Sample records for hurricane impacts governing

  1. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    NASA Astrophysics Data System (ADS)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  2. Hurricane Katrina impacts on Mississippi forests

    Treesearch

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  3. Haiti and the politics of governance and community responses to Hurricane Matthew

    PubMed Central

    Marcelin, Louis Herns; Cela, Toni; Shultz, James M.

    2016-01-01

    ABSTRACT This article examines disaster preparedness and community responses to Hurricane Matthew in semi-urban and rural towns and villages in Grande-Anse, Haiti. Based on an ethnographic study conducted in the department of Grande-Anse one week after the hurricane made landfall in Haiti, the article focuses on the perspectives of citizens, community-based associations and local authorities in the affected areas. Sixty-three (63) interviews and 8 community meetings (focus groups) were conducted in 11 impacted sites in 8 communes. Results suggest that preexisting conditions in impacted communities, rather than deliberate and coordinated disaster management strategies, shaped levels of preparedness for and response to the disaster. Affected populations relied primarily on family networks and local forms of solidarity to attend to basic needs such as shelter, health and food. The main argument presented is that Haiti, by virtue of its geographic location, lack of resources, institutional fragility and vulnerability, must systematically integrate community-based assets and capacities in its responses to and management of disasters. Further, it is critical for the government, Haitian institutions, and society to apply integrated risk reduction and management and disaster preparedness measures in all aspects of life, if the country is to survive the many disasters to come in a time of climate change. These measures should be embedded in recovery and reconstruction efforts after Hurricane Matthew. PMID:28321361

  4. Forecasting hurricane impact on coastal topography: Hurricane Ike

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  5. Hurricane Andrew: Impact on hazardous waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastury, S.N.

    1993-03-01

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designatemore » certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.« less

  6. The Impact of Hurricane Katrina on Students’ Behavioral Disorder: A Difference-in-Difference Analysis

    PubMed Central

    Tian, Xian-Liang; Guan, Xian

    2015-01-01

    Objective: The objective of this paper is to examine the impact of Hurricane Katrina on displaced students’ behavioral disorder. Methods: First, we determine displaced students’ likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000–2008. Second, we investigate the impact of hurricane on evacuee students’ in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Results: Preliminary analysis demonstrates a sharp increase in displaced students’ relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students’ relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. Conclusion: When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior. PMID:26006127

  7. The Impact of Hurricane Katrina on Students' Behavioral Disorder: A Difference-in-Difference Analysis.

    PubMed

    Tian, Xian-Liang; Guan, Xian

    2015-05-22

    The objective of this paper is to examine the impact of Hurricane Katrina on displaced students' behavioral disorder. First, we determine displaced students' likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000-2008. Second, we investigate the impact of hurricane on evacuee students' in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Preliminary analysis demonstrates a sharp increase in displaced students' relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students' relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior.

  8. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  9. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2013-09-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  10. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    NASA Astrophysics Data System (ADS)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  11. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast.

    PubMed

    Reja, Md Y; Brody, Samuel D; Highfield, Wesley E; Newman, Galen D

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  12. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  13. Land Area Change and Overview of Major Hurricane Impacts in Coastal Louisiana, 2004-08

    USGS Publications Warehouse

    Barras, John A.

    2009-01-01

    The U.S. Geological Survey (USGS) assessed changes in land and water coverage in coastal Louisiana within 2 months of Hurricane Gustav (September 1, 2008) and Hurricane Ike (September 13, 2008) by using Landsat Thematic Mapper (TM) satellite imagery. The purpose of this study was twofold: (1) to provide preliminary information on land-water area changes in coastal Louisiana shortly after Hurricanes Ike and Gustav made landfall and (2) to contrast these changes with prior, widespread land area changes caused by Hurricane Katrina (August 29, 2005) and Hurricane Rita (September 24, 2005) 3 years earlier. Hurricane Gustav's physical surge impacts were not as severe as those observed from Hurricane Katrina. The largest observed changes were the reversion of recovery vegetation in Upper Breton Sound to an immediate post-Katrina appearance. Hurricane Ike's surge impacts were similar, although of somewhat lesser magnitude than Hurricane Rita's surge impacts. Major surge-removed marsh occurred in similar locations with similar morphologies from the two westward tracking storms. Although the net reduction in land from 2004 to 2008 (849.5 km2) exceeded that from 1978 to 2004 (743.3 km2), it is likely that the 2004-08 estimate will decrease, given time for the coast to recover from those hurricane seasons. Nevertheless, it is likely that the cumulative loss from these hurricane seasons will remain significant. Estimation of permanent losses cannot be made until several growing seasons have passed and the transitory impacts of the hurricanes are accounted for.

  14. Local variability but landscape stability in coral reef communities following repeated hurricane impacts

    USGS Publications Warehouse

    Bythell, John C.; Hillis-Star, Zandy M; Rogers, Caroline S.

    2000-01-01

    Coral reef community structure has remained remarkably stable over a 10 yr period within a small protected marine area despite repeated hurricane impacts. Local community dynamics have been highly variable, however. Sites that were destroyed by disease in the 1970s are showing little or no recovery, while sites less than a kilometre away that were devastated by Hurricane Hugo in 1989 are recovering well. Strong coral recruitment has occurred in shallow, exposed areas that showed the greatest hurricane impacts, and these areas are now more species rich than in 1988, although coral cover has not reached pre-hurricane levels. Coral colony survivorship has been high throughout most of the study area. Partial mortality rates were elevated for several years following Hurricane Hugo, but significant whole coral-head mortality only occurred during periods with hurricane impacts and only at the most exposed sites. Overall, the coral community has proved resilient to closely repeated major hurricane impacts. From a single case study we cannot attribute this resilience to the relatively low level of human impacts, but grazing fish populations have apparently remained high enough to keep macroalgae in check despite the mass mortality of the herbivore Diadema antillarum in the 1980s.

  15. Morphodynamic signature of the 1985 hurricane impacts on the northern Gulf of Mexico

    USGS Publications Warehouse

    Penland, Shea; Suter, John R.; Sallenger, Ashbury H.; Williams, S. Jeffress; McBride, Randolph A.; Westphal, Karen E.; Reimer, P. Douglas; Jaffe, Bruce E.

    1989-01-01

    Three hurricanes hit Lousiana (LA), Mississippi (MS), Alabama (AL), and the Florida (FL) panhandle in 1985, producing dramatic geomorphic changes in a wide variety of coastal environments. The impact zone for hurricanes Danny, Elena, and Juan stretched 1000 km between the Sabine River in LA to the Apalachicola River in FL. Barrier shorelines experienced repeated intense overwash events, producing beach and dune erosion exceeding 30 m, as well as producing classic examples of storm surge deposits. Pre- and post-storm airborne videotape surveys, sequential vertical mapping photography, and field surveys provide the data base for this regional hurricane impact assessment on the northern Gulf of Mexico. Hurricane impacts on the low-profile and high-profile barrier shorelines, as well as on the marine terrace cliffs were systematic and predictable. Controlling the direction of overwash flow and the impact distribution pattern is the relationship among shoreline orientation, hurricane storm track, and regional wind field. The relationship between shore-zone geomorphology and storm surge overwash controls the impact response.

  16. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  17. Economic impacts of hurricanes on forest owners

    Treesearch

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  18. Hurricane Sandy science plan: coastal impact assessments

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  19. Daily MODIS data trends of hurricane-induced forest impact and early recovery

    USGS Publications Warehouse

    Ramsey, Elijah W.; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near pre-hurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  20. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Treesearch

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  1. OSSE Evaluation of Prospective Aircraft Reconnaissance Flight Patterns and their Impact on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Christophersen, H.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2015-12-01

    Each year, NOAA/AOML's Hurricane Research Division (HRD) conducts its Hurricane field Program in which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in design is valuable for determining the optimal air reconnaissance flight pattern for a given prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories are simulated in a variety of ways and are evaluated to investigate the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  2. Hurricane intensification along United States coast suppressed during active hurricane periods

    NASA Astrophysics Data System (ADS)

    Kossin, James P.

    2017-01-01

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  3. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  4. Remote sensing for hurricane Andrew impact assessment

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas

    1994-01-01

    Stennis Space Center personnel flew a Learjet equipped with instrumentation designed to acquire imagery in many spectral bands into areas most damaged by Hurricane Andrew. The calibrated airborne multispectral scanner (CAMS), a NASA-developed sensor, and a Zeiss camera acquired images of these areas. The information derived from the imagery was used to assist Florida officials in assessing the devastation caused by the hurricane. The imagery provided the relief teams with an assessment of the debris covering roads and highways so cleanup plans could be prioritized. The imagery also mapped the level of damage in residential and commercial areas of southern Florida and provided maps of beaches and land cover for determination of beach loss and vegetation damage, particularly the mangrove population. Stennis Space Center personnel demonstrated the ability to respond quickly and the value of such response in an emergency situation. The digital imagery from the CAMS can be processed, analyzed, and developed into products for field crews faster than conventional photography. The resulting information is versatile and allows for rapid updating and editing. Stennis Space Center and state officials worked diligently to compile information to complete analyses of the hurricane's impact.

  5. OSSE Evaluation of Aircraft Reconnaissance Observations and their Impact on Hurricane Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Delgado, J.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2016-12-01

    NOAA/AOML's Hurricane Research Division (HRD) annually conducts its Hurricane Field Program during which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in track design is valuable for determining the optimal air reconnaissance flight pattern for a prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories of NOAA aircraft are simulated in a variety of ways and are evaluated to examine the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  6. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  7. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    USGS Publications Warehouse

    Miner, M.D.; Kulp, M.A.; FitzGerald, D.M.; Flocks, J.G.; Weathers, H.D.

    2009-01-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (???0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ???1.6????????109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ???41,400 m2 to ???139,500 m 2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends. ?? 2009 Springer-Verlag.

  8. Impact of 1985 hurricanes on Isles Dernieres, Louisiana: Temporal and spatial analysis of coastal geomorphic changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debusshere, K.; Westphal, K.; Penland, S.

    1989-09-01

    Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impactsmore » in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.« less

  9. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    NASA Technical Reports Server (NTRS)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  10. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    NASA Astrophysics Data System (ADS)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  11. Hurricane Katrina’s Impact on the Mental Health of Adolescent Female Offenders

    PubMed Central

    Robertson, Angela A.; Morse, David T.; Baird-Thomas, Connie

    2008-01-01

    Exposure to multiple traumatic events and high rates of mental health problems are common among juvenile offenders. This study draws on Conservation of Resources (COR) stress theory to examine the impact of a specific trauma, Hurricane Katrina, relative to other adverse life events on the mental health of female adolescent offenders in Mississippi. Teenage girls (N = 258, 69% African American) were recruited from 4 juvenile detention centers and the state training school. Participants were interviewed about the occurrence and timing of adverse life events and hurricane-related experiences and completed a self-administered mental health assessment. Hierarchical linear regression models were used to identify predictors of anxiety and depression. Pre-hurricane family stressors, pre-hurricane traumatic events, hurricane-related property damage, and receipt of hurricane-related financial assistance significantly predicted symptoms of anxiety and depression. Findings support COR theory. Family stressors had the greatest influence on symptoms of anxiety and depression, highlighting the need for family-based services that address the multiple, inter-related problems and challenges in the lives of female juvenile offenders. PMID:19296263

  12. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    PubMed Central

    Liu, Bian; Taioli, Emanuela

    2017-01-01

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01) and post-traumatic stress disorder (PTSD) scores (mean difference = −1.98, p = 0.001) between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4]) but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1) and PTSD (ORadj 4.1 95% CI [1.1–14.6]) at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment. PMID:28837111

  13. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    PubMed

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p < 0.01) and post-traumatic stress disorder (PTSD) scores (mean difference = -1.98, p = 0.001) between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (OR adj 1.2, 95% CI [1.1-1.4]) but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (OR adj 2.8 95% CI [1.1-6.8], depression (OR adj 7.4 95% CI [2.3-24.1) and PTSD (OR adj 4.1 95% CI [1.1-14.6]) at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  14. Impact of CAMEX-4 Data Sets for Hurricane Forecasts using a Global Model

    NASA Technical Reports Server (NTRS)

    Kamineni, Rupa; Krishnamurti, T. N.; Pattnaik, S.; Browell, Edward V.; Ismail, Syed; Ferrare, Richard A.

    2005-01-01

    This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remote-sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. We show that the use of these additional data sets, above those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment where such data sets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these data sets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity data sets for improved model results. We note that the forecast impact from the moisture profiling data sets for some of the storms is even larger than the impact from the use of dropwindsonde based winds.

  15. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  16. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  17. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems.

    PubMed

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-06-22

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle-Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms.

  18. Fleeing The Storm(s): An Examination of Evacuation Behavior During Florida’s 2004 Hurricane Season

    PubMed Central

    SMITH, STANLEY K.; MCCARTY, CHRIS

    2009-01-01

    The 2004 hurricane season was the worst in Florida’s history, with four hurricanes causing at least 47 deaths and some $45 billion in damages. To collect information on the demographic impact of those hurricanes, we surveyed households throughout the state and in the local areas that sustained the greatest damage. We estimate that one-quarter of Florida’s population evacuated prior to at least one hurricane; in some areas, well over one-half of the residents evacuated at least once, and many evacuated several times. Most evacuees stayed with family or friends and were away from home for only a few days. Using logistic regression analysis, we found that the strength of the hurricane and the vulnerability of the housing unit had the greatest impact on evacuation behavior; additionally, several demographic variables had significant effects on the probability of evacuating and the choice of evacuation lodging (family/friends, public shelters, or hotels/motels). With continued population growth in coastal areas and the apparent increase in hurricane activity caused by global warming, threats posed by hurricanes are rising in the United States and throughout the world. We believe the present study will help government officials plan more effectively for future hurricane evacuations. PMID:19348112

  19. Hurricane-related emergency department visits in an inland area: an analysis of the public health impact of Hurricane Hugo in North Carolina.

    PubMed

    Brewer, R D; Morris, P D; Cole, T B

    1994-04-01

    To evaluate the public health impact of a hurricane on an inland area. Descriptive study. Seven hospital emergency departments. Patients who were treated from September 22 to October 6, 1989, for an injury or illness related to Hurricane Hugo. None. Over the two-week study period, 2,090 patients were treated for injuries or illnesses related to the hurricane. Of these, 1,833 (88%) were treated for injuries. Insect stings and wounds accounted for almost half of the total cases. A substantial proportion (26%) of the patients suffering from stings had a generalized reaction (eg, hives, wheezing, or both). Nearly one-third of the wounds were caused by chain saws. Hurricanes can lead to substantial morbidity in an inland area. Disaster plans should address risks associated with stinging insects and hazardous equipment and should address ways to improve case reporting.

  20. The impact of Hurricane Sandy on the mental health of New York area residents.

    PubMed

    Schwartz, Rebecca M; Sison, Cristina; Kerath, Samantha M; Murphy, Lisa; Breil, Trista; Sikavi, Daniel; Taioli, Emanuela

    2015-01-01

    To evaluate the long-term psychological impact of Hurricane Sandy on New York residents. Prospective, cross-sectional study. Community-based study. From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure). Depression, anxiety, and post-traumatic stress disorder (PTSD). Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues. Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.

  1. Hurricane impacts on the coastal environment

    USGS Publications Warehouse

    Sallenger, Abby

    1990-01-01

    In terms of insured losses, Hurricane Andrew is the most severe catastrophe in the Nation's history. Prior to the arrival of Andrew, the U.S. Geological Survey (USGS), in cooperation with the Louisiana Geological Survey (LGS), acquired an extensive body of information and data on the behavior and long-term erosion of Louisiana barrier islands. As a result, we have a clear understanding of pre-storm conditions in this area; Andrew provided an opportunity to learn in detail the impact of a very large storm on Louisiana coastal environment.

  2. Administrative Relief for Grantees impacted by Hurricanes Harvey, Irma, and Maria

    EPA Pesticide Factsheets

    On October 26, 2017, the Office of Management and Budget issued the attached memorandum, Administrative Relief for Grantees impacted by Hurricanes, to provide Federal agencies with flexibility to assist their grant applicants and recipients.

  3. Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact

    PubMed Central

    Batke, Sven P.; Kelly, Daniel L.

    2015-01-01

    The severity of the effects that large disturbance events such as hurricanes can have on the forest canopy and the associated mechanically dependent plant community (epiphytes, climbers, etc.) is dependent on the frequency and intensity of the disturbance events. Here we investigate the effects of different structural and environmental properties of the host trees and previously modelled past hurricanes on dependent plants in Cusuco National Park, Honduras. Tree-climbing methods were employed to sample different dependent life-forms in ten 150 × 150 m plots. We identified 7094 individuals of dependent plants from 214 different species. For holo- and hemi-epiphytes, we found that diversity was significantly negatively related to past hurricane impact. The abundance of dependent plants was greatly influenced by their position in tree canopy and hurricane disturbance regimes. The relationship between abundance and mean branch height shifts across a gradient of hurricane impact (from negative to positive), which might result from a combination of changes in abundance of individual species and composition of the dependent flora across sites. Mechanically dependent plants also responded to different structural and environmental conditions along individual branches. The variables that explained much of the community differences of life-forms and families among branches were branch surface area and bryophyte cover. The factors that explained most variation at a plot level were mean vapour pressure deficit and elevation. At the level of the individual tree, the most important factors were canopy openness and past hurricane impact. We believe that more emphasis needs to be placed on the effects that past disturbance events have on mechanically dependent plant communities, particularly in areas that are prone to catastrophic perturbations. PMID:26286220

  4. Hurricane Katrina: A Teachable Moment

    ERIC Educational Resources Information Center

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  5. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  6. Challenges in estimating the health impact of Hurricane Sandy using macro-level flood data.

    NASA Astrophysics Data System (ADS)

    Lieberman-Cribbin, W.; Liu, B.; Schneider, S.; Schwartz, R.; Taioli, E.

    2016-12-01

    Background: Hurricane Sandy caused extensive physical and economic damage but the long-term health impacts are unknown. Flooding is a central component of hurricane exposure, influencing health through multiple pathways that unfold over months after flooding recedes. This study assesses concordance in Federal Emergency Management (FEMA) and self-reported flood exposure after Hurricane Sandy to elucidate discrepancies in flood exposure assessments. Methods: Three meter resolution New York State flood data was obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. FEMA data was compared to self-reported flood data obtained through validated questionnaires from New York City and Long Island residents following Sandy. Flooding was defined as both dichotomous and continuous variables and analyses were performed in SAS v9.4 and ArcGIS 10.3.1. Results: There was a moderate agreement between FEMA and self-reported flooding (Kappa statistic 0.46) and continuous (Spearman's correlation coefficient 0.50) measures of flood exposure. Flooding was self-reported and recorded by FEMA in 23.6% of cases, while agreement between the two measures on no flooding was 51.1%. Flooding was self-reported but not recorded by FEMA in 8.5% of cases, while flooding was not self-reported but indicated by FEMA in 16.8% of cases. In this last instance, 84% of people (173/207; 83.6%) resided in an apartment (no flooding reported). Spatially, the most concordance resided in the interior of New York City / Long Island, while the greatest areas of discordance were concentrated in the Rockaway Peninsula and Long Beach, especially among those living in apartments. Conclusions: There were significant discrepancies between FEMA and self-reported flood data. While macro-level FEMA flood data is a relatively less expensive and faster way to provide exposure estimates spanning larger geographic areas affected by Hurricane Sandy than micro-level estimates from cohort studies, macro

  7. The impact of Hurricane Rita on an academic institution: lessons learned.

    PubMed

    Beggan, Dominic M

    2010-01-01

    This paper examines the impact of Hurricane Rita on one of the many universities along the Gulf Coast of the United States: Lamar University in Beaumont, Texas. Hurricane Rita, which made landfall between Sabine Pass, Texas, and Johnson's Bayou, Louisiana, on 24 September 2005, is the fourth strongest Atlantic Ocean hurricane on record and the most intense tropical cyclone ever observed in the Gulf of Mexico. This paper assesses the tasks that confronted the administration, faculty, and students of Lamar University in the days and weeks after the event. It concludes that the one factor that will influence more than any other the degree of success after any disaster is whether all levels of the administrative command institutionalise, endorse, promote, and encourage the adopted recovery plan. The research seeks to share valuable insights on the vulnerabilities that academic institutions face during natural disasters and to highlight some of the many lessons learned.

  8. The impact of hurricanes and flooding disasters on hymenopterid-inflicted injuries.

    PubMed

    Diaz, James H

    2007-01-01

    Insect bites and stings, often complicated by allergic reactions or skin infections with community-acquired pathogens, are common sources of morbidity following hurricanes and flooding disasters. The hymenopterids are the most commonly stinging arthropods to cause allergic reactions, and include bees, wasps, and ants. To assess the evolving epidemiology of hymenopterid-inflicted injuries, and the impact of hurricanes and flooding disasters on hymenopterid-inflicted injuries in the United States, an epidemiological analysis of the scientific literature on hymenopterid stings and allergic sting reactions was conducted by MEDLINE search, 1966-2006. The increasing incidence of hymenopterid-inflicted injuries following hurricanes and flooding disasters was described. Common immunological reactions to hymenopterid-inflicted injuries were stratified by clinical severity and outcome. Current recommendations for management, prevention, and prophylaxis of hymenopterid-inflicted injuries were presented. Hymenopterid stings and allergic reactions remain common indications for emergency department visits, especially following hurricanes and flooding disasters. Unrecognized anaphylactic reactions to hymenopterid stings remain significant causes of unanticipated deaths outdoors in young people. Disaster planners and managers are obliged to alert regional healthcare providers of the increased risks of hymenopterid-inflicted injuries following flooding disasters and to assure that emergency drug formularies are properly stocked to treat hymenopterid-inflicted injuries.

  9. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  10. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    NASA Astrophysics Data System (ADS)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  11. The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts

    NASA Astrophysics Data System (ADS)

    Yu, C. L.; Pu, Z.

    2016-12-01

    The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.

  12. ISS Pass Over Hurricane Jose and Hurricane Irma 9/8/17

    NASA Image and Video Library

    2017-09-08

    The International Space Station passed over two major Atlantic hurricanes on Friday, Sept. 8. First, the station flew approximately 250 miles over Hurricane Jose at approximately 10:10 a.m. EDT while the Category 3 storm was in the Atlantic just east of the Caribbean. One orbit of the Earth later, the station flew over Hurricane Irma at approximately 11:40 a.m. EDT. The powerful Category 4 storm had already brought destructive wind and rain to islands across the Caribbean and is forecast to impact the Florida peninsula.

  13. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  14. Impact of Hurricane Exposure on Reproductive Health Outcomes, Florida, 2004.

    PubMed

    Grabich, Shannon C; Robinson, Whitney R; Konrad, Charles E; Horney, Jennifer A

    2017-08-01

    Prenatal hurricane exposure may be an increasingly important contributor to poor reproductive health outcomes. In the current literature, mixed associations have been suggested between hurricane exposure and reproductive health outcomes. This may be due, in part, to residual confounding. We assessed the association between hurricane exposure and reproductive health outcomes by using a difference-in-difference analysis technique to control for confounding in a cohort of Florida pregnancies. We implemented a difference-in-difference analysis to evaluate hurricane weather and reproductive health outcomes including low birth weight, fetal death, and birth rate. The study population for analysis included all Florida pregnancies conceived before or during the 2003 and 2004 hurricane season. Reproductive health data were extracted from vital statistics records from the Florida Department of Health. In 2004, 4 hurricanes (Charley, Frances, Ivan, and Jeanne) made landfall in rapid succession; whereas in 2003, no hurricanes made landfall in Florida. Overall models using the difference-in-difference analysis showed no association between exposure to hurricane weather and reproductive health. The inconsistency of the literature on hurricane exposure and reproductive health may be in part due to biases inherent in pre-post or regression-based county-level comparisons. We found no associations between hurricane exposure and reproductive health. (Disaster Med Public Health Preparedness. 2017;11:407-411).

  15. Learning from recovery after Hurricane Mitch.

    PubMed

    Christoplos, Ian; Rodríguez, Tomás; Schipper, E Lisa F; Narvaez, Eddy Alberto; Bayres Mejia, Karla Maria; Buitrago, Rolando; Gómez, Ligia; Pérez, Francisco J

    2010-04-01

    This paper reviews how Nicaragua has recovered from Hurricane Mitch of October 1998. In particular, it examines how the assumptions and claims that were made during initial recovery planning have proven relevant in light of subsequent development. One must consider the response to Hurricane Mitch from the perspective of the broader trends that have driven recovery, including household, community and government initiatives and the wider economic context. Recovery efforts have not 'transformed' Nicaragua. In fact, market upheavals and livelihood changes in rural areas have had a more profound impact on poverty profiles than recovery programmes. Social protection programmes have been piloted, but patron-client ties and relations with aid providers are still more reliable sources of support in a time of crisis. Risk reduction has become more deeply integrated into the rural development discourse than was the case before the disaster, but risk reduction initiatives continue to place undue emphasis on hazard response rather than addressing vulnerability.

  16. Hurricanes: Are You Prepared?

    PubMed

    Rodriguez, Fred H; Petersen, John; Selvaratnam, Rajeevan; Mann, Peggy; Hoyne, Jonathan B

    2018-03-21

    Severe weather events such as hurricanes have the potential to cause significant disruption of laboratory operations. Comprehensive planning is essential to mitigate the impact of such events. The essential elements of a Hurricane Plan, based on our personal experiences, are detailed in this article.

  17. The Impact of Pet Loss on the Perceived Social Support and Psychological Distress of Hurricane Survivors

    PubMed Central

    Lowe, Sarah R.; Rhodes, Jean E.; Zwiebach, Liza; Chan, Christian S.

    2013-01-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support. PMID:19462438

  18. The impact of pet loss on the perceived social support and psychological distress of hurricane survivors.

    PubMed

    Lowe, Sarah R; Rhodes, Jean E; Zwiebach, Liza; Chan, Christian S

    2009-06-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support.

  19. Hurricane effects on backreef echinoderms of the Caribbean

    NASA Astrophysics Data System (ADS)

    Aronson, R. B.

    1993-11-01

    The impacts of Hurricanes Gilbert (1988) and Hugo (1989) on echinoderm assemblages were assessed in backreef habitats in Jamaica and St. Croix, respectively. One site on each island was censused before the hurricanes. Ophiuroids were monitored at the Jamaican site for three years following Hurricane Gilbert, and ophiuroids and echinoids were monitored at the site on St. Croix for two years following Hurricane Hugo. No hurricane-related changes in ophiuroid abundance were observed at either site. Likewise, there was no evidence that Hurricane Hugo altered echinoid abundance at St. Croix. These negative results correlated with an observed lack of hurricane-generated physical disturbance in the backreef areas, despite 6-m waves that broke on the reef crests at the two sites during the storms. Hurricane impacts on mobile faunas appear to depend directly on physical habitat alterations.

  20. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  1. Utilizing NASA Earth Observations to Assess Impacts of Hurricanes Andrew and Irma on Mangrove Forests in Biscayne Bay National Park, FL

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Weber, S.; Remillard, C.; Escobar Pardo, M. L.; Hashemi Tonekaboni, N.; Cameron, C.; Linton, S.; Rickless, D.; Rivero, R.; Madden, M.

    2017-12-01

    Extreme weather events, such as hurricanes, pose major threats to coastal communities around the globe. However, mangrove forests along coastlines act as barriers and subdue the impacts associated with these catastrophic events. The Biscayne Bay National Park mangrove forest located near the city of Miami Beach was recently affected by the category four hurricane Irma in September of 2017. This study analyzed the impact of Hurricane Irma on Biscayne Bay National Park mangroves. Several remote sensing datasets including Landsat 8 Operational Land Imager (OLI), Sentinel 2-Multi Spectral Imager (MSI), PlanetScope, and aerial imagery were utilized to assess pre-and post-hurricane conditions. The high-resolution aerial imagery and PlanetScope data were used to map damaged areas within the national park. Additionally, Landsat 8 OLI and Sentinel-2 MSI data were utilized to estimate changes in biophysical parameters, including gross primary productivity (GPP), before and after Hurricane Irma. This project also examined damages associated with Hurricane Andrew (1992) using historical Landsat 5 Thematic Mapper (TM) data. These results were compared to GPP estimates following Hurricane Irma and suggested that Hurricane Andrew's impact was greater than that of Irma in Biscayne Bay National Park. The results of this study will help to enhance the mangrove health monitoring and shoreline management programs led by officials at the City of Miami Beach Public Works Department.

  2. Examining the long-term racial disparities in health and economic conditions among Hurricane Katrina survivors: policy implications for Gulf Coast recovery.

    PubMed

    Toldson, Ivory A; Ray, Kilynda; Hatcher, Schnavia Smith; Louis, Laura Straughn

    2011-01-01

    This study examines disparities in the long-term health, emotional well-being, and economic consequences of the 2005 Gulf Coast hurricanes. Researchers analyzed the responses of 216 Black and 508 White Hurricane Katrina survivors who participated in the ABC News Hurricane Katrina Anniversary Poll in 2006. Self-reported data of the long-term negative impact of the hurricane on personal health, emotional well-being, and finances were regressed on race, income, and measures of loss, injury, family mortality, anxiety, and confidence in the government. Descriptive analyses, stepwise logistic regression, and analyses of variance revealed that Black hurricane survivors more frequently reported hurricane-related problems with personal health, emotional well-being, and finances. In addition, Blacks were more likely than Whites to report the loss of friends, relatives, and personal property.

  3. Hurricane impacts on US forest carbon sequestration

    Treesearch

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  4. Hurricane Hortense: impact on surface water in Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto

    1997-01-01

    Late Monday night, September 9, and into the early morning hours of Tuesday, September 10, 1996, Hurricane Hortense passed over the southwestern part of Puerto Rico (inset). Hurricane Hortense made landfall as a Category One Hurricane (74 to 95 miles per hour) on the Saffir-Simpson Scale, with maximum sustained winds of nearly 80 miles per hour. The eye of Hurricane Hortense moved over the towns of Guayanilla, Yauco, Guánica, Lajas, San Germán, Cabo Rojo, Hormigueros, and Mayagüez (fig. 1).

  5. 75 FR 17132 - Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction for South Ponte Vedra Beach, Vilano... feasibility of providing hurricane and storm damage reduction (HSDR), and related purposes to the shores of St...

  6. The Impact of Parental Posttraumatic Stress Disorder Symptom Trajectories on the Long-Term Outcomes of Youth Following Hurricane Katrina

    PubMed Central

    Self-Brown, Shannon; Lai, Betty; Harbin, Shannon; Kelley, Mary Lou

    2014-01-01

    Objectives This study examined trajectories of posttraumatic stress disorder symptoms in impoverished mothers impacted by Hurricane Katrina, as well as how predictive the maternal trajectories were for youth posttraumatic stress symptoms 2 years post-Katrina. Method 360 mother participants displaced by Hurricane Katrina completed self-report measures across 4 time-points related to Hurricane exposure, trauma history, and posttraumatic stress symptoms. Additionally, the youth offspring completed a self-report measure of posttraumatic stress symptoms. Results Latent Class Growth Analysis demonstrated three primary trajectories emerged among females impacted by Katrina, namely, 1) Chronic (4%), 2) Recovering (30%), and 3) Resilient (66%), respectively. These trajectories were significantly impacted by prior trauma history, but not hurricane exposure. Additionally, data indicated that children whose parents fell into the Chronic PTS trajectory also reported high levels of PTS symptoms. Conclusions This study identified 3 main trajectories typical of female PTS symptoms following disaster and was the first known study to document associations between PTS outcomes among adults and their offspring impacted by a large natural disaster. Future research is warranted and should explore additional risk and protective factors that impact both the parental and child outcomes. PMID:25255912

  7. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    ERIC Educational Resources Information Center

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  8. Hurricane Katrina as a "teachable moment"

    NASA Astrophysics Data System (ADS)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  9. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  10. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  11. Hurricane Recovery Report 2004

    NASA Technical Reports Server (NTRS)

    Gordon, Joseph P.

    2005-01-01

    During August and September 2004, four hurricanes tested the mettle of Space Coast residents and the Kennedy Space Center (KSC) leadership and workforce. These threats underscored two important points: the very real vulnerability of KSC and its valuable space program assets to the devastating power of a hurricane, and the planning required to effectively deal with such threats. The damage was significant even though KSC did not experience sustained hurricane-force winds. To better understand and appreciate these points, this report provides an overview of the meteorological history of the Space Coast and what is involved in the planning, preparation, and recovery activities, as well as addressing the impacts of the 2004 hurricane season.

  12. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Alan M; Freer, Eva B; Omitaomu, Olufemi A

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing wasmore » automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.« less

  13. The psychosocial impact of Hurricane Katrina: contextual differences in psychological symptoms, social support, and discrimination.

    PubMed

    Weems, Carl F; Watts, Sarah E; Marsee, Monica A; Taylor, Leslie K; Costa, Natalie M; Cannon, Melinda F; Carrion, Victor G; Pina, Armando A

    2007-10-01

    This study tested a contextual model of disaster reaction by examining regional differences in the psychosocial impact of Hurricane Katrina. A total of 386 individuals participated in this study. All were recruited in the primary areas affected by Hurricane Katrina and included residents of metropolitan New Orleans (Orleans Parish, Louisiana), Greater New Orleans (i.e., Metairie, Kenner, Gretna), and the Mississippi Gulf Coast (i.e., cities along the coast from Waveland to Ocean Springs, Mississippi). Participants were assessed for posttraumatic stress disorder (PTSD) symptoms, other psychological symptoms, perceptions of discrimination, perceptions of social support, evacuation distance, and the extent to which they experienced hurricane-related stressful events. Results were consistent with previous research on the impact of disasters on mental health symptoms. Findings extended research on individual differences in the response to trauma and indicated that regional context predicted unique variance in the experience of discrimination, social support, and emotional symptoms consistent with the theoretical model presented.

  14. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    PubMed

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to

  15. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  16. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the

  17. The Impacts of Aerosols on Hurricane Katrina under the Effect of Air-Sea Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.

    2017-12-01

    Aerosols can affect the development of tropical cyclones, which often involve intense interactions with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean sea level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of air-sea interactions during the developing stage, which demonstrates intricate nonlinear interactions between aerosols, the hurricane and the ocean.

  18. Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.

    2016-03-01

    Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.

  19. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  20. Projecting the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests (1851-2100)

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.

    2009-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Estimates of the carbon emissions resulting from single storms range as high as ~100 Tg C, an amount equivalent to the annual U.S. carbon sink in forest trees. Recent studies have estimated the historic regional carbon emissions from hurricane activity using an empirically based approach. Here, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by maps of mortality and damage based on historic hurricane tracks and future scenarios to predict the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests. Model estimates compare well to previous empirically based estimates, with mean annual biomass loss of 26 Tg C yr-1 (range 0 to ~225 Tg C yr-1) resulting from hurricanes during the period 1851-2000. Using the mechanistic model, we are able to include the effects of both disturbance and recovery on the net carbon flux. We find a regional carbon sink throughout much of the 20th century resulting from forest recovery following a peak in hurricane activity during the late 19th century exceeding biomass loss. Recent increased hurricane activity has resulted in the region becoming a net carbon source. For the future, several recent studies have linked increased sea surface temperatures expected with climate change to increased hurricane activity. Based on these relationships, we investigate a range of scenarios of future hurricane activity and find the potential for substantial increases in emissions from hurricane mortality and reductions in regional carbon stocks. In our scenario with the largest increase in hurricane activity, we find a 35% increase in area disturbed by 2100, but due to the reduction of standing biomass, only a 20% increase in biomass loss per year. Developing this kind of predictive modeling capability that tracks disturbance events and

  1. Research on the impacts of past and future hurricanes on the endangered Florida manatee: Chapter 6J in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Langtimm, Catherine A.; Krohn, M. Dennis; Stith, Bradley M.; Reid, James P.; Beck, C.A.; Butler, Susan M.

    2007-01-01

    U.S. Geological Survey (USGS) research on Florida manatees (Trichechus manatus latirostris) from 1982 through 1998 identified lower apparent survival rates for adult manatees during years when Hurricane Elena (1985), the March "Storm of the Century"(1993), and Hurricane Opal (1995) hit the northern coast of the Gulf of Mexico. Although our analysis showed that a significant number of our monitored individual manatees failed to return to their winter homes after these storms, their actual fate remains unknown. With the aid of new satellite technology to track manatees during storms and new statistical techniques to determine survival and emigration rates, researchers are working to understand how hurricanes impact the endangered species by studying manatees caught in the path of the destructive hurricanes of 2004 and 2005.

  2. The Impact of Hurricanes Katrina and Rita on Louisiana School Nurses

    ERIC Educational Resources Information Center

    Broussard, Lisa; Myers, Rachel; Meaux, Julie

    2008-01-01

    In the fall of 2005, the coast of Louisiana was devastated by two hurricanes, Katrina and Rita. Not only did these natural disasters have detrimental effects for those directly in their path, the storms had an impact on the lives of everyone in Louisiana. The professional practice of many Louisiana school nurses was affected by several factors,…

  3. Hurricane Isaac: observations and analysis of coastal change

    USGS Publications Warehouse

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  4. The Economic Impact of Hurricane Katrina on Its Victims: Evidence from Individual Tax Returns

    NASA Astrophysics Data System (ADS)

    Deryugina, T.; Kawano, L.; Levitt, S.

    2014-12-01

    Hurricane Katrina destroyed more than 200,000 homes and led to massive economic and physical dislocation. Using a panel of tax return data, we provide one of the first comprehensive analyses of the hurricane's long-term economic impact on its victims. We find small and mostly transitory impacts of the disaster on wages, employment, and total income, even among the worst affected. Remarkably, within a few years, Katrina victims have higher incomes than controls from similar cities that were unaffected by the storm. Withdrawals from retirement accounts offset some of the temporary fall in wages. Finally, there is a short-run spike in marriage and little impact on either divorce or child bearing. These findings suggest that, at least in developed countries like the United States, dislocation is unlikely to be an important component of the social or economic costs of dramatic negative events, such as natural disasters or climate change.

  5. Hurricane Ike: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  6. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon

    USGS Publications Warehouse

    Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.

    2011-01-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.

  7. [Hurricanes and tropical coastal biodiversity].

    PubMed

    Salazar-Vallejo, Sergio I

    2002-06-01

    Tropical coastal biodiversity has been modulated by tropical storms during a long time and it is currently facing a heavy human impact. The purpose of this review is to compile the available information to improve our understanding of hurricane impacts and to promote the establishment of coastal landscape monitoring, because that is the best way to assess these impacts. Although generalizations on hurricane effects are elusive, some historical dynamics and temporal relationships are included and some details are presented on the impacts by resuspension and movement of sediments, storm waves, and breaking off of coral reef organisms. Some effects on marine turtles and coastal forests are also briefly pointed out.

  8. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  9. The Hurricane-Flood-Landslide Continuum: Forecasting Hurricane Effects at Landfall

    NASA Technical Reports Server (NTRS)

    Negri, A.; Golden, J. H.; Updike, R.

    2004-01-01

    Hurricanes, typhoons, and cyclones strike Central American, Caribbean, Southeast Asian and Pacific Island nations even more frequently than the U.S. The global losses of life and property from the floods, landslides and debris flows caused by cyclonic storms are staggering. One of the keys to reducing these losses, both in the U.S. and internationally, is to have better forecasts of what is about to happen from several hours to days before the event. Particularly in developing nations where science, technology and communication are limited, advance-warning systems can have great impact. In developing countries, warnings of even a few hours or days can mitigate or reduce catastrophic losses of life. With the foregoing needs in mind, we propose an initial project of three years total duration that will aim to develop and transfer a warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispanola. The Hurricane-Flood-Landslide Continuum will include satellite observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict near-future runoff, and streamflow changes in affected regions, and landslide models to warn when and where landslides and debris flows are imminent. Since surface communications are likely to be interrupted during these crises, the project also includes the capability to communicate disaster information via satellite to vital government officials in Puerto Rico, Haiti, and Dominican Republic.

  10. 77 FR 32877 - National Hurricane Preparedness Week, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Hurricane Preparedness Week, 2012 By the President of the United States of America A Proclamation Every year... tornadoes. During National Hurricane Preparedness Week, we rededicate ourselves to preventing loss of life... informed public. This week, I encourage all Americans living in areas that could be impacted by a hurricane...

  11. Female hurricanes are deadlier than male hurricanes.

    PubMed

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  12. Female hurricanes are deadlier than male hurricanes

    PubMed Central

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M.

    2014-01-01

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents’ preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  13. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  14. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon.

    PubMed

    Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D

    2011-11-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.

  15. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    PubMed

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  16. Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area

    PubMed Central

    Sinigalliano, C. D.; Gidley, M. L.; Shibata, T.; Whitman, D.; Dixon, T. H.; Laws, E.; Hou, A.; Bachoon, D.; Brand, L.; Amaral-Zettler, L.; Gast, R. J.; Steward, G. F.; Nigro, O. D.; Fujioka, R.; Betancourt, W. Q.; Vithanage, G.; Mathews, J.; Fleming, L. E.; Solo-Gabriele, H. M.

    2007-01-01

    Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters. PMID:17488814

  17. [Hurricane impact on Thalassia testudinum (Hydrocharitaceae) beds in the Mexican Caribbean].

    PubMed

    Arellano-Méndez, Leonardo U; Liceaga-Correa, María de los Angeles; Herrera-Silveira, Jorge A; Hernández-Núñez, Héctor

    2011-03-01

    Hurricanes have increased in strength and frequency as a result of global climate change. This research was conducted to study the spatio-temporal distribution and changes of Thalassia testudinum, the dominant species in Bahia de la Ascension (Quintana Roo, Mexico), when affected by heavy weather conditions. To complete this objective, a 2001 Landsat ETM+ image and the information from 525 sampling stations on morpho-functional and coverage of T. testudinum were used, and the seeds generated for the classification of eight benthic habitats. To quantify the changes caused by two hurricanes, we used two images, one of 1988 (Gilberto) and another of 1995 (Roxanne); other three data sets (2003, 2005 and 2007) were also used to describe the study area without major weather effects. Six categorial maps were obtained and subjected to analysis by 8 Landscape Ecology indexes, that describe the spatial characteristics, structure, function, change of the elements (matrix-patch-corridor), effects on ecosystems, connectivity, edges, shape and patch habitat fragmentation. Models indicate that T. testudinum may be classified as a continuum (matrix), since the fragments were not observed intermittently, but as a progression from minimum to maximum areas in reference to their coverage (ecological corridors). The fragments do not have a regular shape, indicating that the impacts are recent and may be due to direct effects (high-intensity hurricanes) or indirect (sediment). Fragments of type "bare soils" have a discontinuous distribution, and are considered to be the sites that have remained stable over a long timescale. While more dense coverage areas ("beds", "medium prairie" and "prairie") have low fragmentation and high connection of fragments. Features have an irregular perimeter and radial growth of formal; suggesting that the impact of meteors has no effect on the resilience of T. testudinum in this ecosystem, indicating good environmental quality to grow in this bay.

  18. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  19. Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina

    Treesearch

    Zhaohua Dai; Carl C. Trettin; Changsheng Li; Ge Sun; Devendra M. Amatya; Harbin Li

    2013-01-01

    The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest-DNDC...

  20. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  2. Climate Prediction Center - Monitoring Atlantic Hurricane Potential

    Science.gov Websites

    Organization Search Go Search the CPC Go About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team USA.gov is the U.S. Government's official Web portal to all Federal, state and local government Web resources and services. HOME > Monitoring and Data > Monitoring Atlantic Hurricane Potential

  3. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    PubMed

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  4. Impact of a major hurricane on surgical services in a university hospital.

    PubMed

    Norcross, E D; Elliott, B M; Adams, D B; Crawford, F A

    1993-01-01

    Hurricane Hugo struck Charleston, South Carolina, on September 21, 1989. This report analyzes the impact this storm had upon surgical care at a university medical center. Although disaster planning began on September 17, hurricane damage by high winds and an 8.7-foot tidal surge led to loss of emergency power and water. Consequently, system failures occurred in air conditioning, vacuum suction, steam and ethylene oxide sterilization, plumbing, central paging, lighting, and refrigeration. The following surgical support services were affected. In the blood bank, lack of refrigeration meant no platelet packs for 2 days. In radiology, loss of electrical power damaged CT/MRI scanners and flooding ruined patient files, resulting in lost information. In the intensive care unit, loss of electricity meant no monitors and hand ventilation was used for 4 hours. In the operating room, lack of temperature and humidity control (steam, water, and suction supply) halted elective surgery until October 2. Ground and air transportation were limited by unsafe landing sites, impassable roads, and personnel exhaustion. Surgical planning for a major hurricane should include: 1) a fail-safe source of electrical power, 2) evacuation of as many critically ill patients as possible before the storm, 3) cancellation of all elective surgery, and 4) augmented ancillary service staffing with some, although limited, physician support.

  5. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from Southern Louisiana

    USGS Publications Warehouse

    Morton, R.A.; Barras, J.A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water. ?? Coastal Education & Research Foundation 2011.

  6. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    USGS Publications Warehouse

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  7. The trauma signature of 2016 Hurricane Matthew and the psychosocial impact on Haiti

    PubMed Central

    Shultz, James M.; Cela, Toni; Marcelin, Louis Herns; Espinola, Maria; Heitmann, Ilva; Sanchez, Claudia; Jean Pierre, Arielle; Foo, Cheryl YunnShee; Thompson, Kip; Klotzbach, Philip; Espinel, Zelde; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT Background. Hurricane Matthew was the most powerful tropical cyclone of the 2016 Atlantic Basin season, bringing severe impacts to multiple nations including direct landfalls in Cuba, Haiti, Bahamas, and the United States. However, Haiti experienced the greatest loss of life and population disruption. Methods. An established trauma signature (TSIG) methodology was used to examine the psychological consequences of Hurricane Matthew in relation to the distinguishing features of this event. TSIG analyses described the exposures of Haitian citizens to the unique constellation of hazards associated with this tropical cyclone. A hazard profile, a matrix of psychological stressors, and a “trauma signature” summary for the affected population of Haiti - in terms of exposures to hazard, loss, and change - were created specifically for this natural ecological disaster. Results. Hazard characteristics of this event included: deluging rains that triggered mudslides along steep, deforested terrain; battering hurricane winds (Category 4 winds in the “eye-wall” at landfall) that dismantled the built environment and launched projectile debris; flooding “storm surge” that moved ashore and submerged villages on the Tiburon peninsula; and pummeling wave action that destroyed infrastructure along the coastline. Many coastal residents were left defenseless to face the ravages of the storm. Hurricane Matthew's slow forward progress as it remained over super-heated ocean waters added to the duration and degree of the devastation. Added to the havoc of the storm itself, the risks for infectious disease spread, particularly in relation to ongoing epidemics of cholera and Zika, were exacerbated. Conclusions. Hurricane Matthew was a ferocious tropical cyclone whose meteorological characteristics amplified the system's destructive force during the storm's encounter with Haiti, leading to significant mortality, injury, and psychological trauma. PMID:28321360

  8. Impact of Targeted Ocean Observations for Improving Ocean Model Initialization for Coupled Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.

    2012-12-01

    The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater

  9. Hurricane Gustav: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  10. Hurricanes

    MedlinePlus

    A hurricane is a severe type of tropical storm. Hurricanes produce high winds, heavy rains and thunderstorms. ... exceed 155 miles per hour. Hurricanes and tropical storms can also spawn tornadoes and lead to flooding. ...

  11. U.S. Congress Considers Hurricane Research Bills

    NASA Astrophysics Data System (ADS)

    Von Holle, Kate

    2007-07-01

    Legislation currently being considered by both the U.S. House and Senate would create a National Hurricane Research Initiative. The legislation was developed in response to a January 2007 U.S. National Science Board report,"Hurricane warning: The critical need for a National Hurricane Research Initiative." Both bills require the hurricane research initiative to set objectives in order to make recommendations to the National Science Board and to assemble U.S. science and engineering expertise through an interagency effort designed to bring together the latest research focusing on infrastructure, forecasting, and mitigating impacts on coastal populations. The bills also require the initiative to set objectives for making grants for hurricane research on a variety of topics, ranging from hurricane dynamics to improving emergency communications networks. Coordination of the interagency effort would fall under the jurisdiction of the White House Office of Science and Technology Policy.

  12. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.

  13. Hurricane Sandy Economic Impacts Assessment: A Computable General Equilibrium Approach and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo; Edwards, Brian Keith

    Economists use computable general equilibrium (CGE) models to assess how economies react and self-organize after changes in policies, technology, and other exogenous shocks. CGE models are equation-based, empirically calibrated, and inspired by Neoclassical economic theory. The focus of this work was to validate the National Infrastructure Simulation and Analysis Center (NISAC) CGE model and apply it to the problem of assessing the economic impacts of severe events. We used the 2012 Hurricane Sandy event as our validation case. In particular, this work first introduces the model and then describes the validation approach and the empirical data available for studying themore » event of focus. Shocks to the model are then formalized and applied. Finally, model results and limitations are presented and discussed, pointing out both the model degree of accuracy and the assessed total damage caused by Hurricane Sandy.« less

  14. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level

    NASA Astrophysics Data System (ADS)

    Ezer, Tal; Atkinson, Larry P.; Tuleya, Robert

    2017-12-01

    In October 7-9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm's winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm's area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s-1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s-1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.

  15. Land loss due to recent hurricanes in coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Barras, John A.; Brock, John C.

    2013-01-01

    The aim of this study is to improve estimates of wetland land loss in two study regions of coastal Louisiana, U.S.A., due to the extreme storms that impacted the region between 2004 and 2009. The estimates are based on change-detection-mapping analysis that incorporates pre and postlandfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional-water classifications using a combination of high-resolution (<5 m) QuickBird, IKONOS, and GeoEye-1, and medium-resolution (30 m) Landsat Thematic Mapper satellite imagery. This process was applied in two study areas: the Hackberry area located in the southwestern part of chenier plain that was impacted by Hurricanes Rita (September 24, 2005) and Ike (September 13, 2008), and the Delacroix area located in the eastern delta plain that was impacted by Hurricanes Katrina (August 29, 2005) and Gustav (September 1, 2008). In both areas, effects of the hurricanes include enlargement of existing bodies of open water and erosion of fringing marsh areas. Surge-removed marsh was easily identified in stable marshes but was difficult to identify in degraded or flooded marshes. Persistent land loss in the Hackberry area due to Hurricane Rita was approximately 5.8% and increased by an additional 7.9% due to Hurricane Ike, although this additional area may yet recover. About 80% of the Hackberry study area remained unchanged since 2003. In the Delacroix area, persistent land loss due to Hurricane Katrina measured approximately 4.9% of the study area, while Hurricane Gustav caused minimal impact of 0.6% land loss by November 2009. Continued recovery in this area may further erase Hurricane Gustav's impact in the absence of new storm events.

  16. Impact of hurricane Isaac on recovery of saltmarshes affected by the BP oil spill in Barataria Bay in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Haverkamp, P. J.; Santos, M. J.; Shapiro, K.; Lay, M.; Koltunov, A.; Ustin, S.

    2013-12-01

    Saltmarshes of the Gulf of Mexico have a long history of being impacted by oil spills. The Deep Water Horizon BP Oil spill was the biggest spill in US history. Its effects are still noticeable on these coastal wetlands. While it is expected that over time these ecosystems will recover from oil spill impacts, disturbances can alter the pathway to recovery. In August 2012, hurricane Isaac traced the same path as the 2010 oil spill. We questioned whether the hurricane had a detrimental effect on the recovery of wetland communities previously affected by the oil spill. We analyzed AVIRIS hyperspectral imagery acquired over Bay Jimmy in Barataria Bay in September of 2010, in August of 2011, and after hurricane Isaac in October of 2012. We estimated oil and hurricane impact extent, and effects on plant stress based on change detection and trajectories of narrow band vegetation indexes. In September 2010, the oil impact extended 14m inland from the shore. Four plant stress indexes (NDVI, mNDVI, ANIR, ARed) and three water content indexes (NDII, WA980, WA1240) consistently showed that plant stress was significantly negatively correlated with distance from the shore. A year after the oil spill, in August 2011, we found that the vegetation was regenerating rapidly in more than 80% of the affected area. However, after hurricane Isaac, in October 2012, 24% of the 14-m green vegetation belt next to the shore disappeared under water in regions previously impacted by oil and 21% of the oil-free shoreline also lost its land to water. In the first 7 m adjacent to the shore, 38.5% of the land disappeared in oil-impacted zones and 32% in the oil-free zones. These results suggest that post-oil disturbance events can delay vegetation recovery in an already fragile wetland community.

  17. Impact of vegetation on the hydrodynamics and morphological changes of the Wax Lake Delta during hurricanes

    NASA Astrophysics Data System (ADS)

    Xing, F.; Kettner, A. J.; Syvitski, J. P.; Ye, Q.; Bevington, A.; Twilley, R.; Atkinson, J. H.

    2013-12-01

    Coastal wetlands are natural barriers for storms, but have become more vulnerable especially when considering sea level rise and intensification of hurricanes due to global climate change. We use the numerical model Delft3D, which incorporates a newly developed vegetation routine to analyze the impact of natural vegetation on the morphological changes of coastal wetlands. The vegetation routine takes into account: 1) the influence of vertically oriented stems of plants as well as horizontally oriented stems (bent or broken but still attached to the belowground roots and rhizomes) on the flow turbulence as well as flow momentum, and 2) the influence of plant roots on the submerged soil strength. The model is applied to the Wax Lake Delta, a river-dominated delta that is part of the larger Mississippi River Delta system, during extreme events (hurricane Katrina and Rita (2005)). Hydrodynamic components as well as waves and salinity are included in the Delft3D model simulation. Results reveal that the submerged aboveground plant stems significantly decrease flow velocity and protect the wetland from erosion. When flow velocity exceeds a critical value, plant stems start to orient horizontally and lie on the bed, which changes the 3D vertical flow structure to free water condition (log profile), and also increases the bed roughness on the wetlands. Roots help to increase the soil strength, reducing erosion of the wetlands. However, roots can also intensify erosion if they got pulled out of the soil during storm events. Typically the whole root system of plants will be pulled out together, leading to a mat of soil that is eroded. This process has been observed for some parts of the Mississippi Delta during severe hurricanes like hurricane Katrina. Storm surges generated by hurricanes can push a large amount of saline water into the freshwater wetlands. The high salinity water increases flocculation and therefore sedimentation. Overall, plants have a complex impact on

  18. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    NASA Astrophysics Data System (ADS)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  19. Impacts of land cover changes on hurricane storm surge in the lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Denton, M.; Lawler, S.; Ferreira, C.

    2013-12-01

    The Chesapeake Bay is the largest estuary in the United States with more than 150 rivers draining into the bay's tidal wetlands. Coastal wetlands and vegetation play an important role in shaping the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge. In this way coastal wetlands act as a natural barrier to inland flooding, particularly against less intense storms. Threats to wetlands come from both land development (residential or commercial/industrial) and sea level rise. The lower region of the Chesapeake Bay near its outlet is especially vulnerable to flooding from Atlantic storm surge brought in by hurricanes, tropical storms and nor'easters (e.g., hurricanes Isabel [2003] and Sandy [2012]). This region is also intensely developed with nearly 1.7 million residents within the greater Hampton Roads metropolitan area. Anthropogenic changes to land cover in the lower bay can directly impact basin drainage and storm surge propagation with impacts reaching beyond the immediate coastal zone to affect flooding in inland areas. While construction of seawall barriers around population centers may provide storm surge protection to a specifically defined area, these barriers deflect storm surge rather than attenuate it, underscoring the importance of wetlands. To analyze these impacts a framework was developed combining numerical simulations with a detailed hydrodynamic characterization of flow through coastal wetland areas. Storm surges were calculated using a hydrodynamic model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using the FEMA region 3 unstructured mesh (2.3 million nodes) under a High Performance Computing (HPC) environment. Multiple model simulations were performed using historical hurricanes data and hypothetical storms to compare the predicted storm surge inundation with various levels of wetland reduction and/or beach hardening. These data were combined and overlaid

  20. Climate Prediction Center - Monitoring East Pacific Hurricane Potential

    Science.gov Websites

    Organization Search Go Search the CPC Go About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team USA.gov is the U.S. Government's official Web portal to all Federal, state and local government Web resources and services. HOME > Monitoring and Data > Monitoring East Pacific Hurricane

  1. Impact of hurricanes katrina and rita on the anesthesiology workforce.

    PubMed

    Hutson, Larry R; Vega, Jorge; Schubert, Armin

    2011-01-01

    Hurricanes Katrina and Rita impacted a large portion of the medical community in Louisiana. We attempt to determine their impact on the anesthesiology workforce in Louisiana. In May 2006, a survey was mailed to 368 Louisiana anesthesiologists, collecting demographic data, retirement plans, impact of Hurricanes Katrina and Rita, position vacancies, practice conditions, and the general state of healthcare in their area. All 3 anesthesiology residency programs in the state were contacted regarding their recent graduates. The 2010 RAND survey of the anesthesiology workforce was reviewed with respect to findings relevant to the state and region. One hundred seventy surveys were returned, yielding a 46.2% response rate. Among the respondents, 13.9% intended to retire within 5 years and another 24% in 5 to 10 years. Since 2005, 63.9% had seen an increase in their daily caseload, 46.9% saw an increase in work hours, and 36.8% stated that their practices were trying to hire new anesthesiologists and were having difficulty filling these positions. Since 2005, the number of anesthesiology residents in Louisiana had declined by almost 50%, and the number of graduates remaining to practice in Louisiana had decreased by 43% from 7 to 4 annually. Our 2006 survey provided qualitative evidence for a shortage of anesthesiologists in the state of Louisiana after the natural disasters in 2005 that was likely to worsen as residency output plummeted, fewer residents stayed in the state, and projected retirement increased. The regional data from the RAND survey a year later confirmed the impressions from our survey, with an estimate of an anesthesiologist shortage as high as 39% of the workforce. State membership surveys may serve as accurate barometers in the wake of major environmental upheavals affecting regional anesthesiology workforce conditions.

  2. Hurricane Safety and Information - Central Pacific Hurricane Center -

    Science.gov Websites

    NOAA NWS United States Department of Commerce Central Pacific Hurricane Center National Oceanic and Distance Calculator Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Search For Go NWS All NOAA ▾ Hurricane Safety Hurricane Awareness Week Information from CPHC Red Cross

  3. How Is Solar PV Performing in Hurricane-struck Locations? | State, Local,

    Science.gov Websites

    and Tribal Governments | NREL How Is Solar PV Performing in Hurricane-struck Locations? How Is Solar PV Performing in Hurricane-struck Locations? October 24, 2017 by Eliza Hotchkiss The ongoing 2017 the surface about how solar photovoltaic (PV) systems have fared in the various locations. It's been

  4. A Coordinated USGS Science Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  5. Hurricane Ida

    Atmospheric Science Data Center

    2013-04-18

    article title:  Hurricane Ida Cross-Track Winds       ... (MISR) instrument on NASA's Terra satellite passed over Hurricane Ida while it was situated between western Cuba and the Yucatan Peninsula. According to the National Hurricane Center, at 15:00 UTC, the hurricane had an estimated minimum central ...

  6. New York State Public Health System Response to Hurricane Sandy: Lessons From the Field.

    PubMed

    Shipp Hilts, Asante; Mack, Stephanie; Eidson, Millicent; Nguyen, Trang; Birkhead, Guthrie S

    2016-06-01

    The aim of this study was to conduct interviews with public health staff who responded to Hurricane Sandy and to analyze their feedback to assess response strengths and challenges and recommend improvements for future disaster preparedness and response. Qualitative analysis was conducted of information from individual confidential interviews with 35 staff from 3 local health departments in New York State (NYS) impacted by Hurricane Sandy and the NYS Department of Health. Staff were asked about their experiences during Hurricane Sandy and their recommendations for improvements. Open coding was used to analyze interview transcripts for reoccurring themes, which were labeled as strengths, challenges, or recommendations and then categorized into public health preparedness capabilities. The most commonly cited strengths, challenges, and recommendations related to the Hurricane Sandy public health response in NYS were within the emergency operations coordination preparedness capability, which includes the abilities of health department staff to partner among government agencies, coordinate with emergency operation centers, conduct routine conference calls with partners, and manage resources. Health departments should ensure that emergency planning includes protocols to coordinate backup staffing, delineation of services that can be halted during disasters, clear guidelines to coordinate resources across agencies, and training for transitioning into unfamiliar disaster response roles. (Disaster Med Public Health Preparedness. 2016;10:443-453).

  7. Metal concentrations in schoolyard soils from New Orleans, Louisiana before and after Hurricanes Katrina and Rita.

    PubMed

    Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P

    2010-06-01

    The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted. 2010 Elsevier Ltd. All rights reserved.

  8. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  9. Hurricane Alex

    Atmospheric Science Data Center

    2013-04-19

    article title:  Hurricane Alex Disrupts Gulf Cleanup     View Larger Image This view of Hurricane Alex in the western Gulf of Mexico was acquired by the Multi-angle ... Time on June 30, 2010. Around this time NOAA's National Hurricane Center reported Alex to be a strengthening Category 1 hurricane with ...

  10. Short-term impacts of Hurricanes Irma and Maria on tropical stream chemistry as measured by in-situ sensors

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.; Potter, J.; López-Lloreda, C.

    2017-12-01

    High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways

  11. Assessment of reportable disease incidence after Hurricane Sandy, New York City, 2012.

    PubMed

    Greene, Sharon K; Wilson, Elisha L; Konty, Kevin J; Fine, Annie D

    2013-10-01

    Hurricane Sandy's October 29, 2012 arrival in New York City caused flooding, power disruption, and population displacement. Infectious disease risk may have been affected by floodwater exposure, residence in emergency shelters, overcrowding, and lack of refrigeration or heating. For 42 reportable diseases that could have been affected by hurricane-related exposures, we developed methods to assess whether hurricane-affected areas had higher disease incidence than other areas of NYC. We identified post-hurricane cases as confirmed, probable, or suspected cases with onset or diagnosis between October 30 and November 26 that were reported via routine passive surveillance. Pre-hurricane cases for the same 4-week period were identified in 5 prior years, 2007-2011. Cases were geocoded to the census tract of residence. Using data compiled by the NYC Office of Emergency Management, we determined (1) the proportion of the population in each census tract living in a flooded block and (2) the subset of flooded tracts severely "impacted", e.g., by prolonged service outages or physical damage. A separate multivariable regression model was constructed for each disease, modeling the outcome of case counts using a negative binomial distribution. Independent variables were: neighborhood poverty; whether cases were pre- or post-hurricane (time); the proportion of the population flooded in impacted and not impacted tracts; and interaction terms between the flood/impact variables and time. Models used repeated measures to adjust for correlated observations from the same tract and an offset term of the log of the population size. Sensitivity analyses assessed the effects of case count fluctuations and accounted for variations in reporting volume by using an offset term of the log of total cases. Only legionellosis was statistically significantly associated with increased occurrence in flooded/impacted areas post-hurricane, adjusting for baseline differences (P = .04). However, there was

  12. Hurricane Watch

    NASA Astrophysics Data System (ADS)

    Hobgood, Jay S.

    Hurricanes, the strongest form of tropical cyclones over the Atlantic Ocean, are among the most deadly and destructive natural hazards. Population growth along the eastern and southern coasts of the United States places millions of people who have never experienced a major hurricane in harm's way during each hurricane season. A successful evacuation requires accurate forecasts and public education about the hazards associated with these violent storms. Bob Heets and Jack Williams' Hurricane Watch informs readers without formal training in meteorology about hurricanes and the dangers they present. Although the authors make some references to tropical cyclones in other parts of the world, the book's primary focus is on hurricanes over the Atlantic Ocean.

  13. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  14. Hurricane Maria Puerto Rico Landsat Analysis

    DOE Data Explorer

    Feng, Yanlei; Chambers, Jeff [LBNL; Negron-Juarez, Robinson [LBNL; Patricola, Chris; Clinton, Nick; Uriarte, Maria; Hall, Jaz; Collins, William

    2018-01-01

    Hurricane Maria made landfall as a strong Category 4 storm in southeast Puerto Rico on September 20th, 2018. The powerful storm traversed the island in a northwesterly direction causing widespread destruction. This study focused on a rapid assessment of Hurricane Marias impact to Puerto Ricos forests. Calibrated and corrected Landsat 8 image composites for the entire island were generated using Google Earth Engine for a comparable pre-Maria and post-Maria time period that accounted for phenology. Spectral mixture analysis (SMA) using image-derived end members was carried out on both composites to calculate the change in the non-photosynthetic vegetation (Delta-NPV) spectral response, a metric that quantifies the increased fraction of exposed wood and surface litter associated with tree mortality and crown damage from the storm. Hurricane simulations were also conducted using the Weather Research and Forecasting (WRF) regional climate model to estimate wind speeds associated with forest disturbance. Dramatic changes in forest structure across the entire island were evident from pre- and post-Maria composited Landsat 8 images. A Delta-NPV map for only the forested pixels illustrated significant spatial variability in disturbance, with patterns that associated with factors such as slope, aspect and elevation. An initial order-of-magnitude impact estimate based on previous work indicated that Hurricane Maria may have caused mortality and severe damage to 23-31 million trees. Additional field work and image analyses are required to further detail the impact of Hurricane Maria to Puerto Rico forests. A minor update to this dataset was posted on April 20, 2018. The previous version is being retired. If you need access to the prior version of the data, email ngee-tropics-archive@lbl.gov.

  15. Maternal posttraumatic stress disorder symptom trajectories following Hurricane Katrina: An initial examination of the impact of maternal trajectories on the well-being of disaster-exposed youth.

    PubMed

    Self-Brown, Shannon; Lai, Betty S; Harbin, Shannon; Kelley, Mary Lou

    2014-12-01

    This study examined trajectories of posttraumatic stress disorder symptoms in impoverished mothers impacted by Hurricane Katrina, as well as how predictive the maternal trajectories were for youth posttraumatic stress symptoms 2 years post-Katrina. 360 mother participants displaced by Hurricane Katrina completed self-report measures across four time points related to Hurricane exposure, trauma history, and posttraumatic stress symptoms. Additionally, the youth offspring completed a self-report measure of posttraumatic stress symptoms. Latent Class Growth Analysis demonstrated three primary trajectories emerged among females impacted by Katrina, namely, (1) chronic (4 %), (2) recovering (30 %), and (3) resilient (66 %), respectively. These trajectories were significantly impacted by prior trauma history, but not hurricane exposure. Additionally, data indicated that children whose parents fell into the chronic PTS trajectory also reported high levels of PTS symptoms. This study identified three main trajectories typical of female PTS symptoms following disaster and was the first known study to document associations between PTS outcomes among adults and their offspring impacted by a large natural disaster. Future research is warranted and should explore additional risk and protective factors that impact both the parental and child outcomes.

  16. Hydrologic and biogeochemical impacts of a period of elevated hurricane activity on the Pamlico Sound system, NC: The challenges for nutrient and habitat management

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hall, N. S.; Rossignol, K. L.; Wetz, M. S.

    2008-12-01

    Since the mid-1990's, US Coastal regions have experienced a sudden rise in hurricane and tropical storm landfalls; this elevated frequency is expected to continue for the next several decades. The North Carolina coast has been impacted by at least eight hurricanes and six tropical storms during this time. Each of these storms exhibited unique hydrologic and nutrient loading scenarios. This variability represents a formidable challenge to management of eutrophication and fisheries habitats of the Pamlico Sound system, the US's largest lagoonal ecosystem and a key fisheries resource. Different rainfall amounts among hurricanes led to variable freshwater and nutrient discharge and hence variable nutrient, organic matter, and sediment enrichment. These enrichments differentially affected physical-chemical properties (salinity, water residence time, transparency, stratification, dissolved oxygen), phytoplankton community production and composition. The contrasting effects were accompanied by biogeochemical perturbations (hypoxia, enhanced nutrient cycling), habitat alterations, and food web disturbances. Floodwaters from the two largest hurricanes, Fran (1996) and Floyd (1999), exerted multi-month to multi-annual hydrologic and biogeochemical effects. In contrast, relatively low rainfall coastal hurricanes like Isabel (2003) and Ophelia (2005) caused strong vertical mixing and storm surges, but relatively minor hydrologic, nutrient, and biotic impacts. Both hydrologic and wind forcing are important drivers and must be integrated with nutrient loading in assessing short- and long- term ecological impacts of these storms. These climatic forcings cannot be managed but must be considered when developing water quality and habitat management strategies for these and other large estuarine ecosystems faced with increasing frequencies and intensities of hurricanes.

  17. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  18. Hurricane Patricia

    NASA Image and Video Library

    2017-12-08

    Composite image of category 5 Hurricane Patricia, off the Pacific coast of Mexico, from 06:00 UTC on Friday, 23 October 2015. At 8 a.m. EDT on October 23, 2015, the National Hurricane Center said that Hurricane Patricia had grown into a monster hurricane. In fact, it is the strongest eastern north pacific hurricane on record. At 8 a.m. EDT (1200 UTC) on Oct. 23, the eye of Hurricane Patricia was located near latitude 17.3 North, longitude 105.6 West. That's about 145 miles (235 km) southwest of Manzanillo, Mexico and about 215 miles (345 km) south of Cabo Corrientes, Mexico. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, October 23, 2015 during the afternoon or evening. Maximum sustained winds remain near 200 mph (325 kph) with higher gusts. The National Hurricane Center (NHC) said that Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some fluctuations in intensity are possible today, but Patricia is expected to remain an extremely dangerous category 5 hurricane through landfall. Hurricane force winds extend outward up to 30 miles (45 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km). The estimated minimum central pressure is 880 millibars. Copyright: 2015 EUMETSAT. Infrared data from the geostationary satellites of EUMETSAT and NOAA overlays a computer-generated model of the Earth, containing NASA's Blue Marble Next Generation imagery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission

  19. Hurricane Patricia

    NASA Image and Video Library

    2017-12-08

    This full-disk image from NOAA’s GOES-13 satellite was captured at 14:45 UTC (10:45 a.m. EDT) and shows Hurricane Patricia off the coast of Mexico on September 23, 2015. At 8 a.m. EDT on October 23, 2015, the National Hurricane Center said that Hurricane Patricia had grown into a monster hurricane. In fact, it is the strongest eastern north pacific hurricane on record. At 8 a.m. EDT (1200 UTC) on Oct. 23, the eye of Hurricane Patricia was located near latitude 17.3 North, longitude 105.6 West. That's about 145 miles (235 km) southwest of Manzanillo, Mexico and about 215 miles (345 km) south of Cabo Corrientes, Mexico. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, October 23, 2015 during the afternoon or evening. Maximum sustained winds remain near 200 mph (325 kph) with higher gusts. The National Hurricane Center (NHC) said that Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some fluctuations in intensity are possible today, but Patricia is expected to remain an extremely dangerous category 5 hurricane through landfall. Hurricane force winds extend outward up to 30 miles (45 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km). The estimated minimum central pressure is 880 millibars. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  1. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  2. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  3. Spatial ecology of Puerto Rican boas (Epicrates inornatus) in a hurricane impacted forest

    Treesearch

    Joseph M. Wunderle; Javier E. Mercado; Bernard Parresol; Esteban Terranova

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily...

  4. Hospitalization rates among dialysis patients during Hurricane Katrina.

    PubMed

    Howard, David; Zhang, Rebecca; Huang, Yijian; Kutner, Nancy

    2012-08-01

    Dialysis centers struggled to maintain continuity of care for dialysis patients during and immediately following Hurricane Katrina's landfall on the US Gulf Coast in August 2005. However, the impact on patient health and service use is unclear. The impact of Hurricane Katrina on hospitalization rates among dialysis patients was estimated. Data from the United States Renal Data System were used to identify patients receiving dialysis from January 1, 2001 through August 29, 2005 at clinics that experienced service disruptions during Hurricane Katrina. A repeated events duration model was used with a time-varying Hurricane Katrina indicator to estimate trends in hospitalization rates. Trends were estimated separately by cause: surgical hospitalizations, medical, non-renal-related hospitalizations, and renal-related hospitalizations. The rate ratio for all-cause hospitalization associated with the time-varying Hurricane Katrina indicator was 1.16 (95% CI, 1.05-1.29; P = .004). The ratios for cause-specific hospitalization were: surgery, 0.84 (95% CI, 0.68-1.04; P = .11); renal-related admissions, 2.53 (95% CI, 2.09-3.06); P < .001), and medical non-renal related, 1.04 (95% CI, 0.89-1.20; P = .63). The estimated number of excess renal-related hospital admissions attributable to Katrina was 140, representing approximately three percent of dialysis patients at the affected clinics. Hospitalization rates among dialysis patients increased in the month following the Hurricane Katrina landfall, suggesting that providers and patients were not adequately prepared for large-scale disasters.

  5. Mangroves, hurricanes, and lightning strikes: Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance

    USGS Publications Warehouse

    Smith, Thomas J.; Robblee, Michael B.; Wanless, Harold R.; Doyle, Thomas W.

    1994-01-01

    The track of Hurricane Andrew carried it across one of the most extensive mangrove for ests in the New World. Although it is well known that hurricanes affect mangrove forests, surprisingly little quantitative information exists concerning hurricane impact on forest structure, succession, species composition, and dynamics of mangrove-dependent fauna or on rates of eco-system recovery (see Craighead and Gilbert 1962, Roth 1992, Smith 1992, Smith and Duke 1987, Stoddart 1969).After Hurricane Andrew's passage across south Florida, we assessed the environmental damage to the natural resources of the Everglades and Biscayne National Parks. Quantitative data collected during subsequent field trips (October 1992 to July 1993) are also provided. We present measurements of initial tree mortality by species and size class, estimates of delayed (or continuing) tree mortality, and observations of geomorphological changes along the coast and in the forests that could influence the course of forest recovery. We discuss a potential interaction across two differing scales of disturbance within mangrove forest systems: hurricanes and lightning strikes.

  6. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Treesearch

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  7. The Impact of Microphysics on Intensity and Structure of Hurricanes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa

    2006-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.

  8. What's a Lab to Do During and After a Hurricane?

    PubMed

    Rodriguez, Fred; Selvaratnam, Rajeevan; Mann, Peggy; Kalariya, Rina; Petersen, John R

    2018-03-21

    Although laboratories may be able to rely on a comprehensive Hurricane Plan during a hurricane, alarming and unanticipated events frequently occur. To minimize disruption of lab operations, it is important to try to mitigate the impact of these unexpected events as quickly as possible, in the quest to minimize negative outcomes. In this article, we discuss approaches to dealing with unanticipated events during and after hurricanes, based on our personal experiences.

  9. Hurricane risk management and climate information gatekeeping in southeast Florida

    NASA Astrophysics Data System (ADS)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  10. Hurricane Katrina Impact on Water Quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Shim, M.; Guo, L.; Bianchi, T. S.; Smith, R. W.; Duan, S.

    2010-12-01

    Hurricanes and other intense storms have previously been reported to cause short term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to watershed resulted in significant longer term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized property-property plots as well as empirical relationships to compare pre- and post-storm water quality. Based on the variability of our empirical relationships, we estimate that to within 20%, the hurricane-induced vegetative destruction within this river basin has not changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. Nor has the quality of the DOC, as inferred from lignin-phenol analysis and the Fe-DOC relationship, been significantly changed either. This may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long-term water quality changes might be expected.

  11. Hurricane Lilli

    Atmospheric Science Data Center

    2014-05-15

    article title:  Hurricane Lili Heads for Louisiana Landfall     ... Image Characteristics of a strengthening Category 3 Hurricane Lili are apparent in these images from the Multi-angle Imaging ... (MISR), including a well-developed clearing at the hurricane eye. When these views were acquired on October 2, 2002, Lili was ...

  12. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    PubMed

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  13. The Dirty Dozen: Twelve Failures of the Hurricane Katrina Response and How Psychology Can Help

    ERIC Educational Resources Information Center

    Gheytanchi, Anahita; Joseph, Lisa; Gierlach, Elaine; Kimpara, Satoko; Housley, Jennifer; Franco, Zeno E.; Beutler, Larry E.

    2007-01-01

    This comprehensive analysis addresses the United States' alarming lack of preparedness to respond effectively to a massive disaster as evidenced by Hurricane Katrina. First, a timeline of problematic response events during and after Hurricane Katrina orients readers to some of the specific problems encountered at different levels of government.…

  14. Hurricane plenty

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    If new predictions for above-average hurricane activity in 1997 materialize, the Atlantic Basin will have its most active 3-year hurricane span ever recorded. Colorado State University hurricane forecasters, led by professor William Gray, predict that 11 tropical storms will form in 1997, and that seven will be hurricanes—three of them intense. If the team's prediction unfolds, the period between 1995-1997 will be the most active 3-year period in the last 120 years of hurricane tracking—in contrast with 1991-1994, which was one of the calmest 4-year periods.

  15. Hurricane Isabel

    Atmospheric Science Data Center

    2013-04-19

    article title:  Aspects of Hurricane Isabel     View Larger Image Cloud-top radiance and height characteristics of Hurricane Isabel are depicted in these data products and animations from the ... Imaging SpectroRadiometer (MISR). Isabel was upgraded to hurricane status a few hours after the top image panels in this set were ...

  16. Hurricane Products

    Science.gov Websites

    HOME PAGE Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN NCEP Products Inventory Image of horizontal rule Hurricane Products Updated: 6/09/2015 Geophysical fluid dynamics laboratory Hurricane Model (GHM) Hurricane Weather Research and Forecast System (HWRF) * Products Information

  17. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    ERIC Educational Resources Information Center

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical…

  18. Production and Decomposition Rates of a Coastal Plain Forest Following the Impact of Hurrican Hugo

    Treesearch

    Joseph Fail

    1999-01-01

    Recovery of a coastal plain mixed hardwood-pine forest following the impact of Hurricane Hugo in 1989 was monitored for four years, 1991-1995. Eight 400 m2 plots were set in each of two treatment areas-an Unsalvaged and a Salvaged site. Wind-downed trees were kept on the site in the Unsalvaged Site and removed in the Salvaged Site. It was...

  19. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  20. Quantifying hurricane-induced coastal changes using topographic lidar

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Krabill, William; Swift, Robert; Brock, John

    2001-01-01

    USGS and NASA are investigating the impacts of hurricanes on the United States East and Gulf of Mexico coasts with the ultimate objective of improving predictive capabilities. The cornerstone of our effort is to use topographic lidar to acquire pre- and post-storm topography to quantify changes to beaches and dunes. With its rapidity of acquisition and very high density, lidar is revolutionizing the. quantification of storm-induced coastal change. Lidar surveys have been acquired for the East and Gulf coasts to serve as pre-storm baselines. Within a few days of a hurricane landfall anywhere within the study area, the impacted area will be resurveyed to detect changes. For example, during 1999, Hurricane Dennis impacted the northern North Carolina coast. Along a 70-km length of coast between Cape Hatteras and Oregon Inlet, there was large variability in the types of impacts including overwash, dune erosion, dune stability, and even accretion at the base of dunes. These types of impacts were arranged in coherent patterns that repeated along the coast over scales of tens of kilometers. Preliminary results suggest the variability is related to the influence of offshore shoals that induce longshore gradients in wave energy by wave refraction.

  1. Exploring Posttraumatic Growth in Children Impacted by Hurricane Katrina: Correlates of the Phenomenon and Developmental Considerations

    ERIC Educational Resources Information Center

    Kilmer, Ryan P.; Gil-Rivas, Virginia

    2010-01-01

    This study explored posttraumatic growth (PTG), positive change resulting from struggling with trauma, among 7- to 10-year-olds impacted by Hurricane Katrina. Analyses focused on child self-system functioning and cognitive processes, and the caregiving context, in predicting PTG at 2 time points (Time 1n = 66, Time 2n = 51). Findings suggest that…

  2. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  3. Hurricane Katrina impact on water quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang

    2012-01-01

    SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long

  4. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    NASA Astrophysics Data System (ADS)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  5. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    USGS Publications Warehouse

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  6. Hurricanes : get prepared !

    NASA Astrophysics Data System (ADS)

    Nauroy, Maëlle

    2013-04-01

    Living in France, near Paris, we have the chance not to be exposed to natural hazards. But on TV we can see, almost every year, geological disasters affecting people from all around the world. Sometimes it also affects us indirectly. For example, the Icelandic volcanic eruption of 2010 prevented some of my students to go on holidays because of the air travel disruption. Since then, every year, we study a natural disaster that has just made the headlines. This topic is of great interest for students because it is connected with their everyday life, with what they see on the news at that time. This year, they were amazed that a city as New York could be struck so violently by a hurricane. Understanding the formation of a hurricane and the consequences of such an event made them think about how to educate people and warn them in case of a hurricane. As a matter of fact, history teaches that a lack of hurricane awareness and preparation are common threads among all major hurricane disasters. By knowing the vulnerability and what actions people should take, it is possible to reduce the effects of a hurricane disaster. They designed posters, showing how a hurricane form, the risks and what to do in case of a hurricane alert. They used TV news broadcasts and educational videos as well as videos from the National Hurricane Center [of the United-States]. Later, they tried to model the formation of a hurricane and the consequences of storm surge, high winds and inland flooding on a coastal area. They filmed their experiments in order to create an interactive exhibition on hurricanes, to be displayed in the school library for other students.

  7. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970-2005.

    PubMed

    Logan, John R; Issar, Sukriti; Xu, Zengwang

    2016-10-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970-2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal-a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm's way while socially vulnerable groups have fewer choices.

  8. Impacts of a large array of offshore wind farms on precipitation during hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Archer, C. L.

    2017-12-01

    Hurricane Harvey brought to the Texas coast possibly the heaviest rain ever recorded in U.S. history, which then caused flooding at unprecedented levels. Previous studies have shown that large arrays of offshore wind farms can extract kinetic energy from a hurricane and thus reduce the wind and storm surge. This study will quantitatively test weather the offshore turbines may also affect precipitation patterns. The Weather Research Forecast model is employed to model Harvey and the offshore wind farms are parameterized as elevated drag and turbulence kinetic energy sources. The turbines (7.8 MW Enercon-126 with rotor diameter D=127 m) are placed along the coast of Texas and Louisiana within 100 km from the shore, where the water depth is below 200 meters. Three spacing between turbines are considered (with the number of turbines in parenthesis): 7D×7D (149,936), 9D×9D (84,339), and 11D×11D (56,226). A fourth case (9D×9D) with a smaller area and thus less turbines (33,363) is added to the simulations to emphasize the impacts of offshore turbines installed specifically to protect the city of Houston, which was flooded heavily during hurricane Harvey. The model is integrated for 24 hours from 00UTC Aug 26th, 2017 to 00UTC Aug 27th, 2017. Model results indicate that the offshore wind farms have a strong impact on the distribution of 24-hour accumulated precipitation, with an obvious decrease onshore, downstream of the wind farms, and an increase in the offshore areas, upstream of or within the wind farms. A sector covering the metro-Houston area is chosen to study the sensitivity of the four different wind farm layouts. The spatial-average 24-hour accumulated precipitation is decreased by 37%, 28%, 20% and 25% respectively for the four cases. Compared with the control case with no wind turbines, increased horizontal wind divergence and lower vertical velocity are found where the precipitation is reduced onshore, whereas increased horizontal wind convergence and

  9. Forecast calls for continued period of active hurricane seasons in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “I have been designated as a representative of Chicken Little to tell you the sky is falling with regard to hurricanes.” So said William Gray professor of atmospheric science at Colorado State University at a July 26 briefing on Capitol Hill. The briefing, sponsored by the Congressional Natural Hazards Caucus, the (U.S.) University Corporation for Atmospheric Research, and the American Meteorological Society highlighted a new report about the current active hurricane period in the North Atlantic, as well as funding needs for hurricane research. “It is amazing the threat we appear to be in for in the next two to three decades, and how little realization of this [there] is with the government and with the general public,” said Gray a long-time forecaster of seasonal hurricane activity and co-author of a July 19 article in Science, “The Recent Increase in Atlantic Hurricane Activity: Causes and Implications.”

  10. Impact of Hurricane Irma in the post-recovery of Matthew in South Carolina, the South Atlantic Bight (Western Atlantic)

    NASA Astrophysics Data System (ADS)

    Harris, M. S.; Levine, N. S.; Jaume, S. C.; Hendricks, J. K.; Rubin, N. D.; Hernandez, J. L.

    2017-12-01

    The impacts on the Southeastern United States (SEUS, Western Atlantic) from Hurricane Irma in Sept 2017 were felt primarily on the active coastline with the third highest inland storm surge in Charleston and Savannah since the 19th Century. Coastal geometry, waves, and wind duration had a strong influence on the storm surge and coastal erosion impacts regionally. To the North and immediate South, impacts were much less. A full year after the 2016 hurricane season (Hurricane Matthew), the lack of regional recovery reduced protection against Irma. The most devastating impacts of Irma in the SAB occurred from 300 to 500 km away from the eye, on the opposite side of the Floridian peninsula. As Irma devastated the Caribbean, winds started to increases off the SAB on September 8 in the early morning, continuing for the next 3 days and blowing directly towards the SC and GA coasts. Tide gauges started to respond the night of September 8, while waves started arriving in the SEUS around Sept 6. Coastal erosion pre- and post-Irma has been calculated for Central SC using vertical and oblique aerial photos. Citizen Science initiatives through the Charleston Resilience Network have provided on-the-ground data during storms when transportation infrastructures were closed, and allow for ground-truth post-storm of surge and impacts. Said information was collected through Facebook, Google, and other social media. Pictures with timestamps and water heights were collected and are validating inundation flood maps generated for the Charleston SC region. The maps have 1-m horizontal and 7- to 15-cm vertical accuracy. Inundation surfaces were generated at MHHW up to a maximum surge in 6 inch increments. The flood extents of the modeled surge and the photographic evidence show a high correspondence. Storm surge measurements from RTK-GPS provide regional coverage of surge elevations from the coast, inland, and allow for testing of modeled results and model tuning. With Hurricane Irma

  11. Initial estimates of hurricane Katrina impacts of Mississippi gulf coast forest resources

    Treesearch

    Patrick A. Glass; Sonja N. Oswalt

    2007-01-01

    Hurricane Katrina pummeled the Gulf Coast of Mississippi on August 29, 2005. The eye wall of the storm passed directly over Hancock and Pearl River Counties. Harrison, Jackson, Stone, and George Counties on the windward side of the hurricane's path sustained severe damage before the storm's strength dissipated as it moved farther inland (fig. 1).

  12. Hurricane tracking

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New hurricane forecasting that provides more accurate pictures of storms and their movement through the atmosphere could increase warning time and cut down on false alarms that cost millions of dollars in unnecessary evacuations, according to the National Oceanic and Atmospheric Administration (NOAA).NOAA's new Gulfstream-IV jet produced “the most complete and detailed portrait of a hurricane ever seen” when it flew near Hurricane Guillermo in a test-run last August, according to the agency. Since then, the plane — that can fly to the upper troposphere at an altitude of 13,716 m (45,000 ft) — has helped to dramatically improve the forecasts for Hurricanes Erika and Linda.

  13. Impact of exposure to community violence, Hurricane Katrina, and Hurricane Gustav on posttraumatic stress and depressive symptoms among school age children.

    PubMed

    Salloum, Alison; Carter, Paulette; Burch, Berre; Garfinkel, Abbe; Overstreet, Stacy

    2011-01-01

    This study examined the relationship between exposure to Hurricane Gustav and distress among 122 children (ages 7-12) to determine whether that relationship was moderated by prior experiences with Hurricane Katrina and exposure to community violence (ECV). Measures of hurricane experiences, ECV, posttraumatic stress (PTS) symptoms, and depression were administered. Assessments occurred after the third anniversary of Katrina, which coincided with the landfall of Gustav. Results indicated that the relation between exposure to Gustav and PTS was moderated by prior experiences. There was a positive association between Gustav exposure and PTS for children who experienced high Katrina exposure and low ECV, with a similar trend for children with high ECV and low Katrina exposure. There was no relationship between Gustav exposure and PTS for children with low Katrina and low ECV or for children with high Katrina and high ECV. The relationship between exposure to Gustav and depression was not moderated by children's prior experience. However, there was a relationship between Katrina exposure and depression for children with high ECV. Results suggest that prior trauma may amplify the relationship between hurricane exposure and distress, but children with high cumulative trauma may remain highly symptomatic regardless of disaster exposure.

  14. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  15. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    PubMed

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  16. Examining Hurricane Track Length and Stage Duration Since 1980

    NASA Astrophysics Data System (ADS)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  17. Morphodynamic Impacts of Hurricane Sandy on the Inner-shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Beaudoin, J. D.; DuVal, C.; Schmidt, V. E.; Mayer, L. A.

    2013-12-01

    Through the careful execution of precision high-resolution acoustic sonar surveys over the period of October 2012 through July 2013, we have obtained a unique set of high-resolution before and after storm measurements of seabed morphology and in situ hydrodynamic conditions (waves and currents) capturing the impact of the storm at an inner continental shelf field site known as the 'Redbird reef' (Raineault et al., 2013). Understanding the signature of this storm event is important for identifying the impacts of such events and for understanding the role that such events have in the transport of sediment and marine debris on the inner continental shelf. In order to understand and characterize the ripple dynamics and scour processes in an energetic, heterogeneous inner-shelf setting, a series of high-resolution geoacoustic surveys were conducted before and after Hurricane Sandy. Our overall goal is to improve our understanding of bedform dynamics and spatio-temporal length scales and defect densities through the application of a recently developed fingerprint algorithm technique (Skarke and Trembanis, 2011). Utilizing high-resolution swath sonar collected by an AUV and from surface vessel multibeam sonar, our study focuses both on bedforms in the vicinity of manmade seabed objects (e.g. shipwrecks and subway cars) and dynamic natural ripples on the inner-shelf in energetic coastal settings with application to critical military operations such as mine countermeasures. Seafloor mapping surveys were conducted both with a ship-mounted multibeam echosounder (200 kHz and 400 kHz) and an Autonomous Underwater Vehicle (AUV) configured with high-resolution side-scan sonar (900 and 1800 kHz) and a phase measuring bathymetric sonar (500 kHz). These geoacoustic surveys were further augmented with data collected by in situ instruments placed on the seabed that recorded measurements of waves and currents at the site before, during, and after the storm. Multibeam echosounder map of

  18. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    NASA Astrophysics Data System (ADS)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  19. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  20. Drag Coefficient and Foam in Hurricane Conditions.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  1. Hurricane Properties for KSC and Mid-Florida Coastal Sites

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Rawlins, Michael A.; Kross, Dennis A.

    2000-01-01

    Hurricane information and climatologies are needed at Kennedy Space Center (KSC) Florida for launch operational planning purposes during the late summer and early fall Atlantic hurricane season. Also these results are needed to be used in estimating the potential magnitudes of hurricane and tropical storm impact on coastal Florida sites when passing within 50, 100 and 400 nm of that site. Roll-backs of the Space Shuttle and other launch vehicles, on pad, are very costly when a tropical storm approaches. A decision for the vehicle to roll-back or ride-out needs to be made. Therefore the historical Atlantic basin hurricane climatological properties were generated to be used for operational planning purposes and in the estimation of potential damage to launch vehicles, supporting equipment, buildings, etc.. The historical 1885-1998 Atlantic basin hurricane data were compiled and analyzed with respect to the coastal Florida site of KSC. Statistical information generated includes hurricane and tropical storm probabilities for path, maximum wind, and lowest pressure, presented for the areas within 50, 100 and 400 nm of KSC. These statistics are then compared to similar parametric statistics for the entire Atlantic basin.

  2. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005

    PubMed Central

    Logan, John R.; Issar, Sukriti; Xu, Zengwang

    2016-01-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504

  3. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    NASA Astrophysics Data System (ADS)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  4. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    USGS Publications Warehouse

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  5. Sedimentary and Vegetative Impacts of Hurricane Irma to Coastal Wetland Ecosystems across Southwest Florida

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Khan, N.; Radabaugh, K.; Engelhart, S. E.; Smoak, J. M.; Horton, B.; Rosenheim, B. E.; Kemp, A.; Chappel, A. R.; Schafer, C.; Jacobs, J. A.; Dontis, E. E.; Lynch, J.; Joyse, K.; Walker, J. S.; Halavik, B. T.; Bownik, M.

    2017-12-01

    Since 2014, our collaborative group has been working in coastal marshes and mangroves across Southwest Florida, including Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Biscayne Bay, and the lower Florida Keys. All existing field sites were located within 50 km of Hurricane Irma's eye path, with a few sites in the Lower Florida Keys and Naples/Ten Thousand Islands region suffering direct eyewall hits. As a result, we have been conducting storm-impact and damage assessments at these locations with the primary goal of understanding how major hurricanes contribute to and/or modify the sedimentary record of mangroves and salt marshes. We have also assessed changes to the vegetative structure of the mangrove forests at each site. Preliminary findings indicate a reduction in mangrove canopy cover from 70-90% pre-storm, to 30-50% post-Irma, and a reduction in tree height of approximately 1.2 m. Sedimentary deposits consisting of fine carbonate mud up to 12 cm thick were imported into the mangroves of the lower Florida Keys, Biscayne Bay, and the Ten Thousand Islands. Import of siliciclastic mud up to 5 cm thick was observed in Charlotte Harbor. In addition to fine mud, all sites had imported tidal wrack consisting of a mixed seagrass and mangrove leaf litter, with some deposits as thick as 6 cm. In areas with newly opened canopy, a microbial layer was coating the surface of the imported wrack layer. Overwash and shoreline erosion were also documented at two sites in the lower Keys and Biscayne Bay, and will be monitored for change and recovery over the next few years. Because active research was being conducted, a wealth of pre-storm data exists, thus these locations are uniquely positioned to quantify hurricane impacts to the sedimentary record and standing biomass across a wide geographic area. Due to changes in intensity along the storm path, direct comparisons of damage metrics can be made to environmental setting, wind speed, storm surge, and distance to eyewall.

  6. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  7. Mortality associated with Hurricane Katrina--Florida and Alabama, August-October 2005.

    PubMed

    2006-03-10

    On August 25, 2005, Hurricane Katrina made landfall between Hallandale Beach and Aventura, Florida, as a Category 1 hurricane, with sustained winds of 80 mph. Storm effects, primarily rain, flooding, and high winds, were substantial; certain areas reported nearly 12 inches of rainfall. After crossing southern Florida and entering the Gulf of Mexico, the hurricane strengthened and made landfall in southeastern Louisiana on August 29 as a Category 3 hurricane, with sustained winds of 125 mph. Katrina was one of the strongest hurricanes to strike the United States during the past 100 years and was likely the nation's costliest natural disaster to date. This report summarizes findings and recommendations from a review of mortality records of Florida's Medical Examiners Commission (FMEC) and the Alabama Department of Forensic Science (ADFS). CDC was invited by the Florida Department of Health (FDOH) and the Alabama Department of Public Health (ADPH) to assess the mortality related to Hurricane Katrina. The mortality review was intended to provide county-based information that would be used to 1) define the impact of the hurricane, 2) describe the etiology of deaths, and 3) identify strategies to prevent or reduce future hurricane-related mortality. Combined, both agencies identified five, 23, and 10 deaths, respectively, that were directly, indirectly, or possibly related to Hurricane Katrina. Information from the characterization of these deaths will be used to reduce hurricane-related mortality through early community awareness of hurricane-related risk, prevention measures, and effective communication of a coordinated hurricane response plan.

  8. A simple model for the spatially-variable coastal response to hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A.

    2007-01-01

    The vulnerability of a beach to extreme coastal change during a hurricane can be estimated by comparing the relative elevations of storm-induced water levels to those of the dune or berm. A simple model that defines the coastal response based on these elevations was used to hindcast the potential impact regime along a 50-km stretch of the North Carolina coast to the landfalls of Hurricane Bonnie on August 27, 1998, and Hurricane Floyd on September 16, 1999. Maximum total water levels at the shoreline were calculated as the sum of modeled storm surge, astronomical tide, and wave runup, estimated from offshore wave conditions and the local beach slope using an empirical parameterization. Storm surge and wave runup each accounted for ∼ 48% of the signal (the remaining 4% is attributed to astronomical tides), indicating that wave-driven process are a significant contributor to hurricane-induced water levels. Expected water levels and lidar-derived measures of pre-storm dune and berm elevation were used to predict the spatially-varying storm-impact regime: swash, collision, or overwash. Predictions were compared to the observed response quantified using a lidar topography survey collected following hurricane landfall. The storm-averaged mean accuracy of the model in predicting the observed impact regime was 55.4%, a significant improvement over the 33.3% accuracy associated with random chance. Model sensitivity varied between regimes and was highest within the overwash regime where the accuracies were 84.2% and 89.7% for Hurricanes Bonnie and Floyd, respectively. The model not only allows for prediction of the general coastal response to storms, but also provides a framework for examining the longshore-variable magnitudes of observed coastal change. For Hurricane Bonnie, shoreline and beach volume changes within locations that experienced overwash or dune erosion were two times greater than locations where wave runup was confined to the foreshore (swash regime

  9. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    USGS Publications Warehouse

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  10. Impact of Hurricane Katrina on roadways in the New Orleans Area : technical assistance report.

    DOT National Transportation Integrated Search

    2007-03-01

    On August 29, 2005, Hurricane Katrina devastated New Orleans and southeastern Louisiana, leaving hundreds of thousands either displaced or homeless. Nearly four weeks later, Hurricane Rita made landfall in the southwestern portion of the state, furth...

  11. Children, Learning and Chronic Natural Disasters: How Does the Government of Dominica Address Education during Low-Intensity Hurricanes?

    ERIC Educational Resources Information Center

    Serrant, Ted Donaldson

    2013-01-01

    By the time today's Grade K students graduate high school in the Commonwealth of Dominica, they will have experienced five major and many low-intensity hurricanes (LIH). Between August and November each year, each hurricane, major or low-intensity, represents a major threat to their safety and schooling. This mixed-method case study investigated…

  12. Not so close but still extremely loud: recollection of the World Trade Center terror attack and previous hurricanes moderates the association between exposure to hurricane Sandy and posttraumatic stress symptoms.

    PubMed

    Palgi, Yuval; Shrira, Amit; Hamama-Raz, Yaira; Palgi, Sharon; Goodwin, Robin; Ben-Ezra, Menachem

    2014-05-01

    The present study examined whether recollections of the World Trade Center (WTC) terror attack and previous hurricanes moderated the relationship between exposure to Hurricane Sandy and related posttraumatic stress disorder (PTSD) symptoms. An online sample of 1000 participants from affected areas completed self-report questionnaires a month after Hurricane Sandy hit the East Coast of the United States. Participants reported their exposure to Hurricane Sandy, their PTSD symptoms, and recollections of the WTC terror attack and previous hurricanes elicited due to Hurricane Sandy. Exposure to Hurricane Sandy was related to PTSD symptoms among those with high level of recollections of the WTC terror attack and past hurricanes, but not among those with low level of recollections. The aftermath of exposure to Hurricane Sandy is related not only to exposure, but also to its interaction with recollections of past traumas. These findings have theoretical and practical implications for practitioners and health policy makers in evaluating and interpreting the impact of past memories on future natural disasters. This may help in intervention plans of social and psychological services. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hurricanes 2004: An overview of their characteristics and coastal change

    USGS Publications Warehouse

    Sallenger, Asbury H.; Stockdon, Hilary; Fauver, Laura A.; Hansen, Mark; Thompson, David; Wright, C. Wayne; Lillycrop, Jeff

    2006-01-01

    Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.

  14. Public perceptions of hurricane modification.

    PubMed

    Klima, Kelly; Bruine de Bruin, Wändi; Morgan, M Granger; Grossmann, Iris

    2012-07-01

    If hurricane modification were to become a feasible strategy for potentially reducing hurricane damages, it would likely generate public discourse about whether to support its implementation. To facilitate an informed and constructive discourse, policymakers need to understand how people perceive hurricane modification. Here, we examine Florida residents' perceptions of hurricane modification techniques that aim to alter path and wind speed. Following the mental models approach, we conducted a survey study about public perceptions of hurricane modification that was guided by formative interviews on the topic. We report a set of four primary findings. First, hurricane modification was perceived as a relatively ineffective strategy for damage reduction, compared to other strategies for damage reduction. Second, hurricane modification was expected to lead to changes in projected hurricane path, but not necessarily to the successful reduction of projected hurricane strength. Third, more anger was evoked when a hurricane was described as having changed from the initially forecasted path or strength after an attempted modification. Fourth, unlike what we expected, participants who more strongly agreed with statements that recognized the uncertainty inherent in forecasts reported more rather than less anger at scientists across hurricane modification scenarios. If the efficacy of intensity-reduction techniques can be increased, people may be willing to support hurricane modification. However, such an effort would need to be combined with open and honest communications to members of the general public. © 2011 Society for Risk Analysis.

  15. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy.

  16. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  17. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    USGS Publications Warehouse

    Paerl, H.W.; Bales, J.D.; Ausley, L.W.; Buzzelli, C.P.; Crowder, L.B.; Eby, L.A.; Fear, J.M.; Go, M.; Peierls, B.L.; Richardson, T.L.; Ramus, J.S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (???1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.

  18. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    PubMed Central

    Paerl, Hans W.; Bales, Jerad D.; Ausley, Larry W.; Buzzelli, Christopher P.; Crowder, Larry B.; Eby, Lisa A.; Fear, John M.; Go, Malia; Peierls, Benjamin L.; Richardson, Tammi L.; Ramus, Joseph S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (≈1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats. PMID:11344306

  19. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  20. Hurricane hazards: a national threat

    USGS Publications Warehouse

    ,

    2005-01-01

    Hurricanes bring destructive winds, storm surge, torrential rain, flooding, and tornadoes. A single storm can wreak havoc on coastal and inland communities and on natural areas over thousands of square miles. In 2005, Hurricanes Katrina, Rita, and Wilma demonstrated the devastation that hurricanes can inflict and the importance of hurricane hazards research and preparedness. More than half of the U.S. population lives within 50 miles of a coast, and this number is increasing. Many of these areas, especially the Atlantic and Gulf coasts, will be in the direct path of future hurricanes. Hawaii is also vulnerable to hurricanes.

  1. Hurricane Sandy: observations and analysis of coastal change

    USGS Publications Warehouse

    Sopkin, Kristin L.; Stockdon, Hilary F.; Doran, Kara S.; Plant, Nathaniel G.; Morgan, Karen L.M.; Guy, Kristy K.; Smith, Kathryn E.L.

    2014-01-01

    Hurricane Sandy, the largest Atlantic hurricane on record, made landfall on October 29, 2012, and impacted a long swath of the U.S. Atlantic coastline. The barrier islands were breached in a number of places and beach and dune erosion occurred along most of the Mid-Atlantic coast. As a part of the National Assessment of Coastal Change Hazards project, the U.S. Geological Survey collected post-Hurricane Sandy oblique aerial photography and lidar topographic surveys to document the changes that occurred as a result of the storm. Comparisons of post-storm photographs to those collected prior to Sandy’s landfall were used to characterize the nature, magnitude, and spatial variability of hurricane-induced coastal changes. Analysis of pre- and post-storm lidar elevations was used to quantify magnitudes of change in shoreline position, dune elevation, and beach width. Erosion was observed along the coast from North Carolina to New York; however, as would be expected over such a large region, extensive spatial variability in storm response was observed.

  2. Hurricane Matthew

    NASA Image and Video Library

    2017-12-08

    This is a visible image of Major Hurricane Matthew taken from NASA's Terra satellite on Oct. 7 at 12 p.m. EDT as it continued moving along Florida's East Coast. Matthew was a Category 3 hurricane at the time of this image. Credit: NASA's Goddard MODIS Rapid Response Team

  3. Lessons from Crisis Recovery in Schools: How Hurricanes Impacted Schools, Families and the Community

    ERIC Educational Resources Information Center

    Howat, Holly; Curtis, Nikki; Landry, Shauna; Farmer, Kara; Kroll, Tobias; Douglass, Jill

    2012-01-01

    This article examines school and school district-level efforts to reopen schools after significant damage from hurricanes. Through an empirical, qualitative research design, four themes emerged as critical to the hurricane recovery process: the importance of communication, resolving tension, coordinating with other services and learning from the…

  4. Weatherwords: The Hurricane Season.

    ERIC Educational Resources Information Center

    Buckley, Jim

    1991-01-01

    Information and anecdotes are provided for the following topics: the typical length of the hurricane season for the North Atlantic, Caribbean, and Gulf of Mexico; specifics related to the practice of naming hurricanes; and categorical details related to the Saffir/Simpson scale for rating hurricane magnitude. (JJK)

  5. Regional-scale impact of storm surges on groundwaters of Texas, Florida and Puerto Rico after 2017 hurricanes Harvey, Irma, Jose, Maria

    NASA Astrophysics Data System (ADS)

    Sellier, W. H.; Dürr, H. H.

    2017-12-01

    Hurricanes and related storm surges have devastating effects on near-shore infrastructure and above-ground installations. They also heavily impact groundwater resources, with potentially millions of people dependant on these resources as a freshwater source. Destructions of casings and direct incursions of saline and/or polluted waters have been widely observed. It is uncertain how extensive the effects are on underground water systems, especially in limestone karst areas such as Florida and Puerto Rico. Here, we report regional-scale water level changes in groundwater systems of Texas, Florida and Puerto Rico for the 2017 Hurricanes Harvey, Irma, Jose and Maria. We collected regional scale data from the USGS Waterdata portal. Puerto Rico shows the strongest increase in groundwater levels in wells during Hurricane Maria, with less reaction for the preceding storms Irma and Jose. Increases in water levels range from 0.5 to 11m, with maximum storm surges in Puerto Rico around 3m. These wells are located throughout Puerto Rico, on the coast and inland. In Florida, most wells that show a response during Hurricane Irma are located in the Miami region. Wells located on the west coast show smaller responses with the exception of one well located directly on Hurricane Irma's track. These wells show an increase of 0.2 to 1.7m. In Texas, wells located in proximity to Hurricane Harvey's track show an increase in water level. The effect of groundwater level increases is not limited to the Texas coast, but inland as well. An increase between 0.03 and 2.9m is seen. Storm surges for both Florida and Texas have ranged from 1.8-3.7m maximum. We discuss the findings in the context of local and regional geology and hydrogeology (presence of connected aquifer systems, faulting, presence of carbonate/karst systems etc.).

  6. Church attendee help seeking priorities after Hurricane Katrina in Mississippi and Louisiana: a brief report.

    PubMed

    Aten, Jamie D; Gonzalez, Rose A; Boan, David M; Topping, Sharon; Livingston, William V; Hosey, John M

    2012-01-01

    After a disaster, survivors find themselves seeking many types of help from others in their communities. The purpose of this exploratory study was to assist in mental health service planning by determining the type and priority of support services sought by church attendees after Hurricane Katrina. Surveys were given to church attendees from two Mississippi coast and four New Orleans area churches that were directly affected by Hurricane Katrina participants were asked to review a list of 12 potential sources of help and were asked to rank the items chronologically from whom they had sought help first after Hurricane Katrina. Overall, participants sought out assistance from informal social networks such as family and friends first, followed by governmental and clergy support. This study also showed there may be differences in help-seeking behaviors between church attendees in more urban areas versus church attendees in more rural areas. Moreover, findings highlighted that very few church attendees seek out mental health services during the initial impact phase of a disaster. Since timely engagement with mental health services is important for resolving trauma, strategies that link professional mental health services with clergy and government resources following a disaster could improve the engagement with mental health professionals and improve mental health outcomes. Disaster mental health clinical implications and recommendations are offered for psychologists based on these findings.

  7. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy

  8. Integrating UAV and orbital remote sensing for spatiotemporal assessment of coastal vegetation health following hurricane events

    NASA Astrophysics Data System (ADS)

    Bernardes, S.; Madden, M.; Jordan, T.; Knight, A.; Aragon, A.

    2017-12-01

    Hurricane impacts often include the total or partial removal of vegetation due to strong winds (e.g., uprooted trees and broken trunks and limbs). Those impacts can usually be quickly assessed following hurricanes, by using established field and remote sensing methods. Conversely, impacts on vegetation health may present challenges for identification and assessment, as they are disconnected in time from the hurricane event and may be less evident. For instance, hurricanes may promote drastic increases in salinity of water available to roots and may increase exposure of aerial parts to salt spray. Derived stress conditions can negatively impact biological processes and may lead to plant decline and death. Large areas along the coast of the United States have been affected by hurricanes and show such damage (vegetation browning). Those areas may continue to be impacted, as climate projections indicate that hurricanes may become more frequent and intense, resulting from the warming of ocean waters. This work uses remote sensing tools and techniques to record and assess impacts resulting from recent hurricanes at Sapelo Island, a barrier island off the coast of the State of Georgia, United States. Analyses included change detection at the island using time series of co-registered Sentinel 2 and Landsat images. A field campaign was conducted in September 2017, which included flying three UAVs over the island and collecting high-overlap 20-megapixel RGB images at two spatial resolutions (1 and 2 inches/pixel). A five-band MicaSense RedEdge camera, a downwelling radiation sensor and calibration panel were used to collect calibrated multispectral images of multiple vegetation types, including healthy vegetation and vegetation affected by browning. Drone images covering over 600 acres were then analyzed for vegetation status and damage, with emphasis to vegetation removal and browning resulting from salinity alterations and salt spray. Results from images acquired by drones

  9. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    NASA Astrophysics Data System (ADS)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast

  10. The post-disaster negative health legacy: pregnancy outcomes in Louisiana after Hurricane Andrew.

    PubMed

    Antipova, Anzhelika; Curtis, Andrew

    2015-10-01

    Disasters and displacement increasingly affect and challenge urban settings. How do pregnant women fare in the aftermath of a major disaster? This paper investigates the effect of pregnancies in disaster situations. The study tests a hypothesis that pregnant women residing in hurricane-prone areas suffer higher health risks. The setting is Louisiana in the Gulf Coast, United States, a state that continually experiences hurricane impacts. The time period for the analysis is three years following the landfall of Hurricane Andrew in 1992. We analysed low birth weight and preterm deliveries before and after landfall, as a whole and by race. Findings support an association between hazards and health of a community and indicate that pregnant women in the affected area, irrespective of race, are more likely to experience preterm deliveries compared to pre-event births. Results suggest there is a negative health legacy impact in Louisiana as a result of hurricane landfall. © 2015 The Author(s). Disasters © Overseas Development Institute, 2015.

  11. Estuarine response in northeastern Florida Bay to major hurricanes in 2005: Chapter 6I in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Woods, Jeff; Zucker, Mark

    2007-01-01

    Hurricanes and tropical storms are critical components of the south Florida hydrologic cycle. These storms cause dramatic and often rapid changes in water level of, salinity of, and discharge into northeastern Florida Bay as well as into adjacent marine estuaries. During 2005, two major hurricanes (Katrina and Wilma) crossed the southern estuaries of the Everglades and had substantial impacts on hydrologic conditions.

  12. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  13. [Feeding changes for three Sphoeroides species (Tetraodontiformes: Tetraodontidae) after Isidore hurricane impact in Carbonera Inlet, Southeastern Gulf of Mexico].

    PubMed

    Palacios-Sánchez, Sonia Eugenia; Vega-Cendejas, María Eugenia

    2010-12-01

    The coexistence of ecologically similar species may occur because of resources distribution, such as prey and habitat type and segregation time, that minimizes the interspecific competition. The changes brought about by Hurricane Isidore in the distribution of food resources by three coexisting fish species of the family Tetraodontidae (Sphoeroides nephelus, S. spengleri and S testudineus), were analyzed at the Carbonera Inlet. Sphoeroides spp. based their food on benthic organisms; principally, they consume mussels (Brachidontes sp.), barnacles (Balanus sp.) and gastropods (Crepidula sp). Before hurricane impact, the three species share the available food resources in different proportions (bivalves, gastropods, barnacles and decapods), according to different strategies that enabled them to coexist and reduce interspecific competition. After the impact, the abundance of available prey decreased and the interespecific competition for food increased, leading to S. testudines and S. nephelus change their trophic spectrum (xiphosurans, amphipods, isopods and detritus) and displacing S. splengleri of the inlet. The distribution of food resources was conditioned by the abundance and diversity of prey, as well as the adaptive response of each species.

  14. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  15. New Hurricane Exhibit

    NASA Image and Video Library

    2007-08-29

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  16. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  17. The Psychological Impact From Hurricane Katrina: Effects of Displacement and Trauma Exposure on University Students

    PubMed Central

    Davis, Thompson E.; Grills-Taquechel, Amie E.; Ollendick, Thomas H.

    2012-01-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the hurricane. All students were enrolled at LSU at the time they participated in an online survey, conducted 3 months following the hurricane. The survey included symptom measures of depression, anxiety, stress, posttraumatic stress disorder (PTSD), and other variables. Results indicated displaced students experienced more trauma exposure and greater subsequent distress, more symptoms of PTSD, and more symptoms of depression. Moreover, traumatic exposure and distress from the traumatic exposure were found to fully mediate depressive symptoms and posttraumatic symptoms in the displaced students. PMID:20569783

  18. Recovery from PTSD following Hurricane Katrina

    PubMed Central

    McLaughlin, Katie A.; Berglund, Patricia; Gruber, Michael J.; Kessler, Ronald C.; Sampson, Nancy A.; Zaslavsky, Alan M.

    2011-01-01

    Background We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. Method A probability sample of pre-hurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months post-hurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included socio-demographics, pre-hurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to post-hurricane stressors and course of estimated PTSD were assessed in a follow-up interview. Results An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other socio-demographics, history of psychopathology, social support, social competence, and post-hurricane stressors were unrelated to recovery from estimated PTSD. Conclusions The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and post-trauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. PMID:21308887

  19. Longitudinal Assessment of Cognitive and Psychosocial Functioning After Hurricanes Katrina and Rita: Exploring Disaster Impact on Middle-Aged, Older, and Oldest-Old Adults.

    PubMed

    Cherry, Katie E; Brown, Jennifer Silva; Marks, Loren D; Galea, Sandro; Volaufova, Julia; Lefante, Christina; Su, L Joseph; Welsh, David A; Jazwinski, S Michal

    2011-12-01

    The authors examined the effects of Hurricanes Katrina and Rita (HKR) on cognitive and psychosocial functioning in a lifespan sample of adults 6 to 14 months after the storms. Participants were recruited from the Louisiana Healthy Aging Study (LHAS). Most were assessed during the immediate impact period and retested for this study. Analyses of pre-and post-disaster cognitive data confirmed that storm-related decrements in working memory for middle-aged and older adults observed in the immediate impact period had returned to pre-hurricane levels in the post-disaster recovery period. Middle-aged adults reported more storm-related stressors and greater levels of stress than the two older groups at both waves of testing. These results are consistent with a burden perspective on post-disaster psychological reactions.

  20. The Use of Simulation to Reduce the Domain of "Black Swans" with Application to Hurricane Impacts to Power Systems.

    PubMed

    Berner, Christine L; Staid, Andrea; Flage, Roger; Guikema, Seth D

    2017-10-01

    Recently, the concept of black swans has gained increased attention in the fields of risk assessment and risk management. Different types of black swans have been suggested, distinguishing between unknown unknowns (nothing in the past can convincingly point to its occurrence), unknown knowns (known to some, but not to relevant analysts), or known knowns where the probability of occurrence is judged as negligible. Traditional risk assessments have been questioned, as their standard probabilistic methods may not be capable of predicting or even identifying these rare and extreme events, thus creating a source of possible black swans. In this article, we show how a simulation model can be used to identify previously unknown potentially extreme events that if not identified and treated could occur as black swans. We show that by manipulating a verified and validated model used to predict the impacts of hazards on a system of interest, we can identify hazard conditions not previously experienced that could lead to impacts much larger than any previous level of impact. This makes these potential black swan events known and allows risk managers to more fully consider them. We demonstrate this method using a model developed to evaluate the effect of hurricanes on energy systems in the United States; we identify hurricanes with potentially extreme impacts, storms well beyond what the historic record suggests is possible in terms of impacts. © 2016 Society for Risk Analysis.

  1. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Treesearch

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  2. Storm Impact and Depression Among Older Adults Living in Hurricane Sandy-Affected Areas.

    PubMed

    Sirey, Jo Anne; Berman, Jacquelin; Halkett, Ashley; Giunta, Nancy; Kerrigan, Janice; Raeifar, Elmira; Artis, Amanda; Banerjee, Samprit; Raue, Patrick J

    2017-02-01

    Research on the impact of natural disasters on the mental health of older adults finds both vulnerabilities and resilience. We report on the rates of clinically significant depression among older adults (aged ≥60 years) living in areas affected by Hurricane Sandy in 2012 and the factors associated with mental health need. The Sandy Mobilization, Assessment, Referral and Treatment for Mental Health (SMART-MH) program integrates community outreach and needs assessments to identify older adults with mental health and aging service needs. Older adults with significant anxiety or depressive symptoms were offered short-term psychotherapy. Social service referrals were made directly to community agencies. All SMART-MH activities were offered in Spanish, Russian, Mandarin/Cantonese, and English. Across the full sample, 14% of participants screened positive for depression. Hurricane Sandy stressors predicted increased odds of depression, including storm injury, post-storm crime, and the total count of stressors. Outcomes varied significantly by age group, such that all Sandy-related variables remained significant for younger-old adults (aged 60-74 years), whereas only the loss of access to medical care was significant for older-old adults (aged ≥75 years). Storm-affected communities show higher rates of depressive symptoms than seen in the general population, with storm stressors affecting mental health needs differentially by age group. (Disaster Med Public Health Preparedness. 2017;11:97-109).

  3. Building infrastructure to prevent disasters like Hurricane Maria

    NASA Astrophysics Data System (ADS)

    Bandaragoda, C.; Phuong, J.; Mooney, S.; Stephens, K.; Istanbulluoglu, E.; Pieper, K.; Rhoads, W.; Edwards, M.; Pruden, A.; Bales, J.; Clark, E.; Brazil, L.; Leon, M.; McDowell, W. G.; Horsburgh, J. S.; Tarboton, D. G.; Jones, A. S.; Hutton, E.; Tucker, G. E.; McCready, L.; Peckham, S. D.; Lenhardt, W. C.; Idaszak, R.

    2017-12-01

    2000 words Recovery efforts from natural disasters can be more efficient with data-driven information on current needs and future risks. We aim to advance open-source software infrastructure to support scientific investigation and data-driven decision making with a prototype system using a water quality assessment developed to investigate post-Hurricane Maria drinking water contamination in Puerto Rico. The widespread disruption of water treatment processes and uncertain drinking water quality within distribution systems in Puerto Rico poses risk to human health. However, there is no existing digital infrastructure to scientifically determine the impacts of the hurricane. After every natural disaster, it is difficult to answer elementary questions on how to provide high quality water supplies and health services. This project will archive and make accessible data on environmental variables unique to Puerto Rico, damage caused by Hurricane Maria, and will begin to address time sensitive needs of citizens. The initial focus is to work directly with public utilities to collect and archive samples of biological and inorganic drinking water quality. Our goal is to advance understanding of how the severity of a hazard to human health (e.g., no access to safe culinary water) is related to the sophistication, connectivity, and operations of the physical and related digital infrastructure systems. By rapidly collecting data in the early stages of recovery, we will test the design of an integrated cyberinfrastructure system to for usability of environmental and health data to understand the impacts from natural disasters. We will test and stress the CUAHSI HydroShare data publication mechanisms and capabilities to (1) assess the spatial and temporal presence of waterborne pathogens in public water systems impacted by a natural disaster, (2) demonstrate usability of HydroShare as a clearinghouse to centralize selected datasets related to Hurricane Maria, and (3) develop a

  4. Hurricane Research Division of AOML/NOAA

    Science.gov Websites

    Statement The mission of NOAA's Hurricane Research Division (HRD) is to advance the understanding and Learn More. What's New Links of Interest Hurricane Field Program Current Hurricane Data Hurricane FAQ

  5. Predicting Hurricanes with Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  6. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  7. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    PubMed

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  8. Coastal Change during Hurricane Ivan 2004

    USGS Publications Warehouse

    Morgan, Karen L.M.

    2009-01-01

    Category 3 Hurricane Ivan came ashore near Gulf Shores, Alabama, on September 16, 2004. The barrier islands of the northern Gulf of Mexico near the Florida/Alabama border were exposed to the strongest winds. The communities of Gulf Shores, Pine Island and Orange Beach, AL, are, in places, very low lying with their dunes rising up only several meters. These dunes were unable to contain the 3-4 meter storm surge. The U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and U.S. Army Corps of Engineers (USACE) are cooperating in a research project investigating coastal change during Hurricane Ivan. On Friday September 17, 2004, the USGS acquired oblique aerial photography to help understand the impact of Ivan on the coastal environment. Two days later, airborne lidar was collected using NASA Experimental Advanced Airborne Research Lidar (EAARL). Gulf waters, driven by hurricane force winds spilled across the barrier islands creating currents strong enough to transport massive amounts of sand landward. These waters undermined buildings and roads and opened new island breaches. On top of the surge, breaking waves nearly as tall as the depth of the surge, eroded dunes and battered structures.

  9. Hurricane Matthew Hits Haiti

    NASA Image and Video Library

    2017-12-08

    Read more from: go.nasa.gov/2duxEeZ On October 4, 2016, Hurricane Matthew made landfall on southwestern Haiti as a category-4 storm—the strongest storm to hit the Caribbean nation in more than 50 years. Just hours after landfall, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image. At the time, Matthew had top sustained winds of about 230 kilometers (145 miles) per hour. Earlier on October 4, temperature data collected by MODIS on NASA’s Aqua satellite revealed that the cloud tops around Matthew were very cold (at least -57° Celsius, or -70° Fahrenheit). Cold cloud tops are known to produce heavy rainfall. The National Hurricane Center called for 380 to 500 millimeters (15 to 20 inches) of rain in Southern Haiti and in the southwestern Dominican Republic. The northward movement of the storm should bring the center of Matthew over eastern Cuba late on October 4. Dangerous conditions can extend far beyond a storm’s center. According to National Hurricane Center forecasters, Matthew is “likely to produce devastating impacts from storm surge, extreme winds, heavy rains, flash floods, and/or mudslides in portions of the watch and warning areas in Haiti, Cuba, and the Bahamas.” NASA Earth Observatory image by Joshua Stevens, using MODIS data from the Land Atmosphere Near real-time Capability for EOS (LANCE). Caption by Kathryn Hansen.

  10. Hurricane Earl Multi-level Winds

    NASA Image and Video Library

    2010-09-02

    NASA Multi-angle Imaging SpectroRadiometer instrument captured this image of Hurricane Earl Aug. 30, 2010. At this time, Hurricane Earl was a Category 3 storm. The hurricane eye is just visible on the right edge of the MISR image swath.

  11. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  12. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  13. Lessons from Hurricane Sandy for port resilience.

    DOT National Transportation Integrated Search

    2013-12-01

    New York Harbor was directly in the path of the most damaging part of Hurricane Sandy causing significant impact on many of the : facilities of the Port of New York and New Jersey. The U.S. Coast Guard closed the entire Port to all traffic before the...

  14. Multi-scale Sensitivity and Predictability of Hurricane Joaquin (2015) Illuminated Through Adjoint Studies

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Holdaway, D.; Amerault, C. M.

    2017-12-01

    Hurricane Joaquin (2015) was a strong category 4 hurricane (maximum winds of 135 kts) that developed from an upper-level low over the western Atlantic and was noteworthy because of its large impact in the Bahamas, as well as the sinking of the cargo ship El Farroand loss of her 33 crew members. Joaquin initially moved southwest towards the Bahamas and rapidly intensified before sharply turning northeastward. Nearly all operational model forecasts failed to provide an accurate prediction of the rapid intensification and track, even at short lead times. As a result, the National Hurricane Center forecasted landfall in the mid-Atlantic, while in reality the storm moved well offshore. In this study, we utilize two adjoint modeling systems, the Navy COAMPS and the NASA GEOS-5, to investigate the role of initial condition errors that may have led to the relatively poor track and intensity predictions of Hurricane Joaquin. Adjoint models can provide valuable insight into the practical limitations of our ability to predict the path of tropical cyclones and their strength. An adjoint model can be used for the efficient and rigorous computation of numerical weather forecast sensitivity to changes in the initial state. The adjoint sensitivity diagnostics illustrate complex influences on the evolution of Joaquin that occur over a wide range of spatial scales. The sensitivity results highlight the importance of an upper-level trough to the northeast that provided the steering flow for the poorly-predicted southwesterly movement of the hurricane in its early phase. The steering flow and hurricane track are found to be very sensitive to relatively small changes in the initial state to the east-northeast of the hurricane. Additionally, the intensity prediction of Hurricane Joaquin is found to be very sensitive to the initial state moisture including highly structured regions around the storm and in remote regions as well. Hurricane Joaquin was observed in four NASA WB-57 research

  15. West Florida Shelf Response to Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.; Chen, J.; Merz, C. R.; Law, J.; Zheng, L.

    2017-12-01

    Hurricane Irma impacted the west Florida continental shelf (WFS) as it transited the state of Florida during September 10-12, 2017, making landfall first at Cudjoe Key and then again at Naples, as a Category 2 hurricane. The WFS response to Hurricane Irma is analyzed using a combination of in situ observations and numerical model simulations. The observations include water column velocity (by Acoustic Doppler Current Profilers), sea surface temperature and meteorological records from three moorings on the shelf, surface currents by high-frequency radars, and coastal tide gauge records. The West Florida Coastal Ocean Model (WFCOM) employed downscales from the deep Gulf of Mexico, across the shelf and into the estuaries by nesting the unstructured grid FVCOM in the Gulf of Mexico HYCOM. Both the observations and the model simulations revealed strong upwelling and vertical mixing followed by downwelling as the storm passed by. This was accompanied by a rapid drop in sea surface temperature of approximately 4ºC and large decreases in sea level with associated negative surges, causing drying in the Florida Bay, Charlotte Harbor, Tampa Bay estuaries and the Big Bend region. The transport and exchange of water between the shelf and the estuaries and between the shelf and the Florida Keys reef track during the hurricane may have important implications for ecosystem studies within the region.

  16. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David

    2018-04-01

    Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  17. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  18. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin east of the Bahamas on Sept. 30 at 1745 UTC (1:45 p.m. EDT). Credit: NASA/NOAA GOES Project At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. COMMUNITY COLLEGE RE-ENROLLMENT AFTER HURRICANE KATRINA

    PubMed Central

    LOWE, SARAH R.; RHODES, JEAN E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants’ pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources (e.g., social support, childcare, hours of employment, psychological well-being) was also explored. High levels of pre- and post-hurricane educational optimism were significant predictors of re-enrollment, as were lower post-hurricane psychological distress and fewer post-hurricane hours employed. In addition, experiencing a greater number of moves since the hurricane was a marginally significant predictor of post-hurricane re-enrollment. PMID:23457425

  20. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  1. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Treesearch

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  2. UAS Applications for Hurricane Science, Hurrican and Severe Storm Sentinel (HS3)

    NASA Technical Reports Server (NTRS)

    Braun, Scott

    2014-01-01

    Earth Science Industry Update: UAS Applications for Hurricane Science Unmanned systems can significantly transform hurricane observations and monitoring, improving our knowledge about and ability to forecast storm formation, track, and intensity change. NASA's use of the Global Hawk has demonstrated the scientific value of this platform and provided a proof-of-concept for operational applications. However, science flight operations face several challenges and constraints. In this session, learn about how NASA adapted the Global Hawk to do science; How NASA conducts its hurricane missions, and some of the challenges and constraints they face; Science results from NASA's recent hurricane field campaigns using the Global Hawk. How assimilation of dropsonde and radar data into weather prediction models may improve forecast accuracy; Other Earth science problems that could be addressed with Global Hawks.

  3. Maternal exposure to hurricane destruction and fetal mortality.

    PubMed

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    NASA Astrophysics Data System (ADS)

    Fearnley, Sarah Mary; Miner, Michael D.; Kulp, Mark; Bohling, Carl; Penland, Shea

    2009-12-01

    Results from historical (1855-2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of -0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of -1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from -11.4 m/year between 1922 and 1996 to -41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated -201.5 m/year, compared with an average retreat rate of -38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.

  5. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example

    PubMed Central

    Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.

    2016-01-01

    The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121

  6. Conceptualizing Health Consequences of Hurricane Katrina From the Perspective of Socioeconomic Status Decline

    PubMed Central

    Joseph, Nataria T.; Matthews, Karen A.; Myers, Hector F.

    2014-01-01

    Objective The long-term health impact of acute unemployment and socioeconomic resource deficit has not been shown to be unique from the effects of stable socioeconomic status (SES) and serious life circumstances, such as trauma. This study examined associations between these acute socioeconomic declines and health of hurricane survivors, independent of prehurricane SES and hurricane trauma. Method Participants were 215 African American adults (60% female, mean age = 39 years) living in the Greater New Orleans area at the time of Hurricane Katrina and survey 4 years later. The survey included prehurricane SES measures (i.e., education and neighborhood poverty level); acute unemployment and deficits in access to SES resources following Hurricane Katrina; and posthurricane health events (i.e., cardiometabolic events, chronic pain, posttraumatic stress disorder [PTSD], and major depressive disorder [MDD]). Results Acute unemployment was associated with odds of experiencing a cardiometabolic event (odds ratio [OR] = 5.65, p < .05), MDD (OR = 2.76, p < .05) and chronic pain (OR = 2.76, p < .05), whereas acute socioeconomic resource deficit was associated with odds of chronic pain (OR = 1.93, p < .001) and MDD (OR = 1.19, p < .05). Associations were independent of prehurricane SES, hurricane trauma, potentially chronic SES resource deficits, and current unemployment. Conclusions This study shows that acute socioeconomic decline following a natural disaster can create long-term health disparities beyond those created by prehurricane SES level and traumatic hurricane experiences. Findings suggest that early intervention postdisaster to reduce pervasive socioeconomic disruption may reduce the long-term health impact of disasters. PMID:23527519

  7. Conceptualizing health consequences of Hurricane Katrina from the perspective of socioeconomic status decline.

    PubMed

    Joseph, Nataria T; Matthews, Karen A; Myers, Hector F

    2014-02-01

    The long-term health impact of acute unemployment and socioeconomic resource deficit has not been shown to be unique from the effects of stable socioeconomic status (SES) and serious life circumstances, such as trauma. This study examined associations between these acute socioeconomic declines and health of hurricane survivors, independent of prehurricane SES and hurricane trauma. Participants were 215 African American adults (60% female, mean age = 39 years) living in the Greater New Orleans area at the time of Hurricane Katrina and survey 4 years later. The survey included prehurricane SES measures (i.e., education and neighborhood poverty level); acute unemployment and deficits in access to SES resources following Hurricane Katrina; and posthurricane health events (i.e., cardiometabolic events, chronic pain, posttraumatic stress disorder [PTSD], and major depressive disorder [MDD]). Acute unemployment was associated with odds of experiencing a cardiometabolic event (odds ratio [OR] = 5.65, p < .05), MDD (OR = 2.76, p < .05) and chronic pain (OR = 2.76, p < .05), whereas acute socioeconomic resource deficit was associated with odds of chronic pain (OR = 1.93, p < .001) and MDD (OR = 1.19, p < .05). Associations were independent of prehurricane SES, hurricane trauma, potentially chronic SES resource deficits, and current unemployment. This study shows that acute socioeconomic decline following a natural disaster can create long-term health disparities beyond those created by prehurricane SES level and traumatic hurricane experiences. Findings suggest that early intervention postdisaster to reduce pervasive socioeconomic disruption may reduce the long-term health impact of disasters. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  9. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument on NASA's Terra satellite captured Hurricane Joaquin off the Bahamas at 15:45 UTC (11:45 a.m. EDT) on September 30, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  11. North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Kourafalou, Vassiliki H.; Androulidakis, Yannis S.; Halliwell, George R.; Kang, HeeSook; Mehari, Michael M.; Le Hénaff, Matthieu; Atlas, Robert; Lumpkin, Rick

    2016-11-01

    A high resolution, free-running model has been developed for the hurricane region of the North Atlantic Ocean. The model is evaluated with a variety of observations to ensure that it adequately represents both the ocean climatology and variability over this region, with a focus on processes relevant to hurricane-ocean interactions. As such, it can be used as the "Nature Run" (NR) model within the framework of Observing System Simulation Experiments (OSSEs), designed specifically to improve the ocean component of coupled ocean-atmosphere hurricane forecast models. The OSSE methodology provides quantitative assessment of the impact of specific observations on the skill of forecast models and enables the comprehensive design of future observational platforms and the optimization of existing ones. Ocean OSSEs require a state-of-the-art, high-resolution free-running model simulation that represents the true ocean (the NR). This study concentrates on the development and data based evaluation of the NR model component, which leads to a reliable model simulation that has a dual purpose: (a) to provide the basis for future hurricane related OSSEs; (b) to explore process oriented studies of hurricane-ocean interactions. A specific example is presented, where the impact of Hurricane Bill (2009) on the eastward extension and transport of the Gulf Stream is analyzed. The hurricane induced cold wake is shown in both NR simulation and observations. Interaction of storm-forced currents with the Gulf Stream produced a temporary large reduction in eastward transport downstream from Cape Hatteras and had a marked influence on frontal displacement in the upper ocean. The kinetic energy due to ageostrophic currents showed a significant increase as the storm passed, and then decreased to pre-storm levels within 8 days after the hurricane advanced further north. This is a unique result of direct hurricane impact on a western boundary current, with possible implications on the ocean

  12. Hurricane Isadore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz)

    Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua.

    At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again.

    This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red.

    Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images.

    Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free.

    Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this

  13. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    PubMed

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  14. The Psychological Impact from Hurricane Katrina: Effects of Displacement and Trauma Exposure on University Students

    ERIC Educational Resources Information Center

    Davis, Thompson E., III; Grills-Taquechel, Amie E.; Ollendick, Thomas H.

    2010-01-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the…

  15. Impact of Hurricane Iniki on native Hawaiian Acacia koa forests: damage and two-year recovery

    Treesearch

    Robin A. Harrington; James H. Fownes; Paul G. Scowcroft; Cheryl S. Vann

    1997-01-01

    Damage to Hawaiian Acacia koa forest by Hurricane Iniki was assessed by comparison with our previous measures of stand structure and leaf area index (LAI) at sites along a precipitation/elevation gradient on western Kauai. Reductions in LAI ranged from 29 to 80% and were correlated with pre-hurricane LAI and canopy height. The canopy damage...

  16. Multi-hazard risk analysis related to hurricanes

    NASA Astrophysics Data System (ADS)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  17. 78 FR 23578 - Clarifying Guidance, Waivers, and Alternative Requirements for Hurricane Sandy Grantees in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... approximately 6,000 jobs due to Sandy's impact. Without this waiver, the State estimates a $500 million loss in... areas declared a major disaster due to Hurricane Sandy (see 78 FR 14329, published in the Federal... and Emergency Assistance Act of 1974 (42 U.S.C. 5121 et seq.) (Stafford Act), due to Hurricane Sandy...

  18. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    NASA Astrophysics Data System (ADS)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  19. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    NASA Astrophysics Data System (ADS)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  20. Rapid mapping of hurricane damage to forests

    Treesearch

    Erik M. Nielsen

    2009-01-01

    The prospects for producing rapid, accurate delineations of the spatial extent of forest wind damage were evaluated using Hurricane Katrina as a test case. A damage map covering the full spatial extent of Katrina?s impact was produced from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery using higher resolution training data. Forest damage...

  1. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    USGS Publications Warehouse

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  2. The impact of hurricane Katrina on the mental and physical health of low-income parents in New Orleans.

    PubMed

    Rhodes, Jean; Chan, Christian; Paxson, Christina; Rouse, Cecilia Elena; Waters, Mary; Fussell, Elizabeth

    2010-04-01

    The purpose of this study was to document changes in mental and physical health among 392 low-income parents exposed to Hurricane Katrina and to explore how hurricane-related stressors and loss relate to post-Katrina well-being. The prevalence of probable serious mental illness doubled, and nearly half of the respondents exhibited probable posttraumatic stress disorder. Higher levels of hurricane-related loss and stressors were generally associated with worse health outcomes, controlling for baseline sociodemographic and health measures. Higher baseline resources predicted fewer hurricane-associated stressors, but the consequences of stressors and loss were similar regardless of baseline resources. Adverse health consequences of Hurricane Katrina persisted for a year or more and were most severe for those experiencing the most stressors and loss. Long-term health and mental health services are needed for low-income disaster survivors, especially those who experience disaster-related stressors and loss.

  3. The Impact of Hurricane Katrina on the Mental and Physical Health of Low-Income Parents in New Orleans

    PubMed Central

    Rhodes, Jean; Chan, Christian; Paxson, Christina; Rouse, Cecilia Elena; Waters, Mary; Fussell, Elizabeth

    2012-01-01

    The purpose of this study was to document changes in mental and physical health among 392 low-income parents exposed to Hurricane Katrina and to explore how hurricane-related stressors and loss relate to post-Katrina well being. The prevalence of probable serious mental illness doubled, and nearly half of the respondents exhibited probable PTSD. Higher levels of hurricane-related loss and stressors were generally associated with worse health outcomes, controlling for baseline socio-demographic and health measures. Higher baseline resources predicted fewer hurricane-associated stressors, but the consequences of stressors and loss were similar regardless of baseline resources. Adverse health consequences of Hurricane Katrina persisted for a year or more, and were most severe for those experiencing the most stressors and loss. Long-term health and mental health services are needed for low-income disaster survivors, especially those who experience disaster-related stressors and loss. PMID:20553517

  4. Simulating the effects of social networks on a population's hurricane evacuation participation

    NASA Astrophysics Data System (ADS)

    Widener, Michael J.; Horner, Mark W.; Metcalf, Sara S.

    2013-04-01

    Scientists have noted that recent shifts in the earth's climate have resulted in more extreme weather events, like stronger hurricanes. Such powerful storms disrupt societal function and result in a tremendous number of casualties, as demonstrated by recent hurricane experience in the US Planning for and facilitating evacuations of populations forecast to be impacted by hurricanes is perhaps the most effective strategy for reducing risk. A potentially important yet relatively unexplored facet of people's evacuation decision-making involves the interpersonal communication processes that affect whether at-risk residents decide to evacuate. While previous research has suggested that word-of-mouth effects are limited, data supporting these assertions were collected prior to the widespread adoption of digital social media technologies. This paper argues that the influence of social network effects on evacuation decisions should be revisited given the potential of new social media for impacting and augmenting information dispersion through real-time interpersonal communication. Using geographic data within an agent-based model of hurricane evacuation in Bay County, Florida, we examine how various types of social networks influence participation in evacuation. It is found that strategies for encouraging evacuation should consider the social networks influencing individuals during extreme events, as it can be used to increase the number of evacuating residents.

  5. Sedimentological and Micropaleontological Characteristics of the 2015 Hurricane Joaquin Deposit and their Implications for Long-Term Records of Storms and Tsunamis Impacting the Caribbean

    NASA Astrophysics Data System (ADS)

    Kosciuch, T. J.; Pilarczyk, J.; Reinhardt, E. G.; Mauviel, A.; Aucoin, C. D.

    2017-12-01

    anomalous sand layers in the coastal pond cores shared many similarities with the Joaquin sand layer; they sharply overlie organic-rich sediment and contain abundant well-preserved Homotrema fragments. Further foraminiferal analysis on the older sand layers in the cores will aid in determining the relative intensity of hurricanes that have impacted San Salvador.

  6. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    NASA Astrophysics Data System (ADS)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  7. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit

  8. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  9. The psychosocial impact of Hurricane Katrina on persons with disabilities and independent living center staff living on the American Gulf Coast.

    PubMed

    Fox, Michael H; White, Glen W; Rooney, Catherine; Cahill, Anthony

    2010-08-01

    To determine the impact of Hurricane Katrina on the psychosocial health of people with disabilities and on the ability of people with disabilities in the affected area to live independently. Transcribed conversations were analyzed for 56 survivors of Hurricane Katrina on the American Gulf Coast, all of whom were persons with disabilities or persons working with them. Semi-structured interviews were conducted either individually or in focus groups with participants. Qualitative analysis was undertaken using hermeneutic techniques. Six major themes emerged: faith, incredulousness, blaming others or oneself, family adaptation and resiliency, and work and professional responsibility. The resiliency of persons with disabilities to adapt to disasters can be better understood through factors such as these, providing an effective barometer of social capital that can help societies prepare for future disasters among those most vulnerable.

  10. High Resolution Modeling of Hurricanes in a Climate Context

    NASA Astrophysics Data System (ADS)

    Knutson, T. R.

    2007-12-01

    model reproduces the observed increase in Atlantic hurricane activity (numbers, Accumulated Cyclone Energy (ACE), Power Dissipation Index (PDI), etc.) over the period 1980-2006 fairly realistically, and also simulates ENSO-related interannual variations in hurricane counts. Annual simulated hurricane counts from a two-member ensemble correlate with observed counts at r=0.86. However, the model does not simulate hurricanes as intense as those observed, with minimum central pressures of 937 hPa (category 4) and maximum surface winds of 47 m/s (category 2) being the most intense simulated so far in these experiments. To explore possible impacts of future climate warming on Atlantic hurricane activity, we are re-running the 1980- 2006 seasons, keeping the interannual to multidecadal variations unchanged, but altering the August-October mean climate according to changes simulated by an 18-member ensemble of AR4 climate models (years 2080- 2099, A1B emission scenario). The warmer climate state features higher Atlantic SSTs, and also increased vertical wind shear across the Caribbean (Vecchi and Soden, GRL 2007). A key assumption of this approach is that the 18-model ensemble-mean climate change is the best available projection of future climate change in the Atlantic. Some of the 18 global models show little increase in wind shear, or even a decrease, and thus there will be considerable uncertainty associated with the hurricane frequency results, which will require further exploration. Results from our simulations will be presented at the meeting.

  11. Diversity and abundance of forest frogs (Anura: Leptodactylidae) before and after Hurricane Georges in the Cordillera Central of Puerto Rico

    USGS Publications Warehouse

    Vilella, F.J.; Fogarty, J.H.

    2005-01-01

    Caribbean hurricanes often impact terrestrial vertebrates in forested environments. On 21 September 1998, Hurricane Georges impacted Puerto Rico with sustained winds in excess of 166 km/hr, causing damage to forests of the island's principal mountain range; the Cordillera Central. We estimated forest frog abundance and diversity from call counts conducted along marked transects before and after Hurricane Georges in two forests reserves of the Cordillera Central (Maricao and Guilarte). We used distance sampling to estimate density of Eleutherodactylus coqui and recorded counts of other species. After the hurricane, the abundance of E. coqui increased in both reserves compared to prehurricane levels while abundance of other frog species decreased. In Maricao, relative abundance of E. richmondi (P = 0.013) and E. brittoni (P = 0.034) were significantly lower after the hurricane. Moreover, species richness and evenness of the Maricao and Guilarte frog assemblages declined after the hurricane. Our results on abundance patterns of the forest frog assemblages of Maricao and Guilarte Forests were similar to those reported from the Luquillo Experimental Forest after Hurricane Hugo in September 1989. Long-term demographic patterns of the forest frog assemblages in the Cordillera Central may be associated with changes due to the ecological succession in post-hurricane forests. Copyright 2005 College of Arts and Sciences.

  12. The effects of hurricanes on birds, with special reference to Caribbean islands

    USGS Publications Warehouse

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  13. A tool for rapid post-hurricane urban tree debris estimates using high resolution aerial imagery

    Treesearch

    Zoltan Szantoi; Sparkle L Malone; Francisco Escobedo; Orlando Misas; Scot Smith; Bon Dewitt

    2012-01-01

    Coastal communities in the southeast United States have regularly experienced severe hurricane impacts. To better facilitate recovery efforts in these communities following natural disasters, state and federal agencies must respond quickly with information regarding the extent and severity of hurricane damage and the amount of tree debris volume. A tool was developed...

  14. XBeach and CSHORE Numerical Model Assessment of the Beach and Foredune Morphodynamic Response of a Barrier Island during Hurricane Storm Surge Inundation - Folletts Island Case Study

    NASA Astrophysics Data System (ADS)

    Figlus, J.

    2016-02-01

    More than 400 barrier islands line the United States coasts providing a first line of defense against surge and wave attack during extreme storm events. While some pre- and post-storm topography and bathymetry data of barrier islands inundated during a storm exist, very little information is available to help understand the complex hydrodynamic and morphodynamic processes during storm impact. These processes are crucial to understanding sediment budgets, potential threats to infrastructure and best coastal management practices for specific locations. Follett's Island (FI) is a low-lying sediment-starved barrier island located on the Upper Texas Coast, a stretch of coastline along the Gulf of Mexico experiencing on average four hurricanes and four tropical cyclones per decade. During Hurricane Ike, water levels and wave heights at FI exceeded the 100-year and 40-year return values, respectively. This caused the island to undergo a sequence of four distinct interaction regimes, including impact, overtopping, inundation, and storm surge ebb. Each regime caused unique morphology changes to the island. The physical processes governing the real-time morphodynamic response of the beach and dune system during 96 hours of hurricane impact were modeled using XBeach (2D) and CSHORE (1D). Hydrodynamic boundary conditions were obtained from ADCIRC/SWAN model runs validated with measured buoy and wave gauge data while LiDAR surveys provided pre- and post-storm measured topography. XBeach displayed a decent model skill and was very useful in qualitatively visualizing erosion and deposition patterns during each regime. CSHORE also displayed a decent model skill and was able to accurately predict the post-storm beach slope and shoreline, but was less effective at simulating the foredune morphology. Modeling results show that the complete morphodynamic response of FI to Hurricane Ike was far more complex than suggested by only before and after storm topography surveys.

  15. High-Resolution Measurement of Beach Morphological Response to Hurricane-Induced Wave Dynamics

    NASA Astrophysics Data System (ADS)

    Starek, M.; Slatton, K. C.; Adams, P.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the sudden increase in wave energy delivered to the coast resulted in drastic changes to the coastal morphology. The purpose of this study was to investigate the direct effects of deep-water wave climate and energy setups induced by the hurricanes and relate those processes to the observed change in shoreline morphology. The availability of research-grade Airborne Laser Swath Mapping (ALSM) altimetry data, often referred to as Light Detection and Ranging (LiDAR) data, enabled sub-meter spatial sampling of the coastal topography. The ALSM data were acquired by the University of Florida's Geosensing Engineering and Mapping (GEM) Center. Offshore wave measurements were obtained from the NOAA NDBC buoy network for the Gulf Coast region. The ALSM data acquired shortly before and after the three major hurricane landfalls near the Phillips Inlet barrier island region of Bay County, Florida, were used to calculate changes in the shoreline position and identify regions of erosion and deposition. Time series data of offshore wave height, period, and direction were transformed, through shoaling and refraction calculations, to nearshore wave conditions which were correlated to observed changes in beach morphology. Hurricane wave conditions drove severe shoreline retreat on the west-side of the inlet (~15+ meters) but affected the east-side shoreline minimally. The eastern backside of the inlet, however, witnessed a significant volume of washover sediment.

  16. Did Hurricane Sandy influence the 2012 US presidential election?

    PubMed

    Hart, Joshua

    2014-07-01

    Despite drawing on a common pool of data, observers of the 2012 presidential campaign came to different conclusions about whether, how, and to what extent "October surprise" Hurricane Sandy influenced the election. The present study used a mixed correlational and experimental design to assess the relation between, and effect of, the salience of Hurricane Sandy on attitudes and voting intentions regarding President Barack Obama and Mitt Romney in a large sample of voting-aged adults. Results suggest that immediately following positive news coverage of Obama's handling of the storm's aftermath, Sandy's salience positively influenced attitudes toward Obama, but that by election day, reminders of the hurricane became a drag instead of a boon for the President. In addition to theoretical implications, this study provides an example of how to combine methodological approaches to help answer questions about the impact of unpredictable, large-scale events as they unfold. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Hurricane coastal flood analysis using multispectral spectral images

    NASA Astrophysics Data System (ADS)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  18. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...

  19. Posttraumatic stress disorder symptom trajectories in Hurricane Katrina affected youth.

    PubMed

    Self-Brown, Shannon; Lai, Betty S; Thompson, Julia E; McGill, Tia; Kelley, Mary Lou

    2013-05-01

    This study examined trajectories of posttraumatic stress disorder symptoms in Hurricane Katrina affected youth. A total of 426 youth (51% female; 8-16 years old; mean age=11 years; 75% minorities) completed assessments at 4 time points post-disaster. Measures included Hurricane impact variables (initial loss/disruption and perceived life threat); history of family and community violence exposure, parent and peer social support, and post-disaster posttraumatic stress symptoms. Latent class growth analysis demonstrated that there were three distinct trajectories of posttraumatic stress disorder symptoms identified for this sample of youth (resilient, recovering, and chronic, respectively). Youth trajectories were associated with Hurricane-related initial loss/disruption, community violence, and peer social support. The results suggest that youth exposed to Hurricane Katrina have variable posttraumatic stress disorder symptom trajectories. Significant risk and protective factors were identified. Specifically, youth Hurricane and community violence exposure increased risk for a more problematic posttraumatic stress disorder symptom trajectory, while peer social support served as a protective factor for these youth. Identification of these factors suggests directions for future research as well as potential target areas for screening and intervention with disaster exposed youth. The convenience sample limits the external validity of the findings to other disaster exposed youth, and the self-report data is susceptible to response bias. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    NASA Astrophysics Data System (ADS)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  1. Breakup of New Orleans Households after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  2. National assessment of hurricane-induced coastal erosion hazards--Gulf of Mexico

    USGS Publications Warehouse

    Stockdon, Hilary F.; Doran, Kara S.; Thompson, David M.; Sopkin, Kristin L.; Plant, Nathaniel G.; Sallenger, Asbury H.

    2012-01-01

    Sandy beaches provide a natural barrier between the ocean and inland communities, ecosystems, and resources. However, these dynamic environments move and change in response to winds, waves, and currents. During a hurricane, these changes can be large and sometimes catastrophic. High waves and storm surge act together to erode beaches and inundate low-lying lands, putting inland communities at risk. A decade of USGS research on storm-driven coastal change hazards has provided the data and modeling capabilities to identify areas of our coastline that are likely to experience extreme and potentially hazardous erosion during a hurricane. This report defines hurricane-induced coastal erosion hazards for sandy beaches along the U.S. Gulf of Mexico coastline. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future.

  3. Business closure and relocation: a comparative analysis of the Loma Prieta earthquake and Hurricane Andrew.

    PubMed

    Wasileski, Gabriela; Rodríguez, Havidán; Diaz, Walter

    2011-01-01

    The occurrence of a number of large-scale disasters or catastrophes in recent years, including the Indian Ocean tsunami (2004), the Kashmir earthquake (2005), Hurricane Katrina (2005) and Hurricane Ike (2008), have raised our awareness regarding the devastating effects of disasters on human populations and the importance of developing mitigation and preparedness strategies to limit the consequences of such events. However, there is still a dearth of social science research focusing on the socio-economic impact of disasters on businesses in the United States. This paper contributes to this research literature by focusing on the impact of disasters on business closure and relocation through the use of multivariate logistic regression models, specifically focusing on the Loma Prieta earthquake (1989) and Hurricane Andrew (1992). Using a multivariate model, we examine how physical damage to the infrastructure, lifeline disruption and business characteristics, among others, impact business closure and relocation following major disasters. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  4. Recovery from PTSD following Hurricane Katrina.

    PubMed

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  5. Category change and risk perception: Hurricane Irene and coastal North Carolina.

    PubMed

    Pace, William; Montz, Burrell

    2014-01-01

    This research explores variations in risk perception with location and changes in the intensity of a hurricane (Hurricane Irene in 2011). Surveys were mailed to a random sample of 601 year-round residents of two counties in coastal North Carolina. Within each county, areas were chosen based on their risk with respect to wind or storm surge; an equal number of surveys were sent to each area. A 31 percent return rate was achieved. Dare County on the Outer Banks of North Carolina and Beaufort County on the Inner Banks were chosen as study areas because of the nature and extent of damage incurred from Hurricane Irene. Because Hurricane Irene was downgraded before it made landfall in North Carolina, it was anticipated that residents would perceive themselves to be at less risk to hurricane-related hazards with differences related to location on the Atlantic Ocean or on the Sound. Little difference was found between the Inner and Outer Banks locations such that all reported the change in intensity influenced their perceptions by reducing the sense of risk. This varied somewhat, but not significantly, by hazard area. The downgrading of Hurricane Irene created a false sense of security. Residents of the study area believed themselves to be at low risk and were unlikely to evacuate, despite warnings. The long duration of the event, however, led to significant damages, surprising many, and suggesting the need to emphasize impacts in messaging, no matter the storm intensity.

  6. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrin.

    PubMed

    Lowe, Sarah R; Godoy, Leandra; Rhodes, Jean E; Carter, Alice S

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time 3, respectively). Mothers rated their children's behavior problems at Time 3 only ( n = 251 children; 53.0% male; Mean age: 10.19 years, SD = 1.68 years). A path analytic model indicated that hurricane-related stressors were associated with increased maternal psychological distress and school mobility in the first post-disaster year, which were associated with higher child internalizing and externalizing symptoms three years post-disaster. Mediation analysis indicated that hurricane-related stressors were associated with child symptoms indirectly, through their impact on maternal psychological distress. Findings underscore the importance of interventions that boost maternal and child mental health and support children through post-disaster school transitions.

  7. Hurricane Blanca Strengthens

    NASA Image and Video Library

    2015-06-03

    Blanca has rapidly intensified with an increase in wind speed of 60 knots since 1200Z on June 2. The hurricane has developed a distinct pinhole eye in visible images surrounded by very deep convection. There is an opportunity for Blanca to intensify further since the hurricane is located within an ideal environment of low shear and high ocean heat content. Beyond 48 hours, the hurricane will encounter lower SSTs and a gradual weakening should begin. During the next 24 hours, the hurricane should begin a northwestward track with some increase in forward speed becoming a potential threat to Baja California in a few days. This image was taken by GOES East at 1445Z on June 3, 2015. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Impact of Hurricanes and Nor'easters on a Migrating Inlet System

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    After breaching in 2007, Katama Inlet, connecting Katama Bay to the Atlantic Ocean on the south shore of Martha's Vineyard, MA, migrated 2 km until it closed in 2015. Bathymetric surveys before and after Hurricanes Irene (2011) and Sandy (2012) indicate the strong waves and currents associated with these storms caused 2 m of erosion and deposition around the inlet mouth. The waves, currents, and bathymetric change observed during the hurricanes were used to validate the hydrodynamic and morphodynamic components of a Delft3D numerical model of the Martha's Vineyard coastline for storm (> 3 m wave heights) conditions. When driven with observed bathymetry and offshore waves, as well as simulated (WaveWatch3) winds and barometric pressures, the model reproduces the pattern and range of bathymetric change observed around the inlet. Model simulations of realistic (i.e., Irene and Sandy) and idealized storm conditions with a range of durations and wave conditions are used to test the relative importance of short-duration, high-intensity storms (hurricanes) and longer-duration, lower-intensity storms (nor'easters) on inlet migration. The simulations suggest that longer-duration, lower-intensity storms cause a higher range and variance in bathymetric change around the inlet than shorter-duration, higher-intensity storms. However, the simulations also suggest that the storm-induced migration of the inlet depends more on the wave direction at the peak of the storm than on the duration of the storm peak. The effect of storms on inlet migration over yearly time scales will be discussed. Funded by NSF, NOAA, ONR, and ASD(R&E).

  9. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  10. Difficulties in separating hurricane induced effects from natural benthic succession: Hurricane Isabel, a case study from Eastern Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hughes, C.; Richardson, C. A.; Luckenbach, M.; Seed, R.

    2009-11-01

    Hurricane Isabel reached the Eastern seaboard of North America on 18 September 2003 causing estimated damage >3 billion US dollars and the death of ˜50 people. Isabel is considered to be one of the most significant tropical cyclones to affect Virginia, since the Chesapeake Potomac Hurricane of 1933 and Hurricane Hazel in 1954. A study of the temporal changes in the benthic fauna pre- and post-hurricane was conducted on an intertidal sandflat within the dynamic barrier island system near Wachapreague, Eastern Virginia. Replicate sediment cores were collected 3 weeks before Isabel made landfall and further samples were collected on 5 occasions over the following 20 months. An immediate effect of Isabel was a doubling in the number of species, a significant increase in invertebrate species diversity ( H') and a rise in opportunistic species and deposit feeders, but a non-significant increase in the total number of organisms. Changes in infauna occurred such that by the end of the study there were significantly increased numbers of species, faunal abundances and community diversity measures, as compared with pre-hurricane samples, suggesting a potentially positive medium-term effect of this hurricane perturbation. The most notable direct effects of the hurricane were on the relative abundances of feeding guilds with a reduction in interface feeders from 87% pre-hurricane to 64% post-hurricane, and an increase in surface deposit feeders from 7% pre-hurricane to 20% post-hurricane. The study highlights potential problems in interpreting post-perturbation data when insufficient pre-perturbation data exist.

  11. Real-time Monitoring of Hurricanes with the HAMSR Microwave Sounder

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. T.; Lim, B.; Hristova-Veleva, S. M.; Li, P.; Knosp, B.; Turk, F. J.; Niamsuwan, N.

    2016-12-01

    defined. HAMSR observations of the warm core anomaly in the center of a mature hurricane can also be used to obtain accurate estimates of intensity. Assimilation experiments are under way to assess the potential forecast impact of the HAMSR observations, as part of the most recent SHOUT campaign. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

  12. Hurricane Odile

    NASA Image and Video Library

    2017-12-08

    At about 10:45 p.m. Mountain Daylight Time (MDT) on September 14, 2014, Hurricane Odile made landfall as a Category 3 storm near Cabo San Lucas, Mexico. According to the U.S. National Hurricane Center, Odile arrived with wind speeds of 110 knots (204 kilometers or 127 miles per hour). The storm tied Olivia (1967) as the strongest hurricane to make landfall in the state of Baja California Sur in the satellite era. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color view of the storm at about noon MDT on September 14, when it was still southeast of the Baja California peninsula. Unisys Weather reported that the Category 4 storm had maximum sustained wind speeds of 115 knots (213 kilometers per hour) at the time. Odile had weakened to a Category 2 hurricane by 6 a.m. MDT on September 15. The storm was expected to continue weakening as it moved up the peninsula and over the area’s rough terrain, according to weather blogger Jeff Masters. Meteorologists noted that while damaging winds posed the biggest threat in the short term, inland areas of the U.S. Southwest could face heavy rainfall by September 16. The rain expected from Odile came one week after the U.S. Southwest experienced flash floods from the remnants of Hurricane Norbert. According to weather and climate blogger Eric Holthaus, those floods did little to relieve the area’s ongoing drought. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen. Instrument(s): Terra - MODIS Read more: earthobservatory.nasa.gov/IOTD/view.php?id=84378&eocn... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  13. The condition of neighborhood parks following Hurricane Katrina: development of a Post-Hurricane Assessment instrument.

    PubMed

    Bedimo-Rung, Ariane L; Thomson, Jessica L; Mowen, Andrew J; Gustat, Jeanette; Tompkins, Bradley J; Strikmiller, Patricia K; Sothern, Melinda S

    2008-01-01

    Parks provide environments for physical activity, yet little is known about how natural disasters affect them or how these disasters alter physical activity. Our objectives were to (1) describe the development of an instrument to assess park conditions following a hurricane and (2) document the conditions of New Orleans' parks 3 and 6 months after Hurricane Katrina. A Post-Hurricane Assessment (PHA) instrument was developed and implemented in 54 parks 3 and 6 months post-hurricane. Summary scores of the Park Damage Index and the Neighborhood Damage Index showed improvement between 3 and 6 months of data collection. Parks and neighborhoods most affected by the hurricane were located in the most- and least-affluent areas of the city. The PHA proved to be a promising tool for assessing park conditions in a timely manner following a natural disaster and allowed for the creation of summary damage scores to correlate to community changes.

  14. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  15. In the Wake of Hurricane Katrina: Delivering Crisis Mental Health Services to Host Communities

    ERIC Educational Resources Information Center

    Marbley, Aretha Faye

    2007-01-01

    Throughout the country and especially in Texas, local communities opened their arms to hurricane Katrina evacuees. Like the federal government, emergency health and mental health entities were unprepared for the massive numbers of people needing assistance. Mental health professionals, though armed with a wealth of crisis intervention information,…

  16. A Look Inside Hurricane Alma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  17. Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, A.; Gravois, M.

    2010-06-01

    A 100-year climatology of tropical storms and hurricanes within a 200-km buffer was developed to study their impacts on coral reefs of the Flower Garden Banks (FGB) and neighboring banks of the northwestern Gulf of Mexico. The FGB are most commonly affected by tropical storms from May through November, peaking in August-September. Storms approach from all directions; however, the majority of them approach from the southeast and southwest, which suggests a correlation with storm origin in the Atlantic and Gulf of Mexico. A storm activity cycle lasting 30-40 years was identified similar to that known in the Atlantic basin, and is similar to the recovery time for impacted reefs. On average there is 52% chance of a storm approaching within 200 km of the FGB every year, but only 17% chance of a direct hit every year. Storm-generated waves 5-25 m in height and periods of 11-15 s induce particle speeds of 1-4 m s -1 near these reefs. The wave-current flow is capable of transporting large (˜3 cm) sediment particles, uplifting the near-bottom nepheloid layer to the banks tops, but not enough to break coral skeletons. The resulting storm-driven turbulence induces cooling by heat extraction, mixing, and upwelling, which reduces coral bleaching potential and deepens the mixed layer by about 20 m. Tropical storms also aid larvae dispersal from and onto the FGB. Low storm activity in 1994-2004 contributed to an 18% coral cover increase, but Hurricane Rita in 2005 reduced it by 11% and brought coral cover to nearly pre-1994 levels. These results suggest that the FGB reefs and neighboring reef banks act as coral refugia because of their offshore location and deep position in the water column, which shields them from deleterious effects of all but the strongest hurricanes.

  18. The Department of Defense and Homeland Security relationship: Hurricane Katrina through Hurricane Irene.

    PubMed

    Weaver, John Michael

    2015-01-01

    This research explored federal intervention with the particular emphasis on examining how a collaborative relationship between Department of Defense (DOD) and Homeland Security (DHS) led to greater effectiveness between these two federal departments and their subordinates (United States Northern Command and Federal Emergency Management Agency, respectively) during the preparation and response phases of the disaster cycle regarding US continental-based hurricanes. Through the application of a two-phased, sequential mixed methods approach, this study determined how their relationship has led to longitudinal improvements in the years following Hurricane Katrina, focusing on hurricanes as the primary unit of analysis.

  19. Hurricane Public Health Research Center at Louisiana State University a Case of Academia Being Prepared

    NASA Astrophysics Data System (ADS)

    van Heerden, I. L.

    2006-12-01

    Recent floods along the Atlantic and Gulf seaboards and elsewhere in the world before Katrina had demonstrated the complexity of public health impacts including trauma; fires; chemical, sewerage, and corpse contamination of air and water; and diseases. We realized that Louisiana's vulnerability was exacerbated because forty percent of the state is coastal zone in which 70% of the population resides. Ninety percent of this zone is near or below sea level and protected by man-made hurricane-protection levees. New Orleans ranked among the highest in the nation with respect to potential societal, mortality, and economic impacts. Recognizing that emergency responders had in the past been unprepared for the extent of the public health impacts of these complex flooding disasters, we created a multi-disciplinary, multi-campus research center to address these issues for New Orleans. The Louisiana Board of Regents, through its millennium Health Excellence Fund, awarded a 5-year contract to the Center in 2001. The research team combined the resources of natural scientists, social scientists, engineers, and the mental health and medical communities. We met annually with a Board of Advisors, made up of federal, state, local government, and non-governmental agency officials, first responders and emergency managers. Their advice was invaluable in acquiring various datasets and directing aspects of the various research efforts. Our center developed detailed models for assessment and amelioration of public health impacts due to hurricanes and major floods. Initial research had showed that a Category 3 storm would cause levee overtopping, and that most levee systems were unprotected from the impacts of storm-induced wave erosion. Sections of levees with distinct sags suggested the beginnings of foundation and subsidence problems. We recognized that a slow moving Cat 3 could flood up to the eaves of houses and would have residence times of weeks. The resultant mix of sewage, corpses

  20. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  1. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  2. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  3. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  4. Hurricane Sandy (New Jersey): Mortality Rates in the Following Month and Quarter.

    PubMed

    Kim, Soyeon; Kulkarni, Prathit A; Rajan, Mangala; Thomas, Pauline; Tsai, Stella; Tan, Christina; Davidow, Amy

    2017-08-01

    To describe changes in mortality after Hurricane Sandy made landfall in New Jersey on October 29, 2012. We used electronic death records to describe changes in all-cause and cause-specific mortality overall, in persons aged 76 years or older, and by 3 Sandy impact levels for the month and quarter following Hurricane Sandy compared with the same periods in earlier years adjusted for trends. All-cause mortality increased 6% (95% confidence interval [CI] = 2%, 11%) for the month, 5%, 8%, and 12% by increasing Sandy impact level; and 7% (95% CI = 5%, 10%) for the quarter, 5%, 8%, and 15% by increasing Sandy impact level. In elderly persons, all-cause mortality rates increased 10% (95% CI = 5%, 15%) and 13% (95% CI = 10%, 16%) in the month and quarter, respectively. Deaths that were cardiovascular disease-related increased by 6% in both periods, noninfectious respiratory disease-related by 24% in the quarter, infection-related by 20% in the quarter, and unintentional injury-related by 23% in the month. Mortality increased, heterogeneous by cause, for both periods after Hurricane Sandy, particularly in communities more severely affected and in the elderly, who may benefit from supportive services.

  5. Impact of Hurricane Sandy on the Staten Island University Hospital Emergency Department.

    PubMed

    Greenstein, Josh; Chacko, Jerel; Ardolic, Brahim; Berwald, Nicole

    2016-06-01

    ) utilization was seen on Days 0 and +1. The SIUH-N typically sees 18% of patients arriving via EMS. On Day +1, only two percent of patients arrived by ambulance. The daily ED census saw a significant decline in the days preceding the storm. In addition, the type of conditions treated varied from baseline, and a considerable drop in hospital admissions was seen. Data such as these presented here can help make predictions for future scenarios. Greenstein J , Chacko J , Ardolic B , Berwald N . Impact of Hurricane Sandy on the Staten Island University Hospital emergency department. Prehosp Disaster Med. 2016;31(3):335-339.

  6. Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar

    2007-01-01

    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.

  7. A tale of two storms: Surges and sediment deposition from Hurricanes Andrew and Wilma in Florida’s southwest coast mangrove forests: Chapter 6G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Smith, Thomas J.; Anderson, Gordon H.; Tiling, Ginger

    2007-01-01

    Hurricanes can be very different from each other. Here we examine the impacts that two hurricanes, Andrew and Wilma, had in terms of storm surge and sediment deposition on the southwest coast of Florida. Although Wilma was the weaker storm, it had the greater impact. Wilma had the higher storm surge over a larger area and deposited more sediment than did Andrew. This effect was most likely due to the size of Wilma's eye, which was four times larger than that of Andrew.

  8. Modeling hurricane effects on mangrove ecosystems

    USGS Publications Warehouse

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  9. 7 CFR 701.50 - 2005 hurricanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  10. Atlantic hurricane response to geoengineering

    NASA Astrophysics Data System (ADS)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  11. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  12. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita: Chapter 5B in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    Comparison of classified Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005) demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, Pearl River basin), whereas 117 mi2 (303 km2) were in areas primarily impacted by Rita (Calcasieu/ Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively. The brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas identify permanent losses caused by direct removal of wetlands. They also indicate transitory water area changes caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after both hurricanes' landfalls (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery.

  13. Use of Windbreaks for Hurricane Protection of Critical Facilities

    NASA Technical Reports Server (NTRS)

    Hyater-Adams, Sinone; DeYoung, Russell J.

    2012-01-01

    The protection of NASA Langley Research Center from future hurricanes is important in order to allow the center to fulfill its mission. The impact of the center is not only great within NASA but the economy as well. The infrastructure of the Center is under potential risk in the future because of more intense hurricanes with higher speed winds and flooding. A potential method of protecting the Center s facilities is the placement of a windbreak barrier composed of indigenous trees. The New Town program that is now in progress creates a more condensed area of focus for protection. A potential design for an efficient tree windbreak barrier for Langley Research center is proposed.

  14. Upper Ocean Momentum Response to Hurricane Forcing

    NASA Astrophysics Data System (ADS)

    Shay, L. K.; Jaimes de la Cruz, B.; Uhlhorn, E.

    2016-02-01

    The oceanic velocity response of the Loop Current (LC) and its complex warm and cold eddy field to hurricanes is critical to evaluate coupled operational forecast models. Direct velocity measurements of ocean current (including temperature and salinity) fields during hurricanes are needed to understand these complex interaction processes. As part of NOAA Intensity Forecasting Experiments, airborne expendable bathythermographs (AXBT), Conductivity-Temperature-Depth (AXCTD), and Current Profilers (AXCP) probes have been deployed in several major hurricanes from the NOAA research aircraft over the Gulf. Over the last decade, profilers were deployed in Isidore and Lili, Katrina and Rita, Gustav and Ike and Isaac-all of which interacted with the LC and warm eddy field. Central to these interactions under hurricane forcing is the level of sea surface cooling (typically about 1oC) induced by the wind-forced current response in the LC complex. Vertical current shear and instability (e.g., Richardson number) at the base of the oceanic mixed layer is often arrested by the strong upper ocean currents associated with the LC of 1 to 1.5 m s-1. By contrast, the SST cooling response often exceeds 3.5 to 4oC away from the LC complex in the Gulf Common Water. A second aspect of the interaction between the surface wind field and the LC is that the vorticity of the background flows (based on altimetry) enhances upwelling and downwelling processes by projecting onto the wind stress. This process modulates vertical mixing process at depth by keeping the Richardson numbers above criticality. Thus, the ocean cooling is less in the LC complex allowing for a higher and more sustained enthalpy flux as determined from global positioning system sondes deployed in these storms. This level of cooling (or lack thereof) in the LC complex significant impacts hurricane intensity that often reaches severe status which affects offshore structures and coastal communities at landfall in the northern

  15. Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Judi, David R.; Leung, L. Ruby

    Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August–October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8–4.2 %more » and their lifetime maximum intensities may increase by 2.7–5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service’s SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk.« less

  16. Science and the storms: The USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  17. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav

  18. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the everglades

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Wells, C.J.

    2009-01-01

    The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.

  19. Predicting Mothers’ Reports of Children’s Mental Health Three Years after Hurricane Katrin

    PubMed Central

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2012-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time 3, respectively). Mothers rated their children’s behavior problems at Time 3 only (n = 251 children; 53.0% male; Mean age: 10.19 years, SD = 1.68 years). A path analytic model indicated that hurricane-related stressors were associated with increased maternal psychological distress and school mobility in the first post-disaster year, which were associated with higher child internalizing and externalizing symptoms three years post-disaster. Mediation analysis indicated that hurricane-related stressors were associated with child symptoms indirectly, through their impact on maternal psychological distress. Findings underscore the importance of interventions that boost maternal and child mental health and support children through post-disaster school transitions. PMID:23471125

  20. Ordinary and Extraordinary Trauma: Race, Indigeneity, and Hurricane Katrina in Tunica-Biloxi History

    ERIC Educational Resources Information Center

    Klopotek, Brian; Lintinger, Brenda; Barbry, John

    2008-01-01

    Hurricane Katrina traumatized the city of New Orleans and the Gulf South. It filled most Americans and global citizens with grief and rage in the late summer of 2005. As the world watched, feeling powerless to help the many thousands of suffering people, at first stunned and then furious over the ineptitude of government response to this…

  1. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita

    PubMed Central

    Amaral-Zettler, Linda A.; Rocca, Jennifer D.; LaMontagne, Michael G.; Dennett, Mark R.; Gast, Rebecca J.

    2009-01-01

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters that threaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit ribosomal RNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans and raw sewage. Correspondence Analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as “sentinels” of water quality in the environment. PMID:19174873

  2. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    PubMed

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  3. Case Study of Hurricane Felix (2007) Rapid Intensification

    NASA Astrophysics Data System (ADS)

    Colon-Pagan, I. C.; Davis, C. A.; Holland, G. J.

    2010-12-01

    The forecasting of tropical cyclones (TC) rapid intensification (RI) is one of the most challenging problems that the operational community experiences. Research advances leading to improvements in predicting this phenomenon would help government agencies make decisions that could reduce the impact on communities that are so often affected by these weather-related events. It has been proposed that TC RI is associated to various factors, including high sea-surface temperatures, weak vertical wind shear, and the ratio of inertial to static stability, which improves the conversion of diabatic heating into circulation. While a cyclone develops, the size of the region of high inertial stability (IS) decreases whereas the magnitude of IS increases. However, it’s unknown whether this is a favorable condition or a result of RI occurrences. The purpose of this research, therefore, is to determine if the IS follows, leads or changes in sync with the intensity change by studying Hurricane Felix (2007) RI phase. Results show a trend of increasing IS before the RI stage, followed by an expansion of the region of high IS. This episode is eventually followed by a decrease in both the intensity and region of positive IS, while the maximum wind speed intensity of the TC diminished. Therefore, we propose that monitoring the IS may provide a forecast tool to determine RI periods. Other parameters, such as static stability, tangential wind, and water vapor mixing ratio may help identify other features of the storm, such as circulation and eyewall formation. The inertial stability (IS) trend during the period of rapid intensification, which occurred between 00Z and 06Z of September 3rd. Maximum values of IS were calculated before and during this period of RI within a region located 30-45 km from the center. In fact, this region could represent the eye-wall of Hurricane Felix.

  4. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  5. Hurricane Sandy Exposure and the Mental Health of World Trade Center Responders.

    PubMed

    Bromet, Evelyn J; Clouston, Sean; Gonzalez, Adam; Kotov, Roman; Guerrera, Kathryn M; Luft, Benjamin J

    2017-04-01

    The psychological consequences of a second disaster on populations exposed to an earlier disaster have rarely been studied prospectively. Using a pre- and postdesign, we examined the effects of Hurricane Sandy on possible World Trade Center (WTC) related posttraumatic stress disorder (PTSD Checklist score of ≥ 50) and overall depression (major depressive disorder [MDD]; Patient Health Questionnaire depression score of ≥ 10) among 870 WTC responders with a follow-up monitoring visit at the Long Island WTC Health Program during the 6 months post-Hurricane Sandy. The Hurricane Sandy exposures evaluated were damage to home (8.3%) and to possessions (7.8%), gasoline shortage (24.1%), prolonged power outage (42.7%), and filing a Federal Emergency Management Agency claim (11.3%). A composite exposure score also was constructed. In unadjusted analyses, Hurricane Sandy exposures were associated with 1.77 to 5.38 increased likelihood of PTSD and 1.58 to 4.13 likelihood of MDD; odds ratios for ≥ 3 exposures were 6.47 for PTSD and 6.45 for MDD. After adjusting for demographic characteristics, WTC exposure, pre-Hurricane Sandy mental health status, and time between assessments, reporting ≥ 3 Hurricane Sandy exposures was associated with a 3.29 and 3.71 increased likelihood of PTSD and MDD, respectively. These findings underscore the importance of assessing the impact of a subsequent disaster in ongoing responder health surveillance programs. Copyright © 2017 International Society for Traumatic Stress Studies.

  6. Spatial analysis of highway incident durations in the context of Hurricane Sandy.

    PubMed

    Xie, Kun; Ozbay, Kaan; Yang, Hong

    2015-01-01

    The objectives of this study are (1) to develop an incident duration model which can account for the spatial dependence of duration observations, and (2) to investigate the impacts of a hurricane on incident duration. Highway incident data from New York City and its surrounding regions before and after Hurricane Sandy was used for the study. Moran's I statistics confirmed that durations of the neighboring incidents were spatially correlated. Moreover, Lagrange Multiplier tests suggested that the spatial dependence should be captured in a spatial lag specification. A spatial error model, a spatial lag model and a standard model without consideration of spatial effects were developed. The spatial lag model is found to outperform the others by capturing the spatial dependence of incident durations via a spatially lagged dependent variable. It was further used to assess the effects of hurricane-related variables on incident duration. The results show that the incidents during and post the hurricane are expected to have 116.3% and 79.8% longer durations than those that occurred in the regular time. However, no significant increase in incident duration is observed in the evacuation period before Sandy's landfall. Results of temporal stability tests further confirm the existence of the significant changes in incident duration patterns during and post the hurricane. Those findings can provide insights to aid in the development of hurricane evacuation plans and emergency management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genesis of tornadoes associated with hurricanes

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  8. Using High-Resolution Imagery to Characterize Disturbance from Hurricane Irma in South Florida Wetlands

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.

    2017-12-01

    Hurricane Irma, one of the strongest hurricanes recorded in the Atlantic, first made landfall in the Florida Keys before coming ashore in southwestern Florida near Everglades National Park (ENP) on September 9th and 10th of this year. Strong winds and storm surge impacted a 100+ km stretch of the southern Florida Gulf Coast, resulting in extensive damages to coastal and inland ecosystems. Impacts from previous catastrophic storms in the region have led to irreversible changes to vegetation communities and in some areas, ecosystem collapse. The processes that drive coastal wetland vulnerability and resilience are largely a function of the severity of the impact to forest structure and ground elevation. Remotely sensed imagery plays an important role in measuring changes to the landscape, particularly for extensive and inaccessible regions like the mangroves in ENP. We have estimated changes in coastal vegetation structure and soil elevation using a combination of repeat measurements from ground, airborne, and satellite platforms. At the ground level, we used before and after Structure-from-Motion models to capture the change in below canopy structure as result of stem breakage and fallen branches. Using airborne imagery collected before and after Hurricane Irma by Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager, we measured the change in forest structure and soil elevation. This unique data acquisition covered an area over 130,000 ha in regions most heavily impacted storm surge. Lastly, we also combined commercial and NASA satellite Earth observations to measure forest structural changes across the entire South Florida coast. An analysis of long-term observations from the Landsat data archive highlights the heterogeneity of hurricane and other environmental disturbances along the Florida coast. These findings captured coastal disturbance legacies that have the potential to influence the trajectory of mangrove resilience and vulnerability

  9. Impact of coping styles on post-traumatic stress disorder and depressive symptoms among pregnant women exposed to Hurricane Katrina.

    PubMed

    Oni, Olurinde; Harville, Emily W; Xiong, Xu; Buekens, Pierre

    2012-01-01

    Experiencing natural disasters such as hurricanes is associated with post-traumatic stress disorder (PTSD) and depression. We examined the role played by perceived stress and coping styles in explaining and modifying this association among pregnant women exposed to Hurricane Katrina. The study comprised 192 women (133 from New Orleans and 59 from Baton Rouge) who were pregnant during Hurricane Katrina or became pregnant immediately after the hurricane. Women were interviewed regarding their hurricane experience, perceived stress, and mental health outcomes. Coping styles was assessed using the Brief COPE, PTSD symptoms using the Post-Traumatic Checklist, and depressive symptoms using the Edinburgh Depression Scale. Multivariable regression models were run to determine the effects of coping styles on mental health and the interactions among coping styles, hurricane experience, and perceived stress on mental health. Apart from the positive reframing and humor coping styles, all coping styles correlated positively with PTSD or depression (p < 0.05). The instrumental support, denial, venting, and behavioral disengagement coping styles were significantly associated with worsened PTSD symptoms among those who reported higher perceived stress (p < 0.05). Use of a humor coping style seemed to reduce the effect of perceived stress on depressive symptoms (p = 0.02 for interaction) while use of instrumental support (p = 0.04) and behavioral disengagement (p < 0.01) were both associated with more symptoms of depression among those who perceived more stress. There were no strong interactions between coping style and hurricane experience. Coping styles are potential moderators of the effects of stress on mental health of pregnant women.

  10. Disrupted by disaster: shared experiences of student registered nurse anesthetists affected by hurricane Katrina.

    PubMed

    Geisz-Everson, Marjorie A; Bennett, Marsha J; Dodd-McCue, Diane; Biddle, Chuck

    2012-01-01

    The purpose of this focused ethnography was to describe the shared experiences of student registered nurse anesthetists (SRNAs) whose senior year of education and training was disrupted by Hurricane Katrina, as well as to determine the storm's psychosocial impact on them. A convenience sample of 10 former SRNAs participated in focus groups that were audiorecorded, transcribed, and qualitatively analyzed. Three major themes emerged from the study: Seriousness of Urgency, Managing Uncertainty, and Stability Equaled Relief. The themes represented how the SRNAs appraised and coped with the stressful events surrounding Hurricane Katrina. The psychosocial impact of Hurricane Katrina on the SRNAs resulted mainly in temporary increased alcohol consumption and short-term anxiety. One person started smoking. The results of this study should serve as a guide to formulate policies regarding the education of SRNAs during and immediately after a disaster and to provide a framework for future disaster studies regarding SRNAs. Copyright 2012, SLACK Incorporated.

  11. Life of a Six-Hour Hurricane

    NASA Technical Reports Server (NTRS)

    Shelton, Kay L.; Molinari, John

    2009-01-01

    Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m/s. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7-12 C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K/km. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear-induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a "temporary hurricane" in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

  12. Hurricane Joaquin on 9/29/15

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite captured this image of Joaquin near the Bahamas on Sept. 29 at 18:10 UTC (2:10 p.m. EDT). Credit: NASA Goddard MODIS Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Amount and Percentage of Current Societal Assets in Areas on Kaua'i, Hawai'i, within the 1992 Hurricane 'Iniki Storm-Surge Inundation Zone

    USGS Publications Warehouse

    Wood, Nathan

    2008-01-01

    The Pacific Risk Management 'Ohana (PRiMO) is a network of partners and stakeholders involved in the development, delivery, and communication of risk management-related information, products, and services across the Pacific Ocean (National Oceanic and Atmospheric Administration Pacific Services Center, 2008). One PRiMO-related project is the NOAA National Climatic Data Center's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Climatology Information Products (PRICIP) initiative, which seeks to improve the understanding of patterns and trends of storm frequency and intensity ('storminess') within the Pacific region and to develop a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies, and other decision-makers (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008a). One of the PRICIP information products is a historical storm 'event anatomy', which includes a summary of sector-specific socioeconomic impacts associated with a particular event, as well as information about the event and its climatological context. The intent of an event anatomy is to convey the causes of an extreme storm event and the associated impacts in a format that users can understand. The event anatomies also are intended to familiarize users with the in-place and remotely sensed products typically employed to track and forecast weather and climate. The first event anatomy developed as a prototype and hosted on the PRICIP portal is for Hurricane 'Iniki (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008b), a Category 3-4 hurricane that made landfall on the south coast of Kaua'i Island on September 11, 1992, with estimated maximum sustained winds of more than 140 mph and gusts as high as 175 mph. Storm-surge inundation occurred on the southern and northeastern coast of Kaua

  14. Recovering from Hurricane Katrina

    ERIC Educational Resources Information Center

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  15. Impact of hurricanes on the flux of rainwater and Cape Fear River water dissolved organic carbon to Long Bay, southeastern United States

    NASA Astrophysics Data System (ADS)

    Avery, G. Brooks; Kieber, Robert J.; Willey, Joan D.; Shank, G. Christopher; Whitehead, Robert F.

    2004-09-01

    The hurricane flux of rain and river water dissolved organic carbon (DOC) to Long Bay located on the southeastern coast of the United States was determined for four hurricanes that made landfall in the Cape Fear region of North Carolina. Riverine flux of DOC following hurricanes Fran (1996) and Floyd (1999) represented one third and one half of the entire annual river flux of DOC to Long Bay, respectively. The majority of this DOC was recalcitrant and not available for biological consumption. The high flux of DOC from hurricane Floyd resulted from extremely high precipitation amounts (in excess of 50 cm) associated with the hurricane and subsequent flooding. High riverine DOC fluxes were observed following hurricane Fran but not hurricanes Bertha (1996) and Bonnie (1998). The westerly path of Fran deposited rain inland along the Cape Fear River watershed, causing high river flow conditions, while Bonnie and Bertha took an eastern path, resulting in a minimal effect to the Cape Fear River flow rates. The rainwater flux of total DOC to Long Bay from the four hurricanes was not as dramatic as that observed for riverine fluxes. However, unlike river water DOC that is refractory, rainwater DOC is highly labile. Rainwater from the four hurricanes in this study deposited 2-5 times the DOC deposited in an average storm. This represented a flux of 3-9% of the entire annual budget of bioavailable DOC to Long Bay being deposited over a 1 or 2 day period, likely spurring short-term secondary productivity following the hurricanes.

  16. The effect of a class IV hurricane on emergency department operations.

    PubMed

    Sheppa, C M; Stevens, J; Philbrick, J T; Canada, M

    1993-09-01

    The objective of this study was to determine the impact on emergency department (ED) operations of Hurricane Hugo, a class IV hurricane that struck Charleston, South Carolina, on September 21, 1989. The study design was a retrospective record-based descriptive study and mail survey of the ED of a 300-bed regional medical center directly in the path of the storm. During the 3 weeks after the storm, ED patient volume increased 19% over that of the 3 weeks before the storm. Increased visit volumes were evident for at least 3 months. Compared with a similar period of the previous year, there was an increase in the proportion of patients seen for lacerations of all types, puncture wounds, stings, and falls. Sixty-two percent of physician offices were still closed 7 days after the storm. The direct effects of a class IV hurricane on ED operations included major alterations in the volume and types of patient visits. Because of the evacuation of approximately 40% of the coastal population and storm damage hindering travel, the increase in visit volume was less in magnitude but of longer duration has been reported in class III hurricanes.

  17. The Impact of Child-Related Stressors on the Psychological Functioning of Lower-Income Mothers after Hurricane Katrina

    ERIC Educational Resources Information Center

    Lowe, Sarah R.; Chan, Christian S.; Rhodes, Jean E.

    2011-01-01

    In the present study, the authors examined the role of child-related stressors in the psychological adjustment of lower-income, primarily unmarried and African American, mothers (N = 386). All participants lived in areas affected by Hurricane Katrina, and about a third were also exposed to Hurricane Rita (30.3%, n = 117). Lacking knowledge of a…

  18. Latest View of Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    Hurricane Joaquin continued to intensify in the Bahamas on October 1 and NASA and NOAA satellites have been providing valuable data on the storm. NASA's GPM and Terra satellites and NOAA's GOES-East satellite provided rainfall, cloud extent, cloud height and other data to forecasters. Joaquin became a major hurricane today, October 1, reaching Category 3 status on the Saffir-Simpson Wind Scale. On October 1 at 1330 UTC (9:30 a.m. EDT) NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin covering the southern Bahamas and extending over southeastern Cuba, and the island of Hispaniola (which includes Haiti and the Dominican Republic). Joaquin's eye had become completely visible now that the storm had reached Category 3 status. On October 1, a Hurricane Warning was in effect for the Central Bahamas, Northwestern Bahamas including the Abacos, Berry Islands, Eleuthera, Grand Bahama Island, and New Providence, The Acklins, Crooked Island, and Mayaguana in the southeastern Bahamas. A Hurricane Watch was in effect for Bimini and Andros Island, and a Tropical Storm Warning was in effect for the remainder of the southeastern Bahamas excluding the Turks and Caicos Islands and Andros Island. According to NHC, at 8 a.m. EDT (1200 UTC), the center of Hurricane Joaquin was located near latitude 23.2 North, longitude 73.7 West. That's just 10 miles (15 km) north of Samana Cays, Bahamas and about 75 miles (120 km) southeast of San Salvador, Bahamas. Joaquin was moving toward the west-southwest near 5 mph (7 kph), and this motion is expected to continue today. NHC noted that a turn toward the west- northwest is forecast tonight (Oct. 1), followed by a turn toward the north and an increase in forward speed on Friday, Oct. 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday. Maximum sustained winds are near 120 mph (195 km

  19. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  20. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Spencer, Laura J.; DiMarco, Steven F.; Wang, Zhankun; Kuehl, Joseph J.; Brooks, David A.

    2016-10-01

    The eye of Hurricane Isaac passed through the center of an array of six deep water water-column current meter moorings deployed in the northern Gulf of Mexico. The trajectory of the hurricane provided for a unique opportunity to quantify differences in the full water-column oceanic response to a hurricane to the left and right of the hurricane trajectory. Prior to the storm passage, relative vorticity on the right side of the hurricane was strongly negative, while on the left, relative vorticity was positive. This resulted in an asymmetry in the near-inertial frequencies oceanic response at depth and horizontally. A shift in the response to a slightly larger inertial frequencies ˜1.11f was observed and verified by theory. Additionally, the storm passage coincided with an asymmetric change in relative vorticity in the upper 1000 m, which persisted for ˜15 inertial periods. Vertical propagation of inertial energy was estimated at 29 m/d, while horizontal propagation at this frequency was approximately 5.7 km/d. Wavelet analysis showed two distinct subinertial responses, one with a period of 2-5 days and another with a period of 5-12 days. Analysis of the subinertial bands reveals that the spatial and temporal scales are shorter and less persistent than the near-inertial variance. As the array is geographically located near the site of the Deep Water Horizon oil spill, the spatial and temporal scales of response have significant implications for the fate, transport, and distribution of hydrocarbons following a deep water spill event.

  1. Aerial rapid assessment of hurricane damages to northern Gulf coastal habitats: Chapter 5A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Michot, Thomas C.; Wells, Christopher J.; Chadwick, Paul C.

    2007-01-01

    Hurricane Katrina made landfall in southeast Louisiana on August 29, 2005, and Hurricane Rita made landfall in southwest Louisiana on September 24, 2005. Scientists from the U.S. Geological Survey (USGS) flew aerial surveys to assess damages to natural resources and to lands owned and managed by the U.S. Department of the Interior and other agencies. Flights were made on eight dates from August 27 through October 4, including one pre-Katrina, three post-Katrina, and four post-Rita surveys. The geographic area surveyed extended from Galveston, Tex., to Gulf Shores, Ala., and from the Gulf of Mexico shoreline inland 5-75 mi (8-121 km). Impacts to barrier island habitats were severe, especially at the Chandeleur Islands, which were reduced in land area by roughly 50 percent. Marsh impacts varied but were greatest in St. Bernard and Cameron Parishes, where much emergent vegetation was scoured or killed. Forested wetlands were impacted heavily, especially in the Pearl River basin and on the cheniers of southwest Louisiana.

  2. Adverse respiratory symptoms and environmental exposures among children and adolescents following Hurricane Katrina.

    PubMed

    Rath, Barbara; Young, Elizabeth A; Harris, Amy; Perrin, Keith; Bronfin, Daniel R; Ratard, Raoult; Vandyke, Russell; Goldshore, Matthew; Magnus, Manya

    2011-01-01

    Children and adolescents are especially vulnerable to environmental exposures and their respiratory effects. Following Hurricane Katrina in 2005, residents experienced multiple adverse environmental exposures. We characterized the association between upper respiratory symptoms (URS) and lower respiratory symptoms (LRS) and environmental exposures among children and adolescents affected by Hurricane Katrina. We conducted a cross-sectional study following the return of the population to New Orleans after Hurricane Katrina (October 2005 and February 2006) among a convenience sample of children and adolescents attending New Orleans health facilities. We used uni-, bi-, and multivariable analyses to describe participants, exposures, and associations with URS/LRS. Of 1,243 participants, 47% were Caucasian, 50% were male, and 72% were younger than 11 years of age. Multiple environmental exposures were identified during and after the storm and at current residences: roof/glass/storm damage (50%), outside mold (22%), dust (18%), and flood damage (15%). Self-reported URS and LRS (76% and 36%, respectively) were higher after the hurricane than before the hurricane (22% and 9%, respectively, p<0.0001). Roof/glass/storm damage at home was associated with URS (adjusted odds ratio [AOR] = 1.59, 95% confidence interval [CI] = 1.15, 2.21) and LRS (AOR=1.35, 95% CI 1.01, 1.80), while mold growth at home was associated with LRS (AOR=1.47, 95% CI 1.02, 2.12). Children and adolescents affected by Hurricane Katrina experienced environmental exposures associated with increased prevalence of reported URS and LRS. Additional research is needed to investigate the long-term health impacts of Hurricane Katrina.

  3. The Minimization of Public Health Risks in Newspapers after Hurricane Katrina

    PubMed Central

    Cohen, Elisia L.; Vijaykumar, Santosh; Wray, Ricardo; Karamehic, Ajlina

    2009-01-01

    During natural disasters, mass media facilitate the timely provision of accurate information about health risks to the public. This study informs our understanding of such public health discourse utilizing content-analysis of 235 newspaper articles in four major metropolitan newspapers published in the five weeks after Hurricane Katrina hit the Gulf coast in August 2005. These data reveal a small and diminishing number of articles included public health information over time, detailed the hurricane impact on affected communities, and used reliable health sources. The implications for future research from a public health and media relations perspective are discussed. PMID:20011666

  4. Coastal Change During Hurricane Isabel 2003

    USGS Publications Warehouse

    Morgan, Karen

    2009-01-01

    On September 18, 2003, Hurricane Isabel made landfall on the northern Outer Banks of North Carolina. At the U.S. Army Corps of Engineer's Field Research Facility in Duck, 125 km north of where the eyewall cut across Hatteras Island, the Category 2 storm generated record conditions for the 27 years of monitoring. The storm produced an 8.1 m high wave measured at a waverider buoy in 20 m of water and a 1.5 m storm surge. As part of a program to document and better understand the changes in vulnerability of the Nation's coasts to extreme storms, the U.S. Geological Survey (USGS), in collaboration with the National Aeronautics and Space Administration (NASA), surveyed the impact zone of Hurricane Isabel. Methods included pre- and post-storm photography, videography, and lidar. Hurricane Isabel caused extensive erosion and overwash along the Outer Banks near Cape Hatteras, including the destruction of houses, the erosion of protective sand dunes, and the creation of island breaches. The storm eroded beaches and dunes in Frisco and Hatteras Village, southwest of the Cape. Overwash deposits covered roads and filled homes with sand. The most extensive beach changes were associated with the opening of a new breach about 500 m wide that divided into three separate channels that completely severed the island southwest of Cape Hatteras. The main breach, and a smaller one several kilometers to the south (not shown), occurred at minima in both island elevation and island width.

  5. RapidScat and Hurricane Patricia

    NASA Image and Video Library

    2015-11-06

    NASA's RapidScat's antenna, lower right, was pointed at Hurricane Patricia as the powerful storm approached Mexico on Oct. 23, 2015. Patricia was the strongest hurricane ever recorded in the Western Hemisphere, with maximum winds of 200 mph (320 kilometers per hour). When it first made landfall on the Pacific coast of Mexico on Oct. 23, it was a destructive Category 5 storm. The videos are from the International Space Station. RapidScat's spinning antenna, lower right, collects wind-speed data from Hurricane Patricia. http://photojournal.jpl.nasa.gov/catalog/PIA20049

  6. Analysis of media agenda setting during and after Hurricane Katrina: implications for emergency preparedness, disaster response, and disaster policy.

    PubMed

    Barnes, Michael D; Hanson, Carl L; Novilla, Len M B; Meacham, Aaron T; McIntyre, Emily; Erickson, Brittany C

    2008-04-01

    Media agenda setting refers to the deliberate coverage of topics or events with the goal of influencing public opinion and public policy. We conducted a quantitative content analysis of 4 prominent newspapers to examine how the media gathered and distributed news to shape public policy priorities during Hurricane Katrina. The media framed most Hurricane Katrina stories by emphasizing government response and less often addressing individuals' and communities' level of preparedness or responsibility. Hence, more articles covered response and recovery than mitigation and preparation. The newspapers studied focused significantly more on government response than on key public health roles in disaster management. We discuss specific implications for public health professionals, policymakers, and mass media so that, in the future, coordination can be enhanced among these entities before, during, and after disasters occur.

  7. Hurricane Irene's Impacts on the Aftershock Sequence of the 2011 Mw5.8 Virginia Earthquake

    NASA Astrophysics Data System (ADS)

    Meng, X.; Peng, Z.; Yang, H.; Allman, S.

    2013-12-01

    Recent studies have shown that typhoon could trigger shallow slow-slip events in Taiwan. However, it is unclear whether such extreme weather events could affect the occurrence of regular earthquakes as well. A good opportunity to test this hypothesis occurred in 2011 when an Mw 5.8 earthquake struck Louisa County, Virginia. This event ruptured a shallow, reverse fault. Roughly 5 days later, hurricane Irene struck the coast of Norfolk, Virginia, which is near the epicentral region of the Virginia mainshock. Because aftershocks listed in the ANSS catalog were incomplete immediately after the main shock, it is very difficult to find the genuine correlation between the seismicity rate changes and hurricane Irene. Hence, we use a recently developed waveform matched filter technique to scan through the continuous seismic data to detect small aftershocks that are previously unidentified. A mixture of 7 temporary stations from the IRIS Ramp deployment and 8 temporary stations deployed by Virginia Tech is used. The temporary stations were set up between 24 to 72 hours following the main shock around its immediate vicinity, which provides us a unique dataset recording the majority aftershock sequence of an intraplate earthquake. We us 80 aftershocks identified by Chapman [2013] as template events and scan through the continuous data from 23 August 2011 through 10 September 2011. So far, we have detected 704 events using a threshold of 12 times the median absolute deviation (MAD), which is ~25 times more than listed in the ANSS catalog. The aftershock rate generally decayed with time as predicted by the Omori's law. A statistically significant increase of seismicity rate is found when hurricane Irene passed by the epicentral region. A possible explanation is that the atmosphere pressure drop unloaded the surface, which brought the reverse faults closer to failure. However, we also identified similar fluctuations of seismicity rate changes at other times. Hence, it is still

  8. Hurricane recovery at Cabezas de San Juan, Puerto Rico, and research opportunities at Conservation Trust Reserves

    Treesearch

    Peter L. Weaver; Elizabeth Padilla Rodriguez

    2009-01-01

    The Cabezas de San Juan Natural Reserve (El Faro), an exposed peninsular area located in the Subtropical dry forest of northeastern Puerto Rico, was impacted by hurricanes Hugo (1989) and Georges (1998). From 1998 to 2008, a 0.10 ha plot was used to assess forest structure, species composition, and stem growth. During post-hurricane recovery, stem density, tree height...

  9. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    NASA Astrophysics Data System (ADS)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  10. Modeling Wave Overtopping on the Chandeleur Islands during Hurricane Katrina using XBeach

    NASA Astrophysics Data System (ADS)

    Lindemer, C. A.; Plant, N.; Puleo, J.; Thompson, D.

    2008-12-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines of along the Gulf Coast. Much of the Gulf Coast is ringed with barrier islands that provide inland marshes and the mainland some protection from storm events. The Chandeleur Islands, are located 161 km east of New Orleans, Louisiana and are oriented from north to south, and act to dissipate some of this energy. After a series of major storm events between 2001 and 2005, Hurricane Katrina's devastation in the fall of 2005 was particularly violent, destroying two-thirds of the area associated with the island chain. We would like to evaluate the predictability of hurricane-induced barrier island erosion and accretion. We test the ability of a time-dependent hydrodynamic and morphodynamic model, XBeach, to predict the impact of Hurricane Katrina on portions of Chandeleur Islands. Pre-storm LIDAR-derived bathymetry/topography and surge and wave data were used to drive a number of XBeach simulations. Model-predicted morphology was compared to post-storm LIDAR data. The accuracy of these predictions, including model sensitivity tests with varying grid size and temporal resolutions, are presented.

  11. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into

  12. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    NASA Astrophysics Data System (ADS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-02-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  13. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE PAGES

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; ...

    2017-02-07

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into

  14. Longleaf pine regeneration following Hurricane Ivan utilizing the RLGS plots

    Treesearch

    John C. Gilbert; John S. Kush

    2013-01-01

    On September 16, 2004, Hurricane Ivan hit the Alabama coast and severely impacted numerous plots in the U.S. Forest Service’s Regional Longleaf Growth Study (RLGS). The Escambia Experimental Forest (EEF) has 201 of the 325 RLGS plots. Nearly one-third of the EEF was impacted. Nine plots with pole-sized trees were entirely lost. Another 54 plots had some type of damage...

  15. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed

  16. Unique Datasets Collected by NOAA Hurricane Hunter Aircraft during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Zawislak, J.; Reasor, P.

    2017-12-01

    Each year, NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML) Hurricane Research Division (HRD), in partnership with the National Hurricane Center (NHC) and NOAA's Environmental Modeling Center (EMC), operates a hurricane field program, the Intensity Forecast Experiment (IFEX). The experiment leverages the NOAA P-3 and G-IV hurricane hunter aircraft, based at NOAA's Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The goals of IFEX are to improve understanding of physical processes in tropical cyclones (TCs), improve operational forecasts of TC intensity, structure, and rainfall by providing data into operational numerical modeling systems, and to develop and refine measurement technologies. This season the IFEX program, leveraging mainly operationally tasked EMC and NHC missions, sampled extensively Hurricanes Harvey, Irma, Jose, Maria, and Nate, as well as Tropical Storm Franklin. We will contribute to this important session by providing an overview of aircraft missions into these storms, guidance on the datasets made available from instruments onboard the P-3 and G-IV, and will offer some perspective on the science that can be addressed with these unique datasets, such as the value of those datasets towards model forecast improvement. NOAA aircraft sampled these storms during critical periods of intensification, and for Hurricanes Harvey and Irma, just prior to the devastating landfalls in the Caribbean and United States. The unique instrument suite on the P-3 offers inner core observations of the three-dimensional precipitation and vortex structure, lower troposphere (boundary layer) thermodynamic properties, and surface wind speed. In contrast, the G-IV flies at higher altitudes, sampling the environment surrounding the storms, and provides deep-tropospheric soundings from dropsondes.

  17. Linkage of Rainfall-Runoff and Hurricane Storm Surge in Galveston Bay

    NASA Astrophysics Data System (ADS)

    Deitz, R.; Christian, J.; Wright, G.; Fang, N.; Bedient, P.

    2012-12-01

    In conjunction with the SSPEED Center, large rainfall events in the upper Gulf of Mexico are being studied in an effort to help design a surge gate to protect the Houston Ship Channel during hurricane events. The ship channel is the world's second largest petrochemical complex and the Coast Guard estimates that a one-month closure would have a $60 billion dollar impact on the national economy. In this effort, statistical design storms, such as the 24-hour PMP, as well as historical storms, like Hurricane Ike, Hurricane Katrina, and Hurricane Rita, are being simulated in a hydrologic/hydraulic model using radar and rain gauge data. VfloTM, a distributed hydrologic model, is being used to quantify the effect that storm size, intensity, and location has on timing and peak flows in the in the upper drainage area. These hydrographs were input to a hydraulic model with various storm surges from Galveston Bay. Results indicate that there is a double peak phenomenon with flows from the west draining days earlier than flows from the north. With storm surge typically lasting 36-48 hours, this indicates the flows from the west are interacting with the storm surge, whereas flows from the north would arrive once the storm surge is receding. Gate operations were optimized in the model to account for the relative timing of upland runoff and hurricane surge, and to quantify the capability of the gate structure to protect the Ship Channel industry.

  18. A view of Hurricane Hilary from space

    NASA Image and Video Library

    2017-12-08

    Hilary is a small but strengthening hurricane, with hurricane-force winds extending outward up to 10 miles (20 km) from the center. Tropical-storm-force winds extending outward up to 60 miles (95 km). Hilary began when Tropical Depression 9E formed on July 21. By July 22 at 11 p.m. EDT, the depression strengthened into a tropical storm and was re-named Hilary. At 5 a.m. EDT on Monday, July 24, 2017, Hilary rapidly intensified into a hurricane. NASA's Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument aboard NASA’s Terra satellite captured a true color image of Hurricane Hilary on July 24 at 11 a.m. EDT. The image revealed a better organized tropical cyclone. The National Hurricane Center (NHC) noted "Satellite images indicate that Hilary has a small central core of convection, with both the visible and infrared channels suggesting that an eye is trying to form. Microwave data also show an incomplete eyewall." At 11 a.m. EDT (1500 UTC), the center of Hurricane Hilary was located near 14.1 degrees north latitude and 104.2 degrees west longitude. That's about 340 miles (545 km) south of Manzanillo, Mexico. Hilary is moving toward the west-northwest near 8 mph (13 kph), and the National Hurricane Center said this general motion with some increase in forward speed is expected over the next 48 hours. Maximum sustained winds have increased to near 80 mph (130 kph) with higher gusts. The estimated minimum central pressure is 989 millibars. The National Hurricane Center expects Hilary to become a major hurricane on Tuesday, July 25. For updated forecasts, visit: www.nhc.noaa.gov.

  19. Development of the AOML Hurricane Research System

    NASA Astrophysics Data System (ADS)

    Yeh, K.; Gopalakrishnan, S.; Zhang, X.; Bao, J.; Quirino, T.; Sainani, V.; Rogers, R.; Aberson, S.; Marks, F.; Atlas, R.

    2008-12-01

    NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) has committed to the development of a modeling and data-assimilation system recently. This Hurricane Research System (HRS) aims to improve hurricane forecast by developing innovative modeling techniques, and by assimilating the hurricane inner-core data that is timely collected with aircrafts by the scientists at the AOML Hurricane Research Division (HRD), in addition to the data collected by other channels. We have started the development of the HRS by implementing a moving nest within a regional domain on the Weather Research and Forecasting (WRF) Nonhydrostatic Mesoscale Model (NMM). The dynamically moving nest is used to track the hurricane with an enhanced resolution to better simulate the hurricane structure with more accurate dynamical and physical processes. Combining with the diagnostic expertise at the HRD, and benefiting from the community efforts, we have quickly composed the HRS with excellent ingredients from various organizations. This baseline system has been in experimental operation for this hurricane season, and early result with these experiments seems quite promising. We have also developed a new visualization tool and an efficient post-processor emphasizing diagnostic functionality to facilitate hurricane research. Further development of the HRS includes the implementation of a third, moving nest to advance the model resolution to 1 km or higher with the limited computing resource. Innovative model initialization techniques and versatile hurricane-diagnostic tools are undergoing development. An Ensemble Kalman Filter is being constructed for the HRS to assimilate observation data. Physical parameterizations are being refined to improve the forcing and heating mechanisms, and ocean model coupling is to be implemented for realistic air-sea interactions. We will report the status up to date.

  20. The hurricane-flood-landslide continuum

    USGS Publications Warehouse

    Negri, A.J.; Burkardt, N.; Golden, J.H.; Halverson, J.B.; Huffman, G.J.; Larsen, M.C.; McGinley, J.A.; Updike, R.G.; Verdin, J.P.; Wieczorek, G.F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the US Geological Survey (USGS), as well as other government agencies and academic institutions convened in San Juan, Puerto Rico, at a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The purpose of the HFLC is to develop and integrate the multidisciplinary tools needed to issue regional guidance products for floods and landslide associated with major tropical rain systems with sufficient lead time that local emergency managers can notify vulnerable populations and protect infrastructure. The workshop sought to initiate discussion among these agencies about their highly complementary capabilities, and to establish a framework to leverage the strengths of each agency. Once a prototype system is developed, it could be adapted for use in regions that have a high frequency of tropical disturbances.

  1. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making. © 2015 Society for Risk Analysis.

  2. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    ERIC Educational Resources Information Center

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  3. Community College Re-Enrollment after Hurricane Katrina

    ERIC Educational Resources Information Center

    Lowe, Sarah R.; Rhodes, Jean E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants' pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources…

  4. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    distance between lat/lon points Saffir-Simpson Scale Tropical Storm - winds 39-73 mph (34-63 kt) Category 1 Research and Development NOAA Hurricane Research Division Joint Hurricane Testbed Hurricane Forecast WFO Honolulu Weather Prediction Center Storm Prediction Center Ocean Prediction Center Local Forecast

  5. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    PubMed

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  6. Traumatic Loss and Natural Disaster: A Case Study of a School-Based Response to Hurricanes Katrina and Rita

    ERIC Educational Resources Information Center

    Clettenberg, Stacey; Gentry, Judy; Held, Matthew; Mock, Lou Ann

    2011-01-01

    This article tracks the trajectory and impact of Hurricanes Katrina and Rita on the communities of Houston/Harris County, Texas, USA, the schools, children, and families; along with the community partnerships that addressed the trauma and upheaval. Following the influx of individuals and families who were displaced by Hurricanes Katrina and Rita…

  7. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  8. Hurricane Jeanne Cloud Height and Motion

    NASA Image and Video Library

    2004-09-29

    These visualizations of Hurricane Jeanne on September 24, 2004 were captured by NASA Terra spacecraft after the hurricane caused widespread destruction on Puerto Rico, Haiti and the Dominican Republic.

  9. Bayesian analysis of U.S. hurricane climate

    USGS Publications Warehouse

    Elsner, James B.; Bossak, Brian H.

    2001-01-01

    Predictive climate distributions of U.S. landfalling hurricanes are estimated from observational records over the period 1851–2000. The approach is Bayesian, combining the reliable records of hurricane activity during the twentieth century with the less precise accounts of activity during the nineteenth century to produce a best estimate of the posterior distribution on the annual rates. The methodology provides a predictive distribution of future activity that serves as a climatological benchmark. Results are presented for the entire coast as well as for the Gulf Coast, Florida, and the East Coast. Statistics on the observed annual counts of U.S. hurricanes, both for the entire coast and by region, are similar within each of the three consecutive 50-yr periods beginning in 1851. However, evidence indicates that the records during the nineteenth century are less precise. Bayesian theory provides a rational approach for defining hurricane climate that uses all available information and that makes no assumption about whether the 150-yr record of hurricanes has been adequately or uniformly monitored. The analysis shows that the number of major hurricanes expected to reach the U.S. coast over the next 30 yr is 18 and the number of hurricanes expected to hit Florida is 20.

  10. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA.

    PubMed

    Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid

    2015-11-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system.

  11. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    Department of Commerce Central Pacific Hurricane Center National Oceanic and Atmospheric Administration Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Preparedness Weather Hurricane Season Outlook for 2018 2017-18 Hawaii Wet Season Summary and 2018 Dry Season Outlook USGS and

  12. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    Department of Commerce Central Pacific Hurricane Center National Oceanic and Atmospheric Administration Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Preparedness Weather Central Pacific Hurricane Center Honolulu HI 800 PM HST Thu Nov 30 2017 For the central North Pacific

  13. Discriminants and Detectors: Seismological Studies of Tsunami Earthquakes and Hurricane Microseisms

    NASA Astrophysics Data System (ADS)

    Ebeling, Carl W.

    High energy natural hazards have potential to cause great damage and significant loss of life, but understanding of many lags behind what is required to mitigate their impacts. Of specific concern here are the estimation of tsunami hazard in the eastern Mediterranean; the more timely identification of tsunami earthquakes; and the use of microseisms to identify “missing” hurricanes, thus augmenting the traditional—but short, incomplete, and biased—observational hurricane record. Earthquake energy estimation and time- and frequency-domain time-series analyses applied to an array of historical analog and modern digital seismological data are used to address these problems. Improved estimations of the location, depth, moment magnitude, and focal mechanism of four of the largest Hellenic Arc earthquakes in the last century help to better understand seismic hazard there. Seismological reassessments combined with hydrodynamic simulations show that the tsunamis associated with two of them were not triggered by the earthquakes themselves but instead involved submarine slumping. Moments and estimates of radiated energy from 67 earthquakes taking place in the last twenty years in oceanic environments and recorded at regional and teleseismic distances are used to develop an empirical correction to the robust tsunami earthquake discriminant Theta. This extends its applicability to regional distances, thereby allowing earlier discrimination of tsunami earthquakes. Microseisms, which result from the interaction of ocean swell generated by energetic storms, are shown here to carry information about parent hurricanes and under favorable conditions can be used to detect them. Power variations of microseisms recorded at the Harvard, Massachusetts seismic station demonstrate that Saffir-Simpson category 5 hurricane Andrew (1992) can be identified when it is ˜2,000 km from the station and still at sea. Applied to an expanded data set of 66 hurricanes between 1992 and 2007 with

  14. Decay of Hurricanes Tracked by Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Lamontagne, A.; Tanimoto, T.

    2014-12-01

    Tropical cyclones (hurricanes and typhoons) are mostly atmospheric phenomena but they also generate significant ground motions in the solid earth when they become strong. If a dense seismological array existed along the path of a hurricane, we could learn about some processes near the hurricane eye and the change of its intensity through seismic data. We found a few cases of tropical cyclones that passed through the Transportable Array of Earthscope (TA) in the last four years. They provide some interesting time-evolving characteristics of hurricanes but in most cases seismic signals are too weak to gain any insight into the processes. The only exception we have found so far is Hurricane Isaac in 2012. Hurricane Isaac was mostly a tropical storm during its lifetime but it became a hurricane about 12 hours before the first landfall at the mouth of the Mississippi river at 0000 UTC August 29. The eye then went back over the ocean, but stayed near the coast, and made landfall again at 0800 UTC August 29. After this landfall, it went through the TA. This gave us an opportunity to study the decay of this hurricane based on seismic data. Our basic data are amplitude-distance plots for each 6-hour hurricane location. We confine our analysis to frequencies below 0.02 Hz because in higher frequency bands seismic waves were broader oceans, not necessarily near the hurricane eye. Right after the landfall, we found a sharp peak at about 75 km from the eye. This is most likely the location of the eyewall, where a strong ascending flow is known to exist. Over the next 12 hours, we see this peak deteriorate, which is undoubtedly related to the decay of the hurricane after landfall. The peak remained at the same location for these 12 hours and then in the following 18 hours started to move farther from the eye, to about 250 km. Therefore, we can monitor how the eyewall deteriorated over the 30 hours after landfall. The emphasis of this study will be on Hurricane Isaac but we will

  15. Adverse Respiratory Symptoms and Environmental Exposures Among Children and Adolescents Following Hurricane Katrina

    PubMed Central

    Rath, Barbara; Young, Elizabeth A.; Harris, Amy; Perrin, Keith; Bronfin, Daniel R.; Ratard, Raoult; VanDyke, Russell; Goldshore, Matthew; Magnus, Manya

    2011-01-01

    Objectives Children and adolescents are especially vulnerable to environmental exposures and their respiratory effects. Following Hurricane Katrina in 2005, residents experienced multiple adverse environmental exposures. We characterized the association between upper respiratory symptoms (URS) and lower respiratory symptoms (LRS) and environmental exposures among children and adolescents affected by Hurricane Katrina. Methods We conducted a cross-sectional study following the return of the population to New Orleans after Hurricane Katrina (October 2005 and February 2006) among a convenience sample of children and adolescents attending New Orleans health facilities. We used uni-, bi-, and multivariable analyses to describe participants, exposures, and associations with URS/LRS. Results Of 1,243 participants, 47% were Caucasian, 50% were male, and 72% were younger than 11 years of age. Multiple environmental exposures were identified during and after the storm and at current residences: roof/glass/storm damage (50%), outside mold (22%), dust (18%), and flood damage (15%). Self-reported URS and LRS (76% and 36%, respectively) were higher after the hurricane than before the hurricane (22% and 9%, respectively, p<0.0001). Roof/glass/storm damage at home was associated with URS (adjusted odds ratio [AOR] = 1.59, 95% confidence interval [CI] = 1.15, 2.21) and LRS (AOR=1.35, 95% CI 1.01, 1.80), while mold growth at home was associated with LRS (AOR=1.47, 95% CI 1.02, 2.12). Conclusions Children and adolescents affected by Hurricane Katrina experienced environmental exposures associated with increased prevalence of reported URS and LRS. Additional research is needed to investigate the long-term health impacts of Hurricane Katrina. PMID:22043101

  16. The Carbon Cycle and Hurricanes in the United States between 1900 and 2011

    PubMed Central

    Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer

    2014-01-01

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900–2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events. PMID:24903486

  17. The carbon cycle and hurricanes in the United States between 1900 and 2011

    USGS Publications Warehouse

    Dahal, Devendra; Liu, Shu-Guang; Oeding, Jennifer

    2014-01-01

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900–2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.

  18. The carbon cycle and hurricanes in the United States between 1900 and 2011.

    PubMed

    Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer

    2014-06-06

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900-2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.

  19. Sediment deposition from Hurricane Rita on Hackberry Beach chenier in southwestern Louisiana: Chapter 6E in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Doyle, Thomas; Baldwin, Michael; Michot, Thomas; Wells, Christopher; Jeske, Clint

    2007-01-01

    Hurricane Rita significantly impacted the chenier forests of southwestern Louisiana, an important habitat for Neotropical migratory birds. Sediment deposition was measured along transects at Hackberry Beach chenier, and Rita's effects on chenier structure and morphology were determined.

  20. Hurricane IKE Recovery Efforts - MOD Volunteers

    NASA Image and Video Library

    2008-09-18

    Hurricane IKE Recovery Efforts - MOD Volunteers Location: Clear LAke Area Subject: MOD Volunteers assist fellow employees at their homes during the recovery from hurricane IKE. Photographer: Tom Murray (USA Photographer)

  1. NPY Moderates the Relation between Hurricane Exposure and Generalized Anxiety Disorder in an Epidemiologic Sample of Hurricane-Exposed Adults

    PubMed Central

    Amstadter, Ananda B.; Koenen, Karestan C.; Ruggiero, Kenneth J.; Acierno, Ron; Galea, Sandro; Kilpatrick, Dean G.; Gelernter, Joel

    2009-01-01

    Background Neuropeptide Y (NPY) has been found to be anxiolytic in animals and humans. A recent study found NPY expression to be inversely correlated with trait anxiety. We examined whether rs16147, a functional single nucleotide polymorphism (SNP) in the promoter region of NPY, moderated the relationship between hurricane exposure and risk for generalized anxiety disorder (GAD) in an epidemiologic sample of adults living in areas affected by the 2004 Florida Hurricanes. Methods Data from the present study comes from 616 adults from the 2004 Florida Hurricanes study who returned buccal DNA samples via mail. Selection of participants occurred via random digit-dial procedures. Participants were interviewed via telephone about hurricane exposure and post-hurricane GAD symptoms. The outcome measure was DSM-IV GAD diagnosis, assessed via structured interview. Results Rs16147 in NPY was associated with increased risk of GAD diagnosis under conditions of high hurricane exposure (p<0.01). This gene by environment interaction remained significant after adjustment for sex, ancestry (as determined by Bayesian clustering of genotypes), and age. Conclusions NPY rs16147 modifies risk of post-disaster GAD under conditions of high stressor (hurricane) exposure. This is the first demonstration of gene-environment interaction for this locus. PMID:20037921

  2. What Happened to Our Environment and Mental Health as a Result of Hurricane Sandy?

    PubMed

    Lin, Shao; Lu, Yi; Justino, John; Dong, Guanghui; Lauper, Ursula

    2016-06-01

    This study describes findings of the impacts of Hurricane Sandy on environmental factors including power outages, air quality, water quality, and weather factors and how these affected mental health during the hurricane. An ecological study was conducted at the county level to describe changes in environmental factors-especially power outages-and their relationships to emergency department (ED) visits for mental health problems by use of a Poisson regression model. We found that many environmental hazards occurred as co-exposures during Hurricane Sandy in addition to flooding. Mental health ED visits corresponded with the peak of maximum daily power blackouts, with a 3-day lag, and were positively associated with power blackouts in Bronx (prevalence ratio [PR]: 8.82, 95% confidence interval [CI]: 1.27-61.42) and Queens (PR: 2.47, 95% CI: 1.05-5.82) counties. A possible dose-response relationship was found between the quantile of maximum blackout percentage and the risk of mental health in the Bronx. We found that multiple co-environmental hazards occurred during Hurricane Sandy, especially power blackouts that mediated this disaster's impacts. The effects of power outage on mental health had large geographic variations and were substantial, especially in communities with low sociodemographic status. These findings may provide new insights for future disaster response and preparedness efforts. (Disaster Med Public Health Preparedness. 2016;10:314-319).

  3. Use of outpatient mental health services by homeless veterans after hurricanes.

    PubMed

    Brown, Lisa M; Barnett, Scott; Hickling, Edward; Frahm, Kathryn; Campbell, Robert R; Olney, Ronald; Schinka, John A; Casey, Roger

    2013-05-01

    Little is known about the impact of hurricanes on people who are homeless at the time a disaster occurs. Although researchers have extensively studied the psychosocial consequences of disaster produced homelessness on the general population, efforts focused on understanding how homeless people fare have been limited to a few media reports and the gray literature. In the event of a hurricane, homeless veterans may be at increased risk for negative outcomes because of their cumulative vulnerabilities. Health care statistics consistently document that homeless veterans experience higher rates of medical, emotional, substance abuse, legal, and financial problems compared with the general population. This study used the 2004 to 2006 Veterans Health Administration (VHA) Outpatient Medical Dataset to examine the effects of hurricanes on use of outpatient mental health services by homeless veterans. Homeless veterans residing in hurricane-affected counties were significantly more likely to participate in group psychotherapy (32.4% vs. 13.4%, p < .002), but less likely to participate in individual 30-40-min sessions with medical evaluations (3.5% vs. 17.3%, p < .001). The study findings have implications for homeless programs and the provision of VHA mental health services to homeless veterans postdisaster. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Displacement during Hurricane Sandy: The impact on mental health.

    PubMed

    Schwartz, Rebecca M; Rasul, Rehana; Kerath, Samantha M; Watson, Alexis R; Lieberman-Cribbin, Wil; Liu, Bian; Taioli, Emanuela

    To assess the effect of displacement due to Hurricane Sandy on mental health outcomes among residents of the greater New York City (NYC) area. Prospective, cross sectional. NYC area residents, including Queens, Staten Island, and Long Island. In a 4.25 year period (June 2012 to September 2016), a convenience sample of 1,615 adult residents from the greater NYC area completed validated measures of hurricane exposure (including displacement), perceived stress, depression, anxiety, and post-traumatic stress disorder (PTSD) symptoms as well as indicators of alcohol, illicit substance, and tobacco use. Perceived stress, depression, anxiety and PTSD symptoms and alcohol, illicit substance, and tobacco use. Multivariable analyses indicated that displaced participants were more likely to have PTSD (adjusted odds ratio [AOR]: 2.21, 95% CI: 1.73-2.82), depression (AOR: 1.37, 95% CI: 1.05-1.79) and anxiety symptoms (AOR: 1.30, 95% CI: 1.01-1.67) and had a 1.16 unit increase in perceived stress score (SE = 0.38) compared to nondisplaced participants. Staying with friends/family versus at a shelter was significantly associated with a 48 percent decreased odds of having PTSD symptoms (AOR: 0.52, 95% CI: 0.31-0.88) and of being a current tobacco user (AOR: 0.52, 95% CI: 0.30-0.92). Displacement is associated with negative mental health outcomes, particularly displacement to shelters. Disaster preparedness efforts should involve increasing mental health resources to those who are displaced and providing support services within the shelter setting.

  5. A diary of hurricane Hugo.

    PubMed

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  6. Shared experiences of CRNAs who were on duty in New Orleans during Hurricane Katrina.

    PubMed

    Geisz-Everson, Marjorie A; Dodd-McCue, Dianne; Bennett, Marsha

    2012-06-01

    The purpose of this focused ethnography was to describe the shared experiences of certified registered nurse anesthetists (CRNAs) who were on duty in New Orleans, Louisiana, during Hurricane Katrina as well as to elucidate the psychosocial impact the storm had on them. Ten CRNAs participated in 1 of 3 focus groups that were audio recorded. The audio recordings were transcribed and analyzed using qualitative data analysis computer software (NVivo 8, QSR International, Melbourne, Australia). Six major themes emerged from the study: caught off guard; sense of duty; uncertainty/powerlessness/frustration; group identity and cohesiveness; anger; and life-changing event. The themes represented how the CRNAs appraised and coped with the stressful events surrounding Hurricane Katrina. The psychosocial impact of Hurricane Katrina on the CRNAs resulted mainly in short-term sleep disturbances and increased drinking. Only 2 CRNAs expressed long-term psychosocial effects from the storm. The results of this study should be used to guide policies regarding disaster activation of CRNAs, to educate CRNAs on preparing for disaster duty, and to provide a framework for future disaster studies regarding CRNAs.

  7. How Unusual were Hurricane Harvey's Rains?

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2017-12-01

    We apply an advanced technique for hurricane risk assessment to evaluate the probability of hurricane rainfall of Harvey's magnitude. The technique embeds a detailed computational hurricane model in the large-scale conditions represented by climate reanalyses and by climate models. We simulate 3700 hurricane events affecting the state of Texas, from each of three climate reanalyses spanning the period 1980-2016, and 2000 events from each of six climate models for each of two periods: the period 1981-2000 from historical simulations, and the period 2081-2100 from future simulations under Representative Concentration Pathway (RCP) 8.5. On the basis of these simulations, we estimate that hurricane rain of Harvey's magnitude in the state of Texas would have had an annual probability of 0.01 in the late twentieth century, and will have an annual probability of 0.18 by the end of this century, with remarkably small scatter among the six climate models downscaled. If the event frequency is changing linearly over time, this would yield an annual probability of 0.06 in 2017.

  8. Hurricane Gonzalo in the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 16 at 17:45 UTC NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Image Credit: NASA Goddard MODIS Rapid Response Team-- NASA and NOAA satellites have been providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda. NASA's Terra satellite saw thunderstorms wrapped tightly around the center with large bands of thunderstorms wrapping into it. NOAA's GOES-East satellite provided and "eye-opening" view of Gonzalo, still a Category 4 hurricane on Oct. 16. A hurricane warning is in effect for Bermuda and that means that hurricane conditions are expected within the warning area, meaning the entire island. Read more: www.nasa.gov/content/goddard/gonzalo-atlantic-ocean/index... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  10. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  11. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  12. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  13. Simulations of Hurricane Nadine (2012) during HS3 Using the NASA Unified WRF with Aerosol-Cloud Microphysics-Radiation Coupling

    NASA Astrophysics Data System (ADS)

    Shi, J. J.; Braun, S. A.; Sippel, J. A.; Tao, W. K.; Tao, Z.

    2014-12-01

    The impact of the SAL on the development and intensification of hurricanes has garnered significant attention in recent years. Many past studies have shown that synoptic outbreaks of Saharan dust, which usually occur from late spring to early fall and can extend from western Africa across the Atlantic Ocean into the Caribbean, can have impacts on hurricane genesis and subsequent intensity change. The Hurricane and Severe Storm Sentinel (HS3) mission is a multiyear NASA field campaign with the goal of improving understanding of hurricane formation and intensity change. One of HS3's primary science goals is to obtain measurements to help determine the extent to which the Saharan air layer impacts storm intensification. HS3 uses two of NASA's unmanned Global Hawk aircrafts equipped with three instruments each to measure characteristics of the storm environment and inner core. The Goddard microphysics and longwave/shortwave schemes in the NASA Unified Weather Research and Forecasting (NU-WRF) model have been coupled in real-time with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in WRF-Chem to account for the direct (radiation) and indirect (microphysics) impact. NU-WRF with interactive aerosol-cloud-radiation physics is used to generate 30-member ensemble simulations of Nadine (2012) with and without the aerosol interactions. Preliminary conclusions related to the impact of the SAL on the evolution of Nadine from the HS3 observations and model output will be described.

  14. Hurricane Sandy science plan: New York

    USGS Publications Warehouse

    Ransom, Clarice N.

    2013-01-01

    Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. More than one-half of the U.S. population lives within 50 miles of a coast, and this number is increasing. The U.S. Geological Survey (USGS) is one of the largest providers of geologic and hydrologic information in the world. Federal, State, and local partners depend on the USGS science to know how to prepare for hurricane hazards and reduce losses from future hurricanes. The USGS works closely with other bureaus within the Department of the Interior, the Federal Emergency Management Agency, the National Oceanic Atmospheric Administration, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and many State and local agencies to identify their information needs before, during, and after hurricanes.

  15. Hurricane Rita and the destruction of Holly Beach, Louisiana: Why the chenier plain is vulnerable to storms

    USGS Publications Warehouse

    Sallenger, A.H.; Wright, C.W.; Doran, K.; Guy, K.; Morgan, K.

    2009-01-01

    Hurricane Rita devastated gulf-front communities along the western Louisiana coast in 2005. LIDAR (light detection and ranging) topographic surveys and aerial photography collected before and after the storm showed the loss of every structure within the community of Holly Beach. Average shoreline change along western Louisiana's 140-km-long impacted shore was -23.3 ?? 30.1 m of erosion, although shoreline change in Holly Beach was substantially less, and erosion was not pervasive where the structures were lost. Before the storm, peak elevations of the dunes, or berms in the absence of dunes, along the impacted shore averaged 1.6 m. The storm surge, which reached 3.5 m just east of Holly Beach, completely inundated the beach systems along the impacted western Louisiana shore. The high surge potential and low land elevations make this coast extremely vulnerable to hurricanes. In fact, most of the western Louisiana shore impacted by Rita will be completely inundated by the storm surge of a worst-case Saffi r-Simpson category 1 hurricane. All of this shore will be inundated by worst-case category 2-5 storms. ?? 2009 The Geological Society of America.

  16. Hurricane Harvey - Aug. 24, 2017

    NASA Image and Video Library

    2017-08-24

    The International Space Station’s external cameras captured a dramatic view of Hurricane Harvey as it bore down on the central Texas coast Aug. 24. The National Hurricane Center predicts a landfall for Harvey near Corpus Christi, Texas early Aug. 26 with potentially record floods expected along the Texas coastline through next week.

  17. The role of the U.S. Army Medical Department in domestic disaster assistance operations - lessons learned from hurricane Andrew.

    DOT National Transportation Integrated Search

    1996-04-01

    Hurricane Andrew, which struck South Dade County, Florida on the morning of 24 August 1992, was the "worst natural disaster ever to hit the United States..." The capabilities of the local and state governments to respond to the disaster were quickly ...

  18. ISS Passes over Hurricane_Irma_GMT248-1510

    NASA Image and Video Library

    2017-09-05

    The International Space Station’s external cameras captured a dramatic view of Hurricane Irma as it moved across the Atlantic Ocean Sept. 5. The National Hurricane Center had recently upgraded Irma to a Category 5 storm with hurricane warnings issued across the Caribbean.

  19. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    Introduction Hurricane Katrina made landfall on the eastern coastline of Louisiana on August 29, 2005; Hurricane Rita made landfall on the western coastline of Louisiana on September 24, 2005. Comparison of Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Katrina and Rita and classified to identify land and water demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana as a result of the storms. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Hurricane Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, and Pearl River basin), whereas 99 mi2 (256 km2) were in areas primarily impacted by Hurricane Rita (Calcasieu/Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, and Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively, and the brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas represent land losses caused by direct removal of wetlands. They also indicate transitory changes in water area caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after the landfalls of both hurricanes (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery. The land

  20. Hurricane Charley Exposure and Hazard of Preterm Delivery, Florida 2004.

    PubMed

    Grabich, Shannon C; Robinson, Whitney R; Engel, Stephanie M; Konrad, Charles E; Richardson, David B; Horney, Jennifer A

    2016-12-01

    Objective Hurricanes are powerful tropical storm systems with high winds which influence many health effects. Few studies have examined whether hurricane exposure is associated with preterm delivery. We aimed to estimate associations between maternal hurricane exposure and hazard of preterm delivery. Methods We used data on 342,942 singleton births from Florida Vital Statistics Records 2004-2005 to capture pregnancies at risk of delivery during the 2004 hurricane season. Maternal exposure to Hurricane Charley was assigned based on maximum wind speed in maternal county of residence. We estimated hazards of overall preterm delivery (<37 gestational weeks) and extremely preterm delivery (<32 gestational weeks) in Cox regression models, adjusting for maternal/pregnancy characteristics. To evaluate heterogeneity among racial/ethnic subgroups, we performed analyses stratified by race/ethnicity. Additional models investigated whether exposure to multiples hurricanes increased hazard relative to exposure to one hurricane. Results Exposure to wind speeds ≥39 mph from Hurricane Charley was associated with a 9 % (95 % CI 3, 16 %) increase in hazard of extremely preterm delivery, while exposure to wind speed ≥74 mph was associated with a 21 % (95 % CI 6, 38 %) increase. Associations appeared greater for Hispanic mothers compared to non-Hispanic white mothers. Hurricane exposure did not appear to be associated with hazard of overall preterm delivery. Exposure to multiple hurricanes did not appear more harmful than exposure to a single hurricane. Conclusions Hurricane exposure may increase hazard of extremely preterm delivery. As US coastal populations and hurricane severity increase, the associations between hurricane and preterm delivery should be further studied.

  1. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    USGS Publications Warehouse

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  2. Shelf sediment transport during hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  3. Current-wave spectra coupling project. Volume I. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretschneider, C.L.

    1980-06-01

    This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surfacemore » current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).« less

  4. Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Richards, Simon; Bernal, Juan Pablo; Cerdeira-Estrada, Sergio; Ibarra, M. Socrates; Corona-Martínez, Liliana; Martell-Dubois, Raúl

    2017-10-01

    Predicting the impact of sea-level (SL) rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an 2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and redistribute clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.

  5. Hurricane feedback research may improve intensity forecasts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  6. 76 FR 30491 - National Hurricane Preparedness Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Hurricane Preparedness Week, 2011 Proclamation 8680--National Safe Boating Week, 2011 Proclamation 8681... Hurricane Preparedness Week, 2011 By the President of the United States of America A Proclamation National Hurricane Preparedness Week highlights the importance of planning ahead to protect our families and secure...

  7. Neural Biomarker Prospectively Predicts Increases in Anxiety Symptoms in Children After Hurricane Sandy

    PubMed Central

    Meyer, Alexandria; Danielson, Carla Kmett; Danzig, Allison P.; Bhatia, Vickie; Black, Sarah R.; Bromet, Evelyn; Carlson, Gabrielle; Hajcak, Greg; Kotov, Roman; Klein, Daniel N.

    2017-01-01

    Objective Although most people will experience a traumatic event, only some will develop significant psychological symptoms in the aftermath. In the current study, we utilize a preexisting longitudinal study located in Long Island to examine the impact of Hurricane Sandy on internalizing symptoms in a large sample of children. We focused on temperamental fear and a biomarker of risk for anxiety, the error-related negativity (ERN). The ERN is a negative deflection in the event-related potential (ERP) occurring when individuals make mistakes and is increased in anxious individuals. Method The final sample consisted of 223 children who had undergone an observational assessment of fear at age 3 and an electroencephalogram assessment of the ERN at age 6. At the age 9 assessment, internalizing symptoms were assessed, and then again after the hurricane (approximately 65 weeks later). Results A significant three-way interaction between fearfulness, hurricane stressors, and the ERN in predicting post-hurricane increases in internalizing symptoms suggested that children who were high in fear at age 3 and experienced elevated hurricane stressors were characterized by subsequent increases in internalizing symptoms, but only when they were also characterized by an increased ERN at age 6. Conclusion These findings support a diathesis-stress model, suggesting that early temperament and pre-stressor biological markers confer risk for increased psychological symptoms following environmental stressors. PMID:28433090

  8. Potential consequences of saltwater intrusion associated with Hurricanes Katrina and Rita: Chapter 6C in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Steyer, Gregory D.; Perez, Brian C.; Piazza, Sarai C.; Suir, Glenn

    2007-01-01

    Hurricanes Katrina and Rita pushed salt water from the Gulf of Mexico well inland into freshwater marsh communities in coastal Louisiana. This paper describes the spatial extent of saltwater intrusion and provides an initial assessment of impacts (salt stress) to coastal marsh vegetation communities.

  9. Study Design and Results of a Population-Based Study on Perceived Stress Following Hurricane Sandy.

    PubMed

    Schwartz, Rebecca; Liu, Bian; Sison, Cristina; Kerath, Samantha M; Breil, Trista; Murphy, Lisa; Taioli, Emanuela

    2016-06-01

    Hurricane Sandy was one of the deadliest storms in US history, with at least 162 deaths and numerous injuries. This research aimed to quantify the impact of Hurricane Sandy on the New York metropolitan area. The project included 601 volunteers aged at least 18 years who were recruited in Nassau, Suffolk, Queens, and Richmond counties and Staten Island between 2013 and 2014 through close partnerships with coalition community leaders. Participants completed a self-administered questionnaire on demographics and behavioral factors and a 35-point check off list on hurricane exposure. Perceived stress was assessed by using the 10-item Perceived Stress Scale (PSS). Participants had a mean stress score of 15.6 (SD=7.3; vs general population mean of 13.0), with 30.14% of the sample categorized as "high stress" (mean≥20). In the multivariable regression analysis, age was significantly negatively associated with PSS score. A reported history of mental health issues, Hispanic ethnicity, and overall exposure to Hurricane Sandy were statistically significantly associated with PSS score in a positive direction. Perceived stress was high in areas affected by Hurricane Sandy and was significantly associated with individual hurricane exposure. This study is a first step toward defining what segments of the population are more vulnerable and informing intervention and emergency preparedness efforts. (Disaster Med Public Health Preparedness. 2015;10:325-332).

  10. Hurricane Katrina's Impact on Tulane's Teaching Hospitals

    PubMed Central

    Taylor, Ian L.

    2007-01-01

    On Monday, August 29, 2005 Hurricane Katrina passed east of New Orleans causing minimal damage to Tulane's Medical Center. Later that day, levees that protected the city failed and several feet of water entered the hospitals and school buildings. Emergency generators provided power for 36 hours before running out of fuel. Temperatures in the hospitals soared into the upper 90's and conditions were made intolerable by 100% humidity and backed-up sewage. For several days, faculty, residents, nurses and hospital personnel performed heroically, caring for patients in appalling conditions, hand-ventilating critically ill patients in shifts. Approximately 200 patients, and 1500 additional personnel would be evacuated on Wednesday and Thursday from a makeshift heliport on Tulane's parking garage. Current disaster plans may be inadequate should facilities be inaccessible for months because of damage or contamination. Contingency plans also need to be made should outside disaster relief be markedly delayed as was the case with Katrina. PMID:18528490

  11. Impacts of nonstate, market-driven governance on Chilean forests.

    PubMed

    Heilmayr, Robert; Lambin, Eric F

    2016-03-15

    Global markets for agricultural products, timber, and minerals are critically important drivers of deforestation. The supply chains driving land use change may also provide opportunities to halt deforestation. Market campaigns, moratoria, and certification schemes have been promoted as powerful tools to achieve conservation goals. Despite their promise, there have been few opportunities to rigorously quantify the ability of these nonstate, market-driven (NSMD) governance regimes to deliver conservation outcomes. This study analyzes the impacts of three NSMD governance systems that sought to end the conversion of natural forests to plantations in Chile at the start of the 21st century. Using a multilevel, panel dataset of land use changes in Chile, we identify the impact of participation within each of the governance regimes by implementing a series of matched difference-in-differences analyses. Taking advantage of the mosaic of different NSMD regimes adopted in Chile, we explore the relative effectiveness of different policies. NSMD governance regimes reduced deforestation on participating properties by 2-23%. The NSMD governance regimes we studied included collaborative and confrontational strategies between environmental and industry stakeholders. We find that the more collaborative governance systems studied achieved better environmental performance than more confrontational approaches. Whereas many government conservation programs have targeted regions with little likelihood of conversion, we demonstrate that NSMD governance has the potential to alter behavior on high-deforestation properties.

  12. Impacts of nonstate, market-driven governance on Chilean forests

    PubMed Central

    Heilmayr, Robert; Lambin, Eric F.

    2016-01-01

    Global markets for agricultural products, timber, and minerals are critically important drivers of deforestation. The supply chains driving land use change may also provide opportunities to halt deforestation. Market campaigns, moratoria, and certification schemes have been promoted as powerful tools to achieve conservation goals. Despite their promise, there have been few opportunities to rigorously quantify the ability of these nonstate, market-driven (NSMD) governance regimes to deliver conservation outcomes. This study analyzes the impacts of three NSMD governance systems that sought to end the conversion of natural forests to plantations in Chile at the start of the 21st century. Using a multilevel, panel dataset of land use changes in Chile, we identify the impact of participation within each of the governance regimes by implementing a series of matched difference-in-differences analyses. Taking advantage of the mosaic of different NSMD regimes adopted in Chile, we explore the relative effectiveness of different policies. NSMD governance regimes reduced deforestation on participating properties by 2–23%. The NSMD governance regimes we studied included collaborative and confrontational strategies between environmental and industry stakeholders. We find that the more collaborative governance systems studied achieved better environmental performance than more confrontational approaches. Whereas many government conservation programs have targeted regions with little likelihood of conversion, we demonstrate that NSMD governance has the potential to alter behavior on high-deforestation properties. PMID:26929349

  13. Effective Governance: The Impact of the Masters in Governance Training on School Boards in California

    ERIC Educational Resources Information Center

    Bradley, Letitia T.

    2013-01-01

    This study applied 3 theoretical frameworks--Lee Bolman and Terrence Deal's four frames, the Lighthouse Inquiry of the Iowa Association of School Boards, and effective governance characteristics--to examine the impact of the Masters in Governance(MIG) training offered by the California School Boards Association on the ability of school board…

  14. Emergency Department Visits for Homelessness or Inadequate Housing in New York City before and after Hurricane Sandy.

    PubMed

    Doran, Kelly M; McCormack, Ryan P; Johns, Eileen L; Carr, Brendan G; Smith, Silas W; Goldfrank, Lewis R; Lee, David C

    2016-04-01

    Hurricane Sandy struck New York City on October 29, 2012, causing not only a large amount of physical damage, but also straining people's health and disrupting health care services throughout the city. In prior research, we determined that emergency department (ED) visits from the most vulnerable hurricane evacuation flood zones in New York City increased after Hurricane Sandy for several medical diagnoses, but also for the diagnosis of homelessness. In the current study, we aimed to further explore this increase in ED visits for homelessness after Hurricane Sandy's landfall. We performed an observational before-and-after study using an all-payer claims database of ED visits in New York City to compare the demographic characteristics, insurance status, geographic distribution, and health conditions of ED patients with a primary or secondary ICD-9 diagnosis of homelessness or inadequate housing in the first week after Hurricane Sandy's landfall versus the baseline weekly average in 2012 prior to Hurricane Sandy. We found statistically significant increases in ED visits for diagnosis codes of homelessness or inadequate housing in the week after Hurricane Sandy's landfall. Those accessing the ED for homelessness or inadequate housing were more often elderly and insured by Medicare after versus before the hurricane. Secondary diagnoses among those with a primary ED diagnosis of homelessness or inadequate housing also differed after versus before Hurricane Sandy. These observed differences in the demographic, insurance, and co-existing diagnosis profiles of those with an ED diagnosis of homelessness or inadequate housing before and after Hurricane Sandy suggest that a new population cohort-potentially including those who had lost their homes as a result of storm damage-was accessing the ED for homelessness or other housing issues after the hurricane. Emergency departments may serve important public health and disaster response roles after a hurricane, particularly for

  15. Coastal ocean circulation during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Miles, Travis; Seroka, Greg; Glenn, Scott

    2017-09-01

    Hurricane Sandy (2012) was the second costliest tropical cyclone to impact the United States and resulted in numerous lives lost due to its high winds and catastrophic storm surges. Despite its impacts little research has been performed on the circulation on the continental shelf as Sandy made landfall. In this study, integrated ocean observing assets and regional ocean modeling were used to investigate the coastal ocean response to Sandy's large wind field. Sandy's unique cross-shelf storm track, large size, and slow speed resulted in along-shelf wind stress over the coastal ocean for nearly 48 h before the eye made landfall in southern New Jersey. Over the first inertial period (˜18 h), this along-shelf wind stress drove onshore flow in the surface of the stratified continental shelf and initiated a two-layer downwelling circulation. During the remaining storm forcing period a bottom Ekman layer developed and the bottom Cold Pool was rapidly advected offshore ˜70 km. This offshore advection removed the bottom Cold Pool from the majority of the shallow continental shelf and limited ahead-of-eye-center sea surface temperature (SST) cooling, which has been observed in previous storms on the MAB such as Hurricane Irene (2011). This cross-shelf advective process has not been observed previously on continental shelves during tropical cyclones and highlights the need for combined ocean observing systems and regional modeling in order to further understand the range of coastal ocean responses to tropical cyclones.

  16. Hurricane Felix

    NASA Image and Video Library

    2007-09-03

    These infrared and microwave images were created with data retrieved by the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite, and show the remnants of the former Hurricane Felix over Central America, September, 2007.

  17. Trace element concentrations in surface estuarine and marine sediments along the Mississippi Gulf Coast following Hurricane Katrina.

    PubMed

    Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L

    2012-01-01

    Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.

  18. Physical aspects of Hurricane Hugo in Puerto Rico

    USGS Publications Warehouse

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  19. Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Cruz, A. M.; Krausmann, E.

    2009-04-01

    The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components

  20. Access to Care in the Wake of Hurricane Sandy, New Jersey, 2012.

    PubMed

    Davidow, Amy L; Thomas, Pauline; Kim, Soyeon; Passannante, Marian; Tsai, Stella; Tan, Christina

    2016-06-01

    Evacuation and damage following a widespread natural disaster may affect short-term access to medical care. We estimated medical care needs in New Jersey following Hurricane Sandy in 2012. Hurricane Sandy-related questions regarding medical needs included in the Behavioral Risk Factor Surveillance System survey were administered to survey respondents living in New Jersey when Sandy occurred. Recently arrived foreign-born residents were more likely than US-born residents to need medical care following Sandy. Others with greater medical needs included the uninsured and evacuees. Persons who evacuated or lived in areas that experienced the greatest hurricane impact were less likely to be able to fill a prescription. Only 15% of New Jerseyans were aware of the Emergency Pharmaceutical Assistance Program (EPAP), a federal program which allows prescription refills for the uninsured following a disaster. Recently arrived foreign-born residents and the uninsured were less frequently aware of EPAP: 8.7% and 10.9%. Populations with impaired access to care in normal times-such as the recently arrived foreign-born and the uninsured-were also at risk of compromised access in the hurricane's aftermath. Measures to address prescription refills during a disaster need better promotion among at-risk populations. (Disaster Med Public Health Preparedness. 2016;10:485-491).

  1. On the Influence of Global Warming on Atlantic Hurricane Frequency

    NASA Astrophysics Data System (ADS)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  2. The Hurricane Rainband and Intensity Change Experiment (RAINEX): Observations and Modeling of Hurricanes Katrina, Ophelia, and Rita (2005)

    NASA Astrophysics Data System (ADS)

    Houze, R. A.

    2006-12-01

    The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high- resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the ELDORA radar on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from Tropical Depression to Category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated by a preliminary analysis of Hurricane Rita, which was documented by multi-aircraft flights on five days: 1) while a tropical storm, 2) while rapidly intensifying to a Category 5 hurricane, 3) during an eyewall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

  3. Legal Preparedness for Hurricane Sandy: Authority to Order Hospital Evacuation or Shelter-in-Place in the Mid-Atlantic Region.

    PubMed

    McGinty, Meghan D; Burke, Thomas A; Resnick, Beth A; Smith, Katherine C; Barnett, Daniel J; Rutkow, Lainie

    2016-01-01

    Hospitals were once thought to be places of refuge during catastrophic hurricanes, but recent disasters such as Hurricanes Katrina and Sandy have demonstrated that some hospitals are unable to ensure the safety of patients and staff and the continuity of medical care at key times. The government has a duty to safeguard public health and a responsibility to ensure that appropriate protective action is taken when disasters threaten or impair the ability of hospitals to sustain essential services. The law can enable the government to fulfill this duty by providing necessary authority to order preventive or reactive responses--such as ordering evacuation of or sheltering-in-place in hospitals--when safety is imperiled. We systematically identified and analyzed state emergency preparedness laws that could have affected evacuation of and sheltering-in-place in hospitals in order to characterize the public health legal preparedness of 4 states (Delaware, Maryland, New Jersey, and New York) in the mid-Atlantic region during Hurricane Sandy in 2012. At that time, none of these 4 states had enacted statutes or regulations explicitly granting the government the authority to order hospitals to shelter-in-place. Whereas all 4 states had enacted laws explicitly enabling the government to order evacuation, the nature of this authority and the individuals empowered to execute it varied. We present empirical analyses intended to enhance public health legal preparedness and ensure these states and others are better able to respond to future natural disasters, which are predicted to be more severe and frequent as a result of climate change, as well as other hazards. States can further improve their readiness for catastrophic disasters by ensuring explicit statutory authority to order evacuation and to order sheltering-in-place, particularly of hospitals, where it does not currently exist.

  4. Diabetes Care Provided to Children Displaced by Hurricane Katrina.

    PubMed

    Quast, Troy; Mortensen, Karoline

    2015-10-01

    Although previous studies have examined the impact of Hurricane Katrina on adults with diabetes, less is known about the effects on children with diabetes and on those displaced by the storm. We analyzed individual-level enrollment and utilization data of children with diabetes who were displaced from Louisiana and were enrolled in the Texas Medicaid Hurricane Katrina emergency waiver (TexKat). We compared the utilization and outcomes of children displaced from Louisiana with those of children who lived in areas less affected by Hurricane Katrina. Data from both before and after the storm were used to calculate difference-in-difference estimates of the effects of displacement on the children. We analyzed 4 diabetes management procedures (glycated hemoglobin [HbA1C] tests, eye exams, microalbumin tests, and thyroid tests) and a complication from poor diabetes management (diabetic ketoacidosis). Children enrolled in the waiver generally did not experience a decrease in care relative to the control group while the waiver program was in effect. After the waiver ended, however, we observed a drop in care and an increase in complications relative to the control group. Although the waiver appeared to have been largely successful immediately following Katrina, future waivers may be improved by ensuring that enrollees continue to receive care after the waivers expire.

  5. Family and Individual Factors Associated with Substance Involvement and PTS Symptoms among Adolescents in Greater New Orleans after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rowe, Cynthia L.; La Greca, Annette M.; Alexandersson, Anders

    2010-01-01

    Objective: This study examined the influence of hurricane impact as well as family and individual risk factors on posttraumatic stress (PTS) symptoms and substance involvement among clinically referred adolescents affected by Hurricane Katrina. Method: A total of 80 adolescents (87% male; 13-17 years old; mean age = 15.6 years; 38% minorities) and…

  6. Hurricane Katrina

    Atmospheric Science Data Center

    2013-01-08

    ... Mississippi regions were acquired before and one day after Katrina made landfall along the Gulf of Mexico coast, and highlight many of the ... http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/hurricane_katrina_flood.html ...

  7. Hurricane Carlotta

    Atmospheric Science Data Center

    2013-04-19

    ... near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their ...

  8. Isentropic Analysis of a Simulated Hurricane

    NASA Technical Reports Server (NTRS)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  9. Five Years Later: Recovery from Post Traumatic Stress and Psychological Distress Among Low-Income Mothers Affected by Hurricane Katrina

    PubMed Central

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2012-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group—low income mothers—from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longitudinal surveys of 532 low-income mothers from New Orleans were conducted approximately one year before, 7 to 19 months after, and 43 to 54 months after Hurricane Katrina. The surveys collected information on mental health, social support, earnings and hurricane experiences. We document changes in post-traumatic stress symptoms (PTSS), as measured by the Impact of Event Scale-Revised, and symptoms of psychological distress (PD), as measured by the K6 scale. We find that although PTSS has declined over time after the hurricane, it remained high 43 to 54 months later. PD also declined, but did not return to pre-hurricane levels. At both time periods, psychological distress before the hurricane, hurricane-related home damage, and exposure to traumatic events were associated with PTSS that co-occurred with PD. Hurricane-related home damage and traumatic events were associated with PTSS without PD. Home damage was an especially important predictor of chronic PTSS, with and without PD. Most hurricane stressors did not have strong associations with PD alone over the short or long run. Over the long run, higher earnings were protective against PD, and greater social support was protective against PTSS. These results indicate that mental health problems, particularly PTSS alone or in co-occurrence with PD, among Hurricane Katrina survivors remain a concern, especially for those who experienced hurricane-related trauma and had poor mental health or low socioeconomic status before the

  10. Five years later: recovery from post traumatic stress and psychological distress among low-income mothers affected by Hurricane Katrina.

    PubMed

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2012-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group-low income mothers-from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longitudinal surveys of 532 low-income mothers from New Orleans were conducted approximately one year before, 7-19 months after, and 43-54 months after Hurricane Katrina. The surveys collected information on mental health, social support, earnings and hurricane experiences. We document changes in post-traumatic stress symptoms (PTSS), as measured by the Impact of Event Scale-Revised, and symptoms of psychological distress (PD), as measured by the K6 scale. We find that although PTSS has declined over time after the hurricane, it remained high 43-54 months later. PD also declined, but did not return to pre-hurricane levels. At both time periods, psychological distress before the hurricane, hurricane-related home damage, and exposure to traumatic events were associated with PTSS that co-occurred with PD. Hurricane-related home damage and traumatic events were associated with PTSS without PD. Home damage was an especially important predictor of chronic PTSS, with and without PD. Most hurricane stressors did not have strong associations with PD alone over the short or long run. Over the long run, higher earnings were protective against PD, and greater social support was protective against PTSS. These results indicate that mental health problems, particularly PTSS alone or in co-occurrence with PD, among Hurricane Katrina survivors remain a concern, especially for those who experienced hurricane-related trauma and had poor mental health or low socioeconomic status before the hurricane

  11. Hurricane Resilient Wind Plant Concept Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibra, Besart; Finucane, Zachary; Foley, Benjamin

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, ormore » character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions

  12. Controlling a hurricane by altering its internal climate

    NASA Astrophysics Data System (ADS)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  13. Mental illness and suicidality after Hurricane Katrina.

    PubMed Central

    Kessler, Ronald C.; Galea, Sandro; Jones, Russell T.; Parker, Holly A.

    2006-01-01

    OBJECTIVE: To estimate the impact of Hurricane Katrina on mental illness and suicidality by comparing results of a post-Katrina survey with those of an earlier survey. METHODS: The National Comorbidity Survey-Replication, conducted between February 2001 and February 2003, interviewed 826 adults in the Census Divisions later affected by Hurricane Katrina. The post-Katrina survey interviewed a new sample of 1043 adults who lived in the same area before the hurricane. Identical questions were asked about mental illness and suicidality. The post-Katrina survey also assessed several dimensions of personal growth that resulted from the trauma (for example, increased closeness to a loved one, increased religiosity). Outcome measures used were the K6 screening scale of serious mental illness and mild-moderate mental illness and questions about suicidal ideation, plans and attempts. FINDINGS: Respondents to the post-Katrina survey had a significantly higher estimated prevalence of serious mental illness than respondents to the earlier survey (11.3% after Katrina versus 6.1% before; chi(2)1= 10.9; P < 0.001) and mild-moderate mental illness (19.9% after Katrina versus 9.7% before; chi(2)1 = 22.5; P < 0.001). Among respondents estimated to have mental illness, though, the prevalence of suicidal ideation and plans was significantly lower in the post-Katrina survey (suicidal ideation 0.7% after Katrina versus 8.4% before; chi(2)1 = 13.1; P < 0.001; plans for suicide 0.4% after Katrina versus 3.6% before; chi(2)1 = 6.0; P = 0.014). This lower conditional prevalence of suicidality was strongly related to two dimensions of personal growth after the trauma (faith in one's own ability to rebuild one's life, and realization of inner strength), without which between-survey differences in suicidality were insignificant. CONCLUSION: Despite the estimated prevalence of mental illness doubling after Hurricane Katrina, the prevalence of suicidality was unexpectedly low. The role of post

  14. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  15. Prototype of an Integrated Hurricane Information System for Research: Description and Illustration of its Use in Evaluating WRF Model Simulations

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S.; Chao, Y.; Vane, D.; Lambrigtsen, B.; Li, P. P.; Knosp, B.; Vu, Q. A.; Su, H.; Dang, V.; Fovell, R.; Tanelli, S.; Garay, M.; Willis, J.; Poulsen, W.; Fishbein, E.; Ao, C. O.; Vazquez, J.; Park, K. J.; Callahan, P.; Marcus, S.; Haddad, Z.; Fetzer, E.; Kahn, R.

    2007-12-01

    In spite of recent improvements in hurricane track forecast accuracy, currently there are still many unanswered questions about the physical processes that determine hurricane genesis, intensity, track and impact on large- scale environment. Furthermore, a significant amount of work remains to be done in validating hurricane forecast models, understanding their sensitivities and improving their parameterizations. None of this can be accomplished without a comprehensive set of multiparameter observations that are relevant to both the large- scale and the storm-scale processes in the atmosphere and in the ocean. To address this need, we have developed a prototype of a comprehensive hurricane information system of high- resolution satellite, airborne and in-situ observations and model outputs pertaining to: i) the thermodynamic and microphysical structure of the storms; ii) the air-sea interaction processes; iii) the larger-scale environment as depicted by the SST, ocean heat content and the aerosol loading of the environment. Our goal was to create a one-stop place to provide the researchers with an extensive set of observed hurricane data, and their graphical representation, together with large-scale and convection-resolving model output, all organized in an easy way to determine when coincident observations from multiple instruments are available. Analysis tools will be developed in the next step. The analysis tools will be used to determine spatial, temporal and multiparameter covariances that are needed to evaluate model performance, provide information for data assimilation and characterize and compare observations from different platforms. We envision that the developed hurricane information system will help in the validation of the hurricane models, in the systematic understanding of their sensitivities and in the improvement of the physical parameterizations employed by the models. Furthermore, it will help in studying the physical processes that affect

  16. New York State Public Health System Response to Hurricane Sandy: An Analysis of Survey Feedback.

    PubMed

    Shipp Hilts, Asante; Mack, Stephanie; Li, Yunshu; Eidson, Millicent; Nguyen, Trang; Birkhead, Guthrie S

    2016-06-01

    The objective was to provide a broad spectrum of New York State and local public health staff the opportunity to contribute anonymous feedback on their own and their agencies' preparedness and response to Hurricane Sandy, perceived challenges, and recommendations for preparedness improvement. In 2015, 2 years after Hurricane Sandy, public health staff who worked on Hurricane Sandy response were identified and were provided a link to the anonymous survey. Quantitative analyses were used for survey ratings and qualitative content analyses were used for open-ended questions. Surveys were completed by 129 local health department (LHD) staff in 3 counties heavily impacted by Sandy (Nassau, Suffolk, and Westchester) and 69 staff in the New York State Department of Health who supported the LHDs. Staff agreed that their Hurricane Sandy responsibilities were clearly defined and that they had access to adequate information to perform their jobs. Challenges were reported in the operational, communication, service interruptions, and staff categories, with LHD staff also reporting challenges with shelters. New York local and state public health staff indicated that they were prepared for Hurricane Sandy. However, their feedback identified specific challenges and recommendations that can be addressed to implement improved preparedness and response strategies. (Disaster Med Public Health Preparedness. 2016;10:454-462).

  17. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds

    NASA Astrophysics Data System (ADS)

    Hodge, Joshua; Williams, Harry

    2016-12-01

    This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual

  18. Hurricane Isidore

    Atmospheric Science Data Center

    2013-04-18

    ... 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a ... Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after ...

  19. Hurricane Wilma

    Atmospheric Science Data Center

    2014-05-15

    ... Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  20. Guidelines for hurricane evacuation signing and markings

    DOT National Transportation Integrated Search

    2007-12-01

    Based on focus group input and surveys of motorists who have recent hurricane evacuation experience, researchers developed guidelines for various hurricane evacuation signs and markings, including route signs, contraflow signs, emergency shoulder lan...

  1. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed Central

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-01-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686

  2. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  3. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    USGS Publications Warehouse

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  4. Family and individual factors associated with substance involvement and PTS symptoms among adolescents in greater New Orleans after Hurricane Katrina.

    PubMed

    Rowe, Cynthia L; La Greca, Annette M; Alexandersson, Anders

    2010-12-01

    This study examined the influence of hurricane impact as well as family and individual risk factors on posttraumatic stress (PTS) symptoms and substance involvement among clinically referred adolescents affected by Hurricane Katrina. A total of 80 adolescents (87% male; 13-17 years old; mean age = 15.6 years; 38% minorities) and their parents were interviewed at the adolescent's intake into substance abuse treatment, 16 to 46 months postdisaster. Independent measures included hurricane impact variables (initial loss/disruption and perceived life threat); demographic and predisaster variables (family income, gender, predisaster adolescent substance use, predisaster trauma exposure, and parental substance abuse); postdisaster family factors (parental psychopathology, family cohesion, and parental monitoring); and postdisaster adolescent delinquency. Hierarchical multivariate regression analyses showed that adolescent substance involvement was associated with higher family income, lower parental monitoring (adolescent report), and more adolescent delinquency. Adolescent-reported PTS symptoms were associated with greater hurricane-related initial loss/disruption, lower family cohesion (adolescent report), and more adolescent delinquency, whereas parent-reported adolescent PTS symptoms were associated with greater parental psychopathology, lower parental monitoring (adolescent report), and lower family cohesion (parent report). The results suggest that hurricane impact was related only to adolescent-reported PTS. However, certain postdisaster family and individual risk factors (low family cohesion and parental monitoring, more adolescent delinquency) were associated both with adolescent substance involvement and with PTS symptoms. Identification of these factors suggests directions for future research as well as potential target areas for screening and intervention with substance-abusing adolescents after disasters. (c) 2010 APA, all rights reserved.

  5. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    NASA Astrophysics Data System (ADS)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  6. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Operations Support Building I (OSB I) is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The roof of the building is currently undergoing repair from Hurricane Matthew. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  7. Application of SeaWinds Scatterometer and TMI-SSM/I Rain Rates to Hurricane Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Hou, Arthur; Reale, Oreste

    2004-01-01

    Results provided by two different assimilation methodologies involving data from passive and active space-borne microwave instruments are presented. The impact of the precipitation estimates produced by the TRMM Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) in a previously developed 1D variational continuous assimilation algorithm for assimilating tropical rainfall is shown on two hurricane cases. Results on the impact of the SeaWinds scatterometer on the intensity and track forecast of a mid-Atlantic hurricane are also presented. This work is the outcome of a collaborative effort between NASA and NOAA and indicates the substantial improvement in tropical cyclone forecasting that can result from the assimilation of space-based data in global atmospheric models.

  8. A Near-Annual Record of Hurricane Activity From the Little Bahama Bank Over the Last 700 Years

    NASA Astrophysics Data System (ADS)

    Winkler, T. S.; van Hengstum, P. J.; Donnelly, J. P.; Sullivan, R.; Albury, N. A.

    2016-12-01

    Long-term and high-resolution records of hurricane activity that extend past the short observational record (<150 years) can help inform the drivers of regional hurricane activity. Blueholes in the tropical North Atlantic often provide oxygen limited environments that promote excellent sediment preservation through time, recording coarse-grained hurricane overwash deposits. Here we further develop a previous hurricane reconstruction from Thatchpoint Bluehole on Abaco Island using additional >8m vibracores collected with a Rossfelder P-3. The previous core analyzed (TPBH-C1, Continental Shelf Research, 2014) was likely obtained from the cave-area of the bluehole, and previous radiocarbon-dated bivalves deeper in the core were likely impacted by an old-carbon effect, casting doubt on the veracity of the previous age-model at this site. Recent overwash beds from Hurricane Jeanne (2004) and Hurricane Floyd (1999) are present at all coretops, and additional radiocarbon dating that includes terrestrial organic matter fragments indicates a near-annual sedimentation rate in the bluehole (>1cm yr-1), with the record spanning the last 700 years. Since 1866 CE, 12 hurricanes with wind speeds exceeding Category 2 on the Saffir-Simpson Scale (wind speeds 154-177 km hr-1) have passed within a 50 km radius of TPBH, many of which can be associated with coarse-grained overwash deposits in the top 200 cm of TPBH-C3. It appears from this high-resolution record that 1500-1650 CE and 1750-1800 CE were active intervals for hurricanes near Abaco, which were previously identified in a lower-resolution (multi-decadal) hurricane reconstruction from Abaco (Blackwood Sinkhole). Additionally, these active intervals coincide with evidence of regional storminess from multiple reconstructions based on historical archives (e.g.: Archivo General de Indias, newspapers, ships' logbooks, meteorological journals), and the 1500-1650 CE active interval falls within a previously identified 1400-1675 CE

  9. Surviving Hurricane Katrina: Winds of Change Transform a New Orleans Addiction Treatment Agency

    ERIC Educational Resources Information Center

    Toriello, Paul J.; Pedersen-Wasson, Else; Crisham, Erin M.; Ellis, Robert; Morse, Patricia; Morse, Edward V.

    2007-01-01

    Hurricane Katrina's impact on the operations of the largest residential, addiction treatment organization in New Orleans is described. Pre- and post-Katrina experiences are discussed and augmented with organizational performance data. Suggestions for future research are provided. (Contains 4 figures.)

  10. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Beach erosion caused by Hurricane Matthew is visible along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.

  11. Divine Wind - The History and Science of Hurricanes

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry

    2005-09-01

    Imagine standing at the center of a Roman coliseum that is 20 miles across, with walls that soar 10 miles into the sky, towering walls with cascades of ice crystals falling along its brilliantly white surface. That's what it's like to stand in the eye of a hurricane. In Divine Wind , Kerry Emanuel, one of the world's leading authorities on hurricanes, gives us an engaging account of these awe-inspiring meteorological events, revealing how hurricanes and typhoons have literally altered human history, thwarting military incursions and changing the course of explorations. Offering an account of the physics of the tropical atmosphere, the author explains how such benign climates give rise to the most powerful storms in the world and tells what modern science has learned about them. Interwoven with this scientific account are descriptions of some of the most important hurricanes in history and relevant works of art and literature. For instance, he describes the 17th-century hurricane that likely inspired Shakespeare's The Tempest and that led to the British colonization of Bermuda. We also read about the Galveston Hurricane of 1900, by far the worst natural calamity in U.S. history, with a death toll between 8,000 and 12,000 that exceeded the San Francisco earthquake, the Johnstown Flood, and the Okeechobee Hurricane combined. Boasting more than one hundred color illustrations, from ultra-modern Doppler imagery to classic paintings by Winslow Homer, Divine Wind captures the profound effects that hurricanes have had on humanity. Its fascinating blend of history, science, and art will appeal to weather junkies, science buffs, and everyone who read Isaac's Storm .

  12. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  13. Building Ecological and Community Resilience and Measuring Success of the Department of Interior Hurricane Sandy Resilience Projects

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.; Worman, S. L.; Bennett, R.; Bassow, A.

    2017-12-01

    The Department of the Interior (DOI) partnered with the National Fish and Wildlife Foundation (NFWF) to administer an external funding competition to support coastal resilience projects in the region affected by Hurricane Sandy. The projects complement the DOI Bureau-led projects, but are led by state and local governments, universities, non-profits, community groups, tribes, and other non-Federal entities. In total, the Hurricane Sandy Resilience Program invested over $750 million in approximately 180 projects to repair damage and improve the resilience of habitats, communities and infrastructure to future storms and sea level rise. Project activities include waterway connection and opening, living shoreline, marsh restoration, community resilience planning, data/mapping/modeling, and beach and dune restoration. DOI and NFWF initiated a resilience assessment in 2015 to evaluate the impact of this investment. The assessment began by clarifying the program's resilience goals and the development of ecological and socio-economic metrics across the project activities. Using these metrics, the evaluation is assessing the ecological and community outcomes, cost effectiveness of activities, improved scientific understanding, and temporal and spatial scaling of benefits across resilience activities. Recognizing the unique opportunity afforded by the scale and distribution of projects, NFWF and DOI have invested in monitoring through 2024 to better understand how these projects perform over time. This presentation will describe the evaluation questions, approach, long-term monitoring, online metrics portal, and findings to date.

  14. Near-real-time Forensic Disaster Analysis: experiences from hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Mühr, Bernhard; Schröter, Kai; Kunz-Plapp, Tina; Daniell, James; Khazai, Bijan; Wenzel, Friedemann; Vannieuwenhuyse, Marjorie; Comes, Tina; Münzberg, Thomas; Elmer, Florian; Fohringer, Joachim; Lucas, Christian; Trieselmann, Werner; Zschau, Jochen

    2013-04-01

    Hurricane Sandy was the last tropical cyclone of the 2012 Northern Atlantic Hurricane season that made landfall. It moved on an unusual track from the Caribbean to the East Coast of the United States from 24 to 30 October as a Category 1 and 2 Hurricane according to the Saffir-Simpson Scale. Along its path, the severe storm event caused widespread damage including almost 200 fatalities. In the early hours of 30 October, Sandy made landfall near Atlantic City, N.J. Sandy was an extraordinary event due to its multihazard nature and several cascading effects in the aftermath. From the hydro-meteorological perspective, most unusual was the very large spatial extent of up to 1,700 km. High wind speeds were associated with record breaking storm surges at the U.S. Mid- Atlantic and New England Coast during high (astronomical) tide, leading to widespread flooding. Though Sandy was not the most severe storm event in terms of wind speed and precipitation, the impact in the U.S. was enormous with total damage estimates of up to 90 billion US (own estimate from Dec. 2012). Although much better data emerge weeks after such an event, the Forensic Disaster Analysis (FDA) Task Force of the Center for Disaster Management and Risk Reduction Technology (CEDIM) made an effort to obtain a comprehensive and holistic overview of the causes, hazardous effects and consequences associated with Sandy immediately after landfall at the U.S. coast on 30 October 2012. This was done in an interdisciplinary way by collecting and compiling scattered and distributed information from available databases and sources via the Internet, by applying own methodologies and models for near-real time analyses developed in recent years, and by expert knowledge. This contribution gives an overview about the CEDIM-FDA analyses' results. It describes the situation that led to the extraordinary event, highlights the interaction of the tropical cyclone with other hydro-meteorological events, and examines the

  15. The Greatest Storm on Earth: Hurricane.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This publication, produced by the National Oceanic and Atmospheric Administration (NOAA), is an illustrated non-technical description of the meteorology of hurricanes and their effects on the land areas they hit. As an information source for students and teachers alike, this publication also describes the damage done in the past by hurricanes, the…

  16. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... that the staff uses in evaluating specific problems or postulated accidents, and data that the staff... turbine missiles. NUREG/CR 7004 is the technical basis for regulatory guidance on design-basis hurricane... hurricane wind speeds for new nuclear power plants. [[Page 54919

  17. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico

    Treesearch

    Aaron B. Shiels; Jess K. Zimmerman; Diana C. García-Montiel; Inge Jonckheere; Jennifer Holm; David Horton; Nicholas Brokaw

    2010-01-01

    1. We simulated two key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on woody plant recruitment and forest structure. 2. We increased canopy openness by trimming branches and added or subtracted canopy detritus in a factorial design. Plant responses were...

  18. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  19. Statistical Aspects of Major (Intense) Hurricanes in the Atlantic Basin During the Past 49 Hurricane Seasons (1950-1998): Implications for the Current Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    Statistical aspects of major (intense) hurricanes, those of category 3 or higher on the Saffir-Simpson scale (e.g., having a maximum sustained wind speed of greater than or equal to 50 M s (exp -1)), in the Atlantic basin during the interval of 1950-1998 are investigated in relation to the El Nino-Southern Oscillation cycle and to the postulated "more" versus "less" activity modes for intense hurricane activity. Based on Poisson statistics, when the hurricane season is simply classified as "non-El Nino-related" (NENR), the probability of having three or more intense hurricanes is approx. 53%, while it is only approx. 14% when it is classified as "El Nino-related" (ENR). Including the activity levels ("more" versus "less"), the probability of having three or more intense hurricanes is computed to be approx. 71% for the "more-NENR" season, 30% for the "less-NENR" season, 17% for the "more-ENR" season, and 12% for the "less-ENR" season. Because the 1999 hurricane season is believed to be a "more-NENR" season, the number of intense hurricanes forming in the Atlantic basin should be above average in number, probably about 4 plus or minus 1 or higher.

  20. Gulf Coast Hurricanes: Lessons Learned for Protecting and Educating Children. Briefing for Congressional Staff. GAO-06-680R

    ERIC Educational Resources Information Center

    Government Accountability Office, 2006

    2006-01-01

    In August and September 2005, Hurricanes Katrina and Rita caused devastating damage to states along the Gulf Coast. In the aftermath of the storms, many questions were raised about the status of the thousands of children living in the affected areas. The US Government Accountability Office (GAO) prepared this preliminary information under the…

  1. Evaluation of long-term community recovery from Hurricane Andrew: sources of assistance received by population sub-groups.

    PubMed

    McDonnell, S; Troiano, R P; Barker, N; Noji, E; Hlady, W G; Hopkins, R

    1995-12-01

    Two three-stage cluster surveys were conducted in South Dade County, Florida, 14 months apart, to assess recovery following Hurricane Andrew. Response rates were 75 per cent and 84 per cent. Sources of assistance used in recovery from Hurricane Andrew differed according to race, per capita income, ethnicity, and education. Reports of improved living situation post-hurricane were not associated with receiving relief assistance, but reports of a worse situation were associated with loss of income, being exploited, or job loss. The number of households reporting problems with crime and community violence doubled between the two surveys. Disaster relief efforts had less impact on subjective long-term recovery than did job or income loss or housing repair difficulties. Existing sources of assistance were used more often than specific post-hurricane relief resources. The demographic make-up of a community may determine which are the most effective means to inform them after a disaster and what sources of assistance may be useful.

  2. NASA CloudSat Captures Hurricane Daniel Transformation

    NASA Image and Video Library

    2006-07-25

    Hurricane Daniel intensified between July 18 and July 23rd. NASA new CloudSat satellite was able to capture and confirm this transformation in its side-view images of Hurricane Daniel as seen in this series of images

  3. ISS Passes Over Hurricane Irma 9/6/2017

    NASA Image and Video Library

    2017-09-06

    The International Space Station’s external cameras captured another dramatic view of Hurricane Irma as it made landfall in the Caribbean Sept. 6. The powerful Category 5 storm with sustained winds of 185 mph made landfall on several islands while continuing on a westward track. Irma is expected to bring severe wind and rain to several islands in the Caribbean over the next several days with the potential to impact the Florida peninsula by week’s end.

  4. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Plant debris caused by Hurricane Matthew is strewn across the dune line along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.

  5. Hurricane Watch in Effect for Bermuda

    NASA Image and Video Library

    2017-12-08

    Hurricane Gonzalo is moving toward the northwest near 12 mph. A turn toward the north-northwest and then north is expected during the next day or so, followed by a north northeastward acceleration by late Thursday. Maximum sustained winds are near 130 mph making Gonzalo a Category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. Tropical storm conditions are possible on Bermuda by late Thursday night, with hurricane conditions possible on Friday. Large swells generated by Gonzalo will reach much of the U.S. east coast and Bermuda on Thursday. These swells are likely to cause life-threatening surf and rip current conditions. This image was taken by GOES 13 at 1607 UTC on October 16, 2014. Caption: NOAA Image Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model

    NASA Astrophysics Data System (ADS)

    Rosado, K.; Tallapragada, V.; Jenkins, G. S.

    2016-12-01

    In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of

  7. The Impact of Governance on the Performance of the Higher Education Sector in Australia

    ERIC Educational Resources Information Center

    De Silva Lokuwaduge, Chitra; Armstrong, Anona

    2015-01-01

    Australian government concern for improved governance in the higher education sector over recent years has driven the implementation of governance protocols. However, there has been little evidence of any evaluation of the impact of the governance structures on the performance of universities. This paper presents an analysis of the impact of the…

  8. Sooty tern (Onychoprion fuscatus) survival, oil spills, shrimp fisheries, and hurricanes.

    PubMed

    Huang, Ryan M; Bass, Oron L; Pimm, Stuart L

    2017-01-01

    Migratory seabirds face threats from climate change and a variety of anthropogenic disturbances. Although most seabird research has focused on the ecology of individuals at the colony, technological advances now allow researchers to track seabird movements at sea and during migration. We combined telemetry data on Onychoprion fuscatus (sooty terns) with a long-term capture-mark-recapture dataset from the Dry Tortugas National Park to map the movements at sea for this species, calculate estimates of mortality, and investigate the impact of hurricanes on a migratory seabird. Included in the latter analysis is information on the locations of recovered bands from deceased individuals wrecked by tropical storms. We present the first known map of sooty tern migration in the Atlantic Ocean. Our results indicate that the birds had minor overlaps with areas affected by the major 2010 oil spill and a major shrimp fishery. Indices of hurricane strength and occurrence are positively correlated with annual mortality and indices of numbers of wrecked birds. As climate change may lead to an increase in severity and frequency of major hurricanes, this may pose a long-term problem for this colony.

  9. Aircraft Monitoring of Sea-Spray and Changes in Hurricane Intensity

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.

    2010-12-01

    Sea spray above the ocean surface in hurricanes enhances the transfer of sensible heat to the atmospheric boundary layer. Sea spray becomes of greater significance as the intensity and thereby the wind speed of the hurricane increases. A fuller knowledge of the distribution of sea spray over the ocean may help in understanding changes in intensity of the most dangerous hurricanes. An instrument to measure the salt content of rain has been developed and installed on one of NOAA’s P3 hurricane research aircraft. The instrument detects changes in the conductivity of a thin film of water on the surface of the instrument. Calibration of the instrument has been completed at the University of Texas A&M wind tunnel facility. An earlier version of the sensor was flown into Hurricane Paloma (2008) at an elevation of 4 km. Changes in salt concentration were detected. A sturdier version of the instrument was flown into winter storms off the coast of Newfoundland in February of 2010. For the most part, the instrument did not function because the precipitation was a solid. But the one time the on-board meteorologist noted there was liquid precipitation, the instrument did function. Rain samples collected at ground level from eleven land falling hurricanes ranged from 5 ppm to 50 ppm (Lawrence et al, 2006 Fall AGU abstract, session A33). Hurricane Katrina showed the highest concentration of salt at 50 ppm. Sea salt measurements in rain from Hurricane Earl were underway starting on August 28 with continued plans through September 3. Salinity measurements by the instrument will be compared to wind velocities measured by the on-board radar. Because sea spray increases heat-transfer from the ocean to the hurricane atmosphere, especially in category 3 to 5 hurricanes, these studies may help improve models that predict changes in hurricane intensity.

  10. Changes in structure, composition, and nutrients during 15 years of hurricane-induced succession in a subtropical wet forest in Puerto Rico

    Treesearch

    Tamara Heartsill Scalley; Frederick N. Scatena; Ariel E. Lugo; Samuel Moya; Carlos R. Estrada Ruiz

    2010-01-01

    The trajectory of hurricane-induced succession was evaluated in a network of forest plots measured immediately before and 3 mo, 5, 10, and 15 yr after the direct impact of a Category 4 hurricane. Comparisons of forest structure, composition, and aboveground nutrients pools were made through time, and between species, lifehistory groups and geomorphic settings. The...

  11. 78 FR 18445 - Historically Black College and University (HBCU) Capital Financing Program; Modification of Terms...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... conditions of loans made to the following four institutions affected by Hurricanes Katrina and Rita under the... affected by Hurricanes Katrina and Rita. The special loan terms included, but were not limited to... Federal Government. The three agencies have determined that, due to the impact of Hurricanes Katrina and...

  12. Watershed Watch Undergraduate Research Projects: Monitoring Environmental Impacts on Tree Growth - Urban Development and Hurricanes

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.

    2009-12-01

    the nearby construction of two student dormitories within 100 feet of the trees. The other student team studied cores for evidence of possible impacts from four recent hurricanes (Isabel, category 5, 2003; Floyd, category 4, 1999; Bonnie, category 3, 1998; and Fran, Category 3, 1996) on trees from the Alligator River (near Cape Hatteras, NC) and from the ECSU campus (well inland). Cores were evaluated for the presence or absence of false growth rings that could be the result of saltwater impoundment associated with storm surges. False growth rings were seen in the cores of loblolly pine from the Alligator River site, but only for the years 2003 and 1999. No false growth rings were seen in the cores of loblolly pine from the ECSU campus. Both hurricanes Isabel and Floyd were stronger storms and had higher storm surges (8-10 ft) than either Bonnie or Fran (storm surges of 3-5 feet). The team hypothesized that the false growth rings were related to the impacts of the two stronger storms.

  13. Gulf Coast Hurricanes Situation Report #39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  14. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    PubMed Central

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  15. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    PubMed

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  16. Atlantic Hurricane Activity: 1851-1900

    NASA Astrophysics Data System (ADS)

    Landsea, C. W.

    2001-12-01

    This presentation reports on the second year's work of a three year project to re-analyze the North Atlantic hurricane database (or HURDAT). The original database of six-hourly positions and intensities were put together in the 1960s in support of the Apollo space program to help provide statistical track forecast guidance. In the intervening years, this database - which is now freely and easily accessible on the Internet from the National Hurricane Center's (NHC's) Webpage - has been utilized for a wide variety of uses: climatic change studies, seasonal forecasting, risk assessment for county emergency managers, analysis of potential losses for insurance and business interests, intensity forecasting techniques and verification of official and various model predictions of track and intensity. Unfortunately, HURDAT was not designed with all of these uses in mind when it was first put together and not all of them may be appropriate given its original motivation. One problem with HURDAT is that there are numerous systematic as sell as some random errors in the database which need correction. Additionally, analysis techniques have changed over the years at NHC as our understanding of tropical cyclones has developed, leading to biases in the historical database that have not been addressed. Another difficulty in applying the hurricane database to studies concerned with landfalling events is the lack exact location, time and intensity at hurricane landfall. Finally, recent efforts into uncovering undocumented historical hurricanes in the late 1800s and early 1900s led by Jose Fernandez-Partagas have greatly increased our knowledge of these past events, which are not yet incorporated into the HURDAT database. Because of all of these issues, a re-analysis of the Atlantic hurricane database is being attempted that will be completed in three years. As part of the re-analyses, three files will be made available: {* } The revised Atlantic HURDAT (with six hourly intensities

  17. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  18. Geography & Weather: Hurricanes.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Collins, H. Thomas

    1989-01-01

    Background information using Hurricane Gilbert (1988) is provided. Ideas for 27 activities including a mapping activity are discussed. The 5 themes of geography are listed and a glossary is given. (CW)

  19. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced

  20. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  1. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications

    NASA Astrophysics Data System (ADS)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.

    2016-02-01

    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  2. The human side of Hurricane Andrew

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, R.; Callander, R.C.

    1994-12-31

    This paper examines the long-term psychological effects of the nation`s worst natural disaster on the employees of the Turkey Point nuclear power plant. It also examines the efforts made by plant personnel and company volunteers to aid employees` families affected by the storm. Despite significant damage at the plant, unit 4 was returned to service 5 weeks after the August 24, 1992, hurricane. Unit 3 was returned to service on December 3, 1992. Unit 3 was originally scheduled to start a refueling outage the day Hurricane Andrew struck. While plant personnel are still recovering from Andrew`s impact, the plant`s performancemore » has never been better. On May 26, 1993, the plant completed a record-breaking 46-day refueling outage - 7 days ahead of schedule and $3 million under budget. Turkey Point`s recovery, return to service, and superior performance would not have been possible without the efforts of hundreds of employees who put their personal tragedies aside and focused on the common goal of the plant`s operation. To help employees with rebuilding their lives, the plant launched extensive assistance programs. Although the plant returned to normal operation, plant personnel continue to struggle in a community whose infrastructure (homes, schools, stores, etc.) have been almost eliminated.« less

  3. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  4. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies. Published by Elsevier Ltd.

  5. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    USGS Publications Warehouse

    Fisher, Irene; Phillips, Patrick J.; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  6. 1954 hurricane damage on Penobscot Experimental Forest

    Treesearch

    T. J. Grisez

    1954-01-01

    The two hurricanes "Carol" and "Edna" that struck inland over New England this summer caused some timber losses. But the damage was neither so extensive nor so severe as the damage done by the hurricane of 1938 and the storms of 1950.

  7. Short-term hurricane impacts on a neotropical community of marked birds and implications for early-stage community resilience.

    PubMed

    Johnson, Andrew B; Winker, Kevin

    2010-11-30

    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later.

  8. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  9. Hurricane Fred Lashes the Cape Verde Islands

    NASA Image and Video Library

    2017-12-08

    Hurricane Fred is bringing very heavy rains to the Cape Verde Islands. From the National Hurricane Center's Hurricane Fred Forecast Discussion: "According to the official Atlantic tropical cyclone record, which begins in 1851, Fred is the first hurricane to pass through the Cape Verde Islands since 1892. We caution, however, that the database is less reliable prior to the satellite era (mid 1960s onward)." This image was taken by GOES East on August 31, 2015. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: NOAA/NASA GOES Project

  10. Constraining Big Hurricanes: Remotely sensing Galveston Islands' changing coastal landscape from days to millennia

    NASA Astrophysics Data System (ADS)

    Dougherty, A. J.; Choi, J. H.; Heo, S.; Dosseto, A.

    2017-12-01

    Climate change models forecast increased storm intensity, which will drive coastal erosion as sea-level rise accelerates with global warming. Over the last five years the largest hurricanes ever recorded in the Pacific (Patricia) and the Atlantic (Irma) occurred as well as the devastation of Harvey. The preceding decade was marked with Super Storm Sandy, Katrina and Ike. A century prior, the deadliest natural disaster in North America occurred as a category 4 hurricane known as `The 1900 Storm' hit Galveston Island. This research aims to contextualize the impact of storms long before infrastructure and historical/scientific accounts documented erosion. Unlike the majority of barrier islands in the US, Galveston built seaward over the Holocene. As the beach prograded it preserved a history of storms and shoreline change over millennia to the present-day. These systems (called prograded barriers) were first studied over 50 years ago using topographic profiles, sediment cores and radiocarbon dating. This research revisits some of these benchmark study sites to augment existing data utilizing state-of-the-art Light Detection and Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL) techniques. In 2016 GPR and OSL data were collected from Galveston Island, with the aim to combine GPR, OSL and LiDAR (GOaL) to extract a high-resolution geologic record spanning 6,000 years. The resulting millennia-scale coastal evolution can be used to contextualize the impact of historic hurricanes over the past century (`The 1900 Storm'), decade (Ike in 2008) and year (now with Harvey). Preliminary results reveal a recent change in shoreline behaviour, and data from Harvey are currently being accessed within the perspective of these initial findings. This dataset will be discussed with respect to the other two benchmark prograded barriers studied in North America: Nayarit Barrier (Mexico) that Hurricane Patricia passed directly over in 2013 and

  11. Work-Related Unintentional Injuries Associated With Hurricane Sandy in New Jersey.

    PubMed

    Marshall, Elizabeth G; Lu, Shou-En; Shi, Zhengyang; Swerdel, Joel; Borjan, Marija; Lumia, Margaret E

    2016-06-01

    We aimed to evaluate the occurrence of work-related injuries after Hurricane Sandy potentially related to response and recovery. Emergency and hospital discharges (patients aged 18-65 years) with a diagnosis of unintentional injury were obtained from the New Jersey Department of Health. Work-related injuries were identified as those with a workers' compensation payer or other work-related codes. Counties were categorized as high-, medium-, or low-impact areas. Poisson regression analysis was used to compare the rate of work-related injury the year following Sandy landfall with the 3 previous years. Total work-related injuries declined the week immediately after Sandy (rate ratio [RR]: 0.85; 95% confidence interval [CI]: 0.69-1.05) and no overall increase was found in the year after Hurricane Sandy. However, high-impact counties showed an elevated risk of work-related injuries in the first and third quarters after Hurricane Sandy among men, especially for blacks and Hispanics. The greatest excesses occurred in the third quarter after the storm, May to July, for falls (RR: 1.30; 95% CI: 1.08-1.57), cut/pierce injuries (RR: 1.24; 95% CI: 1.09-1.40), struck-by injuries (RR: 1.17; 95% CI: 1.02-1.34), and overexertion (RR: 1.26; 95% CI: 1.10-1.44). Hospital data suggested an increase in injuries associated with rebuilding and recovery rather than with initial response. Future efforts aimed at prevention should evaluate the mechanisms and circumstances of injury in more detail. (Disaster Med Public Health Preparedness. 2016;10:394-404).

  12. Tornado outbreaks associated with landfalling hurricanes in the North Atlantic Basin: 1954 2004

    NASA Astrophysics Data System (ADS)

    Verbout, S. M.; Schultz, D. M.; Leslie, L. M.; Brooks, H. E.; Karoly, D. J.; Elmore, K. L.

    2007-08-01

    Tornadoes are a notable potential hazard associated with landfalling hurricanes. The purpose of this paper is to discriminate hurricanes that produce numerous tornadoes (tornado outbreaks) from those that do not (nonoutbreaks). The data consists of all hurricane landfalls that affected the United States from the North Atlantic basin from 1954 to 2004 and the United States tornado record over the same period. Because of the more than twofold increase in the number of reported tornadoes over these 51 years, a simple least-squares linear regression (“the expected number of tornadoes”) was fit to the annual number of tornado reports to represent a baseline for comparison. The hurricanes were sorted into three categories. The first category, outbreak hurricanes, was determined by hurricanes associated with the number of tornado reports exceeding a threshold of 1.5% of the annual expected number of tornadoes and at least 8 F1 and greater tornadoes during the time of landfall (from outer rainbands reaching shore to dissipation of the system). Eighteen hurricane landfalls were classified as outbreak hurricanes. Second, 37 hurricanes having less than 0.5% of the annual expected number of tornadoes were classified as nonoutbreak landfalls. Finally, 28 hurricanes that were neither outbreak nor nonoutbreak hurricanes were classified as midclass hurricane landfalls. Stronger hurricanes are more likely to produce tornado outbreaks than weaker hurricanes. While 78% of outbreak hurricanes were category 2 or greater at landfall, only 32% of nonoutbreak hurricanes were category 2 or greater at landfall. Hurricanes that made landfall along the southern coast of the United States and recurved northeastward were more likely to produce tornadoes than those that made landfall along the east coast or those that made landfall along the southern coast but did not recurve. Recurvature was associated with a 500-hPa trough in the jet stream, which also contributed to increased deep

  13. Differences in emotional well-being of hurricane survivors: a secondary analysis of the ABC News Hurricane Katrina Anniversary Poll.

    PubMed

    Rateau, Margaret R

    2009-06-01

    Literature suggests that survivors of catastrophic loss may suffer long-term emotional damage. This paper presents a secondary data analysis from the ABC News Hurricane Katrina Poll conducted in August, 2006. Following analyses, a significantly higher percentage of women (44%) and those who experienced residential damage (66.7%) reported long-term negative impact on emotional well-being. Overall, 70.3% of Katrina survivors reported a strengthening in fellow man following the disaster. These results may serve as beginning evidence for appropriate identification and implementation of mental health support for those most in need following disaster.

  14. Deaths related to Hurricane Andrew in Florida and Louisiana, 1992.

    PubMed

    Combs, D L; Parrish, R G; McNabb, S J; Davis, J H

    1996-06-01

    Information about circumstances leading to disaster-related deaths helps emergency response coordinators and other public health officials respond to the needs of disaster victims and develop policies for reducing the mortality and morbidity of future disasters. In this paper, we describe the decedent population, circumstances of death, and population-based mortality rates related to Hurricane Andrew, and propose recommendations for evaluating and reducing the public health impact of natural disasters. To ascertain the number and circumstances of deaths attributed to Hurricane Andrew in Florida and Louisiana, we contacted medical examiners in 11 Florida counties and coroners in 36 Louisiana parishes. In Florida medical examiners attributed 44 deaths to the hurricane. The mortality rate for directly-related deaths was 4.4 per 1 000 000 population and that for indirectly-related deaths was 8.5 per 1 000 000 population. In Louisiana, coroners attributed 11 resident deaths to the hurricane. Mortality rates were 0.6 per 1000 000 population for deaths directly related to the storm and 2.8 for deaths indirectly related to the storm. Six additional deaths occurred among non-residents who drowned in international waters in the Gulf of Mexico. In both Florida and Louisiana, mortality rates generally increased with age and were higher among whites and males. In addition to encouraging people to follow existing recommendations, we recommend emphasizing safe driving practices during evacuation and clean-up, equipping shelters with basic medical needs for the population served, and modifying zoning and housing legislation. We also recommend developing and using a standard definition for disaster-related deaths, and using population-based statistics to describe the public health effectiveness of policies intended to reduce disaster-related mortality.

  15. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  16. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate

  17. REMOTE SENSING DAMAGE ASSESSMENT OF CHEMICAL PLANTS AND REFINERIES FOLLOWING HURRICANES KATRINA AND RITA

    EPA Science Inventory

    The massive destruction brought by Hurricanes Katrina and Rita also impacted the many chemical plants and refineries in the region. The achievement of this rapid analysis capability highlights the advancement of this technology for air quality assessment and monitoring. Case st...

  18. Fertility after natural disaster: Hurricane Mitch in Nicaragua

    PubMed Central

    Davis, Jason

    2017-01-01

    This investigation evaluates the effect of Hurricane Mitch on women’s reproductive outcomes throughout Nicaragua. This research aim is achieved by analyzing a unique Nicaraguan Living Standards Measurement Study panel dataset that tracks women’s fertility immediately before and at two time points after Hurricane Mitch, combined with satellite-derived municipality-level precipitation data for the 10-day storm period. Results show higher odds of post-disaster fertility in municipalities receiving higher precipitation levels in the immediate post-Hurricane Mitch period. However, fertility normalizes between disaster and non-disaster areas four to six years after the storm. These findings suggest that the disruptive effects of a natural disaster such as Hurricane Mitch can have an initial stimulative effect on fertility but the effect is ephemeral. PMID:28694556

  19. Coastal-change impacts during hurricane katrina: an overview

    USGS Publications Warehouse

    Sallenger, Asbury; Wright, C. Wayne; Lillycrop, Jeff

    2007-01-01

    As part of an ongoing cooperative effort between USGS, NASA and USACE, the barrier islands within the right-front quadrant of Hurricane Katrina were surveyed with airborne lidar both before and after landfall. Dauphin Island, AL was located the farthest from landfall and wave runup intermittently overtopped its central and western sections. The Gulf-side of the island experienced severe erosion, leaving the first row of houses in the sea, while the bayside accreted. In contrast, the Chandeleur Islands, LA did not experience, this classic `rollover'. Rather, the island chain was completely stripped of sand, transforming a 40-km-long sandy island chain into a discontinuous series of muddy marsh islets. Models indicate that storm surge likely submerged the entire Chandeleur Island chain, at least during the latter part of the storm. The net result was destructive coastal change for the Chandeleur Islands, while Dauphin Island tended to maintain its form through landward migration.

  20. Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Srikishen, Jayanthi; Zavodsky, Bradley; Mecikalski, John

    2018-01-01

    Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard. The GPM has a broad global coverage approximately 70deg S -70deg N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall To develop methodology to assimilate GPM surface precipitation data with Grid-point Statistical Interpolation (GSI) data assimilation system and WRF ARW model To investigate the potential and the value of utilizing GPM observation into NWP for operational environment The GPM rain rate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rain rate data have been found in temperature and moisture fields of initial conditions. 2.Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data