on bioclimatic data calculated by two widely used biometereorogical indices (the Discomfort Index and the Cooling Power Index) and microclimatic data (air temperature, relative humidity and wind speed) from 7 different meteorological stations for the period 2001-2005. Model performance showed that the risk of human discomfort conditions exceeding certain thresholds can be successfully forecasted by the ANN models. In addition, despite the limitations of the models, the results of the study demonstrated that ANNs, when adequately trained, could have a high applicability in the area of prevention human thermal discomfort levels in urban areas, based on a series of relatively limited number of bioclimatic data values calculated prior to the period of interest.

  9. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  10. Three experiments to support the design of lightweight comfortable vehicle seats.

    PubMed

    Vink, P; Franz, M; Kamp, I; Zenk, R

    2012-01-01

    Seats need to be more lightweight for airplanes, cars, busses and even trains to contribute to a better environment and to reduce energy consumption. However, a reduction in comfort due to weight reduction is not preferable, which opens a new area of research: improving comfort with a minimum of material or with lightweight materials and systems. In this paper three experiments are performed to test the effects of light weight seats and parts of a seat on comfort. The first experiment shows that a new developed light weight massage system improves comfort and reduces muscle activity. The second experiment shows that the automatic seat adjustment without motors improves the comfort as well. The third experiment showed that a light weight seat following closely the human body contour is experienced on many aspects in the same way as current more heavy seats. More research and models will be needed in this ergonomic field which needs more attention.

  11. Human comfort studies in Debrecen regarding the 2006-2008 period

    NASA Astrophysics Data System (ADS)

    Gyarmati, R.; Toth, T.; Szegedi, S.; Kapocska, L.

    2010-09-01

    Human comfort studies in Debrecen regarding the 2006-2008 period Renata Gyarmati, Tamas Toth, Sandor Szegedi and Laszlo Kapocska University of Debrecen Department of Meteorology, 4032 Debrecen Egyetem tér 1. The significance of human meteorological studies, primarily the importance of observing the sensitivity to fronts has been verified by several foreign and native authors. However, this field of research has shown few exact scientific achievements so far, but the understanding of the connection between weather and human comfort could be promotive factor of human health preservation. This project is quite current since a great part of so called ‘healthy people', who are not suffered from constant diseases are sorely tried by the changing weather. Frequent occurrence of extreme meteorological events will increase the number of meteoropathies in the near future. The whole living world is sensitive to changes in temperature, pressure, humidity and wind speed caused by meteorological events. Frequent fluctuations cause a great trial to pregnant women. The presence of the contact between weather and obstetrical events, formerly proved by Raics (1972), Nowinszky-Nowinszky (1996-1997), Puskás (2008) is supported by our examined data from the University of Debrecen Medical School and Health Science Centre Department of Obstetrics and Gynaecology. During our observation we scrutinized the relation between frontal passage macrosynoptic types and birth number. It's evident that higher data of birth number can be observed during on-coming weather fronts. In case of resident warm fronts, contrast with free-from-front days increasing values can't be experienced although an increase can be observed at the other front types. In the mentioned term over the change of pressure a significant change in temperature probably produced an effect on start of labours. This is in harmony with macrosynoptic types applied to the Carpathian basin. According to this, higher birth number was

  12. Contraction of Perceived Size and Perceived Depth in Mirrors

    ERIC Educational Resources Information Center

    Higashiyama, Atsuki; Shimono, Koichi; Zaitsu, Wataru

    2005-01-01

    We investigated how size and depth are perceived in a plane or convex mirror. In Experiment 1, using a plane or convex mirror, 20 observers viewed a separation between two objects that were presented at a constant distance and reproduced it by a separation between other two objects in a natural viewing situation. The mean matches generally…

  13. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    PubMed Central

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  14. Mars Science Laboratory relative humidity observations: Initial results

    PubMed Central

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, JA; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-01-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Key Points Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppm MSL relative humidity observation provides good data Highest detected relative humidity reading during first MSL 100 sols is RH75% PMID:26213667

  15. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    PubMed

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  16. Is Obsidian Hydration Dating Affected by Relative Humidity?

    USGS Publications Warehouse

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  17. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time

  18. A climatology of tropospheric humidity inversions in five reanalyses

    NASA Astrophysics Data System (ADS)

    Brunke, Michael A.; Stegall, Steve T.; Zeng, Xubin

    2015-02-01

    Specific humidity is generally thought to decrease with height in the troposphere. However, here we document the existence of specific humidity inversions in five reanalyses: the National Centers for Environmental Prediction (NCEP) second reanalysis (NCEP-2), the European Centre for Medium-Range Forecasts (ECMWF) 40-year reanalysis (ERA-40), the Modern Era Retrospective Analysis for Research Applications (MERRA), NCEP's Climate Forecast System Reanalysis (CFSR), and the ECMWF interim reanalysis (ERA-Interim). These inversions are most frequent in the polar regions. Inversions do occur elsewhere, most notably over the subtropical stratus regions, but are less frequent and likely overproduced depending on the location. Polar inversions are the most persistent in winter and the strongest (as defined by the humidity difference divided by the pressure difference across the inversion) in summer or autumn with low bases (at pressures > 900 hPa). Winter humidity inversions are lower, being near-surface, due to the persistence of low-level temperature inversions associated with these humidity inversions, while summer humidity inversions tend to be located near cloud top providing moisture to prevent the melt season stratus from evaporating. The most important contributions to affect humidity inversions in MERRA are dynamics, turbulence, and moist physics. However, local advection may not play as much of a role as regional humidity convergence. The subtropical stratus inversions are as thick as polar humidity inversions but with higher bases generally at pressures < 900 hPa. These inversions are confirmed by rawinsonde data, but there are discrepancies between the observed annual and diurnal cycles in inversion frequency and those portrayed in the reanalyses.

  19. Compensating for Effects of Humidity on Electronic Noses

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret A.; Manatt, Kenneth; Zhou, Hanying; Manfreda, Allison

    2004-01-01

    A method of compensating for the effects of humidity on the readouts of electronic noses has been devised and tested. The method is especially appropriate for use in environments in which humidity is not or cannot be controlled for example, in the vicinity of a chemical spill, which can be accompanied by large local changes in humidity. Heretofore, it has been common practice to treat water vapor as merely another analyte, the concentration of which is determined, along with that of the other analytes, in a computational process based on deconvolution. This practice works well, but leaves room for improvement: changes in humidity can give rise to large changes in electronic-nose responses. If corrections for humidity are not made, the large humidity-induced responses may swamp smaller responses associated with low concentrations of analytes. The present method offers an improvement. The underlying concept is simple: One augments an electronic nose with a separate humidity and a separate temperature sensor. The outputs of the humidity and temperature sensors are used to generate values that are subtracted from the readings of the other sensors in an electronic nose to correct for the temperature-dependent contributions of humidity to those readings. Hence, in principle, what remains after corrections are the contributions of the analytes only. Laboratory experiments on a first-generation electronic nose have shown that this method is effective and improves the success rate of identification of analyte/ water mixtures. Work on a second-generation device was in progress at the time of reporting the information for this article.

  20. An ergonomic evaluation of city police officers: an analysis of perceived discomfort within patrol duties.

    PubMed

    Cardoso, Michelle; Girouard, Michelle; Callaghan, Jack P; Albert, Wayne J

    2016-11-28

    The purpose of this study was to assess the perceived discomfort of patrol officers related to equipment and vehicle design and whether there were discomfort differences between day and night shifts. A total of 16 participants were recruited (10 males, 6 females) from a local police force to participate for one full day shift and one full night shift. A series of questionnaires were administered to acquire information regarding comfort with specific car features and occupational gear, body part discomfort and health and lifestyle. The discomfort questionnaires were administered three times during each shift to monitor discomfort progression within a shift. Although there were no significant discomfort differences reported between the day and night shifts, perceived discomfort was identified for specific equipment, vehicle design and vehicle configuration, within each 12-h shift.

  1. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity

    PubMed Central

    Nguyen, Jennifer L.; Schwartz, Joel; Dockery, Douglas W.

    2013-01-01

    Introduction Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. Methods and Results The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 - April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is non-linear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). AH exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Conclusions Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. PMID:23710826

  2. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  3. Perceived Characteristics of an Innovation.

    ERIC Educational Resources Information Center

    Holloway, Robert E.

    This study investigated the characteristics of an innovative cooperative high school-college program as perceived by principals of adopting and nonadopting schools. The data from survey questionnaires with 24 Likert-type items were reduced to six factors: observability, status, simplicity, cost, trialability, and relative…

  4. Visual Cues and Perceived Reachability

    ERIC Educational Resources Information Center

    Gabbard, Carl; Ammar, Diala

    2005-01-01

    A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom,…

  5. Perceived Attractiveness and Classroom Interactions

    ERIC Educational Resources Information Center

    Algozzine, Bob

    1977-01-01

    Adams and Cohen (1974) demonstrated that facial attractiveness was a salient factor in differential student-teacher interactions. This research investigates further the interaction between teachers and children perceived to be attractive or unattractive by those teachers. It was hypothesized that attractive children would exhibit more "positive,"…

  6. Perceived Dangerousness of Recreational Drugs.

    ERIC Educational Resources Information Center

    Luce, Terrence S.; Merrel, Judy C.

    1995-01-01

    In this study both college students and degreed nurses were asked to estimate the abuse potential and lethality of recreational drugs, both licit and illicit. Findings indicate that the illicit drugs under consideration were perceived as presenting the greatest danger to the user. Dangers attributed to the use of licit recreational drugs were…

  7. Perceived Maternal Role Competence among the Mothers Attending Immunization Clinics of Dharan, Nepal

    PubMed Central

    Shrooti, Shah; Mangala, Shrestha; Nirmala, Pokharel; Devkumari, Shrestha; Dharanidhar, Baral

    2016-01-01

    Background: Being a mother is considered by many women as their most important role in life. Women’s perceptions of their abilities to manage the demands of parenting and the parenting skills they posses are reflected by perceived maternal role competence. The present study was carried out to assess the perceived maternal role competence and its associated factors among mothers. Methods: A descriptive cross-sectional research study was carried out on 290 mothers of infant in four immunization clinics of Dharan, Nepal. Data were collected using a standardized predesigned, pretested questionnaire (Parent sense of competence scale, Rosenberg’s self esteem scale, Maternity social support scale). The data were analyzed using descriptive and inferential statistics and multiple regression analysis at 0.05 level of significance. Results: The mean score of the perceived maternal role competence obtained by mothers was 64.34±7.90 and those of knowledge/skill and valuing/comfort subscale were 31±6.01 and 33±3.75, respectively. There was a significant association between perceived maternal role competence and factors as the age of the mother (P<0.001), educational status (P=0.015), occupation (P=0.001) and readiness for pregnancy (P=0.022). The study findings revealed a positive correlation between perceived maternal role competence and age at marriage (r=0.132, P=0.024), per capita income (r=0.118, P=0.045), self esteem (r=0.379, P<0.001), social support (r=0.272, P<0.001), and number of support persons (r=0.119, P=0.043). The results of the step wise multiple regression analysis revealed that the major predictor of perceived maternal role competence was self esteem. Conclusion: The factors associated with perceived maternal role competence were age, education, occupation, per capita income, self esteem, social support, and the number of support persons. PMID:27218107

  8. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  9. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  10. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  11. A possible connection between thermal comfort and health

    SciTech Connect

    Stoops, John L.

    2004-05-20

    It is a well-established fact that cardiovascular health requires periodic exercise during which the human body often experiences significant physical discomfort. It is not obvious to the exerciser that the short-term pain and discomfort has a long-term positive health impact. Many cultures have well-established practices that involve exposing the body to periodic thermal discomfort. Scandinavian saunas and American Indian sweat lodges are two examples. Both are believed to promote health and well-being. Vacations often intentionally include significant thermal discomfort as part of the experience (e.g., sunbathing, and downhill skiing). So people often intentionally make themselves thermally uncomfortable yet the entire foundation of providing the thermal environment in our buildings is done to minimize the percentage of people thermally dissatisfied. We must provide an environment that does not negatively impact short-term health and we need to consider productivity but are our current thermal comfort standards too narrowly defined and do these standards actually contribute to longer-term negative health impacts? This paper examines the possibility that the human body thermoregulatory system has a corollary relationship to the cardiovascular system. It explores the possibility that we have an inherent need to exercise our thermoregulatory system. Potential, physiological, sociological and energy ramifications of these possibilities are discussed.

  12. Speakers' comfort and voice level variation in classrooms: laboratory research.

    PubMed

    Pelegrín-García, David; Brunskog, Jonas

    2012-07-01

    Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated acoustic environments, talkers do modify their voice levels linearly with the measure voice support, and the slope of this relationship is referred to as room effect. The magnitude of the room effect depends highly on the instruction used and on the individuals. Group-wise, the average room effect ranges from -0.93 dB/dB, with free speech, to -0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as -1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms, in the absence of background noise, is correlated to the decay times derived from an impulse response measured from the mouth to the ears of a talker, and that there is a maximum of preference for decay times between 0.4 and 0.5 s. Teachers with self-reported voice problems prefer higher decay times to speak in than their healthy colleagues.

  13. Three different anesthesia techniques for a comfortable prostate biopsy

    PubMed Central

    Şahin, Adnan; Ceylan, Cavit; Gazel, Eymen; Odabaş, Öner

    2015-01-01

    Aim: In this paper, we aimed to compare the efficacy of three different anesthesia techniques applied in 90 cases of which transrectal ultrasound (TRUS) -guided prostate biopsies were taken. Materials and Methods: Between February 2012 and July 2012, TRUS-guided 16 core biopsies were taken from 90 patients who comply the study criteria. Patients were randomly divided into three groups each of which consists of 30 individuals. Group 1: Was applied periprostatic block anesthesia; Group 2: Was administered intrarectal lidocaine gel; Group 3: Was applied pudendal block. Visual analog scale (VAS) of patients in groups was evaluated. Results: There was no statistically significant difference between the mean ages, prostate-specific antigen values of three groups. Although pain ratings of Groups 2 and 3 were high, no significant difference was present between each other (P > 0.05). In Groups 1 and 2, the difference between VASs was significant. In the group where periprostatic block was applied, pain ratings were significantly low compared with the other two groups (P = 0.0001). Discussion: Enabling pain and discomfort control in patients is very important during TRUS-guided prostate biopsy. In our study, we observed that the periprostatic block enables more comfortable compared with patient groups with intrarectal lidocaine gel and pudendal block and better reduction in pain scores. PMID:26229322

  14. Clothing selection behavior of the aged women for thermal comfort.

    PubMed

    Jeong, W S

    1999-05-01

    Wearing behavior and thermoregulatory responses of five young women (YG; 20 +/- 1 yr) and five aged women (AG; 65 +/- 3 yr) to indoor cold in summer were investigated in this study. The subjects were exposed to 21.0 +/- 0.5 degrees C and 55 +/- 5% RH while seated during a 90-minute experiment. The subjects were allowed to select and wear for thermal comfort clothing whenever they needed additional clothing during the experiment. Rectal temperature (Tre) and temperatures of 7 sites (head, chest, forearm, hand, thigh, leg, foot) of the skin of the subjects were measured every 10 minutes. Mean skin temperature (Tsk) of the subject was obtained every 10 minutes. First selection time of additional clothing was monitored and weight of selected total clothing was calculated. The results for this study were as follows: Tre and Tsk gradually decreased in YG and AG, however Tre decreased less than Tsk which decreased greater in AG than YG (p < 0.01). AG's first selection of additional clothing and thermal sensation response were slower than YG's. Furthermore, total clothing weight was less in AG than YG. It was concluded that clothing selection behavior would modify the intrinsic thermoregulatory responses of the aged women to the cold stress in the summer.

  15. Temperature trends in regions affected by increasing aridity/humidity

    NASA Astrophysics Data System (ADS)

    Jones, Philip D.; Reid, Phillip A.

    A paper in 1991 claimed that regions affected by desertification experience warming trends relative to neighbouring areas. To assess this, an index of aridity/humidity based on the ratio of annual precipitation to annual potential evapotranspiration totals (P/PET) is developed. This index is used to define regions experiencing increases (and those where the increase is statistically significant) in aridity and humidity. We also consider regions always arid (average values of P/PET <0.5) and always humid (P/PET >2.0). Trends of average annual and summer surface air temperature are then calculated for regions in the various aridity/humidity categories and compared to most of the rest of the world's land areas equatorward of 60°. The results indicate that most of the differences in trends between categories are not statistically significant.

  16. Laboratory Connections: Gas Monitoring Transducers: Relative Humidity Sensors.

    ERIC Educational Resources Information Center

    Powers, Michael H.; Hull, Stacey E.

    1988-01-01

    Explains the operation of five relative humidity sensors: psychrometer, hair hygrometer, resistance hygrometer, capacitance hygrometer, and resistance-capacitance hygrometer. Outlines the theory behind the electronic sensors and gives computer interfacing information. Lists sensor responses for calibration. (MVL)

  17. Microresonator interference fiber-optic sensor of relative air humidity

    NASA Astrophysics Data System (ADS)

    Churenkov, A. V.

    2013-08-01

    A novel type of fiber-optic sensor of relative air humidity is developed on the basis of the micromechanical silicon microresonator and silica gel. The output signal of such a sensor in the frequency form has low sensitivity to variations in the laser-source power and to random attenuations in the fiber. In the case of purely optical excitation of oscillations of the resonator, the sensitive element of such a sensor is completely passive because it does not contain any electronic circuits and components. The sensor showed high sensitivity at a relative humidity less than 75%, possibility to operate at temperatures below freezing, and low dependence of readings on air temperature. The dependence of the humidity mass adsorbed by silica gel on the relative air humidity was found to be linear, which simplifies sensor calibration.

  18. Fabrication and characterization of polyaniline/PVA humidity microsensors.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm(2). The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.

  19. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  20. Controllable superlubricity of glycerol solution via environment humidity.

    PubMed

    Chen, Zhe; Liu, Yuhong; Zhang, Shaohua; Luo, Jianbin

    2013-09-24

    The effect of humidity on the lubrication property of glycerol solution between steel surfaces has been investigated in this paper. A stable superlubricity with a friction coefficient about 0.006 has been found under the relative humidity between around 40% RH and 50% RH. Especially, it is noted that the lubrication state can be switched between superlubricity and nonsuperlubricity by adjusting humidity, which is attributed to the humidity-dependent hydrogen-bonding pattern in the solution. The mechanism of such superlubricity is attributed to the hydrated layer of water between the surface layers, which is formed by hydrogen-bonded glycerol and water molecules and strong enough to bear load, absorbed on each side of the solid surfaces. The work has potential applications, providing a simple and environment-friendly way to accomplish controllable superlubrication between steel pairs, which are commonly used in industry.