Science.gov

Sample records for hurricane impacts governing

  1. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    NASA Astrophysics Data System (ADS)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  2. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Miner, Michael D.; Kulp, Mark A.; Fitzgerald, Duncan M.; Flocks, James G.; Weathers, H. Dallon

    2009-12-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.

  3. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    USGS Publications Warehouse

    Miner, M.D.; Kulp, M.A.; FitzGerald, D.M.; Flocks, J.G.; Weathers, H.D.

    2009-01-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (???0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ???1.6????????109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ???41,400 m2 to ???139,500 m 2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends. ?? 2009 Springer-Verlag.

  4. Forecasting hurricane impact on coastal topography: Hurricane Ike

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  5. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect

    Kastury, S.N. )

    1993-03-01

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  6. Forecasting Hurricane Impact on Coastal Topography

    NASA Astrophysics Data System (ADS)

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-02-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  7. Remote sensing for hurricane Andrew impact assessment

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas

    1994-01-01

    Stennis Space Center personnel flew a Learjet equipped with instrumentation designed to acquire imagery in many spectral bands into areas most damaged by Hurricane Andrew. The calibrated airborne multispectral scanner (CAMS), a NASA-developed sensor, and a Zeiss camera acquired images of these areas. The information derived from the imagery was used to assist Florida officials in assessing the devastation caused by the hurricane. The imagery provided the relief teams with an assessment of the debris covering roads and highways so cleanup plans could be prioritized. The imagery also mapped the level of damage in residential and commercial areas of southern Florida and provided maps of beaches and land cover for determination of beach loss and vegetation damage, particularly the mangrove population. Stennis Space Center personnel demonstrated the ability to respond quickly and the value of such response in an emergency situation. The digital imagery from the CAMS can be processed, analyzed, and developed into products for field crews faster than conventional photography. The resulting information is versatile and allows for rapid updating and editing. Stennis Space Center and state officials worked diligently to compile information to complete analyses of the hurricane's impact.

  8. Hurricane Sandy science plan: coastal impact assessments

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  9. Hurricane impacts on the coastal environment

    USGS Publications Warehouse

    Sallenger, Abby

    In terms of insured losses, Hurricane Andrew is the most severe catastrophe in the Nation's history. Prior to the arrival of Andrew, the U.S. Geological Survey (USGS), in cooperation with the Louisiana Geological Survey (LGS), acquired an extensive body of information and data on the behavior and long-term erosion of Louisiana barrier islands. As a result, we have a clear understanding of pre-storm conditions in this area; Andrew provided an opportunity to learn in detail the impact of a very large storm on Louisiana coastal environment.

  10. Hurricane impacts on the coastal environment

    USGS Publications Warehouse

    Sallenger, Abby

    1990-01-01

    In terms of insured losses, Hurricane Andrew is the most severe catastrophe in the Nation's history. Prior to the arrival of Andrew, the U.S. Geological Survey (USGS), in cooperation with the Louisiana Geological Survey (LGS), acquired an extensive body of information and data on the behavior and long-term erosion of Louisiana barrier islands. As a result, we have a clear understanding of pre-storm conditions in this area; Andrew provided an opportunity to learn in detail the impact of a very large storm on Louisiana coastal environment.

  11. Impact of hurricane Rita on adolescent substance use.

    PubMed

    Rohrbach, Louise A; Grana, Rachel; Vernberg, Eric; Sussman, Steve; Sun, Ping

    2009-01-01

    Little systematic research attention has been devoted to the impact of natural disasters on adolescent substance use. The present study examined relationships among exposure to Hurricane Rita, post-traumatic stress (PTS) symptoms, and changes in adolescent substance use from 13 months pre-disaster to seven and 19 months post-disaster. Subjects were 280 high school students in southwestern Louisiana who participated in a drug abuse prevention intervention trial prior to the hurricane. Two-thirds of participants were female and 68% were white. Students completed surveys at baseline (13 months pre-hurricane) and two follow-ups (seven and 19 months post-hurricane). Results indicated a positive bivariate relationship between PTS symptoms, assessed at 7 months post-hurricane, and increases in alcohol (p < .05) and marijuana use (p < .10) from baseline to the 7 months post-hurricane follow-up. When these associations were examined collectively with other hurricane-related predictors in multivariate regression models, PTS symptoms did not predict increases in substance use. However, objective exposure to the hurricane predicted increases in marijuana use, and post-hurricane negative life events predicted increases in all three types of substance use (ps < .10). These findings suggest that increased substance use may be one of the behaviors that adolescents exhibit in reaction to exposure to hurricanes.

  12. Impact of Hurricane Rita on Adolescent Substance Use

    PubMed Central

    Rohrbach, Louise A.; Grana, Rachel; Vernberg, Eric; Sussman, Steve; Sun, Ping

    2009-01-01

    Little systematic research attention has been devoted to the impact of natural disasters on adolescent substance use. The present study examined relationships among exposure to Hurricane Rita, post-traumatic stress (PTS) symptoms, and changes in adolescent substance use from 13-months pre-disaster to seven- and 19-months post-disaster. Subjects were 280 high school students in southwestern Louisiana who participated in a drug abuse prevention intervention trial prior to the hurricane. Two-thirds of participants were female and 68% were white. Students completed surveys at baseline (13 months pre-hurricane) and two follow-ups (seven-and 19-months post-hurricane). Results indicated a positive bivariate relationship between PTS symptoms, assessed at 7-months post-hurricane, and increases in alcohol (p < .05) and marijuana use (p <.10) from baseline to the 7-month post-hurricane follow-up. When these associations were examined collectively with other hurricane-related predictors in multivariate regression models, PTS symptoms did not predict increases in substance use. However, objective exposure to the hurricane predicted increases in marijuana use and post-hurricane negative life events predicted increases in all three types of substance use (p’s <.10). These findings suggest that increased substance use may be one of the behaviors that adolescents exhibit in reaction to exposure to hurricanes. PMID:19821646

  13. Hurricanes

    MedlinePlus

    ... suddenly reexperience all the emotions, fears, thoughts, and perceptions they experienced at the time of the hurricane. ... have about the hurricane, as you may share perceptions, feelings, and memories in ways that make children ...

  14. The public health impact of hurricanes and major flooding.

    PubMed

    Diaz, James H

    2004-01-01

    Accurate predictions of the public health impact of hurricanes and major flooding are hampered by the absence of a dose-response relationship between hurricane-associated flooding and human health and the imprecise, often conflicting, meteorological models of climate change and hurricane landfall. Flooding is now the most common type of disaster worldwide, and flash flooding, usually associated with tropical storms, is the leading cause of weather-related deaths in the United States. As a result of climate changes and more frequently alternating ocean oscillations, hurricanes of category 3 or greater now strike the continental US approximately every 18 months. Public health officials are obligated to educate policymakers and the public about the significant threats posed to population health and quality of life by the inexorable progression of global climate change, including more water-centered disasters, such as tropical storms and hurricanes.

  15. Geologic record of Hurricane impacts on the New Jersey coast

    NASA Astrophysics Data System (ADS)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  16. Hurricane impacts on US forest carbon sequestration.

    PubMed

    McNulty, Steven G

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 10(12) g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the eastern US. A single storm can convert the equivalent of 10% of the total annual carbon sequestrated by US forests into dead and downed biomass. Given that forests require at least 15 years to recover from a severe storm, a large amount of forest carbon is lost either directly (through biomass destruction) or indirectly (through lost carbon sequestration capacity) due to hurricanes. Only 15% of the total carbon in destroyed timber is salvaged following a major hurricane. The remainder of the carbon is left to decompose and eventually return to the atmosphere. Short-term increases in forest productivity due to increased nutrient inputs from detritus are not fully compensated by reduced stem stocking, and the recovery time needed to recover leaf area. Therefore, hurricanes are a significant factor in reducing short-term carbon storage in US forests.

  17. The Impact of Hurricane Katrina on Students’ Behavioral Disorder: A Difference-in-Difference Analysis

    PubMed Central

    Tian, Xian-Liang; Guan, Xian

    2015-01-01

    Objective: The objective of this paper is to examine the impact of Hurricane Katrina on displaced students’ behavioral disorder. Methods: First, we determine displaced students’ likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000–2008. Second, we investigate the impact of hurricane on evacuee students’ in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Results: Preliminary analysis demonstrates a sharp increase in displaced students’ relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students’ relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. Conclusion: When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior. PMID:26006127

  18. Hindcasting potential hurricane impacts on rapidly changing barrier islands

    USGS Publications Warehouse

    Stockdon, H.F.; Thompson, D.M.; Sallenger, A.H.

    2007-01-01

    Hindcasts of the coastal impact of Hurricane Ivan on Santa Rosa Island, Florida, using a storm-impact scaling model that compares hurricane-induced water levels to local dune morphology, were found to have an accuracy of 68% in predicting the occurrence of one of four impact regimes: swash, collision, overwash, and inundation. Errors were overwhelming under-predictions of the regime where the observed response was more extreme than had been expected. This is related to the evolution of the profile during the storm. Mean pre-storm dune elevations decreased by 1.9 m over the 75-km long island as most of the dunes were completely eroded during the storm. Dramatic morphologic change during a hurricane makes barrier islands more vulnerable to overwash and inundation than will be predicted based on pre-storm dune parameters. Incorporation of the timing of rising water levels relative to storm-induced profile evolution is required to improve model accuracy.

  19. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2013-09-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  20. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  1. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  2. Land Area Change and Overview of Major Hurricane Impacts in Coastal Louisiana, 2004-08

    USGS Publications Warehouse

    Barras, John A.

    2009-01-01

    The U.S. Geological Survey (USGS) assessed changes in land and water coverage in coastal Louisiana within 2 months of Hurricane Gustav (September 1, 2008) and Hurricane Ike (September 13, 2008) by using Landsat Thematic Mapper (TM) satellite imagery. The purpose of this study was twofold: (1) to provide preliminary information on land-water area changes in coastal Louisiana shortly after Hurricanes Ike and Gustav made landfall and (2) to contrast these changes with prior, widespread land area changes caused by Hurricane Katrina (August 29, 2005) and Hurricane Rita (September 24, 2005) 3 years earlier. Hurricane Gustav's physical surge impacts were not as severe as those observed from Hurricane Katrina. The largest observed changes were the reversion of recovery vegetation in Upper Breton Sound to an immediate post-Katrina appearance. Hurricane Ike's surge impacts were similar, although of somewhat lesser magnitude than Hurricane Rita's surge impacts. Major surge-removed marsh occurred in similar locations with similar morphologies from the two westward tracking storms. Although the net reduction in land from 2004 to 2008 (849.5 km2) exceeded that from 1978 to 2004 (743.3 km2), it is likely that the 2004-08 estimate will decrease, given time for the coast to recover from those hurricane seasons. Nevertheless, it is likely that the cumulative loss from these hurricane seasons will remain significant. Estimation of permanent losses cannot be made until several growing seasons have passed and the transitory impacts of the hurricanes are accounted for.

  3. Hurricane Katrina: impact on cardiac surgery case volume and outcomes.

    PubMed

    Bakaeen, Faisal G; Huh, Joseph; Chu, Danny; Coselli, Joseph S; LeMaire, Scott A; Mattox, Kenneth L; Wall, Matthew J; Wang, Xing Li; Shenaq, Salwa A; Atluri, Prasad V; Awad, Samir S; Berger, David H

    2008-01-01

    Hurricane Katrina produced a surge of patient referrals to our facility for cardiac surgery. We sought to determine the impact of this abrupt volume change on operative outcomes. Using our cardiac surgery database, which is part of the Department of Veterans Affairs' Continuous Improvement in Cardiac Surgery Program, we compared procedural outcomes for all cardiac operations that were performed in the year before the hurricane (Year A, 29 August 2004-28 August 2005) and the year after (Year B, 30 August 2005-29 August 2006). Mortality was examined as unadjusted rates and as risk-adjusted observed-to-expected ratios. We identified 433 cardiac surgery cases: 143 (33%) from Year A and 290 (67%) from Year B. The operative mortality rate was 2.8% during Year A (observed-to-expected ratio, 0.4) and 2.8% during Year B (observed-to-expected ratio, 0.6) (P = 0.9). We identified several factors that enabled our institution to accommodate the increase in surgical volume during the study period. We conclude that, although Hurricane Katrina caused a sudden, dramatic increase in the number of cardiac operations that were performed at our facility, good surgical outcomes were maintained.

  4. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  5. The traumatic impact of Hurricane Katrina on children in New Orleans.

    PubMed

    Drury, Stacy S; Scheeringa, Michael S; Zeanah, Charles H

    2008-07-01

    This article reviews the traumatic impact of Hurricane Katrina on the children of New Orleans. After describing the events comprising the trauma, it reviews the historical context of hurricanes in New Orleans and the social and political challenges that affected the area's response. It then considers the consequences of Hurricane Katrina in terms of disruption of services and governmental and nongovernmental responses to the psychologic needs created by the storm. The authors review preliminary studies about the affects of the hurricane on children and adolescents and conclude with a consideration of the lessons learned from both practice and policy perspectives.

  6. Impact of 1985 hurricanes on Isles Dernieres, Louisiana: Temporal and spatial analysis of coastal geomorphic changes

    SciTech Connect

    Debusshere, K.; Westphal, K.; Penland, S.; McBride, R. )

    1989-09-01

    Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impacts in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.

  7. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  8. Hurricane Hortense: impact on surface water in Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto

    1997-01-01

    Late Monday night, September 9, and into the early morning hours of Tuesday, September 10, 1996, Hurricane Hortense passed over the southwestern part of Puerto Rico (inset). Hurricane Hortense made landfall as a Category One Hurricane (74 to 95 miles per hour) on the Saffir-Simpson Scale, with maximum sustained winds of nearly 80 miles per hour. The eye of Hurricane Hortense moved over the towns of Guayanilla, Yauco, Guánica, Lajas, San Germán, Cabo Rojo, Hormigueros, and Mayagüez (fig. 1).

  9. Local variability but landscape stability in coral reef communities following repeated hurricane impacts

    USGS Publications Warehouse

    Bythell, John C.; Hillis-Star, Zandy M; Rogers, Caroline S.

    2000-01-01

    Coral reef community structure has remained remarkably stable over a 10 yr period within a small protected marine area despite repeated hurricane impacts. Local community dynamics have been highly variable, however. Sites that were destroyed by disease in the 1970s are showing little or no recovery, while sites less than a kilometre away that were devastated by Hurricane Hugo in 1989 are recovering well. Strong coral recruitment has occurred in shallow, exposed areas that showed the greatest hurricane impacts, and these areas are now more species rich than in 1988, although coral cover has not reached pre-hurricane levels. Coral colony survivorship has been high throughout most of the study area. Partial mortality rates were elevated for several years following Hurricane Hugo, but significant whole coral-head mortality only occurred during periods with hurricane impacts and only at the most exposed sites. Overall, the coral community has proved resilient to closely repeated major hurricane impacts. From a single case study we cannot attribute this resilience to the relatively low level of human impacts, but grazing fish populations have apparently remained high enough to keep macroalgae in check despite the mass mortality of the herbivore Diadema antillarum in the 1980s.

  10. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  11. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  12. The impact of pet loss on the perceived social support and psychological distress of hurricane survivors.

    PubMed

    Lowe, Sarah R; Rhodes, Jean E; Zwiebach, Liza; Chan, Christian S

    2009-06-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support.

  13. The impact of a series of hurricanes on the visits to two central Florida Emergency Departments.

    PubMed

    Platz, Elke; Cooper, Herbert P; Silvestri, Salvatore; Siebert, Carl F

    2007-07-01

    We analyzed the impact of three consecutive hurricanes in 2004 on two central Florida Emergency Department (ED) patient volumes and types of presentations. Data were extracted from the hospital database and compared to the previous year. At both EDs visits dropped significantly on the day of all three hurricanes compared to 2003. The decrease in patient volume was even greater during the second and third hurricane compared to the first one. Once weather conditions improved, a dramatic rise in patient census was noted. During the aftermath of the first hurricane a significantly higher number of patients with injuries and carbon monoxide (CO) intoxications was seen, as well as ED visits due to lack of oxygen, electricity or hemodialysis. During the aftermath of a hurricane, EDs should be staffed and equipped to treat greater numbers of patients with acute injuries.

  14. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems.

    PubMed

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-06-22

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle-Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms.

  15. Environmental impacts of Major Flood Events: Hurricane Katrina

    NASA Astrophysics Data System (ADS)

    Reible, D. D.

    2008-05-01

    The flooding of New Orleans by Hurricane Katrina provides many lessons for the environmental and engineering communities and raises serious public policy questions about risk management. Although serious environmental and waste management concerns were highlighted as a result of the flooding, many were not observed in the extensive environmental sampling that occurred. The potential environmental consequences were of concern because of the many chemical plants, petroleum facilities, and contaminated sites, including Superfund sites, in the areas covered by floodwaters. The potential sources of toxics and environmental contaminants included metal-contaminated soils typical of old urban areas. Compounding these concerns is the presence of hazardous chemicals commonly stored in households and commercial establishments and the fuel and motor oil in approximately 350,000 flooded automobiles. Uncontrolled biological wastes from both human and animal sources also contributed to the pollutant burden. There were concerns associated with the immediate impacts of the flooding, the disposal of the debris and wastes in the aftermath, as well as the long- term legacy associated with contaminants in homes and yards. This discussion focuses on successes and failures in responding to each of these concerns as well as lessons learned for future major flooding events. Special attention is paid to some of the unique hazards posed by Katrina, including water quality impacts associated with debris disposal, high indoor concentrations of contaminants due to fractionation from outdoor soils, and mold.

  16. Daily MODIS data trends of hurricane-induced forest impact and early recovery

    USGS Publications Warehouse

    Ramsey, Elijah W.; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near pre-hurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  17. Hurricane prediction and control: impact of large computers.

    PubMed

    Hammond, A L

    1973-08-17

    This is the third is a continuing series of articles on natural disasters, their prediction and mnodification, and progress in understanding the physical bases of these phenomena. Two earlier articles (Science, 25 May, p. 851, and 1 June, p. 940) reported advances in earthquake prediction. Hurricanes are the subject here. Generally less devastating than major earthquakes-although a single hurricane in 1970 killed an estimated 200,000 persons in Bangladesh-these storms are still the most destructive of all atmospheric phenomena. A recent report of the National Academy of Sciences (see box) recommends that efforts to modify hurricanes and other severe storms become a national goal.

  18. Impacts and predictions of coastal change during hurricanes

    USGS Publications Warehouse

    Stockdon, Hilary; Sallenger, Abby

    2010-01-01

    Beaches serve as a natural barrier between the ocean and inland communities, ecosystems, and resources. These dynamic environments move and change in response to winds, waves, and currents. During a powerful hurricane, changes to beaches can be large, and the results are sometimes catastrophic. Lives are lost, communities are destroyed, and millions of dollars are spent on rebuilding. There is a clear need to identify areas of our coastline that are likely to experience extreme and devastating erosion during a hurricane. It is also important to determine risk levels associated with development in areas where the land shifts and moves with each landfalling storm. The U.S. Geological Survey (USGS) provides scientific support for hurricane planning and response. Using observations of beach changes and models of waves and storm surge, we are predicting how the coast will respond to hurricanes and identifying areas vulnerable to extreme coastal changes.

  19. The impact of Ensemble-based data assimilation on the predictability of landfalling Hurricane Katrina (2005)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Pu, Z.

    2012-12-01

    Accurate forecasts of the track, intensity and structure of a landfalling hurricane can save lives and mitigate social impacts. Over the last two decades, significant improvements have been achieved for hurricane forecasts. However, only a few of studies have emphasized landfalling hurricanes. Specifically, there are difficulties in predicting hurricane landfall due to the uncertainties in representing the atmospheric near-surface conditions in numerical weather prediction models, the complicated interaction between the atmosphere and the ocean, and the multiple-scale dynamical and physical processes accompanying storm development. In this study, the impact of the assimilation of conventional and satellite observations on the predictability of landfalling hurricanes is examined by using a mesoscale community Weather Research and Forecasting (WRF) model and an ensemble Kalman filter developed by NCAR Data Assimilation Research Testbed (DART). Hurricane Katrina (2005) was chosen as a case study since it was one of the deadliest disasters in US history. The minimum sea level pressure from the best track, QuikScat ocean surface wind vectors, surface mesonet observations, airborne Doppler radar derived wind components and available conventional observations are assimilated in a series of experiments to examine the data impacts on the predictability of Hurricane Katrina. The analyses and forecasts show that ensemble-based data assimilation significantly improves the forecast of Hurricane Katrina. The assimilation improves the track forecast through modifying the storm structures and related environmental fields. Cyclonic increments are clearly seen in vorticity and wind analyses. Temperature and humidity fields are also modified by the data assimilation. The changes in relevant fields help organize the structure of the storm, intensify the circulation, and result in a positive impact on the evolution of the storm in both analyses and forecasts. The forecasts in the

  20. Epidemiologic assessment of the impact of four hurricanes--Florida, 2004.

    PubMed

    2005-07-22

    During August 13, 2004-September 25, 2004, Florida experienced four major hurricanes: Charley and Frances (both Category 4) and Ivan and Jeanne (both Category 3). An estimated 20% of homes throughout Florida were damaged by these hurricanes, and 124 persons died. In October 2004, the Florida Department of Health (FDOH) added 30 questions to the Behavioral Risk Factor Surveillance System (BRFSS) survey to assess the impact of the hurricanes on state residents. This report summarizes the results of that survey, which indicated that 48.7% of Florida residents had no evacuation plan before any of the hurricanes, portable generators were used in 17.5% of homes after electric power outages, and residents of counties not in the direct paths of the four hurricanes had consequences similar to those who lived in the direct paths of the hurricanes (e.g., physical injuries, barriers to medical treatment, and loss of work days). Public health officials should consider the needs of residents both in and not in the direct paths of hurricanes in their preparedness planning.

  1. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  2. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. PMID:22018884

  3. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements.

  4. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  5. Impacts of Hurricane Andrew on carbonate platform environments, northern Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Boss, Stephen K.; Neumann, A. Conrad

    1993-10-01

    The northern (most energetic) quadrant of Hurricane Andrew (August 1992) passed over leeward-margin sand waves, bank-top sand shoals, reefs, and low islands of Great Bahama Bank for which an extensive prestorm data base exists. A reconnaissance survey seven weeks after Hurricane Andrew evaluated storm impacts on these bank-top settings. Resurveyed seismic profiles showed that positions, dimensions, and orientations of platform sand bodies were unchanged relative to fixed bedrock features. Surveys of reef communities indicated only minor storm-related disturbance. Coral bleaching may be due to storm-induced environmental stress. In addition, storm-wave plucking of boulders from emergent rocky cays resulted in localized crushing of reef biota. On low islands, beach erosion and storm surge were insignificant, and storm damage to Casuarina forests was minor and substrate-specific. Observed minimal hurricane impacts on northern Great Bahama Bank environments lying 10-75 km from the hurricane eye are reconciled by analysis of meteorological data, which show significant weakening of the storm (expressed as a rise in central barometric pressure of ˜20 mbar) during passage across the bank-top. This study demonstrates the importance of specific dynamic aspects of hurricanes (e.g., varying intensity, strength, size, forward speed, duration) which influence their geologic potential, even over relatively short distances along the storm track of an individual hurricane.

  6. Environmental Impacts of Discharging the Hurricane Katrina Floodwaters to Lake Pontchartrain

    NASA Astrophysics Data System (ADS)

    Hou, A.; Laws, E. A.; Gambrell, R. P.

    2006-05-01

    On August 29, 2005 Hurricane Katrina made landfall on the Gulf Coast of the United States, causing extensive damage to coastal communities in Mississippi, Louisiana, and Alabama. The hurricane produced an estimated storm surge of 3-3.5 m near the city of New Orleans, and by late morning of August 29 had caused several sections of the levee system in New Orleans to collapse. Subsequent flooding over 80% of the city, much of which lies below sea level, resulted in widespread damage. By September 6 breaks in the levee system had been repaired, and efforts to pump out the floodwaters were underway. Most of the floodwaters pumped out of the city had been discharged to Lake Pontchartrain, which lies directly north of the city. Concerns about the environmental impact of discharging this water to Lake Pontchartrain have been expressed by the public, scientific community, and government officials. Storm and wastewater runoff from urban areas are often polluted by pathogens, heavy metals, nutrients, and solid waste materials. Perhaps the greatest concern about the Katrina floodwaters from a human health standpoint is the presence of pathogens, presumably a consequence of disabled sewage services in the city of New Orleans. From the perspective of long-term environmental damage, a serious concern may be trace and toxic metals. Water and sediment samples were collected during September 19 - October 9, 2005 from the area of the lake receiving the discharge from the 17th Street Canal, which is a conduit for the discharge from the largest of the dewatering pumping stations. This paper reports the spatial characteristics of the concentrations of fecal indicator bacteria, enterococci, E. coli, and selected metals in water and surface sediment samples as well as the depth-distribution of metals in sediment core samples. The results provide information on the possible impact of floodwater pumping on Lake Pontchartrain.

  7. Morphodynamic signature of the 1985 hurricane impacts on the northern Gulf of Mexico

    USGS Publications Warehouse

    Penland, Shea; Suter, John R.; Sallenger, Ashbury H.; Williams, S. Jeffress; McBride, Randolph A.; Westphal, Karen E.; Reimer, P. Douglas; Jaffe, Bruce E.

    1989-01-01

    Three hurricanes hit Lousiana (LA), Mississippi (MS), Alabama (AL), and the Florida (FL) panhandle in 1985, producing dramatic geomorphic changes in a wide variety of coastal environments. The impact zone for hurricanes Danny, Elena, and Juan stretched 1000 km between the Sabine River in LA to the Apalachicola River in FL. Barrier shorelines experienced repeated intense overwash events, producing beach and dune erosion exceeding 30 m, as well as producing classic examples of storm surge deposits. Pre- and post-storm airborne videotape surveys, sequential vertical mapping photography, and field surveys provide the data base for this regional hurricane impact assessment on the northern Gulf of Mexico. Hurricane impacts on the low-profile and high-profile barrier shorelines, as well as on the marine terrace cliffs were systematic and predictable. Controlling the direction of overwash flow and the impact distribution pattern is the relationship among shoreline orientation, hurricane storm track, and regional wind field. The relationship between shore-zone geomorphology and storm surge overwash controls the impact response.

  8. Researchers study impact of Hurricane Opal on Florida coast

    NASA Astrophysics Data System (ADS)

    Stone, Gregory W.; Armbruster, Charles K.; Xu, J. P.; Grymes, John M., III; Huh, Oscar K.

    On October 4, 1995, over 2000 km of coast-line stretching from southwest Florida to Louisiana was struck by storm-generated waves as Hurricane Opal moved northward across the Gulf of Mexico toward landfall east of Pensacola Beach, Florida (Figure 1).Approximately 12 hours before landfall on October 4, Opal neared category 5 strength (measured on the Saffir/Simpson scale) with sustained wind speeds of over 65 m s-1. Storm surge levels of ˜5 m were estimated across the Northwest Florida shelf by the National Hurricane Center (NHC), resulting in the overwash of most of Santa Rosa Island, the most extensively affected section of coast in the Gulf.

  9. Impact of Hurricane Ike on Texas poison center calls.

    PubMed

    Forrester, Mathias B

    2009-10-01

    On September 13, 2008, Hurricane Ike made landfall in Texas, resulting in the mandatory evacuation of 8 counties before landfall and the declaration of disaster areas in 29 counties afterward. This study evaluated whether Hurricane Ike affected the pattern of Texas poison center calls. Texas poison center calls received from the disaster area counties were identified for 3 time periods: August 12 to September 10, 2008 (preevacuation), September 11 to 13, 2008 (evacuation and hurricane landfall), and September 14 to 30, 2008 (postevacuation). For selected types of calls, the mean daily call volume during time periods 2 and 3 was compared with a baseline range (BR) derived from the mean daily call volume during time period 1. During the evacuation and landfall period, gasoline exposure calls were higher than expected (mean 3, BR -1 to 2). During the postevacuation period, higher than expected numbers of calls were observed for gasoline exposures (mean 5, BR -1 to 2) and carbon monoxide exposures (mean 3, BR -1-1). During an evacuation, certain calls such as those involving gasoline exposures may increase. After a hurricane, calls such as those involving carbon monoxide and gasoline exposures may increase.

  10. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon.

    PubMed

    Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D

    2011-11-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.

  11. Hurricane Katrina's impact on the mental health of adolescent female offenders.

    PubMed

    Robertson, Angela A; Morse, David T; Baird-Thomas, Connie

    2009-07-01

    Exposure to multiple traumatic events and high rates of mental health problems are common among juvenile offenders. This study draws on Conservation of Resources (COR) stress theory to examine the impact of a specific trauma, Hurricane Katrina, relative to other adverse life events, on the mental health of female adolescent offenders in Mississippi. Teenage girls (N=258, 69% African American) were recruited from four juvenile detention centers and the state training school. Participants were interviewed about the occurrence and timing of adverse life events and hurricane-related experiences and completed a self-administered mental health assessment. Hierarchical linear regression models were used to identify predictors of anxiety and depression. Pre-hurricane family stressors, pre-hurricane traumatic events, hurricane-related property damage, and receipt of hurricane-related financial assistance significantly predicted symptoms of anxiety and depression. Findings support COR theory. Family stressors had the greatest influence on symptoms of anxiety and depression, highlighting the need for family based services that address the multiple, inter-related problems and challenges in the lives of female juvenile offenders.

  12. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon

    USGS Publications Warehouse

    Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.

    2011-01-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.

  13. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    NASA Technical Reports Server (NTRS)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  14. Hurricane Andrew's impact on natural gas and oil facilities on the outer continental shelf (interim report as of November 1993)

    SciTech Connect

    Daniels, G.R.

    1994-01-01

    The interim report reviews Hurricane Andrew's impact on Federal Outer Continental Shelf (OCS) natural gas and oil drilling and production facilities. The report provides background on Hurricane Andrew's progression, discusses how OCS operators responded to the storm, summarizes the types of damage to offshore facilies caused by Hurricane Andrew, and discusses Minerals Management Service's continuing damage assessment and repair efforts. The summaries of damage estimates are presented in tables in Appendix 1. A glossary of report terminology is provided in Appendix 2.

  15. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  16. Hurricane Erin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The first Atlantic hurricane of the 2001 season narrowly missed Bermuda yesterday (September 9) as it churned north-northwestward at a rate of 19 km per hour (12 miles per hour). Packing sustained winds of 195 km per hour (120 miles per hour), Hurricane Erin was located just east of Bermuda at the time NASA's Terra satellite acquired this image. The true-color image was produced using data from the Moderate-resolution Imaging Spectroradiometer (MODIS). The U.S. National Hurricane Center predicts that tonight the storm will shift to a more northerly path. The Center says there is still the possibility that Hurricane Erin could impact Canada, somewhere along the coast of Newfoundland, within three to four days. Hurricane Erin was upgraded from a tropical storm to hurricane status on September 8, and was listed as a Category 3 hurricane on September 10 on the Saffir-Simpson scale. The storm's hurricane-force winds extend outward in a 75-km (45-mile) radius from its center, with tropical storm force winds extending to 280 km (175 miles) from center. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  17. Mitigation of hurricane storm surge impacts: Modeling scenarios over wide continental shelves

    NASA Astrophysics Data System (ADS)

    Lima Rego, Joao; Li, Chunyan

    2010-05-01

    The improvement of present understanding of surge dynamics over wide and shallow shelves is vital for the improvement of our ability to forecast storm surge impacts to coastal regions, particularly the low-lying land areas that are most vulnerable to hurricane flooding (e.g. the Northern Gulf of Mexico, coastal Bangladesh, the Southeast China sea). Given the increase of global sea-surface temperature, both the total number and proportion of intense tropical cyclones have increased notably since 1970 (Emanuel, 2005; Nature). Therefore, more intense hurricanes may hit densely populated coastal regions, and this problem may be aggravated by the prospect of accelerated sea-level rise in the 21st century. This presentation offers a review of recent work on hurricane-induced storm surge. The finite-volume coastal ocean model ("FVCOM", by Chen et al., 2003; J. Atmos. Ocean Tech.) was applied to the storm surge induced by Hurricanes Rita and Ike along the coasts of Louisiana and Texas in 2005 and 2008, respectively, to study coastal storm surge dynamics. The sensitivity analysis of Rego and Li (2009; Geophys. Res. Lett.) demonstrated how stronger, wider or faster tropical cyclones would affect coastal flooding. Li, Weeks and Rego (2009; Geophys. Res. Lett) looked into how hurricane flooding and receding dynamics differ, concluding that the overland flow in the latter stage is of considerable importance. Rego and Li (2010; J. Geophys. Res.) showed how extreme events may result of a combination of non-extreme factors, by studying the nonlinear interaction of tide and hurricane surge. The ability of models to reproduce these extreme events and to proactive plan for damage reduction is covered in Rego and Li's (2010; J. Marine Syst.) study of how barrier island systems protect coastal bays from offshore surge propagation. Here we combine these results for a wider perspective on how hurricane flooding could be mitigated under changing conditions.

  18. Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact.

    PubMed

    Batke, Sven P; Kelly, Daniel L

    2015-01-01

    The severity of the effects that large disturbance events such as hurricanes can have on the forest canopy and the associated mechanically dependent plant community (epiphytes, climbers, etc.) is dependent on the frequency and intensity of the disturbance events. Here we investigate the effects of different structural and environmental properties of the host trees and previously modelled past hurricanes on dependent plants in Cusuco National Park, Honduras. Tree-climbing methods were employed to sample different dependent life-forms in ten 150 × 150 m plots. We identified 7094 individuals of dependent plants from 214 different species. For holo- and hemi-epiphytes, we found that diversity was significantly negatively related to past hurricane impact. The abundance of dependent plants was greatly influenced by their position in tree canopy and hurricane disturbance regimes. The relationship between abundance and mean branch height shifts across a gradient of hurricane impact (from negative to positive), which might result from a combination of changes in abundance of individual species and composition of the dependent flora across sites. Mechanically dependent plants also responded to different structural and environmental conditions along individual branches. The variables that explained much of the community differences of life-forms and families among branches were branch surface area and bryophyte cover. The factors that explained most variation at a plot level were mean vapour pressure deficit and elevation. At the level of the individual tree, the most important factors were canopy openness and past hurricane impact. We believe that more emphasis needs to be placed on the effects that past disturbance events have on mechanically dependent plant communities, particularly in areas that are prone to catastrophic perturbations.

  19. Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact.

    PubMed

    Batke, Sven P; Kelly, Daniel L

    2015-01-01

    The severity of the effects that large disturbance events such as hurricanes can have on the forest canopy and the associated mechanically dependent plant community (epiphytes, climbers, etc.) is dependent on the frequency and intensity of the disturbance events. Here we investigate the effects of different structural and environmental properties of the host trees and previously modelled past hurricanes on dependent plants in Cusuco National Park, Honduras. Tree-climbing methods were employed to sample different dependent life-forms in ten 150 × 150 m plots. We identified 7094 individuals of dependent plants from 214 different species. For holo- and hemi-epiphytes, we found that diversity was significantly negatively related to past hurricane impact. The abundance of dependent plants was greatly influenced by their position in tree canopy and hurricane disturbance regimes. The relationship between abundance and mean branch height shifts across a gradient of hurricane impact (from negative to positive), which might result from a combination of changes in abundance of individual species and composition of the dependent flora across sites. Mechanically dependent plants also responded to different structural and environmental conditions along individual branches. The variables that explained much of the community differences of life-forms and families among branches were branch surface area and bryophyte cover. The factors that explained most variation at a plot level were mean vapour pressure deficit and elevation. At the level of the individual tree, the most important factors were canopy openness and past hurricane impact. We believe that more emphasis needs to be placed on the effects that past disturbance events have on mechanically dependent plant communities, particularly in areas that are prone to catastrophic perturbations. PMID:26286220

  20. Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact

    PubMed Central

    Batke, Sven P.; Kelly, Daniel L.

    2015-01-01

    The severity of the effects that large disturbance events such as hurricanes can have on the forest canopy and the associated mechanically dependent plant community (epiphytes, climbers, etc.) is dependent on the frequency and intensity of the disturbance events. Here we investigate the effects of different structural and environmental properties of the host trees and previously modelled past hurricanes on dependent plants in Cusuco National Park, Honduras. Tree-climbing methods were employed to sample different dependent life-forms in ten 150 × 150 m plots. We identified 7094 individuals of dependent plants from 214 different species. For holo- and hemi-epiphytes, we found that diversity was significantly negatively related to past hurricane impact. The abundance of dependent plants was greatly influenced by their position in tree canopy and hurricane disturbance regimes. The relationship between abundance and mean branch height shifts across a gradient of hurricane impact (from negative to positive), which might result from a combination of changes in abundance of individual species and composition of the dependent flora across sites. Mechanically dependent plants also responded to different structural and environmental conditions along individual branches. The variables that explained much of the community differences of life-forms and families among branches were branch surface area and bryophyte cover. The factors that explained most variation at a plot level were mean vapour pressure deficit and elevation. At the level of the individual tree, the most important factors were canopy openness and past hurricane impact. We believe that more emphasis needs to be placed on the effects that past disturbance events have on mechanically dependent plant communities, particularly in areas that are prone to catastrophic perturbations. PMID:26286220

  1. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, T.; Uhlhorn, E.; Amarin, R.; Atlas, R.; Black, P. G.; Jones, W. L.; Ruf, C. S.

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  2. Immediate Impact of Hurricane Sandy on People Who Inject Drugs in New York City.

    PubMed

    Pouget, Enrique R; Sandoval, Milagros; Nikolopoulos, Georgios K; Friedman, Samuel R

    2015-01-01

    Over the eight months following Hurricane Sandy, of October 2012, we interviewed 300 people who inject drugs in New York City. During the week after the storm, 28% rescued others or volunteered with aid groups; 60% experienced withdrawal; 27% shared drug injection or preparation equipment, or injected with people they normally would not inject with; 70% of those on opioid maintenance therapy could not obtain sufficient doses; and 43% of HIV-positive participants missed HIV medication doses. Although relatively brief, a hurricane can be viewed as a Big Event that can alter drug environments and behaviors, and may have lasting impact. The study's limitations are noted and future needed research is suggested.

  3. The Impact of Hurricane Katrina on Technology and Media Infrastructures in Louisiana and Mississippi School Districts

    ERIC Educational Resources Information Center

    Hancock, Robert; Nauman, Anne; Fulwiler, John

    2007-01-01

    Perhaps one of the worst disasters in United States history, Hurricane Katrina is expected to have a lasting impact on the economies of Louisiana, Mississippi, Alabama, and Florida with losses in the billions of dollars. Given that the economic foundation of the approximately 600 schools and libraries affected was far from ideal before the…

  4. Exploring Posttraumatic Growth in Children Impacted by Hurricane Katrina: Correlates of the Phenomenon and Developmental Considerations

    ERIC Educational Resources Information Center

    Kilmer, Ryan P.; Gil-Rivas, Virginia

    2010-01-01

    This study explored posttraumatic growth (PTG), positive change resulting from struggling with trauma, among 7- to 10-year-olds impacted by Hurricane Katrina. Analyses focused on child self-system functioning and cognitive processes, and the caregiving context, in predicting PTG at 2 time points (Time 1n = 66, Time 2n = 51). Findings suggest that…

  5. The Impact of Hurricanes Katrina and Rita on Louisiana School Nurses

    ERIC Educational Resources Information Center

    Broussard, Lisa; Myers, Rachel; Meaux, Julie

    2008-01-01

    In the fall of 2005, the coast of Louisiana was devastated by two hurricanes, Katrina and Rita. Not only did these natural disasters have detrimental effects for those directly in their path, the storms had an impact on the lives of everyone in Louisiana. The professional practice of many Louisiana school nurses was affected by several factors,…

  6. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    ERIC Educational Resources Information Center

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical…

  7. Hurricanes in an Aquaplanet World: Implications of the Impacts of External Forcing and Model Horizontal Resolution

    SciTech Connect

    Li, Fuyu; Collins, William D.; Wehner, Michael F.; Leung, Lai-Yung R.

    2013-06-02

    High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.

  8. The impact of Hurricane Rita on an academic institution: lessons learned.

    PubMed

    Beggan, Dominic M

    2010-01-01

    This paper examines the impact of Hurricane Rita on one of the many universities along the Gulf Coast of the United States: Lamar University in Beaumont, Texas. Hurricane Rita, which made landfall between Sabine Pass, Texas, and Johnson's Bayou, Louisiana, on 24 September 2005, is the fourth strongest Atlantic Ocean hurricane on record and the most intense tropical cyclone ever observed in the Gulf of Mexico. This paper assesses the tasks that confronted the administration, faculty, and students of Lamar University in the days and weeks after the event. It concludes that the one factor that will influence more than any other the degree of success after any disaster is whether all levels of the administrative command institutionalise, endorse, promote, and encourage the adopted recovery plan. The research seeks to share valuable insights on the vulnerabilities that academic institutions face during natural disasters and to highlight some of the many lessons learned.

  9. Coastal-change impacts during hurricane katrina: an overview

    USGS Publications Warehouse

    Sallenger, Asbury; Wright, C. Wayne; Lillycrop, Jeff

    2007-01-01

    As part of an ongoing cooperative effort between USGS, NASA and USACE, the barrier islands within the right-front quadrant of Hurricane Katrina were surveyed with airborne lidar both before and after landfall. Dauphin Island, AL was located the farthest from landfall and wave runup intermittently overtopped its central and western sections. The Gulf-side of the island experienced severe erosion, leaving the first row of houses in the sea, while the bayside accreted. In contrast, the Chandeleur Islands, LA did not experience, this classic `rollover'. Rather, the island chain was completely stripped of sand, transforming a 40-km-long sandy island chain into a discontinuous series of muddy marsh islets. Models indicate that storm surge likely submerged the entire Chandeleur Island chain, at least during the latter part of the storm. The net result was destructive coastal change for the Chandeleur Islands, while Dauphin Island tended to maintain its form through landward migration.

  10. Impacts to the ethylene supply chain from a hurricane disruption.

    SciTech Connect

    Sun, Amy Cha-Tien; Downes, Paula Sue; Heinen, Russell; Welk, Margaret Ellen

    2010-03-01

    Analysis of chemical supply chains is an inherently complex task, given the dependence of these supply chains on multiple infrastructure systems (e.g., the petroleum sector, transportation, etc.). This effort requires data and information at various levels of resolution, ranging from network-level distribution systems to individual chemical reactions. Sandia National Laboratories (Sandia) has integrated its existing simulation and infrastructure analysis capabilities with chemical data models to analyze the chemical supply chains of several nationally critical chemical commodities. This paper describes how Sandia models the ethylene supply chain; that is, the supply chain for the most widely used raw material for plastics production including a description of the types of data and modeling capabilities that are required to represent the ethylene supply chain. The paper concludes with a description of Sandia's use the model to project how the supply chain would be affected by and adapt to a disruptive scenario hurricane.

  11. The Economic Impact of Hurricane Katrina on Its Victims: Evidence from Individual Tax Returns

    NASA Astrophysics Data System (ADS)

    Deryugina, T.; Kawano, L.; Levitt, S.

    2014-12-01

    Hurricane Katrina destroyed more than 200,000 homes and led to massive economic and physical dislocation. Using a panel of tax return data, we provide one of the first comprehensive analyses of the hurricane's long-term economic impact on its victims. We find small and mostly transitory impacts of the disaster on wages, employment, and total income, even among the worst affected. Remarkably, within a few years, Katrina victims have higher incomes than controls from similar cities that were unaffected by the storm. Withdrawals from retirement accounts offset some of the temporary fall in wages. Finally, there is a short-run spike in marriage and little impact on either divorce or child bearing. These findings suggest that, at least in developed countries like the United States, dislocation is unlikely to be an important component of the social or economic costs of dramatic negative events, such as natural disasters or climate change.

  12. Impact of CAMEX-4 Data Sets for Hurricane Forecasts using a Global Model

    NASA Technical Reports Server (NTRS)

    Kamineni, Rupa; Krishnamurti, T. N.; Pattnaik, S.; Browell, Edward V.; Ismail, Syed; Ferrare, Richard A.

    2005-01-01

    This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remote-sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. We show that the use of these additional data sets, above those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment where such data sets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these data sets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity data sets for improved model results. We note that the forecast impact from the moisture profiling data sets for some of the storms is even larger than the impact from the use of dropwindsonde based winds.

  13. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy

  14. The impact of hurricanes and flooding disasters on hymenopterid-inflicted injuries.

    PubMed

    Diaz, James H

    2007-01-01

    Insect bites and stings, often complicated by allergic reactions or skin infections with community-acquired pathogens, are common sources of morbidity following hurricanes and flooding disasters. The hymenopterids are the most commonly stinging arthropods to cause allergic reactions, and include bees, wasps, and ants. To assess the evolving epidemiology of hymenopterid-inflicted injuries, and the impact of hurricanes and flooding disasters on hymenopterid-inflicted injuries in the United States, an epidemiological analysis of the scientific literature on hymenopterid stings and allergic sting reactions was conducted by MEDLINE search, 1966-2006. The increasing incidence of hymenopterid-inflicted injuries following hurricanes and flooding disasters was described. Common immunological reactions to hymenopterid-inflicted injuries were stratified by clinical severity and outcome. Current recommendations for management, prevention, and prophylaxis of hymenopterid-inflicted injuries were presented. Hymenopterid stings and allergic reactions remain common indications for emergency department visits, especially following hurricanes and flooding disasters. Unrecognized anaphylactic reactions to hymenopterid stings remain significant causes of unanticipated deaths outdoors in young people. Disaster planners and managers are obliged to alert regional healthcare providers of the increased risks of hymenopterid-inflicted injuries following flooding disasters and to assure that emergency drug formularies are properly stocked to treat hymenopterid-inflicted injuries.

  15. Impact of the hurricanes Gustav and Ike in the karst areas of the Vi

    NASA Astrophysics Data System (ADS)

    Farfàn Gonzalez, H.; Corvea Porras, J. L.; Martinez Maquiera, Y.; Diaz Guanche, C.; Aldana Vilas, C.; de Bustamante, I.; Parise, M.

    2009-04-01

    . Winds reached a velocity of 153 km/h, and were accompanied by a total amount of rainfall greater than 300 mm. Among the more remarkable effects, flooding in karst valleys and poljes has to be mentioned, the best examples being Valle de Viñales and Valle de San Vicente. The latter remained inundated for 15 days, due to the drainages located just at the foothills of the limestone ridges, without a well-defined stream and with the swallow holes often clogged by debris and trees. In the Valle de Viñales, on the other hand, the water was absorbed through the allochtonous water course that makes the karst system Palmarito-Novillo, and an estavelle that periodically is active at the footslope of Mogote de Tumbadero. This determined a much shorter permanence of the flooding conditions. The present contribution describes and examines the main impacts produced by the two hurricanes, and the following processes of recovering by the natural environment, with particular regard to the natural hydrologic regulation of the karst systems after these extreme meteorological events.

  16. Investigations of aerosol impacts on hurricanes: virtual seeding flights

    NASA Astrophysics Data System (ADS)

    Carrió, G. G.; Cotton, W. R.

    2010-09-01

    This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone. We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis.

  17. Investigations of aerosol impacts on hurricanes: virtual seeding flights

    NASA Astrophysics Data System (ADS)

    Carrio, G. G.; Cotton, W. R.

    2011-03-01

    This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone. We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis.

  18. Impact of an extreme event on the sediment budget: Hurricane Andrew in the Louisiana barrier islands

    USGS Publications Warehouse

    List, Jeffrey H.; Hansen, Mark E.; Sallenger,, Asbury H.; Jaffe, Bruce E.; Edge, B.L

    1997-01-01

    This paper examines the influence of Hurricane Andrew on the sediment budget of an 80-kilometer section of the Louisiana barrier islands west of the modern Mississippi delta. Because long-term bathymetric change has been extensively studied in this area, excellent baseline data are available for evaluating the impact of Hurricane Andrew. Results show that despite the high intensity of the storm and a storm track optimally positioned to impact the study area, the storm did not have an overwhelming influence on the sediment budget when compared to the changes occurring over the previous 50 years. For the Louisiana barrier islands, a 50-year record appears to be adequate for averaging the long-term contributions of both major and minor storm events to the sediment budget.

  19. Diurnal Radiation Cycle Impact in Different Stages of Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Tang, X.

    2015-12-01

    This work examines the impact of diurnally varying radiation cycle on the intensity, structure and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations.During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under favorable environmental conditions. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification (RI). Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that leads to stronger/broader outer rainbands and larger storm size during the mature stage of the hurricane but there is little impact on the hurricane intensity in terms of maximum surface wind speed. There is no apparent eyewall replacement cycle (ERC) simulated in both sensitivity experiments without the diurnal cycle (daytime only and nighttime only) while the control forecast undergoes secondary eyewall formation during the mature stage of Edourad (as observed), suggesting the potential role of the diurnally varying radiative impact. Through changing the strength of the initial vortex during the formation stage, the diurnal cycle may also alter the track of the storm.

  20. Impact of vegetation on the hydrodynamics and morphological changes of the Wax Lake Delta during hurricanes

    NASA Astrophysics Data System (ADS)

    Xing, F.; Kettner, A. J.; Syvitski, J. P.; Ye, Q.; Bevington, A.; Twilley, R.; Atkinson, J. H.

    2013-12-01

    Coastal wetlands are natural barriers for storms, but have become more vulnerable especially when considering sea level rise and intensification of hurricanes due to global climate change. We use the numerical model Delft3D, which incorporates a newly developed vegetation routine to analyze the impact of natural vegetation on the morphological changes of coastal wetlands. The vegetation routine takes into account: 1) the influence of vertically oriented stems of plants as well as horizontally oriented stems (bent or broken but still attached to the belowground roots and rhizomes) on the flow turbulence as well as flow momentum, and 2) the influence of plant roots on the submerged soil strength. The model is applied to the Wax Lake Delta, a river-dominated delta that is part of the larger Mississippi River Delta system, during extreme events (hurricane Katrina and Rita (2005)). Hydrodynamic components as well as waves and salinity are included in the Delft3D model simulation. Results reveal that the submerged aboveground plant stems significantly decrease flow velocity and protect the wetland from erosion. When flow velocity exceeds a critical value, plant stems start to orient horizontally and lie on the bed, which changes the 3D vertical flow structure to free water condition (log profile), and also increases the bed roughness on the wetlands. Roots help to increase the soil strength, reducing erosion of the wetlands. However, roots can also intensify erosion if they got pulled out of the soil during storm events. Typically the whole root system of plants will be pulled out together, leading to a mat of soil that is eroded. This process has been observed for some parts of the Mississippi Delta during severe hurricanes like hurricane Katrina. Storm surges generated by hurricanes can push a large amount of saline water into the freshwater wetlands. The high salinity water increases flocculation and therefore sedimentation. Overall, plants have a complex impact on

  1. Hurricane impact on lagoonal reefs - implications for recognition of ancient storm deposits

    SciTech Connect

    Bonem, R.M.

    1985-01-01

    During August 1080, Hurricane Allen passed along the north coast of Jamaica. Although several previous investigations have documented the effects of this hurricane on the fore reef and reef crest, this study presents the first detailed description of the storm impact on lagoonal patch reefs in Discovery Bay. In contrast to the damage described on the fore reef and reef crest, the patch reefs received only minor temporary damage to reef framework due to breakage and increased sedimentation. These effects could be recognized only by examination of bathymetric and zonal maps constructed during the last 10 years. However, hurricane impact on the sedimentologic record was readily observed in cores taken along transects of lagoonal patch reefs. Although in general, shallow reef zones had abnormally great amounts of fine sediment and deeper zones showed increased coarse material, other patterns could be documented and made recognition of storm deposits and distinction of these deposits from artificial disturbance relatively easy. Because lagoonal patch reefs may serve as models for many ancient bioherms, this study provides new evidence that may be used to recognize ancient storm deposits associated with bioherms in carbonate mud environments.

  2. Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area

    PubMed Central

    Sinigalliano, C. D.; Gidley, M. L.; Shibata, T.; Whitman, D.; Dixon, T. H.; Laws, E.; Hou, A.; Bachoon, D.; Brand, L.; Amaral-Zettler, L.; Gast, R. J.; Steward, G. F.; Nigro, O. D.; Fujioka, R.; Betancourt, W. Q.; Vithanage, G.; Mathews, J.; Fleming, L. E.; Solo-Gabriele, H. M.

    2007-01-01

    Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters. PMID:17488814

  3. Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area.

    PubMed

    Sinigalliano, C D; Gidley, M L; Shibata, T; Whitman, D; Dixon, T H; Laws, E; Hou, A; Bachoon, D; Brand, L; Amaral-Zettler, L; Gast, R J; Steward, G F; Nigro, O D; Fujioka, R; Betancourt, W Q; Vithanage, G; Mathews, J; Fleming, L E; Solo-Gabriele, H M

    2007-05-22

    Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters.

  4. Rebuilding the park: the impact of Hurricane Katrina on a black middle-class neighborhood.

    PubMed

    Gafford, Farrah D

    2010-01-01

    The devastation of Hurricane Katrina unveiled the legacy of racial and class stratification in New Orleans, Louisiana. Much of the Katrina-related research has focused primarily on how poor Black neighborhoods were disproportionately affected by the disaster. While this body of research makes valid claims, there has been very little research that examines how Black middle-class residents in New Orleans were impacted by Hurricane Katrina. This study examines how residents in Pontchartrain Park, a Black middle-class neighborhood, are responding to the disaster. The author uses in-depth interviews, ethnographic observations, and archival data to examine the barriers that residents are facing in the recovery process. She argues that the experiences of the Black middle class also have implications for the connectedness of race and class. The challenges discussed within the article are linked to a history of racial stratification. PMID:21174874

  5. The impact of hurricanes Katrina and Rita on Louisiana school nurses.

    PubMed

    Broussard, Lisa; Myers, Rachel; Meaux, Julie

    2008-04-01

    In the fall of 2005, the coast of Louisiana was devastated by two hurricanes, Katrina and Rita. Not only did these natural disasters have detrimental effects for those directly in their path, the storms had an impact on the lives of everyone in Louisiana. The professional practice of many Louisiana school nurses was affected by several factors, including a sudden influx of students with no medical records. A qualitative descriptive study was conducted to gain an understanding of school nurses' feelings and experiences related to the hurricanes and their aftermath. Forty-one school nurses participated in the study, and findings revealed significant effects on their personal and professional lives. Themes within each area were identified: uncertainty, hopelessness and helplessness, thankfulness, practice challenges, and practice rewards. Implications for school nursing practice include the need for support during natural disasters and the importance of school nurse involvement in disaster preparedness.

  6. Rebuilding the park: the impact of Hurricane Katrina on a black middle-class neighborhood.

    PubMed

    Gafford, Farrah D

    2010-01-01

    The devastation of Hurricane Katrina unveiled the legacy of racial and class stratification in New Orleans, Louisiana. Much of the Katrina-related research has focused primarily on how poor Black neighborhoods were disproportionately affected by the disaster. While this body of research makes valid claims, there has been very little research that examines how Black middle-class residents in New Orleans were impacted by Hurricane Katrina. This study examines how residents in Pontchartrain Park, a Black middle-class neighborhood, are responding to the disaster. The author uses in-depth interviews, ethnographic observations, and archival data to examine the barriers that residents are facing in the recovery process. She argues that the experiences of the Black middle class also have implications for the connectedness of race and class. The challenges discussed within the article are linked to a history of racial stratification.

  7. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  8. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    PubMed

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  9. Impact of current-wave interaction on storm surge simulation: A case study for Hurricane Bob

    NASA Astrophysics Data System (ADS)

    Sun, Yunfang; Chen, Changsheng; Beardsley, Robert C.; Xu, Qichun; Qi, Jianhua; Lin, Huichan

    2013-05-01

    Hurricane Bob moved up the U.S. east coast and crossed over southern New England and the Gulf of Maine [with peak marine winds up to 54 m/s (100 mph)] on 19-20 August 1991, causing significant damage along the coast and shelf. A 3-D fully wave-current-coupled finite-volume community ocean model system was developed and applied to simulate and examine the coastal ocean responses to Hurricane Bob. Results from process study-oriented experiments showed that the impact of wave-current interaction on surge elevation varied in space and time, more significant over the shelf than inside the inner bays. While sea level change along the coast was mainly driven by the water flux controlled by barotropic dynamics and the vertically integrated highest water transports were essentially the same for cases with and without water stratification, the hurricane-induced wave-current interaction could generate strong vertical current shear in the stratified areas, leading to a strong offshore transport near the bottom and vertical turbulent mixing over the continental shelf. Stratification could also result in a significant difference of water currents around islands where the water is not vertically well mixed.

  10. Impact of a major hurricane on surgical services in a university hospital.

    PubMed

    Norcross, E D; Elliott, B M; Adams, D B; Crawford, F A

    1993-01-01

    Hurricane Hugo struck Charleston, South Carolina, on September 21, 1989. This report analyzes the impact this storm had upon surgical care at a university medical center. Although disaster planning began on September 17, hurricane damage by high winds and an 8.7-foot tidal surge led to loss of emergency power and water. Consequently, system failures occurred in air conditioning, vacuum suction, steam and ethylene oxide sterilization, plumbing, central paging, lighting, and refrigeration. The following surgical support services were affected. In the blood bank, lack of refrigeration meant no platelet packs for 2 days. In radiology, loss of electrical power damaged CT/MRI scanners and flooding ruined patient files, resulting in lost information. In the intensive care unit, loss of electricity meant no monitors and hand ventilation was used for 4 hours. In the operating room, lack of temperature and humidity control (steam, water, and suction supply) halted elective surgery until October 2. Ground and air transportation were limited by unsafe landing sites, impassable roads, and personnel exhaustion. Surgical planning for a major hurricane should include: 1) a fail-safe source of electrical power, 2) evacuation of as many critically ill patients as possible before the storm, 3) cancellation of all elective surgery, and 4) augmented ancillary service staffing with some, although limited, physician support.

  11. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    PubMed

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin. PMID:26741684

  12. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    SciTech Connect

    Barker, Alan M; Freer, Eva B; Omitaomu, Olufemi A; Fernandez, Steven J; Chinthavali, Supriya; Kodysh, Jeffrey B

    2013-01-01

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

  13. The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.

    2015-12-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.

  14. Hurricane Sandy's impact on the predisaster homeless and homeless shelter services in New Jersey.

    PubMed

    Settembrino, Marc R

    2016-01-01

    Presently, there is little research on how people experiencing homelessness prepare for, respond to, and recover from disasters. Existing emergency management literature does not provide an understanding of how disasters affect homeless shelter services. The present study seeks to fill these gaps by examining how Hurricane Sandy impacted homeless shelters and their guests in New Jersey. Presenting findings from ethnographic research in Atlantic City and Hoboken, this study identifies several areas in which homeless shelters and their guests may be able to assist in emergency response and disaster recovery such as preparing meals for victims, sorting and processing donated items, and assisting victims in filing for emergency assistance. PMID:26963226

  15. Hurricane Sandy's impact on the predisaster homeless and homeless shelter services in New Jersey.

    PubMed

    Settembrino, Marc R

    2016-01-01

    Presently, there is little research on how people experiencing homelessness prepare for, respond to, and recover from disasters. Existing emergency management literature does not provide an understanding of how disasters affect homeless shelter services. The present study seeks to fill these gaps by examining how Hurricane Sandy impacted homeless shelters and their guests in New Jersey. Presenting findings from ethnographic research in Atlantic City and Hoboken, this study identifies several areas in which homeless shelters and their guests may be able to assist in emergency response and disaster recovery such as preparing meals for victims, sorting and processing donated items, and assisting victims in filing for emergency assistance.

  16. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  17. [Hurricane impact on Thalassia testudinum (Hydrocharitaceae) beds in the Mexican Caribbean].

    PubMed

    Arellano-Méndez, Leonardo U; Liceaga-Correa, María de los Angeles; Herrera-Silveira, Jorge A; Hernández-Núñez, Héctor

    2011-03-01

    Hurricanes have increased in strength and frequency as a result of global climate change. This research was conducted to study the spatio-temporal distribution and changes of Thalassia testudinum, the dominant species in Bahia de la Ascension (Quintana Roo, Mexico), when affected by heavy weather conditions. To complete this objective, a 2001 Landsat ETM+ image and the information from 525 sampling stations on morpho-functional and coverage of T. testudinum were used, and the seeds generated for the classification of eight benthic habitats. To quantify the changes caused by two hurricanes, we used two images, one of 1988 (Gilberto) and another of 1995 (Roxanne); other three data sets (2003, 2005 and 2007) were also used to describe the study area without major weather effects. Six categorial maps were obtained and subjected to analysis by 8 Landscape Ecology indexes, that describe the spatial characteristics, structure, function, change of the elements (matrix-patch-corridor), effects on ecosystems, connectivity, edges, shape and patch habitat fragmentation. Models indicate that T. testudinum may be classified as a continuum (matrix), since the fragments were not observed intermittently, but as a progression from minimum to maximum areas in reference to their coverage (ecological corridors). The fragments do not have a regular shape, indicating that the impacts are recent and may be due to direct effects (high-intensity hurricanes) or indirect (sediment). Fragments of type "bare soils" have a discontinuous distribution, and are considered to be the sites that have remained stable over a long timescale. While more dense coverage areas ("beds", "medium prairie" and "prairie") have low fragmentation and high connection of fragments. Features have an irregular perimeter and radial growth of formal; suggesting that the impact of meteors has no effect on the resilience of T. testudinum in this ecosystem, indicating good environmental quality to grow in this bay.

  18. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  19. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  20. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    NASA Astrophysics Data System (ADS)

    Fearnley, Sarah Mary; Miner, Michael D.; Kulp, Mark; Bohling, Carl; Penland, Shea

    2009-12-01

    Results from historical (1855-2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of -0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of -1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from -11.4 m/year between 1922 and 1996 to -41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated -201.5 m/year, compared with an average retreat rate of -38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.

  1. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  2. The Impact of Parental Posttraumatic Stress Disorder Symptom Trajectories on the Long-Term Outcomes of Youth Following Hurricane Katrina

    PubMed Central

    Self-Brown, Shannon; Lai, Betty; Harbin, Shannon; Kelley, Mary Lou

    2014-01-01

    Objectives This study examined trajectories of posttraumatic stress disorder symptoms in impoverished mothers impacted by Hurricane Katrina, as well as how predictive the maternal trajectories were for youth posttraumatic stress symptoms 2 years post-Katrina. Method 360 mother participants displaced by Hurricane Katrina completed self-report measures across 4 time-points related to Hurricane exposure, trauma history, and posttraumatic stress symptoms. Additionally, the youth offspring completed a self-report measure of posttraumatic stress symptoms. Results Latent Class Growth Analysis demonstrated three primary trajectories emerged among females impacted by Katrina, namely, 1) Chronic (4%), 2) Recovering (30%), and 3) Resilient (66%), respectively. These trajectories were significantly impacted by prior trauma history, but not hurricane exposure. Additionally, data indicated that children whose parents fell into the Chronic PTS trajectory also reported high levels of PTS symptoms. Conclusions This study identified 3 main trajectories typical of female PTS symptoms following disaster and was the first known study to document associations between PTS outcomes among adults and their offspring impacted by a large natural disaster. Future research is warranted and should explore additional risk and protective factors that impact both the parental and child outcomes. PMID:25255912

  3. Children, Learning and Chronic Natural Disasters: How Does the Government of Dominica Address Education during Low-Intensity Hurricanes?

    ERIC Educational Resources Information Center

    Serrant, Ted Donaldson

    2013-01-01

    By the time today's Grade K students graduate high school in the Commonwealth of Dominica, they will have experienced five major and many low-intensity hurricanes (LIH). Between August and November each year, each hurricane, major or low-intensity, represents a major threat to their safety and schooling. This mixed-method case study investigated…

  4. The Impact of Hurricane Katrina on the Distribution of Subterranean Termite Colonies (Isoptera: Rhinotermitidae) in City Park, New Orleans, Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of Hurricane Katrina on the distribution of subterranean termites in City Park, New Orleans, LA was determined in four sections of the park where termite activity had been continuously monitored since 2002. Monitoring stations were checked on a monthly basis. Twelve distinct C. formosanu...

  5. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250 m remote sensing.

    PubMed

    Huang, Wenrui; Mukherjee, Debraj; Chen, Shuisen

    2011-03-01

    The impact of Hurricane Ivan on water quality in Pensacola Bay was investigated by MODIS 250m remote sensing of chlorophyll-a concentrations at different time slots before and after the hurricane event. Before the hurricane, the mean chlorophyll-a in the Bay was 5.3 μg/L. Heavy rainfall occurred during the hurricane landfall. The 48 h rainfall reached 40cm and the peak storm surge reached 3m on 9/16. After the rainstorm and during the storm surge on 9/17/2004, the mean chlorophyll-a concentration substantially increased to 14.7 μg/L. 26.3% water area was in the poor-water-quality condition (chl-a>20 μg/L). This indicates that heavy nutrient loads from urban stormwater runoff and storm-surge inundation simulated chlorophyll bloom. After the end of the storm surge on 9/18/2004, the mean chlorophyll dropped to 2.0 μg/L, suggesting the effective flushing of polluted water from the bay to the Gulf of Mexico by the storm-surge. The good water quality condition lasted for almost several weeks after the storm surge. The peak river flow, arriving on the 4th day after the peak storm surge, did not alter the good water quality situation in the bay. This indicates that urban stormwater runoff rather than the river inflow is the major pollutant source for water quality in Pensacola Bay during the hurricane.

  6. Assessing the Impacts of US Landfall Hurricanes in 2012 using Aerial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bevington, John S.

    2013-04-01

    Remote sensing has become a widely-used technology for assessing and evaluating the extent and severity of impacts of natural disasters worldwide. Optical and radar data collected by air- and space-borne sensors have supported humanitarian and economic decision-making for over a decade. Advances in image spatial resolution and pre-processing speeds have meant images with centimetre spatial resolution are now available for analysis within hours following severe disaster events. This paper offers a retrospective view on recent large-scale responses to two of the major storms from the 2012 Atlantic hurricane season: Hurricane Isaac and post-tropical cyclone ("superstorm") Sandy. Although weak on the Saffir-Simpson hurricane wind scale, these slow-moving storms produced intense rainfall and coastal storm surges in the order of several metres in the Louisiana and Mississippi Gulf Coast (Isaac), and the Atlantic Seaboard (Sandy) of the United States. Data were generated for both events through interpretation of a combination of two types of aerial imagery: high spatial resolution optical imagery captured by fixed aerial sensors deployed by the National Oceanic and Atmospheric Administration (NOAA), and digital single lens reflex (DSLR) images captured by volunteers from the US Civil Air Patrol (CAP). Imagery for these events were collected over a period of days following the storms' landfall in the US, with availability of aerial data far outweighing the sub-metre satellite imagery. The imagery described were collected as vertical views (NOAA) and oblique views (CAP) over the whole affected coastal and major riverine areas. A network of over 150 remote sensing experts systematically and manually processed images through visual interpretation, culminating in hundreds of thousands of individual properties identified as damaged or destroyed by wind or surge. A discussion is presented on the challenges of responding at such a fine level of spatial granularity for coastal

  7. Exploring posttraumatic growth in children impacted by Hurricane Katrina: Correlates of the phenomenon and developmental considerations

    PubMed Central

    Kilmer, Ryan P.; Gil-Rivas, Virginia

    2010-01-01

    This study explored posttraumatic growth (PTG), positive change resulting from struggling with trauma, among 7- to 10-year-olds impacted by Hurricane Katrina. Analyses focused on child self-system functioning and cognitive processes, and the caregiving context, in predicting PTG at two time points. Findings suggest that rumination, both negative, distressing thoughts and constructive, repetitive thinking, plays an important role in PTG. Hypotheses regarding future expectations and perceived competence were not fully supported, and, unexpectedly, coping competency beliefs, realistic control attributions, and perceived caregiver warmth did not contribute to PTG models. With one exception (positive reframing coping advice), caregiver–reported variables did not relate to PTG; no caregiver variable reached significance in final models. Relevant theory, developmental considerations, and future directions are discussed. PMID:20636691

  8. Exploring posttraumatic growth in children impacted by Hurricane Katrina: correlates of the phenomenon and developmental considerations.

    PubMed

    Kilmer, Ryan P; Gil-Rivas, Virginia

    2010-01-01

    This study explored posttraumatic growth (PTG), positive change resulting from struggling with trauma, among 7- to 10-year-olds impacted by Hurricane Katrina. Analyses focused on child self-system functioning and cognitive processes, and the caregiving context, in predicting PTG at 2 time points (Time 1 n = 66, Time 2 n = 51). Findings suggest that rumination, both negative, distressing thoughts and constructive, repetitive thinking, plays an important role in PTG. Hypotheses regarding future expectations and perceived competence were not fully supported, and, unexpectedly, coping competency beliefs, realistic control attributions, and perceived caregiver warmth did not contribute to PTG models. With 1 exception (positive reframing coping advice), caregiver-reported variables did not relate to PTG; no caregiver variable reached significance in final models. Relevant theory, developmental considerations, and future directions are discussed.

  9. Research on the impacts of past and future hurricanes on the endangered Florida manatee: Chapter 6J in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Langtimm, Catherine A.; Krohn, M. Dennis; Stith, Bradley M.; Reid, James P.; Beck, C.A.; Butler, Susan M.

    2007-01-01

    U.S. Geological Survey (USGS) research on Florida manatees (Trichechus manatus latirostris) from 1982 through 1998 identified lower apparent survival rates for adult manatees during years when Hurricane Elena (1985), the March "Storm of the Century"(1993), and Hurricane Opal (1995) hit the northern coast of the Gulf of Mexico. Although our analysis showed that a significant number of our monitored individual manatees failed to return to their winter homes after these storms, their actual fate remains unknown. With the aid of new satellite technology to track manatees during storms and new statistical techniques to determine survival and emigration rates, researchers are working to understand how hurricanes impact the endangered species by studying manatees caught in the path of the destructive hurricanes of 2004 and 2005.

  10. Hurricane Katrina: A Teachable Moment

    ERIC Educational Resources Information Center

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  11. Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.

    2016-03-01

    Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.

  12. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the

  13. Lessons from Crisis Recovery in Schools: How Hurricanes Impacted Schools, Families and the Community

    ERIC Educational Resources Information Center

    Howat, Holly; Curtis, Nikki; Landry, Shauna; Farmer, Kara; Kroll, Tobias; Douglass, Jill

    2012-01-01

    This article examines school and school district-level efforts to reopen schools after significant damage from hurricanes. Through an empirical, qualitative research design, four themes emerged as critical to the hurricane recovery process: the importance of communication, resolving tension, coordinating with other services and learning from the…

  14. The Psychological Impact from Hurricane Katrina: Effects of Displacement and Trauma Exposure on University Students

    ERIC Educational Resources Information Center

    Davis, Thompson E., III; Grills-Taquechel, Amie E.; Ollendick, Thomas H.

    2010-01-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the…

  15. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  16. Morphodynamic Impacts of Hurricane Sandy on the Inner-shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Beaudoin, J. D.; DuVal, C.; Schmidt, V. E.; Mayer, L. A.

    2013-12-01

    Through the careful execution of precision high-resolution acoustic sonar surveys over the period of October 2012 through July 2013, we have obtained a unique set of high-resolution before and after storm measurements of seabed morphology and in situ hydrodynamic conditions (waves and currents) capturing the impact of the storm at an inner continental shelf field site known as the 'Redbird reef' (Raineault et al., 2013). Understanding the signature of this storm event is important for identifying the impacts of such events and for understanding the role that such events have in the transport of sediment and marine debris on the inner continental shelf. In order to understand and characterize the ripple dynamics and scour processes in an energetic, heterogeneous inner-shelf setting, a series of high-resolution geoacoustic surveys were conducted before and after Hurricane Sandy. Our overall goal is to improve our understanding of bedform dynamics and spatio-temporal length scales and defect densities through the application of a recently developed fingerprint algorithm technique (Skarke and Trembanis, 2011). Utilizing high-resolution swath sonar collected by an AUV and from surface vessel multibeam sonar, our study focuses both on bedforms in the vicinity of manmade seabed objects (e.g. shipwrecks and subway cars) and dynamic natural ripples on the inner-shelf in energetic coastal settings with application to critical military operations such as mine countermeasures. Seafloor mapping surveys were conducted both with a ship-mounted multibeam echosounder (200 kHz and 400 kHz) and an Autonomous Underwater Vehicle (AUV) configured with high-resolution side-scan sonar (900 and 1800 kHz) and a phase measuring bathymetric sonar (500 kHz). These geoacoustic surveys were further augmented with data collected by in situ instruments placed on the seabed that recorded measurements of waves and currents at the site before, during, and after the storm. Multibeam echosounder map of

  17. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  18. A Hurricane!

    ERIC Educational Resources Information Center

    Pampe, William R.

    1986-01-01

    Describes the formation and development of hurricanes and discusses the disasters associated with them. Reviews the warning signals used for tropical storms and provides an overview of the hurricane naming process. (ML)

  19. The psychological impact from hurricane Katrina: effects of displacement and trauma exposure on university students.

    PubMed

    Davis, Thompson E; Grills-Taquechel, Amie E; Ollendick, Thomas H

    2010-09-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the hurricane. All students were enrolled at LSU at the time they participated in an online survey, conducted 3 months following the hurricane. The survey included symptom measures of depression, anxiety, stress, posttraumatic stress disorder (PTSD), and other variables. Results indicated displaced students experienced more trauma exposure and greater subsequent distress, more symptoms of PTSD, and more symptoms of depression. Moreover, traumatic exposure and distress from the traumatic exposure were found to fully mediate depressive symptoms and posttraumatic symptoms in the displaced students.

  20. Oyster mortality in Delaware Bay: Impacts and recovery from Hurricane Irene and Tropical Storm Lee

    NASA Astrophysics Data System (ADS)

    Munroe, D.; Tabatabai, A.; Burt, I.; Bushek, D.; Powell, E. N.; Wilkin, J.

    2013-12-01

    One predicted consequence of climate change is increasing variability of local weather extremes such as the frequency and intensity of storms. In August and September of 2011, Hurricane Irene and Tropical Storm Lee generated extreme flooding in the Delaware River watershed that produced prolonged baywide low salinity and consequent historically-high mortalities for the oyster stock in the upper reaches of Delaware Bay. The dynamics, consequences, and projections for recovery from the anomalously high oyster mortality that occurred as a consequence are reported using a combination of physical modeling, field sampling, and metapopulation dynamics modeling. Monthly mortality of 10% and 55% on the upper bay beds (Arnolds and Hope Creek respectively) exceeded the longer-term average at those locations and was associated with a continuous low salinity (<7) exposure of greater than 20 days. Population recovery projections based on metapopulation modeling suggests that recovery will take approximately 10 years for the uppermost beds. Clear understanding of the circumstances leading to this high population-level impact on oysters is important because anticipated future conditions of increased storm frequency will intensify the challenge such events pose for the management of fishery and aquaculture resources, and the siting of restoration efforts.

  1. Watershed Watch Undergraduate Research Projects: Monitoring Environmental Impacts on Tree Growth - Urban Development and Hurricanes

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.

    2009-12-01

    the nearby construction of two student dormitories within 100 feet of the trees. The other student team studied cores for evidence of possible impacts from four recent hurricanes (Isabel, category 5, 2003; Floyd, category 4, 1999; Bonnie, category 3, 1998; and Fran, Category 3, 1996) on trees from the Alligator River (near Cape Hatteras, NC) and from the ECSU campus (well inland). Cores were evaluated for the presence or absence of false growth rings that could be the result of saltwater impoundment associated with storm surges. False growth rings were seen in the cores of loblolly pine from the Alligator River site, but only for the years 2003 and 1999. No false growth rings were seen in the cores of loblolly pine from the ECSU campus. Both hurricanes Isabel and Floyd were stronger storms and had higher storm surges (8-10 ft) than either Bonnie or Fran (storm surges of 3-5 feet). The team hypothesized that the false growth rings were related to the impacts of the two stronger storms.

  2. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC.

    PubMed

    Paerl, H W; Bales, J D; Ausley, L W; Buzzelli, C P; Crowder, L B; Eby, L A; Fear, J M; Go, M; Peierls, B L; Richardson, T L; Ramus, J S

    2001-05-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time ( approximately 1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.

  3. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    PubMed Central

    Paerl, Hans W.; Bales, Jerad D.; Ausley, Larry W.; Buzzelli, Christopher P.; Crowder, Larry B.; Eby, Lisa A.; Fear, John M.; Go, Malia; Peierls, Benjamin L.; Richardson, Tammi L.; Ramus, Joseph S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (≈1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats. PMID:11344306

  4. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC

    USGS Publications Warehouse

    Paerl, H.W.; Bales, J.D.; Ausley, L.W.; Buzzelli, C.P.; Crowder, L.B.; Eby, L.A.; Fear, J.M.; Go, M.; Peierls, B.L.; Richardson, T.L.; Ramus, J.S.

    2001-01-01

    Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (???1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.

  5. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  6. Hurricane Katrina impact on water quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang

    2012-01-01

    SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long

  7. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    USGS Publications Warehouse

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  8. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from Southern Louisiana

    USGS Publications Warehouse

    Morton, R.A.; Barras, J.A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water. ?? Coastal Education & Research Foundation 2011.

  9. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Simmons, David; Uhlhorn, Eric

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  10. Coupling of surge and waves for an Ivan-like hurricane impacting the Tampa Bay, Florida region

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Weisberg, Robert H.; Zheng, Lianyuan

    2010-12-01

    The interactions between waves and storm surge are investigated using an unstructured grid, coupled wave-surge model forced by a hypothetical Ivan-like hurricane impacting the Tampa Bay, Florida region. The waves derived from the unstructured version of the third-generation wave model simulating waves nearshore. The surge derives from the unstructured Finite-Volume Coastal Ocean Model, to which wave-induced forces (based on radiation stress theory) are added to the traditional forces by winds and atmospheric pressure. Dependent upon complex bathymetry and geometry, the wave-induced forces result in an additional 0.3˜0.5 m of surge relative to an uncoupled, surge-only simulation, and the increase in coastal sea level by the storm surge adds some 1.0˜1.5 m to the significant wave heights nearshore. Such strong interactions through coupling suggest that waves should not be omitted in hurricane storm surge simulations, especially because the forces by waves on coastal structures are perhaps the most damaging of the hurricane related forces.

  11. Ocean-Atmosphere Coupling associated with Typhoons/ Hurricane and their impacts on marine ecosystem (Invited)

    NASA Astrophysics Data System (ADS)

    Tang, D. L.

    2010-12-01

    DanLing TANG South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China Phone (86) 13924282728; Fax/Tel: (86) 020 89023203 (off), 020 89023191 (Lab),Email,lingzistdl@126.com, Typhoon / hurricane activities and their impacts on environments have been strengthening in both intensity and spatial coverage, along with global changes in the past several decades; however, our knowledge about impact of typhoon on the marine ecosystem is very scarce. We have conducted a series studies in the South China Sea (SCS), investigating phytoplankton, sea surface temperature (SST), fishery data and related factors before, during, and after typhoon. Satellite remote sensing and in situ observation data obtained from research cruise were applied. Our study showed that typhoon can support nutrients to surface phytoplankton by inducing upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton; both typhoon winds and rain can enhance production of marine phytoplankton. Slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. We conservatively estimate that typhoon periods may account for 3.5% of the annual primary production in the oligotrophic SCS. It indicated that one typhoon may induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phytoplankton bloom by upwelling. We have suggested a new index to evaluate typhoon impact on marine ecosystem and environment. This is the first time to report moving eddies and eddy-shape phytoplankton blooms associated with tropical cyclone, the relationship among tropical cyclone, cold eddy upwelling and eddy-shape phytoplankton bloom may give some viewpoint on the tropical cyclone's affection on the mesoscale circulation. Those studies may

  12. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds.

    PubMed

    Russell, James C; Stjernman, Martin; Lindström, Åke; Smith, Henrik G

    2015-04-01

    Resilience of ecological communities to perturbation is important in the face of increased global change from anthropogenic stressors. Monitoring is required to detect the impact of, and recovery from, perturbations, and before-after-control-impact (BACI) analysis provides a powerful framework in this regard. However, species in a community are not observed with perfect detection, and occupancy analysis is required to correct for imperfect detectability of species. We present a Bayesian community occupancy before-after-control-impact (CO-BACI) framework to monitor ecological community response to perturbation when constituent species are imperfectly detected. We test the power of the model to detect changes in community composition following an acute perturbation with simulation. We then apply the model to a study of the impact of a large hurricane on the forest bird community of Sweden, using data from the national bird survey scheme. Although simulation shows the model can detect changes in community occupancy following an acute perturbation, application to a Swedish forest bird community following a major hurricane detected no change in community occupancy despite widespread forest loss. Birds with landscape occupancy less than 50% required correcting for detectability. We conclude that CO-BACI analysis is a useful tool that can incorporate rare species in analyses and detect occupancy changes in ecological communities following perturbation, but, because it does not include abundance, some impacts may be overlooked. PMID:26214914

  13. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds.

    PubMed

    Russell, James C; Stjernman, Martin; Lindström, Åke; Smith, Henrik G

    2015-04-01

    Resilience of ecological communities to perturbation is important in the face of increased global change from anthropogenic stressors. Monitoring is required to detect the impact of, and recovery from, perturbations, and before-after-control-impact (BACI) analysis provides a powerful framework in this regard. However, species in a community are not observed with perfect detection, and occupancy analysis is required to correct for imperfect detectability of species. We present a Bayesian community occupancy before-after-control-impact (CO-BACI) framework to monitor ecological community response to perturbation when constituent species are imperfectly detected. We test the power of the model to detect changes in community composition following an acute perturbation with simulation. We then apply the model to a study of the impact of a large hurricane on the forest bird community of Sweden, using data from the national bird survey scheme. Although simulation shows the model can detect changes in community occupancy following an acute perturbation, application to a Swedish forest bird community following a major hurricane detected no change in community occupancy despite widespread forest loss. Birds with landscape occupancy less than 50% required correcting for detectability. We conclude that CO-BACI analysis is a useful tool that can incorporate rare species in analyses and detect occupancy changes in ecological communities following perturbation, but, because it does not include abundance, some impacts may be overlooked.

  14. Recovery of a Deltaic Barrier Island to hurricane and oil spill impacts in coastal Louisiana. Final report, 1 June 1993-31 August 1994

    SciTech Connect

    Debusschere, K.; Lindstedt, D.; Mendelssohn, I.A.; Tao, Q.; Lin, Q.

    1994-11-01

    The goal of this project was to evaluate the effects of the 1992 Greenhill Petroleum Corporation Oil Spill and Hurricane Andrew on salt marsh recovery on East Timbalier Island, in coastal Louisiana. The landscape scale analysis relied on remote sensing/image analysis procedures and field surveys. The community scale analysis required quantitative field sampling for vegetative responses. Both types of analyses showed that the oil spill had minimal effect on island vegetation. The analysis also indicated that Hurricane Andrew had a profound effect on the island. The island`s land mass decreased by 25% between 1990 and 1992 and its previously continuous shoreline became fragmented after the hurricane. One year after hurricane impact, the island`s morphology changed significantly due to sediment reworking.

  15. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes.

    PubMed

    Bender, Morris A; Knutson, Thomas R; Tuleya, Robert E; Sirutis, Joseph J; Vecchi, Gabriel A; Garner, Stephen T; Held, Isaac M

    2010-01-22

    Several recent models suggest that the frequency of Atlantic tropical cyclones could decrease as the climate warms. However, these models are unable to reproduce storms of category 3 or higher intensity. We explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model that produces a realistic distribution of intense hurricane activity for present-day conditions. The model projects nearly a doubling of the frequency of category 4 and 5 storms by the end of the 21st century, despite a decrease in the overall frequency of tropical cyclones, when the downscaling is based on the ensemble mean of 18 global climate-change projections. The largest increase is projected to occur in the Western Atlantic, north of 20 degrees N.

  16. Hurricane Recovery Report 2004

    NASA Technical Reports Server (NTRS)

    Gordon, Joseph P.

    2005-01-01

    During August and September 2004, four hurricanes tested the mettle of Space Coast residents and the Kennedy Space Center (KSC) leadership and workforce. These threats underscored two important points: the very real vulnerability of KSC and its valuable space program assets to the devastating power of a hurricane, and the planning required to effectively deal with such threats. The damage was significant even though KSC did not experience sustained hurricane-force winds. To better understand and appreciate these points, this report provides an overview of the meteorological history of the Space Coast and what is involved in the planning, preparation, and recovery activities, as well as addressing the impacts of the 2004 hurricane season.

  17. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  18. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  19. Impact of Current-Wave Interaction on Storm Surge Simulation: A Case Study for Hurricane Bob

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Chen, C.; Beardsley, R. C.; Xu, Q.; Qi, J.; Lin, H.

    2012-12-01

    Hurricane Bob moved up the US east coast and crossed over southern New England and the Gulf of Maine (with peak marine winds up to 100 mph) on 19-20 August 1991, causing significant damage along the coast and shelf. A three-dimensional fully wave-current coupled Finite-Volume Community Ocean Model (FVCOM) system was developed and applied to simulate and examine the coastal ocean responses to Hurricane Bob, Results from process study-oriented experiments show that wave-current interaction caused a significant change of the current direction and mixing, but had relatively little contribution to the maximum sea level along the coast. Diagnostic analyses suggest that the contribution of hurricane-derived wave-current interaction to the net water flux varies in space and time. While sea level change along the coast was mainly driven by the barotropic water flux and the vertically integrated water transports were essentially the same for cases with and without water stratification, the hurricane-induced wave-current interaction could generate strong vertical current shear in the stratified areas, leading to strong offshore transport near the bottom and enhanced water mixing over the continental shelf. Stratification also could result in a significant difference of water currents around islands where the water is not vertically well mixed.

  20. Analysis of storm-tide impacts from Hurricane Sandy in New York

    USGS Publications Warehouse

    Schubert, Christopher E.; Busciolano, Ronald; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    Results of FEMA Hazus Program (HAZUS) flood loss analyses performed for New York counties were compared for extents of storm-tide inundation from Hurricane Sandy mapped (1) pre-storm, (2) on November 11, 2012, and (3) on February 14, 2013. The resulting depictions of estimated total building stock losses document how differing amounts of available USGS data affect the resolutio

  1. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the everglades

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Wells, C.J.

    2009-01-01

    The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.

  2. Fleeing the storm(s): an examination of evacuation behavior during Florida's 2004 hurricane season.

    PubMed

    Smith, Stanley K; McCarty, Chris

    2009-02-01

    The 2004 hurricane season was the worst in Florida's history, with four hurricanes causing at least 47 deaths and some $45 billion in damages. To collect information on the demographic impact of those hurricanes, we surveyed households throughout the state and in the local areas that sustained the greatest damage. We estimate that one-quarter of Florida's population evacuated prior to at least one hurricane; in some areas, well over one-half of the residents evacuated at least once, and many evacuated several times. Most evacuees stayed with family or friends and were away from home for only a few days. Using logistic regression analysis, we found that the strength of the hurricane and the vulnerability of the housing unit had the greatest impact on evacuation behavior; additionally, several demographic variables had significant effects on the probability of evacuating and the choice of evacuation lodging (family/friends, public shelters, or hotels/motels). With continued population growth in coastal areas and the apparent increase in hurricane activity caused by global warming, threats posed by hurricanes are rising in the United States and throughout the world. We believe the present study will help government officials plan more effectively for future hurricane evacuations.

  3. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA.

    PubMed

    Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid

    2015-11-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system. PMID:27070015

  4. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA.

    PubMed

    Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid

    2015-11-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system.

  5. Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, A.; Gravois, M.

    2010-06-01

    A 100-year climatology of tropical storms and hurricanes within a 200-km buffer was developed to study their impacts on coral reefs of the Flower Garden Banks (FGB) and neighboring banks of the northwestern Gulf of Mexico. The FGB are most commonly affected by tropical storms from May through November, peaking in August-September. Storms approach from all directions; however, the majority of them approach from the southeast and southwest, which suggests a correlation with storm origin in the Atlantic and Gulf of Mexico. A storm activity cycle lasting 30-40 years was identified similar to that known in the Atlantic basin, and is similar to the recovery time for impacted reefs. On average there is 52% chance of a storm approaching within 200 km of the FGB every year, but only 17% chance of a direct hit every year. Storm-generated waves 5-25 m in height and periods of 11-15 s induce particle speeds of 1-4 m s -1 near these reefs. The wave-current flow is capable of transporting large (˜3 cm) sediment particles, uplifting the near-bottom nepheloid layer to the banks tops, but not enough to break coral skeletons. The resulting storm-driven turbulence induces cooling by heat extraction, mixing, and upwelling, which reduces coral bleaching potential and deepens the mixed layer by about 20 m. Tropical storms also aid larvae dispersal from and onto the FGB. Low storm activity in 1994-2004 contributed to an 18% coral cover increase, but Hurricane Rita in 2005 reduced it by 11% and brought coral cover to nearly pre-1994 levels. These results suggest that the FGB reefs and neighboring reef banks act as coral refugia because of their offshore location and deep position in the water column, which shields them from deleterious effects of all but the strongest hurricanes.

  6. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy. PMID:27649748

  7. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy.

  8. European high-impact weather caused by the downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011)

    NASA Astrophysics Data System (ADS)

    Blumer, Sandro R.; Grams, Christian M.

    2016-04-01

    Tropical cyclones undergoing extratropical transition (ET) are thought to cause high-impact weather (HIW) close to the transitioning tropical cyclone and in remote regions. However, no study so far clearly attributed European HIW to the downstream impact of North Atlantic ET. When Hurricane Katia underwent ET in September 2011, severe thunderstorms occurred downstream in Central Europe. We quantify the role of Katia in the European HIW, using numerical sensitivity experiments. Results show that Katia was crucial for the evolution of a narrow downstream trough. Large-scale forcing for ascent ahead of this trough triggered deep convection. In the absence of ET, no trough was present over Europe and no HIW occurred. This study is the first unambiguous documentation that European HIW is caused by the downstream impact of North Atlantic ET and would not occur otherwise. It likewise corroborates the crucial role of ET in altering the large-scale midlatitude flow in downstream regions.

  9. Hurricane Earl

    Atmospheric Science Data Center

    2013-04-19

    ... eye is just visible on the right edge of the MISR image swath. Winds at various altitudes were obtained by processing the data from five ... flow of air into the hurricane. This warm, moist air is the power source for the hurricane. Mid- and high-level clouds (green and ...

  10. Hurricane Sandy

    Atmospheric Science Data Center

    2015-03-05

    ... it shows much of the western half of the hurricane. The eye of the storm is to the right and outside of the observed area. ... it shows much of the western half of the hurricane. The eye of the storm is to the right and outside of the observed area. READ ...

  11. Hurricane Debby

    Atmospheric Science Data Center

    2013-04-19

    article title:  Hurricane Debby     View Larger ... methods that depend on assumptions about the atmospheric temperature profile. Using data at more than two angles, hyper-stereo MISR ... Hurricane Debby location:  Atlantic Ocean thumbnail:  ...

  12. [Feeding changes for three Sphoeroides species (Tetraodontiformes: Tetraodontidae) after Isidore hurricane impact in Carbonera Inlet, Southeastern Gulf of Mexico].

    PubMed

    Palacios-Sánchez, Sonia Eugenia; Vega-Cendejas, María Eugenia

    2010-12-01

    The coexistence of ecologically similar species may occur because of resources distribution, such as prey and habitat type and segregation time, that minimizes the interspecific competition. The changes brought about by Hurricane Isidore in the distribution of food resources by three coexisting fish species of the family Tetraodontidae (Sphoeroides nephelus, S. spengleri and S testudineus), were analyzed at the Carbonera Inlet. Sphoeroides spp. based their food on benthic organisms; principally, they consume mussels (Brachidontes sp.), barnacles (Balanus sp.) and gastropods (Crepidula sp). Before hurricane impact, the three species share the available food resources in different proportions (bivalves, gastropods, barnacles and decapods), according to different strategies that enabled them to coexist and reduce interspecific competition. After the impact, the abundance of available prey decreased and the interespecific competition for food increased, leading to S. testudines and S. nephelus change their trophic spectrum (xiphosurans, amphipods, isopods and detritus) and displacing S. splengleri of the inlet. The distribution of food resources was conditioned by the abundance and diversity of prey, as well as the adaptive response of each species.

  13. Impact of Sea Level Rise on the Attenuation of Hurricane Storm Surge by Wetlands in Corpus Christi, TX

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Irish, J. L.; Olivera, F.

    2011-12-01

    Celso Ferreira1, Jennifer L. Irish2, Francisco Olivera3 1 Graduate Research Assistant, Department of Civil Engineering, Texas A&M University, College Station, TX 77843, email: celsoferreira@tamu.edu. 2 Associate Professor, Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, email: jirish@vt.edu 3 Associate Professor, Department of Civil Engineering, Texas A&M University, College Station, TX 77843, email: folivera@civil.tamu.edu. Texas has historically faced severe hurricanes with Ike being the most recent major storm example. It is believed that coastal wetlands might reduce the impact of the storm surge on coastal areas, acting as a natural protection against hurricane flooding, especially for small hurricanes and tropical storms. Considering the expected rise in the mean sea level, wetland composition and spatial distribution are also expected to change as the environmental conditions change along the coast. We analyzed a range of Intergovernmental Panel on Climate Change (IPCC) projections for sea level rise (SLR) to simulate wetland alterations and evaluate their impact on hurricane storm surge. The analyses was conducted for Corpus Christi Bay using a pre-validated, physically based, hydrodynamic model (ADCIRC) and a wind and pressure field model (PBL) representing the physical properties of historical hurricane Bret. The calculations were performed using an unstructured numerical grid with 3.3 million nodes covering part of the Atlantic Ocean and the entire Gulf of Mexico (resolution from 2000 km to 50 meters at the coast). Wetlands are represented in the numerical model through their influence on the frictional resistance proprieties and bathymetric changes. To characterize the wetland types and their spatial distribution along the coast, we used six different land use databases from the National Land Cover Dataset (NLCD) (1992, 2001), the National Wetlands Inventory (NWI) (1993) and the Coastal Change Analysis Program (C

  14. Hymenopterid bites, stings, allergic reactions, and the impact of hurricanes on hymenopterid-inflicted injuries.

    PubMed

    Diaz, James H

    2007-01-01

    Hymenopterid stings and subsequent allergic reactions are a common indication for emergency department visits worldwide. Unrecognized anaphylactic reactions to hymenopterid stings by apids, or bees, and vespids, or wasps, are a significant cause of sudden and unanticipated deaths outdoors in young people, with and without atopic histories. Insect bites and stings, often complicated by allergic reactions or skin infections, by community-acquired pathogens, such as methicillin-resistant Staphylococcus aureus, are common sources of morbidity following hurricanes, tropical storms, and prolonged flooding. This article will review and critically analyze the descriptive epidemiology and outcomes of hymenopterid bites, stings, and allergic reactions, especially following hurricanes and prolonged flooding disasters; stratify the immunologic reactions to hymenopterid stings by clinical severity and outcomes; and present current recommendations for management, prophylaxis, and prevention of hymenopterid stings and reactions.

  15. Impact of Hurricane Luis on the health services of Antigua and Barbuda.

    PubMed

    Gibbs, T; van Alphen, D

    1996-01-01

    Antigua and Barbuda, located in the Caribbean, was one of the countries most affected by Hurricane Luis in 1995. Electricity, water supply and health facilities were disrupted for several weeks. Inadequate criteria at the design stages, unsound structural design, and lack of maintenance of building components, are some of the reasons that damage was so severe. The main hospitals and 6 health facilities were destroyed and flooded and most of the medical staff had to cope with their own damaged houses. Although the knowledge and materials are available to reduce the losses caused by hurricanes, building codes are not reinforced by laws and preventive maintenance to protect health care facilities from natural hazard damage is not usually budgeted for. The additional cost of making a single or two-storey health facility almost invulnerable to future catastrophe in a hurricane is only 2% in initial capital cost and becomes negligible when spread over the life of a building. The effort of UN International Decade for Natural Disasters (IDNDR) directed towards disaster mitigation should be increased over the remainder of the decade to ensure that standards are respected and building codes are mandatory.

  16. Environmental impact of Hurricane Katrina on Lake Pontchartrain: Chapter 7G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Heitmuller, Thomas; Perez, Brian C.

    2007-01-01

    Hurricane Katrina slammed the Louisiana-Mississippi Gulf Coast with 135-mi/hour (217-km/hour) winds and up to a 30-ft (9-m) storm surge. Lake Pontchartrain was further subjected to environmental threat by way of the millions of gallons of contaminated flood water that were pumped daily from the city of New Orleans into the lake.

  17. Impact of exposure to community violence, Hurricane Katrina, and Hurricane Gustav on posttraumatic stress and depressive symptoms among school age children.

    PubMed

    Salloum, Alison; Carter, Paulette; Burch, Berre; Garfinkel, Abbe; Overstreet, Stacy

    2011-01-01

    This study examined the relationship between exposure to Hurricane Gustav and distress among 122 children (ages 7-12) to determine whether that relationship was moderated by prior experiences with Hurricane Katrina and exposure to community violence (ECV). Measures of hurricane experiences, ECV, posttraumatic stress (PTS) symptoms, and depression were administered. Assessments occurred after the third anniversary of Katrina, which coincided with the landfall of Gustav. Results indicated that the relation between exposure to Gustav and PTS was moderated by prior experiences. There was a positive association between Gustav exposure and PTS for children who experienced high Katrina exposure and low ECV, with a similar trend for children with high ECV and low Katrina exposure. There was no relationship between Gustav exposure and PTS for children with low Katrina and low ECV or for children with high Katrina and high ECV. The relationship between exposure to Gustav and depression was not moderated by children's prior experience. However, there was a relationship between Katrina exposure and depression for children with high ECV. Results suggest that prior trauma may amplify the relationship between hurricane exposure and distress, but children with high cumulative trauma may remain highly symptomatic regardless of disaster exposure.

  18. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  19. Impact of Hurricane Sandy on the Shoreface and Inner Shelf, Offshore Long Island: Evidence for Ravinement?

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Austin, J. A.; Flood, R. D.; Schwab, W. C.; Denny, J. F.; Christensen, B. A.; Browne, C. M.; Saustrup, S.

    2013-12-01

    In January 2013, approximately two months after Hurricane Sandy made landfall in the Mid-Atlantic Bight, a scientific team from the University of Texas Institute for Geophysics, partnering with colleagues at Adelphi and Stony Brook universities and the USGS, conducted marine geophysical and surficial sampling surveys both offshore and in the inshore bays of Long Island, NY. The primary scientific goal was to assess the impact of the storm on the shoreface and inner shelf. Sandy made landfall as a post-tropical cyclone near Brigantine, NJ, with 70-kt maximum sustained winds. However, its unusual trajectory and massive size created record storm surges along the heavily-populated NJ and NY coastlines. As a result, infrastructure in the NY metropolitan area was damaged, and the Long Island barrier island system was both breached in places and elsewhere seriously eroded. The surveys included ten days of operations aboard Stony Brook's R/V Seawolf, offshore of Long Beach and Fire Island, barrier islands south of Long Island, complementing ongoing land-based studies of Sandy's impact on the NY-NJ barrier island system. Data collection involved multibeam bathymetric swath mapping, CHIRP very high resolution acoustic subbottom profiling, and surface sediment (grab) sampling to provide ground truth for the geophysical data. We surveyed regions that had been previously surveyed, both by Stony Brook in 2001 and 2005 to support reef management, and by the USGS for coastal sedimentary research, most recently in 2011 offshore Fire Island. These areas include shoreface-attached sand ridges that may be exchanging sand with the barrier island shoreface. We focus on before-and-after data comparisons on the shoreface and inner shelf, searching in particular for evidence that the storm contributed significantly to ravinement, either by wave- or current-forced erosion along the shoreface or via migration of shoreface-attached or detached sand ridges on the inner shelf. The interpreted

  20. Mixed layer impact of Hurricane Katia passing over the Amazon/Orinoco plume as viewed in remotely sensed salinity observations

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S. A.; Nicolas, R.; Lagerloef, G. S.; Reverdin, G. P.; Chapron, B.; Yves, Q.; Kudryavtsev, V. N.; Kao, H.

    2012-12-01

    Hurricane strength increases dramatically with increasing sea surface temperature (SST) and decreases in response to entrainment of cooler sub-mixed layer water into the ocean mixed layer. At its seasonal peak the Amazon/Orinoco plume covers a region of one million square kilometers in the western tropical Atlantic with more than 1m of extra freshwater, creating a near-surface barrier layer that inhibits this mixing and warms to temperatures >29C. Here new remotely sensed sea surface salinity (SSS) observations help elucidate the ocean response to hurricane Katia, which crossed the plume in early fall, 2011. Its passage left a 1.5psu high salinity wake (in its impact on density, the equivalent of a 3.5C cooling) due to mixing of the shallow barrier layer, reminiscent of features previously observed at fixed locations in the Indian Ocean and Gulf of Mexico. Destruction of this barrier layer decreased SST cooling in the plume that would otherwise have occurred, thus preserving elevated SST and evaporation.

  1. Examining the long-term racial disparities in health and economic conditions among Hurricane Katrina survivors: policy implications for Gulf Coast recovery.

    PubMed

    Toldson, Ivory A; Ray, Kilynda; Hatcher, Schnavia Smith; Louis, Laura Straughn

    2011-01-01

    This study examines disparities in the long-term health, emotional well-being, and economic consequences of the 2005 Gulf Coast hurricanes. Researchers analyzed the responses of 216 Black and 508 White Hurricane Katrina survivors who participated in the ABC News Hurricane Katrina Anniversary Poll in 2006. Self-reported data of the long-term negative impact of the hurricane on personal health, emotional well-being, and finances were regressed on race, income, and measures of loss, injury, family mortality, anxiety, and confidence in the government. Descriptive analyses, stepwise logistic regression, and analyses of variance revealed that Black hurricane survivors more frequently reported hurricane-related problems with personal health, emotional well-being, and finances. In addition, Blacks were more likely than Whites to report the loss of friends, relatives, and personal property. PMID:21905324

  2. Examining the long-term racial disparities in health and economic conditions among Hurricane Katrina survivors: policy implications for Gulf Coast recovery.

    PubMed

    Toldson, Ivory A; Ray, Kilynda; Hatcher, Schnavia Smith; Louis, Laura Straughn

    2011-01-01

    This study examines disparities in the long-term health, emotional well-being, and economic consequences of the 2005 Gulf Coast hurricanes. Researchers analyzed the responses of 216 Black and 508 White Hurricane Katrina survivors who participated in the ABC News Hurricane Katrina Anniversary Poll in 2006. Self-reported data of the long-term negative impact of the hurricane on personal health, emotional well-being, and finances were regressed on race, income, and measures of loss, injury, family mortality, anxiety, and confidence in the government. Descriptive analyses, stepwise logistic regression, and analyses of variance revealed that Black hurricane survivors more frequently reported hurricane-related problems with personal health, emotional well-being, and finances. In addition, Blacks were more likely than Whites to report the loss of friends, relatives, and personal property.

  3. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    ERIC Educational Resources Information Center

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  4. Impact of hurricane Isaac on recovery of saltmarshes affected by the BP oil spill in Barataria Bay in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Haverkamp, P. J.; Santos, M. J.; Shapiro, K.; Lay, M.; Koltunov, A.; Ustin, S.

    2013-12-01

    Saltmarshes of the Gulf of Mexico have a long history of being impacted by oil spills. The Deep Water Horizon BP Oil spill was the biggest spill in US history. Its effects are still noticeable on these coastal wetlands. While it is expected that over time these ecosystems will recover from oil spill impacts, disturbances can alter the pathway to recovery. In August 2012, hurricane Isaac traced the same path as the 2010 oil spill. We questioned whether the hurricane had a detrimental effect on the recovery of wetland communities previously affected by the oil spill. We analyzed AVIRIS hyperspectral imagery acquired over Bay Jimmy in Barataria Bay in September of 2010, in August of 2011, and after hurricane Isaac in October of 2012. We estimated oil and hurricane impact extent, and effects on plant stress based on change detection and trajectories of narrow band vegetation indexes. In September 2010, the oil impact extended 14m inland from the shore. Four plant stress indexes (NDVI, mNDVI, ANIR, ARed) and three water content indexes (NDII, WA980, WA1240) consistently showed that plant stress was significantly negatively correlated with distance from the shore. A year after the oil spill, in August 2011, we found that the vegetation was regenerating rapidly in more than 80% of the affected area. However, after hurricane Isaac, in October 2012, 24% of the 14-m green vegetation belt next to the shore disappeared under water in regions previously impacted by oil and 21% of the oil-free shoreline also lost its land to water. In the first 7 m adjacent to the shore, 38.5% of the land disappeared in oil-impacted zones and 32% in the oil-free zones. These results suggest that post-oil disturbance events can delay vegetation recovery in an already fragile wetland community.

  5. Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Harmelin-Vivien, Mireille L.; Laboute, Pierre

    1986-10-01

    Underwater effects on coral reefs of the six hurricanes which ravaged French Polynesia between December 82 and April 83 were observed by SCUBA diving around high islands and atolls during September and October 1983. Special attention was paid to Tikehau atoll reef formations (Tuamotu archipelago) where quantitative studies on scleractinians, cryptofauna and fishes were conducted in 1982 immediatly prior to the hurricanes. On outer reef slopes coral destruction, varying from 50 to 100%, was a function of depth. Upper slope coral communities composed of small colonies well adapted to high energy level environments, suffered less than deeper formations. However, there is a narrow erosional trough in this zone at a depth of 6 m that was probably the result of storm-wave action (plunge point). Coral destruction was spectacular at depths greater than 12 m: 60 to 80% between 12 m and 30 m and 100% beyond 35 m, whereas earlier living coral coverage ranged from 60 to 75% in these zones. The outer slope was transformed into a scree zone covered with coarse sand and dead coral rubble. Dives on different sites around steep outer slopes (>45°) of the atolls and more gentle slopes (<25°) of some parts of the high islands permitted the formulation of an explanatory hypothesis: direct coral destruction by hurricane-induced waves occurred between the surface and 18 20 m; on low-angle slopes broken colonies were thrown up on reef flats and beaches; on steep slopes avalanches destroyed much of the living corals and left scree slopes of rubble and sand.

  6. Hurricane Ida

    Atmospheric Science Data Center

    2013-04-18

    article title:  Hurricane Ida Cross-Track Winds       View Larger ... central pressure of 983 millibars, with maximum sustained winds of 148 kilometers per hour/41 meters per second (92 miles per hour - ...

  7. Hurricane Jeanne

    Atmospheric Science Data Center

    2013-04-19

    ... article title:  Hurricane Jeanne Cloud Height and Motion     View Larger Image ... field pictured here is uncorrected for the effects of cloud motion. Wind-corrected heights have higher accuracy but sparser spatial ...

  8. Hurricane Katrina

    Atmospheric Science Data Center

    2013-01-08

    ... Mississippi regions were acquired before and one day after Katrina made landfall along the Gulf of Mexico coast, and highlight many of the ... http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/hurricane_katrina_flood.html ...

  9. Hurricane Katrina

    Atmospheric Science Data Center

    2014-05-15

    article title:  Flooding in the Aftermath of Hurricane Katrina   ... River that was not apparent before Katrina. The post-Katrina flooding along the edges of Lake Pontchartrain and the city of New Orleans is ...

  10. Hurricane Carlotta

    Atmospheric Science Data Center

    2013-04-19

    ... near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their ...

  11. Learning from recovery after Hurricane Mitch.

    PubMed

    Christoplos, Ian; Rodríguez, Tomás; Schipper, E Lisa F; Narvaez, Eddy Alberto; Bayres Mejia, Karla Maria; Buitrago, Rolando; Gómez, Ligia; Pérez, Francisco J

    2010-04-01

    This paper reviews how Nicaragua has recovered from Hurricane Mitch of October 1998. In particular, it examines how the assumptions and claims that were made during initial recovery planning have proven relevant in light of subsequent development. One must consider the response to Hurricane Mitch from the perspective of the broader trends that have driven recovery, including household, community and government initiatives and the wider economic context. Recovery efforts have not 'transformed' Nicaragua. In fact, market upheavals and livelihood changes in rural areas have had a more profound impact on poverty profiles than recovery programmes. Social protection programmes have been piloted, but patron-client ties and relations with aid providers are still more reliable sources of support in a time of crisis. Risk reduction has become more deeply integrated into the rural development discourse than was the case before the disaster, but risk reduction initiatives continue to place undue emphasis on hazard response rather than addressing vulnerability.

  12. Satellite optical and radar data used to track wetland forest impact and short-term recovery from Hurricane Katrina

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.; Middleton, B.; Lu, Zhiming

    2009-01-01

    Satellite Landsat Thematic Mapper (TM) and RADARSAT-1 (radar) satellite image data collected before and after the landfall of Hurricane Katrina in the Pearl River Wildlife Management Area on the Louisiana-Mississippi border, USA, were applied to the study of forested wetland impact and recovery. We documented the overall similarity in the radar and optical satellite mapping of impact and recovery patterns and highlighted some unique differences that could be used to provide consistent and relevant ecological monitoring. Satellite optical data transformed to a canopy foliage index (CFI) indicated a dramatic decrease in canopy cover immediately after the storm, which then recovered rapidly in the Taxodium distichum (baldcypress) and Nyssa aquatica (water tupelo) forest. Although CFI levels in early October indicated rapid foliage recovery, the abnormally high radar responses associated with the cypress forest suggested a persistent poststorm difference in canopy structure. Impact and recovery mapping results showed that even though cypress forests experienced very high wind speeds, damage was largely limited to foliage loss. Bottomland hardwoods, experiencing progressively lower wind speeds further inland, suffered impacts ranging from increased occurrences of downed trees in the south to partial foliage loss in the north. In addition, bottomland hardwood impact and recovery patterns suggested that impact severity was associated with a difference in stand structure possibly related to environmental conditions that were not revealed in the prehurricane 25-m optical and radar image analyses. ?? 2009 The Society of Wetland Scientists.

  13. Effective Governance: The Impact of the Masters in Governance Training on School Boards in California

    ERIC Educational Resources Information Center

    Bradley, Letitia T.

    2013-01-01

    This study applied 3 theoretical frameworks--Lee Bolman and Terrence Deal's four frames, the Lighthouse Inquiry of the Iowa Association of School Boards, and effective governance characteristics--to examine the impact of the Masters in Governance(MIG) training offered by the California School Boards Association on the ability of school board…

  14. Hurricane Lilli

    Atmospheric Science Data Center

    2014-05-15

    ... (MISR), including a well-developed clearing at the hurricane eye. When these views were acquired on October 2, 2002, Lili was approaching ... red-blue glasses, with the red filter placed over your left eye. Information on ordering glasses can be found at  ... at JPL October 2, 2002 - Two views of the eye of the hurricane. project:  MISR category:  ...

  15. The Impact of Saharan Air Layer Dust on the Intensity and Intensity Change of Hurricane Earl

    NASA Astrophysics Data System (ADS)

    Bucher, G.; Boybeyi, Z.

    2012-12-01

    The study of tropical cyclone (TC) intensity and intensity change has become an increasingly important research topic, as the storms pose a significant threat to the lives and property along coastal regions, and maritime interests. The Saharan Air Layer (SAL) is an elevated layer of warm, dry, and dusty air that is formed by intense heating and strong winds over the Sahara desert. This dust, and hot and dry air moves across the Atlantic over the maritime layer. An emerging area of research is the role that the SAL has on the development and intensity of TCs in the North Atlantic tropical basin. In 2010, Hurricane Earl gave us a unique opportunity to study the effects of the SAL during the formative stages of the storm. Using the Weather and Forecasting Model with chemistry (WRF-Chem), this study investigated what the effect of SAL characteristics (thermodynamic and aerosol) had on Earl's intensity and intensity change. We concentrated on the direct and indirect radiative effects of the SAL aerosols, by utilizing the dust-only module in WRF-Chem and comparing results to observations, reanalysis, and a dust-free run. The results show that Earl did not appreciably intensify until it moved out from beneath the influence of the SAL, after which it evolved into a CAT 4 hurricane. This was due mainly to the shear associated with the SAL, but the dust radiative effects also contributed to the slow growth.

  16. Parameterization of Sea-Spray Impact on Air-Sea Momentum and Heat Fluxes in Hurricane Prediction Models

    NASA Astrophysics Data System (ADS)

    Bao, Jian-Wen; Fairall, Chris; Michelson, Sara; Bianco, Laura

    2010-05-01

    Although it is widely recognized that sea spray under hurricane-strength winds is omnipresent in the marine surface boundary layer (MSBL), how to parameterize the effects of sea spray on the air-sea momentum and heat fluxes at hurricane-strength winds in numerical weather prediction (NWP) models still remains a subject of research. This paper focuses on how the effects of sea spray on the momentum and heat fluxes are parameterized in NWP models using the Monin-Obukhov similarity theory. In this scheme, the effects of sea spray can be considered as an additional modification to the stratification of the near surface profiles of wind, temperature and moisture in the MSBL. The overall impact of sea-spray droplets on the mean profiles of wind, temperature and moisture depends on the wind speed at the level of sea-spray generation (or wave state if available). As the wind speed increases, the droplet size increases, rendering an increase in the spray-mediated total enthalpy flux from the sea to the air and leveling off of the surface drag. When the wind is below 35 ms-1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer. When the wind is above 50 ms-1, the size of droplets is so big that they do not have enough time to evaporate that much before falling back into the sea. Furthermore, the scheme includes the physics of the suspended sea-spray droplets reducing the buoyancy of the MSBL air, therefore making the surface layer more stable. Results from testing the scheme in a numerical weather prediction model are presented along with a dynamical interpretation of the impact of sea spray on the intensification of tropical cyclones.

  17. Meteorology: are there trends in hurricane destruction?

    PubMed

    Pielke, Roger A

    2005-12-22

    Since the record impact of Hurricane Katrina, attention has focused on understanding trends in hurricanes and their destructive potential. Emanuel reports a marked increase in the potential destructiveness of hurricanes based on identification of a trend in an accumulated annual index of power dissipation in the North Atlantic and western North Pacific since the 1970s. If hurricanes are indeed becoming more destructive over time, then this trend should manifest itself in more destruction. However, my analysis of a long-term data set of hurricane losses in the United States shows no upward trend once the data are normalized to remove the effects of societal changes.

  18. Fleeing The Storm(s): An Examination of Evacuation Behavior During Florida’s 2004 Hurricane Season

    PubMed Central

    SMITH, STANLEY K.; MCCARTY, CHRIS

    2009-01-01

    The 2004 hurricane season was the worst in Florida’s history, with four hurricanes causing at least 47 deaths and some $45 billion in damages. To collect information on the demographic impact of those hurricanes, we surveyed households throughout the state and in the local areas that sustained the greatest damage. We estimate that one-quarter of Florida’s population evacuated prior to at least one hurricane; in some areas, well over one-half of the residents evacuated at least once, and many evacuated several times. Most evacuees stayed with family or friends and were away from home for only a few days. Using logistic regression analysis, we found that the strength of the hurricane and the vulnerability of the housing unit had the greatest impact on evacuation behavior; additionally, several demographic variables had significant effects on the probability of evacuating and the choice of evacuation lodging (family/friends, public shelters, or hotels/motels). With continued population growth in coastal areas and the apparent increase in hurricane activity caused by global warming, threats posed by hurricanes are rising in the United States and throughout the world. We believe the present study will help government officials plan more effectively for future hurricane evacuations. PMID:19348112

  19. Earth Observations to Assess Impact of Hurricane Katrina on John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Graham, William D.; Ross, Kenton W.

    2007-01-01

    The peril from hurricanes to Space Operations Centers is real and is forecast to continue; Katrina, Rita, and Wilma of 2005 and Charley, Frances, Ivan, and Jeanne of 2004 are sufficient motivation for NASA to develop a multi-Center plan for preparedness and response. As was demonstrated at SSC (Stennis Space Center) in response to Hurricane Katrina, NASA Centers are efficiently activated as local command centers, playing host to Federal and State agencies and first responders to coordinate and provide evacuation, relocation, response, and recovery activities. Remote sensing decision support provides critical insight for managing NASA infrastructure and for assisting Center decision makers. Managers require geospatial information to manage the federal city. Immediately following Katrina, SSC s power and network connections were disabled, hardware was inoperative, technical staff was displaced and/or out of contact, and graphical decision support tools were non-existent or less than fully effective. Despite this circumstance, SSC EOC (Emergency Operations Center) implemented response operations to assess damage and to activate recovery plans. To assist Center Managers, the NASA ASP (Applied Sciences Program) made its archive of high-resolution data over the site available. In the weeks and months after the immediate crisis, NASA supplemented this data with high-resolution, post-Katrina imagery over SSC and much of the affected coastal areas. Much of the high-resolution imagery was made available through the Department of Defense Clear View contract and was distributed through U.S. Geological Survey Center for Earth Resources Observation and Science "Hurricane Katrina Disaster Response" Web site. By integrating multiple image data types with other information sources, ASP applied an all-source solutions approach to develop decision support tools that enabled managers to respond to critical issues, such as expedient access to infrastructure and deployment of resources

  20. Impact of Hurricane Katrina (2005) on shelf organic carbon burial and deltaic evolution

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Dellapenna, Timothy M.; Gordon, Elizabeth S.; Mitra, Siddhartha; Petsch, Steven T.

    2010-11-01

    Sediment cores from the continental shelf adjacent to the Mississippi River delta immediately after the passage of Hurricane Katrina were used to examine the magnitude, and implications for the carbon budget, of sediment and particulate organic carbon (POC) remobilized by the storm on the river-dominated continental shelf. POC was sourced from incision of the innermost continental shelf (<25 m water depth) and from surge ebb advection from adjacent wetlands and shallow estuaries, and was re-deposited in deeper water on the shelf. This pulse of young (<1,600 yBP) labile POC, mixed with relict (>5000 yBP) POC eroded from the seafloor, has major implications for the remineralization versus burial of POC in deltas. The scale of erosional deflation of the shelf in water depths beyond seasonal wave-current conditions suggests that, over millennia, tropical cyclones may be responsible for partly removing prodeltaic strata from the geologic record in low-to-mid latitude deltas.

  1. Analysis of storm-tide impacts from Hurricane Sandy in New York

    USGS Publications Warehouse

    Schubert, Christopher E.; Busciolano, Ronald; Hearn, Paul P., Jr.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack, Jr.; Simonson, Amy E.

    2015-01-01

    Results of FEMA Hazus Program (HAZUS) flood loss analyses performed for New York counties were compared for extents of storm-tide inundation from Hurricane Sandy mapped (1) pre-storm, (2) on November 11, 2012, and (3) on February 14, 2013. The resulting depictions of estimated total building stock losses document how differing amounts of available USGS data affect the resolution and accuracy of storm-tide inundation extents. Using the most accurate results from the final (February 14, 2013) inundation extent, estimated losses range from $380 million to $5.9 billion for individual New York counties; total estimated aggregate losses are about $23 billion for all New York counties. Quality of the inundation extents used in HAZUS analyses has a substantial effect on final results. These findings can be used to inform future post-storm reconstruction planning and estimation of insurance claims.

  2. Analysis of storm-tide impacts from Hurricane Sandy in New York

    USGS Publications Warehouse

    Schubert, Christopher E.; Busciolano, Ronald; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    Results of FEMA Hazus Program (HAZUS) flood loss analyses performed for New York counties were compared for extents of storm-tide inundation from Hurricane Sandy mapped (1) pre-storm, (2) on November 11, 2012, and (3) on February 14, 2013. The resulting depictions of estimated total building stock losses document how differing amounts of available USGS data affect the resolution and accuracy of storm-tide inundation extents. Using the most accurate results from the final (February 14, 2013) inundation extent, estimated losses range from $380 million to $5.9 billion for individual New York counties; total estimated aggregate losses are about $23 billion for all New York counties. Quality of the inundation extents used in HAZUS analyses has a substantial effect on final results. These findings can be used to inform future post-storm reconstruction planning and estimation of insurance claims.

  3. The Impact of Child-Related Stressors on the Psychological Functioning of Lower-Income Mothers after Hurricane Katrina

    ERIC Educational Resources Information Center

    Lowe, Sarah R.; Chan, Christian S.; Rhodes, Jean E.

    2011-01-01

    In the present study, the authors examined the role of child-related stressors in the psychological adjustment of lower-income, primarily unmarried and African American, mothers (N = 386). All participants lived in areas affected by Hurricane Katrina, and about a third were also exposed to Hurricane Rita (30.3%, n = 117). Lacking knowledge of a…

  4. The impact of hurricane Katrina on the mental and physical health of low-income parents in New Orleans.

    PubMed

    Rhodes, Jean; Chan, Christian; Paxson, Christina; Rouse, Cecilia Elena; Waters, Mary; Fussell, Elizabeth

    2010-04-01

    The purpose of this study was to document changes in mental and physical health among 392 low-income parents exposed to Hurricane Katrina and to explore how hurricane-related stressors and loss relate to post-Katrina well-being. The prevalence of probable serious mental illness doubled, and nearly half of the respondents exhibited probable posttraumatic stress disorder. Higher levels of hurricane-related loss and stressors were generally associated with worse health outcomes, controlling for baseline sociodemographic and health measures. Higher baseline resources predicted fewer hurricane-associated stressors, but the consequences of stressors and loss were similar regardless of baseline resources. Adverse health consequences of Hurricane Katrina persisted for a year or more and were most severe for those experiencing the most stressors and loss. Long-term health and mental health services are needed for low-income disaster survivors, especially those who experience disaster-related stressors and loss.

  5. Impacts of nonstate, market-driven governance on Chilean forests.

    PubMed

    Heilmayr, Robert; Lambin, Eric F

    2016-03-15

    Global markets for agricultural products, timber, and minerals are critically important drivers of deforestation. The supply chains driving land use change may also provide opportunities to halt deforestation. Market campaigns, moratoria, and certification schemes have been promoted as powerful tools to achieve conservation goals. Despite their promise, there have been few opportunities to rigorously quantify the ability of these nonstate, market-driven (NSMD) governance regimes to deliver conservation outcomes. This study analyzes the impacts of three NSMD governance systems that sought to end the conversion of natural forests to plantations in Chile at the start of the 21st century. Using a multilevel, panel dataset of land use changes in Chile, we identify the impact of participation within each of the governance regimes by implementing a series of matched difference-in-differences analyses. Taking advantage of the mosaic of different NSMD regimes adopted in Chile, we explore the relative effectiveness of different policies. NSMD governance regimes reduced deforestation on participating properties by 2-23%. The NSMD governance regimes we studied included collaborative and confrontational strategies between environmental and industry stakeholders. We find that the more collaborative governance systems studied achieved better environmental performance than more confrontational approaches. Whereas many government conservation programs have targeted regions with little likelihood of conversion, we demonstrate that NSMD governance has the potential to alter behavior on high-deforestation properties. PMID:26929349

  6. Impacts of nonstate, market-driven governance on Chilean forests.

    PubMed

    Heilmayr, Robert; Lambin, Eric F

    2016-03-15

    Global markets for agricultural products, timber, and minerals are critically important drivers of deforestation. The supply chains driving land use change may also provide opportunities to halt deforestation. Market campaigns, moratoria, and certification schemes have been promoted as powerful tools to achieve conservation goals. Despite their promise, there have been few opportunities to rigorously quantify the ability of these nonstate, market-driven (NSMD) governance regimes to deliver conservation outcomes. This study analyzes the impacts of three NSMD governance systems that sought to end the conversion of natural forests to plantations in Chile at the start of the 21st century. Using a multilevel, panel dataset of land use changes in Chile, we identify the impact of participation within each of the governance regimes by implementing a series of matched difference-in-differences analyses. Taking advantage of the mosaic of different NSMD regimes adopted in Chile, we explore the relative effectiveness of different policies. NSMD governance regimes reduced deforestation on participating properties by 2-23%. The NSMD governance regimes we studied included collaborative and confrontational strategies between environmental and industry stakeholders. We find that the more collaborative governance systems studied achieved better environmental performance than more confrontational approaches. Whereas many government conservation programs have targeted regions with little likelihood of conversion, we demonstrate that NSMD governance has the potential to alter behavior on high-deforestation properties.

  7. Impacts of nonstate, market-driven governance on Chilean forests

    PubMed Central

    Heilmayr, Robert; Lambin, Eric F.

    2016-01-01

    Global markets for agricultural products, timber, and minerals are critically important drivers of deforestation. The supply chains driving land use change may also provide opportunities to halt deforestation. Market campaigns, moratoria, and certification schemes have been promoted as powerful tools to achieve conservation goals. Despite their promise, there have been few opportunities to rigorously quantify the ability of these nonstate, market-driven (NSMD) governance regimes to deliver conservation outcomes. This study analyzes the impacts of three NSMD governance systems that sought to end the conversion of natural forests to plantations in Chile at the start of the 21st century. Using a multilevel, panel dataset of land use changes in Chile, we identify the impact of participation within each of the governance regimes by implementing a series of matched difference-in-differences analyses. Taking advantage of the mosaic of different NSMD regimes adopted in Chile, we explore the relative effectiveness of different policies. NSMD governance regimes reduced deforestation on participating properties by 2–23%. The NSMD governance regimes we studied included collaborative and confrontational strategies between environmental and industry stakeholders. We find that the more collaborative governance systems studied achieved better environmental performance than more confrontational approaches. Whereas many government conservation programs have targeted regions with little likelihood of conversion, we demonstrate that NSMD governance has the potential to alter behavior on high-deforestation properties. PMID:26929349

  8. Female hurricanes are deadlier than male hurricanes.

    PubMed

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  9. Female hurricanes are deadlier than male hurricanes.

    PubMed

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  10. Female hurricanes are deadlier than male hurricanes

    PubMed Central

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M.

    2014-01-01

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents’ preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  11. Impacts of Hurricane Ike on the beaches of the Bolivar Peninsula, TX, USA

    NASA Astrophysics Data System (ADS)

    Sherman, Douglas J.; Hales, Billy U.; Potts, Michael K.; Ellis, Jean T.; Liu, Hongxing; Houser, Chris

    2013-10-01

    Hurricane Ike caused substantial beach erosion along the coast of the Bolivar Peninsula, TX. Much of the erosion was caused by the offshore (ebb) flow of the ca. 5 m storm surge that formed spatially discrete scour features. Using aerial photography and repeat LiDAR data, we identify five types of scour features and describe the alongshore distribution in four flow environments. Type 1 scours are relatively small and compact features associated mainly with flow off a wide, vegetated (grasses, shrubs, trees) surface across a wide beach. Type 2 scours are large and branching forms associated mainly with flow that was channeled by streets or gaps between structures. Type 3 scours are large and blocky features associated with flow off a marsh surface, across a highway, which removed almost all beach sands from the surface. Type 4 scours are elongated, shore perpendicular channels associated with the same flow characteristics as Type 3 scours. Type 5 scours are elongated, shore-perpendicular features, sometimes branching, associated with flow through gaps in a destroyed shore protection structure. Repeat imagery indicates that many of the features persisted for at least seven months. Recent aerial photography indicates that aspects of some features remained evident more than three years after Ike's landfall.

  12. Impact of Hurricane Rita storm surge on sugarcane borer (Lepidoptera: Crambidae) management in Louisiana.

    PubMed

    Beuzelin, J M; Reagan, T E; Akbar, W; Cormier, H J; Flanagan, J W; Blouin, D C

    2009-06-01

    Twelve thousand to 16,000 ha of Louisiana sugarcane (Saccharum spp.) fields were flooded by saltwater from the Hurricane Rita storm surge in September 2005. A four treatment, 12-replication study comparing storm surge flooded and nonflooded plant and ratoon sugarcane fields was conducted during summer 2006 to assess sugarcane borer, Diatraea saccharalis (F.), pest severity, pest control actions, and soil-associated arthropod abundance and diversity. Even with a significant 2.4-fold increase in the average number of insecticide applications used for D. saccharalis management in flooded fields, growers still incurred higher injury. A significant 2.8-fold reduction in the predaceous red imported fire ant, Solenopsis invicta Buren, was associated with the storm surge, whereas no reduction in abundance of other soil-associated arthropods was recorded. Arthropod diversity measured by the Shannon diversity index significantly increased by a factor of 1.3 in sugarcane fields flooded by the storm surge. Increase in D. saccharalis pest severity associated with the storm surge caused an estimated loss in revenue between $1.9 and $2.6 million to the Louisiana sugarcane industry for the 2006 production season.

  13. Hurricane Isaac

    Atmospheric Science Data Center

    2014-05-15

    ... hour (65 knots) from cloud motion observed outside Isaac's eye. The National Hurricane Center in Miami similarly reported maximum ... located in the Gulf of Mexico, southeast of Louisiana. The eye of the storm is just off the western edge of the image, while the coast of ...

  14. Hurricane Wilma

    Atmospheric Science Data Center

    2014-05-15

    ... were posted for Cuba and Mexico. The central pair shows the eye of Hurricane Wilma just hours before the storm began to cross the Yucatan ... October 24. On the 18th, Wilma looked a bit ragged. Its eye is located at the center of the left edge, and its outer bands of clouds ...

  15. Hurricane Preparedness

    MedlinePlus

    ... Edit Zip Code Edit Zip Code Shop the Red Cross Store Home Get Help Types of Emergencies Hurricane Preparedness Download the FREE Emergency App Find our Emergency App in the Apple Store or Google Play Aplicación de Emergencias - ahora ...

  16. Longitudinal Assessment of Cognitive and Psychosocial Functioning After Hurricanes Katrina and Rita: Exploring Disaster Impact on Middle-Aged, Older, and Oldest-Old Adults.

    PubMed

    Cherry, Katie E; Brown, Jennifer Silva; Marks, Loren D; Galea, Sandro; Volaufova, Julia; Lefante, Christina; Su, L Joseph; Welsh, David A; Jazwinski, S Michal

    2011-12-01

    The authors examined the effects of Hurricanes Katrina and Rita (HKR) on cognitive and psychosocial functioning in a lifespan sample of adults 6 to 14 months after the storms. Participants were recruited from the Louisiana Healthy Aging Study (LHAS). Most were assessed during the immediate impact period and retested for this study. Analyses of pre-and post-disaster cognitive data confirmed that storm-related decrements in working memory for middle-aged and older adults observed in the immediate impact period had returned to pre-hurricane levels in the post-disaster recovery period. Middle-aged adults reported more storm-related stressors and greater levels of stress than the two older groups at both waves of testing. These results are consistent with a burden perspective on post-disaster psychological reactions.

  17. The impact of hurricanes on sedimenting particulate matter in the semi-arid Bahía de La Paz, Gulf of California

    NASA Astrophysics Data System (ADS)

    Silverberg, Norman; Shumilin, Evgueni; Aguirre-Bahena, Fernando; Rodríguez-Castañeda, Ana Patricia; Sapozhnikov, Dmitry

    2007-11-01

    From 2002 through 2004, time-series sediment trap samples were collected from a depth of 410 m in Cuenca Alfonso, Bahía de La Paz, on the SW coast of the Gulf of California. The instrument recorded the impact of the local passage of hurricanes "Ignacio" (24-26 August) and "Marty" (21-23 September) in 2003. These two events accounted for 82% of the total rainfall measured in 2003, equivalent to the annual average precipitation in years without hurricanes. Mean total mass fluxes (TMFs) of 2.88 and 3.58 g m -2 d -1 were measured during the week of each hurricane as well as the following week. This may have been enough to produce a lamina in the underlying sediment with characteristics peculiar to such events. The terrigenous component was particularly abundant, with notably higher concentrations of Fe, Sc, Co and Cs and REEs. In contrast, TMFs throughout 2002-2004 (excluding the hurricane periods) averaged only 0.73 g m -2 d -1 and had a larger marine biogenic component. The extraordinary elemental fluxes during the 29 days of hurricane-influenced sedimentation represented a great proportion of the totals over an entire "normal" year: Co (67.8%) >Sc (62.6) >Fe (59.6) >Cs (53.4)>Lu (51.5)>La (51.3)>Yb (51.0)>Ce (49.5) >Tb (48.4) >Sm (44.7)>Cr (36.5) >Ca (31.0)>Eu (25.4%). The terrigenous fraction was calculated using (a) TMF minus the sum of CaCO 3, biogenic silica and organic matter and (b) the ratio of Sc in the trap samples to the average in the Earth's crust. The latter was consistently smaller, but the two methods offered similar results following hurricanes (78% vs. 63% , respectively). For normal sedimentation, however, the difference method yielded values twice as large as the Sc method (58% vs. 30%) This suggests that the mineralogy of the terrigenous fraction may also vary, with unsorted dessert soil being carried to sea by the powerful flash floods associated with hurricanes. Eolian supply of particles, particularly Sc-free quartz grains, possibly from

  18. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    PubMed

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication.

  19. [Hurricanes and tropical coastal biodiversity].

    PubMed

    Salazar-Vallejo, Sergio I

    2002-06-01

    Tropical coastal biodiversity has been modulated by tropical storms during a long time and it is currently facing a heavy human impact. The purpose of this review is to compile the available information to improve our understanding of hurricane impacts and to promote the establishment of coastal landscape monitoring, because that is the best way to assess these impacts. Although generalizations on hurricane effects are elusive, some historical dynamics and temporal relationships are included and some details are presented on the impacts by resuspension and movement of sediments, storm waves, and breaking off of coral reef organisms. Some effects on marine turtles and coastal forests are also briefly pointed out.

  20. Hurricane Isadore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz)

    Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua.

    At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again.

    This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red.

    Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images.

    Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free.

    Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this

  1. Impact of MODIS and AIRS total precipitable water on modifying the vertical shear and Hurricane Emily simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chin; Chen, Shu-Hua; Chien, Fang-Ching

    2011-01-01

    The impact of retrieved total precipitable water (TPW) from Moderate Resolution Imaging Spectrometer (MODIS) infrared (IR), MODIS near-infrared (NIR), and the combined Atmospheric Infrared Sounder (AIRS)-IR and Advanced Microwave Sounding Unit-Microwave channels on simulations of Hurricane Emily was assessed and compared using the Weather Research and Forecasting model and its three-dimensional variation data assimilation (3D-Var) system. After assimilating MODIS IR TPW, the model clearly better reproduced storm tracking, intensity, and the 10 m wind field, while the improvement was limited or nil when assimilating either MODIS NIR TPW or AIRS TPW. After the data assimilation of MODIS IR TPW, a positive moisture increment was present to the east of the simulated storm in 3D-Var analysis (i.e., initial conditions). The positive TPW increment enhanced a convective cloud, which was also observed by satellites. The convective cloud effectively modulated the height and wind fields, resulting in a weakening of the vertical wind shear (VWS) over the region. The weak VWS band was then advected to the north of the storm, preventing the storm from attaching to the strong VWS zone located between 20°N and 30°N. There was no such positive moisture increment, convective cloud, or weak VWS band occurring to the east of the simulated storm in the other data assimilation experiments. This explains why the simulated storm intensified with assimilation of MODIS IR TPW but not for the other experiments.

  2. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    PubMed

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export. PMID:17412914

  3. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    PubMed

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export.

  4. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  5. Use of bioassays and sediment polycyclic aromatic hydrocarbon concentrations to assess toxicity at coastal sites impacted by Hurricane Katrina.

    PubMed

    Weston, James; Warren, Crystal; Chaudhary, Amit; Emerson, Beth; Argote, Kate; Khan, Shabana; Willett, Kristine L

    2010-07-01

    The goal of the present study was twofold: to rapidly assess the potential environmental toxicological response following the storm surge and flooding caused by Hurricane Katrina along the Gulf Coast of Mississippi, USA, in August 2005, and to establish post-Katrina baseline toxicological profiles for three environmental matrices (water, suspended sediments, and sediments) within the intertidal zone. Sediment and water samples were collected monthly from September 2005 to 2006 from 10 sites along the Gulf Coast from Gulfport, Mississippi, to Mobile Bay, Alabama. Water samples and suspended sediment matrices were extracted, assayed, and toxic equivalent values calculated for compounds with estrogenic potential, using the yeast estrogen screen, and CYP1A induction potential, using the H4IIE rat hepatoma ethoxyresorufin-O-deethylase assay. Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments. It was hypothesized that the more heavily storm impacted sites, those closest to Katrina's path and time of landfall (e.g., Gulfport, September-October 2005), would elicit higher bioassay responses and PAH concentrations compared to those further east or approximately a year post-Katrina (e.g., Mobile Bay, August- September 2006). Benzo[a]pyrene equivalents decreased along spatial and temporal storm intensity gradients, but estrogenic compounds and sediment PAHs did not. Estrogen equivalents (approximately 1 ng/L) from water and suspended sediment samples occurred primarily in samples collected within a few months post-Katrina. Site-averaged surface sediment total PAHs varied significantly between sites and were higher than the U.S. National Oceanic and Atmospheric Administration's probable effects level at the Gulfport Marina and Back Biloxi Bay, Mississippi, sites. Results from the present study suggest that CYP1A inducing compounds elicited a short-term bioassay response in the water matrix shortly (within weeks) after Katrina's passing but were quickly

  6. The Impact of Child-Related Stressors on the Psychological Functioning of Lower-Income Mothers After Hurricane Katrina

    PubMed Central

    Lowe, Sarah R.; Chan, Christian S.; Rhodes, Jean E.

    2012-01-01

    In the present study, the authors examined the role of child-related stressors in the psychological adjustment of lower-income, primarily unmarried and African American, mothers (N = 386). All participants lived in areas affected by Hurricane Katrina, and about a third were also exposed to Hurricane Rita (30.3%, n = 117). Lacking knowledge of a child’s safety during the hurricanes was a significant predictor of heightened postdisaster psychological distress and posttraumatic stress, even after controlling for demographic variables, predisaster psychological distress, evacuation timing, and bereavement. From interviews with a subset of the participants (n = 57), we found that mothers consistently put their own needs behind those of their children. The authors recommend policies that promptly reunite mothers with missing children and support lower-income mothers in caring for their children during natural disasters and the aftermath. PMID:22383861

  7. The Impact of Child-Related Stressors on the Psychological Functioning of Lower-Income Mothers After Hurricane Katrina.

    PubMed

    Lowe, Sarah R; Chan, Christian S; Rhodes, Jean E

    2011-10-01

    In the present study, the authors examined the role of child-related stressors in the psychological adjustment of lower-income, primarily unmarried and African American, mothers (N = 386). All participants lived in areas affected by Hurricane Katrina, and about a third were also exposed to Hurricane Rita (30.3%, n = 117). Lacking knowledge of a child's safety during the hurricanes was a significant predictor of heightened postdisaster psychological distress and posttraumatic stress, even after controlling for demographic variables, predisaster psychological distress, evacuation timing, and bereavement. From interviews with a subset of the participants (n = 57), we found that mothers consistently put their own needs behind those of their children. The authors recommend policies that promptly reunite mothers with missing children and support lower-income mothers in caring for their children during natural disasters and the aftermath.

  8. Model estimates hurricane wind speed probabilities

    NASA Astrophysics Data System (ADS)

    Mumane, Richard J.; Barton, Chris; Collins, Eric; Donnelly, Jeffrey; Eisner, James; Emanuel, Kerry; Ginis, Isaac; Howard, Susan; Landsea, Chris; Liu, Kam-biu; Malmquist, David; McKay, Megan; Michaels, Anthony; Nelson, Norm; O Brien, James; Scott, David; Webb, Thompson, III

    In the United States, intense hurricanes (category 3, 4, and 5 on the Saffir/Simpson scale) with winds greater than 50 m s -1 have caused more damage than any other natural disaster [Pielke and Pielke, 1997]. Accurate estimates of wind speed exceedance probabilities (WSEP) due to intense hurricanes are therefore of great interest to (re)insurers, emergency planners, government officials, and populations in vulnerable coastal areas.The historical record of U.S. hurricane landfall is relatively complete only from about 1900, and most model estimates of WSEP are derived from this record. During the 1899-1998 period, only two category-5 and 16 category-4 hurricanes made landfall in the United States. The historical record therefore provides only a limited sample of the most intense hurricanes.

  9. Metal concentrations in schoolyard soils from New Orleans, Louisiana before and after Hurricanes Katrina and Rita.

    PubMed

    Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P

    2010-06-01

    The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted.

  10. Hurricane Katrina as a "teachable moment"

    NASA Astrophysics Data System (ADS)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  11. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, S.; Lee, S.; Wang, C.; Chung, E.; Enfield, D. B.

    2012-12-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface tempera- tures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns con- sidered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclu- sive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non- canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  12. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, Sarah; Lee, Sang-Ki; Wang, Chunzai; Chung, Eui-Seok; Enfield, David

    2012-07-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface temperatures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns considered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclusive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non-canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  13. Predicting mangrove forest recovery on the southwest coast of Florida following the impact of Hurricane Wilma, October 2005: Chapter 6H in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Ward, Greg A.; Smith, Thomas J.

    2007-01-01

    The damage to mangrove forests on the west coast of Everglades National Park from Hurricane Wilma in 2005 rivaled that of Hurricane Andrew in 1992. We describe patterns and rates of recovery following Andrew and use these estimates to gage recovery based upon site reconnaissance and forest structural damage considerations in the aftermath of Wilma.

  14. Hurricane Impacts on Ecological Services and Economic Values of Coastal Urban Forest: A Case Study of Pensacola, Florida

    EPA Science Inventory

    As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...

  15. 75 FR 17132 - Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... in the interest of beach erosion control, hurricane protection and related purposes, provided that...). As a result, portions of the St. Johns County shoreline experiencing severe erosion were studied..., South Ponte Vedra Beach experienced severe erosion, was designated as a critically eroded beach by...

  16. Head Start and Hurricane Recovery: Using a Family Outcomes Measure to Assess the Impact of Program Services

    ERIC Educational Resources Information Center

    Janiak, Richard

    2007-01-01

    In Head Start, family service workers facilitate the process for guiding and assisting families in securing services needed for specific family issues regarding health care, housing, employment, education, and/or crisis management. These services were particularly important to families following Hurricane Charley and the subsequent recovery…

  17. The Impact of Hurricanes Katrina and Rita on People with Disabilities: A Look Back and Remaining Challenges

    ERIC Educational Resources Information Center

    Powell, Robyn; Gilbert, Sheldon

    2006-01-01

    This paper focuses on the effects of the hurricanes on people with all types of disabilities. The National Council on Disability (NCD) released another report that addressed in detail the specific challenges for people with psychiatric disabilities. Please refer to "The Needs of People with Psychiatric Disabilities During and After Hurricanes…

  18. Dissolved phosphorus export from an animal waste impacted in-stream wetland: Response to tropical storm and hurricane disturbance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of wetlands to retain P makes them an important landscape feature that buffer P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: 1) to determine the effects of h...

  19. Longitudinal Impact of Attachment-Related Risk and Exposure to Trauma among Young Children after Hurricane Katrina

    ERIC Educational Resources Information Center

    Osofsky, Joy; Kronenberg, Mindy; Bocknek, Erika; Hansel, Tonya Cross

    2015-01-01

    Background: Research suggests that young childhood is a dynamic developmental phase during which risks to attachment figures as well as traumatic events may be particularly important. The loss and disruption associated with Hurricane Katrina highlighted the vulnerabilities and special needs of young children exposed to natural disaster. Objective:…

  20. Influencing and impacting the profession through governance opportunities.

    PubMed

    Drenkard, Karen N

    2015-01-01

    In addition to board leadership of health care organizations and corporations, there are strategic opportunities for nurses to participate in professional association boards and commissions and expert panels. These boards have specific and unique challenges and opportunities, and it is important for nurse leaders to serve in shaping the direction of the profession. Nursing as a profession has an opening to solve many of the care delivery issues that face the country. A strategic contribution to association boards and commissions can influence the health care delivery system changes needed to improve quality of care, access to care, and reducing costs. This article describes similarities and differences of service on association boards and commissions compared with organizational and corporate boards. Through these leadership roles, the larger community can observe influential nurses in an essential role. These leadership opportunities, including membership boards, commissions, and content expert panels, call for a special understanding of those governance structures and the contributions that nurse leaders can make to impact health care. Association and membership organizations have undergone many changes in the past 10 years, and new models of governance and leadership have been called into play. There are challenges and opportunities in serving on these boards and commissions. Maximizing the leadership and governance roles of this type of service is a critical contribution that nurses can make to impact the profession of nursing and the greater health care system. PMID:25474665

  1. Influencing and impacting the profession through governance opportunities.

    PubMed

    Drenkard, Karen N

    2015-01-01

    In addition to board leadership of health care organizations and corporations, there are strategic opportunities for nurses to participate in professional association boards and commissions and expert panels. These boards have specific and unique challenges and opportunities, and it is important for nurse leaders to serve in shaping the direction of the profession. Nursing as a profession has an opening to solve many of the care delivery issues that face the country. A strategic contribution to association boards and commissions can influence the health care delivery system changes needed to improve quality of care, access to care, and reducing costs. This article describes similarities and differences of service on association boards and commissions compared with organizational and corporate boards. Through these leadership roles, the larger community can observe influential nurses in an essential role. These leadership opportunities, including membership boards, commissions, and content expert panels, call for a special understanding of those governance structures and the contributions that nurse leaders can make to impact health care. Association and membership organizations have undergone many changes in the past 10 years, and new models of governance and leadership have been called into play. There are challenges and opportunities in serving on these boards and commissions. Maximizing the leadership and governance roles of this type of service is a critical contribution that nurses can make to impact the profession of nursing and the greater health care system.

  2. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    USGS Publications Warehouse

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  3. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  4. The Impact of Governance on the Performance of the Higher Education Sector in Australia

    ERIC Educational Resources Information Center

    De Silva Lokuwaduge, Chitra; Armstrong, Anona

    2015-01-01

    Australian government concern for improved governance in the higher education sector over recent years has driven the implementation of governance protocols. However, there has been little evidence of any evaluation of the impact of the governance structures on the performance of universities. This paper presents an analysis of the impact of the…

  5. JLAB Hurricane recovery

    SciTech Connect

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-07-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.

  6. Hurricane Sandy's Impact on Coastal Sedimentation on Long Island's South Shore: Results from a 2013 Rapid Response Study

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Goff, J. A.; Flood, R. D.; Austin, J. A., Jr.; Browne, C. M.; Saustrup, S.

    2014-12-01

    To understand the impact of Hurricane Sandy on the NY coast, we conducted subsurface and multi-beam analyses, ground-truthed by grab samples, in 3 areas: the western end of Fire Island (FIW), eastern Fire Island (FIE) where a new inlet formed during the storm, and Long Beach (LB). Grab samples yielded sands and muds, a surprise given the shallow (10-25m) water depths. Muds rested on top of sands and were removed for additional analyses. Since percent mud could not be determined absolutely, sediments were washed through a 63 mm sieve, RoTapped for 10 minutes at ¼ Φ, and weight percent calculated for the coarse fraction. At FIW and FIE, fine sands dominate the shallowest depths studied, consistent with previous studies. At FIE, the sedimentary wedge extends to ~15m, with finest sands (peak 3-3.5 Φ) in shallowest waters surveyed (~10m). Slightly coarser (2.5Φ) sediments plus relict gravels are present in swales where the wedge shoals. This supports mapping results indicating sand ridges migrated to the SW. Medium to fine sand is present at the deepest extent of the wedge; the grain size distribution matches a sample taken in the swash zone on the eastern flank of the new breach. Sediments may have been transported shoreward and then reworked post-Sandy. Samples seaward of the new breach were capped by a mud layer, which in turn had a layer of fine sand resting on it, evidence of a nascent ebb tidal deposit. At FIW, sediments in the shallow NE swale are finer (3.5Φ) and better sorted. As the region is underlain by relict sediments, these fine sands may be relicts exposed by storm-driven bedform migration. Deeper water (~22m w.d.) samples at FIW are coarser and contain shell hash. Sand on the lee side of the sand ridge, which CHIRP profiles show did not migrate significantly and accumulated sands, are medium (1.5 Φ), and match the grain sizes found on Fire Island beach. Muds contain heavy metals in concentrations consistent with transport from adjacent estuaries.

  7. GPM Satellite Video of Hurricane Joaquin's Movements

    NASA Video Gallery

    Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into a hurricane, the 3rd of the season--the difference is Joaquin could impact the US...

  8. Hurricane Isabel

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1: AIRS infrared channel 2333 (2616 cm-1)

    [figure removed for brevity, see original site] Figure 2: Total Water Vapor retrieved from AIRS infrared and AMSU-A microwave data

    September 18, 2003 These two false-color images show Hurricane Isabel viewed by the AIRS and AMSU-A instruments at 1:30 EDT in the morning of Thursday September 18, 2003. Isabel will be ashore within 12 hours, bringing widespread flooding and destructive winds. In figure 1 on the left, data retrieved by the AIRS infrared sensor shows the hurricane's eye as the small ring of pale blue near the upper left corner of the image. The dark blue band around the eye shows the cold tops of hundreds of powerful thunderstorms. These storms are embedded in the 120 mile per hour winds swirling counterclockwise around Isabel's eye. Cape Hatteras is the finger of land north-northwest of the eye. Isabel's winds will soon push ashore a 4- to 8-foot high mound of 'storm surge' and accompanying high surf, leading to flooding of Cape Hatteras and other islands of North Carolina's Outer Banks. Also seen in the image are several organized bands of cold, (blue) thunderstorm tops being pulled into the storm center. Other thunderstorm are forming north of the islands of Jamaica, Cuba, Hispaniola and Puerto Rico near the bottom of the picture.

    Figure 2 shows the geographical distribution and total amount of atmospheric water vapor associated with Isabel as inferred by AIRS and AMSU-A. Very humid areas appear deep red and surround the storm's eye in the ring of thunderstorms, as seen above. The enhancement of atmospheric water vapor in the storm is maintained by evaporation from the wind-churned sea surface. In turn, the water vapor powers the thunderstorms by condensing as rain and releasing the ocean's warmth into the atmosphere to drive strong convection. This makes Isabel and other hurricanes 'heat engines,' converting ocean water's warmth into

  9. A Reanalysis of Hurricane Andrew's Intensity.

    NASA Astrophysics Data System (ADS)

    Landsea, Christopher W.; Franklin, James L.; McAdie, Colin J.; Beven, John L., II; Gross, James M.; Jarvinen, Brian R.; Pasch, Richard J.; Rappaport, Edward N.; Dunion, Jason P.; Dodge, Peter P.

    2004-11-01

    Hurricane Andrew of 1992 caused unprecedented economic devastation along its path through the Bahamas, southeastern Florida, and Louisiana. Damage in the United States was estimated to be $26 billion (in 1992 dollars), making Andrew one of the most expensive natural disasters in U.S. history. This hurricane struck southeastern Florida with maximum 1-min surface winds estimated in a 1992 poststorm analysis at 125 kt (64 m s-1). This original assessment was primarily based on an adjustment of aircraft reconnaissance flight-level winds to the surface.Based on recent advancements in the understanding of the eyewall wind structure of major hurricanes, the official intensity of Andrew was adjusted upward for five days during its track across the Atlantic Ocean and Gulf of Mexico by the National Hurricane Center Best Track Change Committee. In particular, Andrew is now assessed by the National Hurricane Center to be a Saffir Simpson Hurricane Scale category-5 hurricane (the highest intensity category possible) at its landfall in southeastern Florida, with maximum 1-min winds of 145 kt (75 m s-1). This makes Andrew only the third category-5 hurricane to strike the United States since at least 1900. Implications for how this change impacts society's planning for such extreme events are discussed.

  10. Measuring the impact of Hurricane Katrina on access to a personal healthcare provider: the use of the National Survey of Children's Health for an external comparison group.

    PubMed

    Stehling-Ariza, Tasha; Park, Yoon Soo; Sury, Jonathan J; Abramson, David

    2012-04-01

    This paper examined the effect of Hurricane Katrina on children's access to personal healthcare providers and evaluated the use of propensity score methods to compare a nationally representative sample of children, as a proxy for an unexposed group, with a smaller exposed sample. 2007 data from the Gulf Coast Child and Family Health (G-CAFH) Study, a longitudinal cohort of households displaced or greatly impacted by Hurricane Katrina, were matched with 2007 National Survey of Children's Health (NSCH) data using propensity score techniques. Propensity scores were created using poverty level, household educational attainment, and race/ethnicity, with and without the addition of child age and gender. The outcome was defined as having a personal healthcare provider. Additional confounders (household structure, neighborhood safety, health and insurance status) were also examined. All covariates except gender differed significantly between the exposed (G-CAFH) and unexposed (NSCH) samples. Fewer G-CAFH children had a personal healthcare provider (65 %) compared to those from NSCH (90 %). Adjusting for all covariates, the propensity score analysis showed exposed children were 20 % less likely to have a personal healthcare provider compared to unexposed children in the US (OR = 0.80, 95 % CI 0.76, 0.84), whereas the logistic regression analysis estimated a stronger effect (OR = 0.28, 95 % CI 0.21, 0.39). Two years after Hurricane Katrina, children exposed to the storm had significantly lower odds of having a personal health care provider compared to unexposed children. Propensity score matching techniques may be useful for combining separate data samples when no clear unexposed group exists.

  11. EnKF OSSE Experiments Assessing the Impact of HIRAD Wind Speed and HIWRAP Radial Velocity Data on Analysis of Hurricane Karl (2010)

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Sippel, Jason A.; Braun, Scott A.; Miller, Timothy

    2012-01-01

    Previous studies (e.g., Zhang et al. 2009, Weng et al. 2011) have shown that radial velocity data from airborne and ground-based radars can be assimilated into ensemble Kalman filter (EnKF) systems to produce accurate analyses of tropical cyclone vortices, which can reduce forecast intensity error. Recently, wind speed data from SFMR technology has also been assimilated into the same types of systems and has been shown to improve the forecast intensity of mature tropical cyclones. Two instruments that measure these properties were present during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment in 2010 which sampled Hurricane Karl, and will next be co-located on the same aircraft for the subsequent NASA HS3 experiment. The High Altitude Wind and Rain Profiling Radar (HIWRAP) is a conically scanning Doppler radar mounted upon NASAs Global Hawk unmanned aerial vehicle, and the usefulness of its radial velocity data for assimilation has not been previously examined. Since the radar scans from above with a fairly large fixed elevation angle, it observes a large component of the vertical wind, which could degrade EnKF analyses compared to analyses with data taken from lesser elevation angles. The NASA Hurricane Imaging Radiometer (HIRAD) is a passive microwave radiometer similar to SFMR, and measures emissivity and retrieves hurricane surface wind speeds and rain rates over a much wider swath. Thus, this study examines the impact of assimilating simulated HIWRAP radial velocity data into an EnKF system, simulated HIRAD wind speed, and HIWRAP+HIRAD with the Weather Research and Forecasting (WRF) model and compares the results to no data assimilation and also to the Truth from which the data was simulated for both instruments.

  12. Marsh loss from 1984 - 2011 in the Breton Sound, Barataria and Terrebonne Basins, Louisiana, U.S.A.: Impacts of hurricanes and excess nutrients

    NASA Astrophysics Data System (ADS)

    Riter, J. C.; Kearney, M. S.; Turner, R.

    2012-12-01

    Twenty-four Landsat data sets (1984-2011), collected as close to peak vegetation growth as possible, were used to evaluate marsh vegetation health and marsh loss in Terrebonne, Barataria, and Breton Sound Basins. Marsh loss varies spatially and temporally in the basins: freshwater and most intermediate marshes located west of the Mississippi River and more than 40 km from the coast were determined to be more stable than marshes closer to the coast. In most areas of the three basins, vegetation health and marsh area from 1984-1992 were relatively stable with minor inter-annual fluctuations throughout each basin and only a few areas of localized marsh loss. By 1994, shoreline erosion, tidal creek erosion, and erosion of soil banks adjacent to canals had increased in marshes located <40 km from the Gulf of Mexico, although some sites suffered substantially greater erosion than most coastal areas. Wave erosion also increased around the shores of Lakes Salvador, Cataouatche, Levy and other large lakes by 1994. Marsh loss also occurred in marshes immediately west of the Mississippi River, especially in areas close to diversion inlets. Hurricane Ivan in 2004 produced little sustained widespread damage in the basin marshes. However, Hurricanes Katrina and Rita in 2005 and Gustav and Ike in 2008 caused extensive erosion of vegetation and the marsh substrate, especially near the inlet to Caernarvon diversion, but also near the Naomi and West Point a La Hache diversions inlets. We attribute the significant marsh damage from hurricanes to greater flooding, and greater wave and storm surge impacts due to diminished marsh soil strength from the effects of excess nutrients causing lower rhizome and root biomass and increased substrate decomposition rates.

  13. Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience

    PubMed Central

    Johnson, Andrew B.; Winker, Kevin

    2010-01-01

    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later. PMID:21152062

  14. Short-term hurricane impacts on a neotropical community of marked birds and implications for early-stage community resilience.

    PubMed

    Johnson, Andrew B; Winker, Kevin

    2010-11-30

    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later.

  15. GPM Captures Hurricane Odile

    NASA Video Gallery

    Animation revealing a swath of GPM/GMI precipitation rates over Hurricane Odile. The camera then moves down closer to the Hurricane to reveal DPR's volumetric view of Odile. As the camera rotates a...

  16. NASA's Hurricane Hunters

    NASA Video Gallery

    During the 2010 hurricane season, NASA deployed its piloted DC-8 and WB-57, and unmanned Global Hawk aircraft in a massive effort to collect as much data as possible, arming hurricane researchers w...

  17. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    article title:  Cloud Height Maps for Hurricanes Frances and Ivan     ... predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour ...

  18. Evaluation of the impacts of the Madden-Julian Oscillation on rainfall and hurricanes in Central and South America and the Atlantic Ocean using ICI-RAFT

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2013-12-01

    Based on the method of Regional Frequency Analysis (RFA) and L-moments (Hosking & Wallis, 1997), a tool was developed to estimate the frequency/intensity of a rainfall event of a particular duration using ground-based rainfall observations. Some of the code used to develop this tool was taken from the FORTRAN code provided by Hosking & Wallis and rewritten in Visual Basic 2010. This tool was developed at the International Center for Integrated Water Resources Management (ICIWaRM) and is referred to as the ICIWaRM Regional Analysis of Frequency Tool (ICI-RAFT) (Giovannettone & Wright, 2012). In order to study the effectiveness of ICI-RAFT, three case studies were selected for the analysis. The studies take place in selected regions within Argentina, Nicaragua, and Venezuela. Rainfall data were provided at locations throughout each country; total rainfall for specific periods were computed and analyzed with respect to several global climate indices using lag times ranging from 1 to 6 months. Each analysis attempts to identify a global climate index capable of predicting above or below average rainfall several months in advance, qualitatively and using an equation that is developed. The index that had the greatest impact was the MJO (Madden-Julian Oscillation), which is the focus of the current study. The MJO is considered the largest element of intra-seasonal (30 - 90 days) variability in the tropical atmosphere and, unlike other indices, is characterized by the eastward propagation of large areas of convective anomalies near the equator, propagating from the Indian Ocean east into the Pacific Ocean. The anomalies are monitored globally using ten different indices located on lines of longitude near the equator, with seven in the eastern hemisphere and three in the western hemisphere. It has been found in previous studies that the MJO is linked to summer rainfall in Southeast China (Zhang et al., 2009) and southern Africa (Pohl et al., 2007) and to rainfall patterns

  19. Weatherwords: The Hurricane Season.

    ERIC Educational Resources Information Center

    Buckley, Jim

    1991-01-01

    Information and anecdotes are provided for the following topics: the typical length of the hurricane season for the North Atlantic, Caribbean, and Gulf of Mexico; specifics related to the practice of naming hurricanes; and categorical details related to the Saffir/Simpson scale for rating hurricane magnitude. (JJK)

  20. The impact of Hurricane Katrina upon older adult nurses: an assessment of quality of life and psychological distress in the aftermath.

    PubMed

    James, Nadine T; Miller, Carl W; Nugent, Katherine; Welch, Cindy; Cabanna, Miriam; Vincent, Sharon

    2007-10-01

    The primary purpose of the current study was to evaluate the impact of Hurricane Katrina upon older nurses using cross sectional data from 291 respondents. Collected data served as the numerical predicate for the evaluation of quality of life and psychological distress among nurses who were affected by Hurricane Katrina. While the focus for the present study was upon older nurses, cross sectional data was reflected for the plenary sample as well. Predictors of Katrina's impact upon older nurses were identified through multinomial regression analyses and included the physical function subscale (OR=0.954), the fatigue subscale (OR=0.961), the arousal subscale (OR=4.190), average to poor health (OR=2.040), married (OR=2.769) and the MSPSS (OR = 0.780). Significant associations between age and storm impact (F=10.707, ñ=.001), depression (F=15.782, ñ< .001), social support (F=5.869, ñ=.016), health status (F=29.004, ñ<.001), anxiety (F=5.583, ñ=.019) and posttraumatic distress disorder (F .032, fñ= .46) remained after adjustment for other risk factors. These associations, as reflected in their respective mean scores, indicated that older nurses experienced greater storm impact (2.880 vs. 2.511), depressive symptoms (11.250 vs. 9.080), anxiety (77.800 vs. 75.430), posttraumatic distress (72.830 vs. 70.860) and lower health status (68.891 vs. 73.569). Accordingly, a more robust public policy paradigm for addressing the growing labor shortages in the medical community is needed. Heightened Congressional interest and increased resourcing is required in order to affect necessary programmatic, educational and institutional remediation. Furthermore, given the increasing role of older nurses in the work place, extensive studies are needed to evaluate their status and independent risk factors for sustaining quality of life and psychological well being among these contributors of health care.

  1. Relative Spectral Mixture Analysis for monitoring natural hazards that impact vegetation cover: the importance of the nonphotosynthetic fraction in understanding landscape response to drought, fire, and hurricane damage

    NASA Astrophysics Data System (ADS)

    Okin, G. S.

    2007-12-01

    Remote sensing provides a unique ability to monitor natural hazards that impact vegetation hydrologically. Here, the use of a new multitemporal remote sensing technique that employs free, coarse multispectral remote sensing data is demonstrated in monitoring short- and long-term drought, fire occurrence and recovery, and damage to hurricane-related mangrove ecosystems and subsequent recovery of these systems. The new technique, relative spectral mixture analysis (RSMA), provides information about the nonphotosynthetic fraction (nonphotosynthetic vegetation plus litter) of ground cover in addition to the green vegetation fraction. In some cases, RSMA even provides an improved ability to monitor changes in the green fraction compared to traditional vegetation indices or standard remote sensing products. In arid and semiarid regions, the nonphotosynthetic fraction can vary on an annual basis significantly more than the green fraction and is thus perfectly suited for monitoring drought in these regions. Mortality of evergreen trees due to long-term drought also shows up strongly in the nonphotosynthetic fraction as green vegetation is replaced by dry needles and bare trunks. The response of the nonphotosynthetic fraction to fire is significantly different from that of drought because of the combustion of nonphotosynthetic material. Finally, damage to mangrove ecosystems from hurricane damage, and their subsequent recovery, is readily observable in both the green and nonphotosynthetic fractions as estimated by RSMA.

  2. Hurricane Ike: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  3. Hurricane Gustav: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  4. The impact of housing displacement on the mental health of low-income parents after Hurricane Katrina.

    PubMed

    Fussell, Elizabeth; Lowe, Sarah R

    2014-07-01

    Previous studies in the aftermath of natural disasters have demonstrated relationships between four dimensions of displacement - geographic distance from the predisaster community, type of postdisaster housing, number of postdisaster moves, and time spent in temporary housing - and adverse psychological outcomes. However, to date no study has explored how these dimensions operate in tandem. The literature is further limited by a reliance on postdisaster data. We addressed these limitations in a study of low-income parents, predominantly non-Hispanic Black single mothers, who survived Hurricane Katrina and who completed pre and postdisaster assessments (N = 392). Using latent profile analysis, we demonstrated three profiles of displacement experiences within the sample: (1) returned, characterized by return to a predisaster community; (2) relocated, characterized by relocation to a new community, and (3) unstably housed, characterized by long periods in temporary housing and multiple moves. Using regression analyses, we assessed the relationship between displacement profiles and three mental health outcomes (general psychological distress, posttraumatic stress, and perceived stress), controlling for predisaster characteristics and mental health indices and hurricane-related experiences. Relative to participants in the returned profile, those in the relocated profile had significantly higher general psychological distress and perceived stress, and those in the unstably housed profile had significantly higher perceived stress. Based on these results, we suggest interventions and policies that reduce postdisaster housing instability and prioritize mental health services in communities receiving evacuees.

  5. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  6. The impact of housing displacement on the mental health of low-income parents after Hurricane Katrina.

    PubMed

    Fussell, Elizabeth; Lowe, Sarah R

    2014-07-01

    Previous studies in the aftermath of natural disasters have demonstrated relationships between four dimensions of displacement - geographic distance from the predisaster community, type of postdisaster housing, number of postdisaster moves, and time spent in temporary housing - and adverse psychological outcomes. However, to date no study has explored how these dimensions operate in tandem. The literature is further limited by a reliance on postdisaster data. We addressed these limitations in a study of low-income parents, predominantly non-Hispanic Black single mothers, who survived Hurricane Katrina and who completed pre and postdisaster assessments (N = 392). Using latent profile analysis, we demonstrated three profiles of displacement experiences within the sample: (1) returned, characterized by return to a predisaster community; (2) relocated, characterized by relocation to a new community, and (3) unstably housed, characterized by long periods in temporary housing and multiple moves. Using regression analyses, we assessed the relationship between displacement profiles and three mental health outcomes (general psychological distress, posttraumatic stress, and perceived stress), controlling for predisaster characteristics and mental health indices and hurricane-related experiences. Relative to participants in the returned profile, those in the relocated profile had significantly higher general psychological distress and perceived stress, and those in the unstably housed profile had significantly higher perceived stress. Based on these results, we suggest interventions and policies that reduce postdisaster housing instability and prioritize mental health services in communities receiving evacuees. PMID:24866205

  7. Communication, neighbourhood belonging and household hurricane preparedness.

    PubMed

    Kim, Yong-Chan; Kang, Jinae

    2010-04-01

    This paper reports on an examination of data on how local residents in Tuscaloosa, a mid-sized city in the state of Alabama, United States, responded to Hurricane Ivan of September 2004. The evaluation revealed that an integrated connection to community-level communication resources-comprising local media, community organisations and interpersonal networks-has a direct impact on the likelihood of engaging in pre-hurricane preparedness activities and an indirect effect on during-hurricane preparedness activities. Neighbourhood belonging mediated the relation between an integrated connection to community-level communication resources and during-hurricane preparedness activities. Neighbourhood belonging was determined to increase the likelihood of taking preparedness actions during Hurricane Ivan, but not prior to it. In addition, we discovered an interesting pattern for two different types of risk perceptions: social and personal risk perceptions. Social risk perceptions increase the likelihood of taking preventative steps before a hurricane while personal risk perceptions are positively related to engaging in preventative action during a hurricane.

  8. Tropical Storm Frances and Hurricane Ivan Situation Report, September 9, 2004 (10:00 PM EDT)

    SciTech Connect

    2004-09-09

    The report provides highlights related to impacts of Hurricane Frances and Hurricane Ivan in the Florida area. Sections on electric information, oil and gas information, and county outage data are provided.

  9. Tropical Storm Frances/ Hurricane Ivan Situation Report, September 10, 2014 (10:00 AM EDT)

    SciTech Connect

    2004-09-10

    The report provides highlights related to impacts of Hurricane Frances and Hurricane Ivan in the Florida area. Sections on electric information, oil and gas information, county outage data, and a table for restoration targets/status are provided.

  10. Hurricane Dean

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Location: The coast of Mexico from Manzanillo to Mazatlan Categorization: Tropical Depression Sustained Winds: 35 mph (56 km/hr)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image

    [figure removed for brevity, see original site] Click on the image to access AIRS Weather Snapshot for Hurricane Dean

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is

  11. Hurricane Felix

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Microwave Image

    These infrared and microwave images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, and show the remnants of the former Hurricane Felix over Central America.

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned

  12. Hurricane Isaac: observations and analysis of coastal change

    USGS Publications Warehouse

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  13. Hurricane Scientist talks GRIP, Hurricane Earl

    NASA Video Gallery

    Hurricane Earl, currently a powerful category 4 storm, is barreling north with the potential to batter the East Coast and threaten Labor Day plans for beachgoers from North Carolina to Massachusett...

  14. The Hurricane-Flood-Landslide Continuum: Forecasting Hurricane Effects at Landfall

    NASA Technical Reports Server (NTRS)

    Negri, A.; Golden, J. H.; Updike, R.

    2004-01-01

    Hurricanes, typhoons, and cyclones strike Central American, Caribbean, Southeast Asian and Pacific Island nations even more frequently than the U.S. The global losses of life and property from the floods, landslides and debris flows caused by cyclonic storms are staggering. One of the keys to reducing these losses, both in the U.S. and internationally, is to have better forecasts of what is about to happen from several hours to days before the event. Particularly in developing nations where science, technology and communication are limited, advance-warning systems can have great impact. In developing countries, warnings of even a few hours or days can mitigate or reduce catastrophic losses of life. With the foregoing needs in mind, we propose an initial project of three years total duration that will aim to develop and transfer a warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispanola. The Hurricane-Flood-Landslide Continuum will include satellite observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict near-future runoff, and streamflow changes in affected regions, and landslide models to warn when and where landslides and debris flows are imminent. Since surface communications are likely to be interrupted during these crises, the project also includes the capability to communicate disaster information via satellite to vital government officials in Puerto Rico, Haiti, and Dominican Republic.

  15. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  16. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.

  17. Predicting Hurricanes with Supercomputers

    SciTech Connect

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  18. Assessing hurricane season

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    With the official conclusion of the Atlantic hurricane season on 29 November, Irene was the only hurricane to strike the United States this year and the first one since Hurricane Ike made landfall in Texas in 2008, according to the National Oceanic and Atmospheric Administration (NOAA). Irene “broke the ‘hurricane amnesia’ that can develop when so much time lapses between landfalling storms,” indicated Jack Hayes, director of NOAA's National Weather Service. “This season is a reminder that storms can hit any part of our coast and that all regions need to be prepared each and every season.” During the season, there were 19 tropical storms, including 7 that became hurricanes; 3 of those were major hurricanes, of category 3 or above. The activity level was in line with NOAA predictions. The agency stated that Hurricane Irene was an example of improved accuracy in forecasting storm tracks: NOAA National Hurricane Center had accurately predicted the hurricane's landfall in North Carolina and its path northward more than 4 days in advance.

  19. Hurricane-Related Exposure Experiences and Stressors, Other Life Events, and Social Support: Concurrent and Prospective Impact on Children's Persistent Posttraumatic Stress Symptoms

    ERIC Educational Resources Information Center

    La Greca, Annette M.; Silverman, Wendy K.; Lai, Betty; Jaccard, James

    2010-01-01

    Objective: We investigated the influence of hurricane exposure, stressors occurring during the hurricane and recovery period, and social support on children's persistent posttraumatic stress (PTS). Method: Using a 2-wave, prospective design, we assessed 384 children (54% girls; mean age = 8.74 years) 9 months posthurricane, and we reassessed 245…

  20. Trusteeship and Governance: The Impact on African Americans in Higher Education

    ERIC Educational Resources Information Center

    Wright, Dianne

    2006-01-01

    The one aspect of education that impacts all levels and persons involved is that of governance. Governance is defined as the setting of policies. More specifically, it occurs when one is involved in the establishing or changing of operating policies, i.e., rules by which institutions make decisions. Internally, governance includes local boards of…

  1. Collective Bargaining and Conflict: Impacts on School Governance

    ERIC Educational Resources Information Center

    Cresswell, Anthony M.; Simpson, Daniel

    1977-01-01

    Two key elements define the stability of the relationship between the school board and the superintendent and of the governance structure--vulnerability, the existence of, or lack of, checks and balances in the structure, and consensus, the agreement or lack of agreement on governance pattern and system goals. (Author/IRT)

  2. The economics and ethics of Hurricane Katrina.

    PubMed

    Rockwell, Llewellyn H; Block, Walter E

    2010-01-01

    How might free enterprise have dealt with Hurricane Katrina and her aftermath. This article probes this question at increasing levels of radicalization, starting with the privatization of several government “services” and ending with the privatization of all of them.

  3. Hurricanes : get prepared !

    NASA Astrophysics Data System (ADS)

    Nauroy, Maëlle

    2013-04-01

    Living in France, near Paris, we have the chance not to be exposed to natural hazards. But on TV we can see, almost every year, geological disasters affecting people from all around the world. Sometimes it also affects us indirectly. For example, the Icelandic volcanic eruption of 2010 prevented some of my students to go on holidays because of the air travel disruption. Since then, every year, we study a natural disaster that has just made the headlines. This topic is of great interest for students because it is connected with their everyday life, with what they see on the news at that time. This year, they were amazed that a city as New York could be struck so violently by a hurricane. Understanding the formation of a hurricane and the consequences of such an event made them think about how to educate people and warn them in case of a hurricane. As a matter of fact, history teaches that a lack of hurricane awareness and preparation are common threads among all major hurricane disasters. By knowing the vulnerability and what actions people should take, it is possible to reduce the effects of a hurricane disaster. They designed posters, showing how a hurricane form, the risks and what to do in case of a hurricane alert. They used TV news broadcasts and educational videos as well as videos from the National Hurricane Center [of the United-States]. Later, they tried to model the formation of a hurricane and the consequences of storm surge, high winds and inland flooding on a coastal area. They filmed their experiments in order to create an interactive exhibition on hurricanes, to be displayed in the school library for other students.

  4. High Impact District Governance: Effective School Board Member Actions and Behaviors

    ERIC Educational Resources Information Center

    Rindo, Roger J.

    2010-01-01

    The purpose of this study was to examine school board member behaviors to determine how those board members operationalized the broad constructs of high impact governance found in the literature. Behaviors of high impact governance were defined in this study as: Focusing on the district's strategic, long-term directions; addressing the…

  5. Impact of ocean warm layer thickness on the intensity of hurricane Katrina in a regional coupled model

    NASA Astrophysics Data System (ADS)

    Seo, Hyodae; Xie, Shang-Ping

    2013-10-01

    The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 °C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.

  6. Recovering from Hurricane Katrina

    ERIC Educational Resources Information Center

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  7. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  8. Hurricane! Coping With Disaster

    NASA Astrophysics Data System (ADS)

    Lifland, Jonathan

    A new AGU book, Hurricane! Coping With Disaster, analyzes the progress made in hurricane science and recounts how advances in the field have affected the public's and the scientific community's understanding of these storms. The book explores the evolution of hurricane study, from the catastrophic strike in Galveston, Texas in 1900—still the worst natural disaster in United States history—to today's satellite and aircraft observations that track a storm's progress and monitor its strength. In this issue, Eos talks with Robert Simpson, the books' senior editor.Simpson has studied severe storms for more than 60 years, including conducting one of the first research flights through a hurricane in 1945. He was the founding director of the (U.S.) National Hurricane Research Project and has served as director of the National Hurricane Center. In collaboration with Herbert Saffir, Simpson helped design and implement the Saffir/Simpson damage potential scale that is widely used to identify potential damage from hurricanes.

  9. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  10. The impact of Hurricane Andrew on deviant behavior among a multi-racial/ethnic sample of adolescents in Dade County, Florida: a longitudinal analysis.

    PubMed

    Khoury, E L; Warheit, G J; Hargrove, M C; Zimmerman, R S; Vega, W A; Gil, A G

    1997-01-01

    Findings from a longitudinal study are presented on the relationships between the problems and stresses resulting from Hurricane Andrew and posthurricane minor deviant behavior. The sample (N = 4,978) included Hispanic, African-American, and White non-Hispanic middle school students enrolled in Dade County, Florida public schools. Two waves of data were collected prior to the hurricane; a third was obtained approximately 6 months following the storm. Results indicated that females were likely to report higher levels of hurricane-related stress symptoms than males. After controlling for prehurricane levels of minor deviance, family support, and race/ethnicity, hurricane stress symptom level remained a significant predictor of posthurricane minor deviant behavior. The findings lend support to stress theories of social deviance. PMID:9018678

  11. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    USGS Publications Warehouse

    Fisher, Irene; Phillips, Patrick; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  12. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  13. The impact of Hurricane Andrew on deviant behavior among a multi-racial/ethnic sample of adolescents in Dade County, Florida: a longitudinal analysis.

    PubMed

    Khoury, E L; Warheit, G J; Hargrove, M C; Zimmerman, R S; Vega, W A; Gil, A G

    1997-01-01

    Findings from a longitudinal study are presented on the relationships between the problems and stresses resulting from Hurricane Andrew and posthurricane minor deviant behavior. The sample (N = 4,978) included Hispanic, African-American, and White non-Hispanic middle school students enrolled in Dade County, Florida public schools. Two waves of data were collected prior to the hurricane; a third was obtained approximately 6 months following the storm. Results indicated that females were likely to report higher levels of hurricane-related stress symptoms than males. After controlling for prehurricane levels of minor deviance, family support, and race/ethnicity, hurricane stress symptom level remained a significant predictor of posthurricane minor deviant behavior. The findings lend support to stress theories of social deviance.

  14. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies. PMID:27261279

  15. Impact of Information Technology Governance Structures on Strategic Alignment

    ERIC Educational Resources Information Center

    Gordon, Fitzroy R.

    2013-01-01

    This dissertation is a study of the relationship between Information Technology (IT) strategic alignment and IT governance structure within the organization. This dissertation replicates Asante (2010) among a different population where the prior results continue to hold, the non-experimental approach explored two research questions but include two…

  16. Coastal Change During Hurricane Dennis 2005

    USGS Publications Warehouse

    Morgan, Karen

    2009-01-01

    Hurricane Dennis made landfall as a Category 3 storm on Santa Rosa Island in the Florida Panhandle on July 10, 2005. Exposed to some of the strongest winds, Santa Rosa Island suffered erosion, as well as severe overwash. A storm surge of 2 m was recorded near Navarre Beach. The U.S. Geological Survey (USGS) and U.S. Army Corps of Engineers (USACE) are collaborating in a research project investigating coastal change that occurred as a result of Hurricane Dennis. The USGS acquired still oblique aerial photography both before and after hurricane landfall to better understand the impacts of extreme storms on coastal environments. On Tuesday, July 12, 2005, scientists conducted an aerial photographic survey of Santa Rosa Island, Florida, that was impacted by Hurricane Dennis. The photographs were compared to pre-Dennis photographs taken in July 2001 and after the landfall of Hurricane Ivan in September 2004 to illustrate extreme coastal change. On Santa Rosa Island, the storm eroded dunes and beaches, and overwashed roads. In Navarre Beach, parking lots and roads were covered with sand and dune walkovers damaged or destroyed.

  17. Hurricane risk management and climate information gatekeeping in southeast Florida

    NASA Astrophysics Data System (ADS)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  18. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  19. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  20. Impact of Hurricane Katrina on the Educational System in Southeast Louisiana: One-Year Follow-Up

    ERIC Educational Resources Information Center

    DeVaney, Thomas A.; Carr, Sonya C.; Allen, Diane D.

    2009-01-01

    Natural disasters have been shown to have a substantial impact on school-age children. Consequently, schools are positioned to be a source of support while helping students resume familiar roles and routines. However, few studies have examined how schools prepare for and respond to disasters. In this study, we investigated the impact of Hurricane…

  1. Putting Hurricane Sandy in Historical and Geological Context (Invited)

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Lin, N.

    2013-12-01

    Damage from hurricanes has increased markedly over the last century, largely the result of increased coastal population and wealth. The recent impacts of Hurricane Sandy, a minimal category 1 storm on the Saffir-Simpson scale (sustained winds of ~80 mph), in New York and New Jersey highlight the vulnerability of the northeastern United States to tropical cyclone strikes. Despite the relatively low sustained wind speeds associated with Sandy, the large size, shore-perpendicular track, and slow movement of the storm resulted in a significant surge along the New Jersey and New York coastline (e.g., 2.75 m in New York City). Making matters worse, the peak in surge in New York City (NYC) and surrounds coincided with a high tide, resulting in total storm tide heights of more than 3 meters above mean sea level in NYC. Current estimates of the damage resulting from Hurricane Sandy exceed 71 billion USD and 285 lives were lost. While direct hurricane strikes to NYC and New Jersey coast were rare in the 20th century (a cat 1 hurricane made landfall in southern NJ in 1903), hurricanes tracked slightly east and impacted Long Island and southern New England in 1938, 1944, 1954, 1960, 1976, 1985, and 1991. Looking back to the 19th and 18th centuries reveals that NYC and the New Jersey coast were struck by hurricanes in 1788, 1821 and 1893. The combination of documentary evidence and hydrodynamic modeling of these historic events indicates that the intensity of these storms were much greater than that of Hurricane Sandy, with the 1788 and 1821 storms likely making landfall at category 3 intensity. Given the increase in coastal population and development over the last two centuries, if storms like these were to occur today they would likely result in significantly more damage and loss of life than Hurricane Sandy. Overwash-deposit based reconstructions of hurricane landfalls suggest that the northeastern US may have at times experienced intense hurricane strikes much more

  2. 25 CFR 170.110 - How can State and local governments prevent discrimination or adverse impacts?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Eligibility Consultation, Collaboration, Coordination § 170.110 How can State and local governments prevent discrimination or adverse impacts? (a) Under 23 U.S.C. 134 and 135, and 23 CFR part 450, State and...

  3. Hurricane Irene Over Bahamas

    NASA Video Gallery

    Video of Hurricane Irene compiled from a series of Astronaut Photography still images taken from the International Space Station on Aug. 24, 2011 (2:12-2:15PM EST). These frames were taken as the I...

  4. Analyzing Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Convertino, Angelyn; Meyer, Stephan; Edwards, Becca

    2015-03-01

    Post-tropical Storm Sandy underwent extratropical transition shortly before making landfall in southern New Jersey October 29 2012. Data from this system was compared with data from Hurricane Ike (2008) which represents a classic hurricane with a clear eye wall and symmetry after landfall. Storm Sandy collided with a low pressure system coming in from the north as the hurricane made landfall on the US East coast. This contributed to Storm Sandy acting as a non-typical hurricane when it made landfall. Time histories of wind speed and wind direction were generated from data provided by Texas Tech's StickNet probes for both storms. The NOAA Weather and Climate program were used to generate radar loops of reflectivity during the landfall for both storms; these loops were compared with time histories for both Ike and Sandy to identify a relationship between time series data and storm-scale features identified on radar.

  5. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  6. TRMM Hurricane Heat Engine

    NASA Video Gallery

    TRMM provides a closer look at hurricanes using a unique combination of passive and active microwave instruments designed to peer inside cloud systems and measure rainfall. TRMM allows scientists t...

  7. Andrew's Aftermath: Hurricane "Saves" Miami Public Library.

    ERIC Educational Resources Information Center

    St. Lifer, Evan

    1994-01-01

    Examines the impact of Hurricane Andrew on the Miami-Dade Public Library System (MDPLS). Topics discussed include the community's response to the sudden lack of library services; the use of library branches as emergency relief centers and communications centers; library disaster policies; and visions for MDPLS under a new director. (LRW)

  8. Hurricanes, Coral Bleaching, and the Florida Keys Reef Tract: Can Hurricanes Benefit Temperature Stressed Corals?

    NASA Astrophysics Data System (ADS)

    Manzello, D. P.

    2006-12-01

    The Florida reef tract has been impacted by three mass coral bleaching events, two tropical storms, and 12 hurricanes from 1997 to 2005. Decreased sea temperatures associated with high winds from hurricanes or tropical storms were apparent in 1998, 1999, 2001, 2004, and 2005 at the five SEAKEYS C-MAN stations situated on the Florida reef tract. Given the potential for cooler sea temperatures to ameliorate the severity of coral bleaching, the duration and magnitude that sea temperatures cooled from the passage of hurricanes and tropical storms was assessed. The timing of these storms is particularly relevant as 1998 and 2005 were major coral bleaching years, whereas 1999, 2001, and 2004 were not. Sea temperatures decreased from 0.3 to 3.0 degrees Celsius when the track of a hurricane or tropical storm passed within 375 km of any of these five sites. Sea temperature decreased to below the long-term average from one to 26 days when the track of a hurricane or tropical storm was within 275 km. The potential for hurricanes and tropical storms to benefit temperature stressed corals is dependent on several temporal and spatial considerations.

  9. Hurricane hazards: a national threat

    USGS Publications Warehouse

    ,

    2005-01-01

    Hurricanes bring destructive winds, storm surge, torrential rain, flooding, and tornadoes. A single storm can wreak havoc on coastal and inland communities and on natural areas over thousands of square miles. In 2005, Hurricanes Katrina, Rita, and Wilma demonstrated the devastation that hurricanes can inflict and the importance of hurricane hazards research and preparedness. More than half of the U.S. population lives within 50 miles of a coast, and this number is increasing. Many of these areas, especially the Atlantic and Gulf coasts, will be in the direct path of future hurricanes. Hawaii is also vulnerable to hurricanes.

  10. Lagrangian coherent structures in hurricanes

    NASA Astrophysics Data System (ADS)

    Lipinski, Doug; Mohseni, Kamran

    2011-11-01

    We present the results of a ``surface tracking'' algorithm for efficiently computing Lagrangian coherent structure (LCS) surfaces in three dimensions. The algorithm is applied to data from a Weather Research and Forecasting simulation of hurricane Rita. The highly complicated LCS surfaces reveal complex dynamics and transport in the hurricane, particularly in the lower atmosphere boundary layer and the upper level outflow. The lower level transport in the hurricane is of particular importance for accurate intensity prediction in hurricane forecasts due to the uncertainty in the ocean-atmosphere interaction. Understanding the lower level transport and mixing behavior in hurricanes could lead to significant advances in hurricane intensity prediction.

  11. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    PubMed

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  12. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    PubMed

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient. PMID:26168028

  13. Impact of government regulation on health care technology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Robert D.

    1994-12-01

    Increased government regulation of the medical device industry produces higher expenses, a longer time to return investment capital, and greater uncertainty. As a result there are fewer new ventures and reduced efforts to develop new technology in established companies. The current federal regulatory framework has shifted from monitoring the product to monitoring the process. The inability to reach perfect performance in such a regulated environment subject to continuous and fluid interpretation guarantees non-compliance and growing ethical tension. Without new medical technology, we may be unable to maintain quality medical coverage in the face of rising demand. The author proposes risk assessment to set regulatory priorities; the conversion of a national weapons lab to a national device testing lab; the establishment of device standards and the monitoring of in-use performance against these standards; and the education of patients and users as to the results of these examinations.

  14. Environmental pediatrics and its impact on government health policy.

    PubMed

    Goldman, Lynn; Falk, Henry; Landrigan, Philip J; Balk, Sophie J; Reigart, J Routt; Etzel, Ruth A

    2004-04-01

    Recent public recognition that children are different from adults in their exposures and susceptibilities to environmental contaminants has its roots in work that began >46 years ago, when the American Academy of Pediatrics (APA) established a standing committee to focus on children's radiation exposures. We summarize the history of that important committee, now the AAP Committee on Environmental Health, including its statements and the 1999 publication of the AAP Handbook of Pediatric Environmental Health, and describe the recent emergence of federal and state legislative and executive actions to evaluate explicitly environmental health risks to children. As a result in large part of these efforts, numerous knowledge gaps about children's health and the environment are currently being addressed. Government efforts began in the 1970s to reduce childhood lead poisoning and to monitor birth defects and cancer. In the 1990s, federal efforts accelerated with the Food Quality Protection Act, an executive order on children's environmental health, the Agency for Toxic Substances and Disease Registry/Environmental Protection Agency Pediatric Environmental Health Specialty Units, and National Institute of Environmental Health Sciences/Environmental Protection Agency Centers of Excellence in Research in Children's Environmental Health. In this decade, the Children's Environmental Health Act authorized the National Children's Study, which has the potential to address a number of critical questions about children's exposure and health. The federal government has expanded efforts in control and prevention of childhood asthma and in tracking of asthma, birth defects, and other diseases that are linked to the environment. Efforts continue on familiar problems such as the eradication of lead poisoning, but new issues, such as prevention of childhood exposure to carcinogens and neurotoxins other than lead, and emerging issues, such as endocrine disruptors and pediatric drug

  15. Mortality associated with Hurricane Katrina--Florida and Alabama, August-October 2005.

    PubMed

    2006-03-10

    On August 25, 2005, Hurricane Katrina made landfall between Hallandale Beach and Aventura, Florida, as a Category 1 hurricane, with sustained winds of 80 mph. Storm effects, primarily rain, flooding, and high winds, were substantial; certain areas reported nearly 12 inches of rainfall. After crossing southern Florida and entering the Gulf of Mexico, the hurricane strengthened and made landfall in southeastern Louisiana on August 29 as a Category 3 hurricane, with sustained winds of 125 mph. Katrina was one of the strongest hurricanes to strike the United States during the past 100 years and was likely the nation's costliest natural disaster to date. This report summarizes findings and recommendations from a review of mortality records of Florida's Medical Examiners Commission (FMEC) and the Alabama Department of Forensic Science (ADFS). CDC was invited by the Florida Department of Health (FDOH) and the Alabama Department of Public Health (ADPH) to assess the mortality related to Hurricane Katrina. The mortality review was intended to provide county-based information that would be used to 1) define the impact of the hurricane, 2) describe the etiology of deaths, and 3) identify strategies to prevent or reduce future hurricane-related mortality. Combined, both agencies identified five, 23, and 10 deaths, respectively, that were directly, indirectly, or possibly related to Hurricane Katrina. Information from the characterization of these deaths will be used to reduce hurricane-related mortality through early community awareness of hurricane-related risk, prevention measures, and effective communication of a coordinated hurricane response plan.

  16. The Utility of Vulnerability and Social Capital Theories in Studying the Impact of Hurricane Katrina on the Elderly

    ERIC Educational Resources Information Center

    Durant, Thomas J., Jr.

    2011-01-01

    The definition of a disaster is followed by an explanation of vulnerability and social capital theories. The importance of using a sound theoretical framework and the utility and efficacy of vulnerability and social capital theories in studying the impact of natural disasters on the elderly population are emphasized and discussed. The conclusion…

  17. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  18. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy.

    PubMed

    Phillips, Patrick J; Gibson, Catherine A; Fisher, Shawn C; Fisher, Irene J; Reilly, Timothy J; Smalling, Kelly L; Romanok, Kristin M; Foreman, William T; ReVello, Rhiannon C; Focazio, Michael J; Jones, Daniel K

    2016-06-30

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region. PMID:27177500

  19. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    USGS Publications Warehouse

    Phillips, Patrick; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly; Romanok, Kristin; Foreman, William; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  20. Dual Hurricanes in the Atlantic

    NASA Video Gallery

    Cameras on the International Space Station show views of Hurricane Julia and Hurricane Igor, both moving west-northwest across the Atlantic on Sept. 14, 2010. At the time the video was captured, Ju...

  1. IMERG Video of Hurricane Sandra

    NASA Video Gallery

    NASA IMERG Data Hurricane Sandra's Heavy Rainfall This IMERG rainfall analysis indicates that moisture flowing from Hurricane Sandra caused heavy rainfall totals of over 700 mm (28 inches) in an ar...

  2. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  3. Carbon monoxide exposures after hurricane Ike - Texas, September 2008.

    PubMed

    2009-08-14

    During power outages after hurricanes, survivors can be at risk for carbon monoxide (CO) poisoning if they use portable generators improperly. On September 13, 2008, Hurricane Ike struck the coast of Texas, leaving approximately 2.3 million households in the southeastern portion of the state without electricity. Six days later, 1.3 million homes were still without electrical power. To assess the impact of storm-related CO exposures and to enhance prevention efforts, CDC analyzed data from five disparate surveillance sources on CO exposures reported during September 13--26 in counties of southeast Texas that were declared disaster areas by the federal government. This report describes the results of that analysis, which indicated that one data source, Texas poison centers, received reports of 54 persons with storm-related CO exposures during the surveillance period. Another data source, the Undersea and Hyperbaric Medical Society (UHMS) hyperbaric oxygen treatment database, reported that 15 persons received hyperbaric oxygen treatment for storm-related CO poisoning. Medical examiners, public health officials, and hospitals in Texas reported that seven persons died from storm-related CO poisoning. Among the data sources, the percentage of reported storm-related CO exposures caused by improper generator use ranged from 82% to 87%. These findings underscore the need for effective prevention messages during storm preparation, warnings, and response periods regarding the correct use of generators and the installation and maintenance of battery-powered CO detectors.

  4. Hurricane season could be active

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Storm activity during the 2003 Atlantic hurricane season likely will be above average, the U.S. National Oceanic and Atmospheric Administration noted on 19 May.The outlook could include 11 to 15 tropical storms, as well as 6 to 9 hurricanes, of which 2 to 4 could be classified as major hurricanes rated as category 3 or higher on the Saffir-Simpson Hurricane Scale.

  5. Predicting the hurricane damage ratio of commercial buildings by claim payout from Hurricane Ike

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Kim, T. H.; Choi, J. S.; Son, K.

    2013-07-01

    The increasing occurrence of natural disaster events and related damages have led to a growing demand for models that predict financial loss. Although considerable research has studied the financial losses related to natural disaster events, and has found significant predictors, there has not yet been a comprehensive study that addresses the relationship among the vulnerabilities, natural disasters, and economic losses of the individual buildings. This study identified hurricanes and their vulnerability indicators in order to establish a metric to predict the related financial loss. We identify hurricane-prone areas by imaging the spatial distribution of the losses and vulnerabilities. This study utilized a Geographical Information System (GIS) to combine and produce spatial data, as well as a multiple linear regression method, to establish a hurricane damage prediction model. As the dependent variable, we utilized the following ratio to predict the real pecuniary loss: the value of the Texas Windstorm Insurance Association (TWIA) claim payout divided by the appraised values of the buildings. As independent variables, we selected the hurricane indicators and vulnerability indicators of the built environment and the geographical features. The developed statistical model and results can be used as important guidelines by insurance companies, government agencies, and emergency planners for predicting hurricane damage.

  6. Public perceptions of hurricane modification.

    PubMed

    Klima, Kelly; Bruine de Bruin, Wändi; Morgan, M Granger; Grossmann, Iris

    2012-07-01

    If hurricane modification were to become a feasible strategy for potentially reducing hurricane damages, it would likely generate public discourse about whether to support its implementation. To facilitate an informed and constructive discourse, policymakers need to understand how people perceive hurricane modification. Here, we examine Florida residents' perceptions of hurricane modification techniques that aim to alter path and wind speed. Following the mental models approach, we conducted a survey study about public perceptions of hurricane modification that was guided by formative interviews on the topic. We report a set of four primary findings. First, hurricane modification was perceived as a relatively ineffective strategy for damage reduction, compared to other strategies for damage reduction. Second, hurricane modification was expected to lead to changes in projected hurricane path, but not necessarily to the successful reduction of projected hurricane strength. Third, more anger was evoked when a hurricane was described as having changed from the initially forecasted path or strength after an attempted modification. Fourth, unlike what we expected, participants who more strongly agreed with statements that recognized the uncertainty inherent in forecasts reported more rather than less anger at scientists across hurricane modification scenarios. If the efficacy of intensity-reduction techniques can be increased, people may be willing to support hurricane modification. However, such an effort would need to be combined with open and honest communications to members of the general public.

  7. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  8. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  9. Mortality from Hurricane Andrew.

    PubMed

    Lew, E O; Wetli, C V

    1996-05-01

    Hurricane Andrew, a category 4 storm, made landfall in South Florida on August 24, 1992, and caused extensive structural and environmental damage. The Dade County Medical Examiner Department investigated 15 deaths directly related to the storm and another 15 natural deaths indirectly related to the storm. The aftermath of the hurricane continued to create circumstances that lead to 32 accidental deaths, five suicides, and four homicides over the next six months. Traffic fatalities due to uncontrolled intersections accounted for one-third of the post-storm accidental deaths. Dyadic deaths (homicide-suicide) doubled in rate for the six months following the storm. The limited number of direct hurricane deaths is attributed to advance storm warnings, its occurrence on a weekend, the storm's passage through less populated areas of the county, and the relatively modest amount of accompanying rainfall.

  10. Understanding Severe Hurricanes

    NASA Astrophysics Data System (ADS)

    Holland, Greg J.

    2008-03-01

    Hurricanes are complex phenomena, whose understanding involves many facets, of which my presentation will provide an overall flavor and review. Understanding the physical hurricane involves a complex amalgam of fluid dynamics, thermodynamics and scale interactions. The basic structure is one of a fluid vortex, which dictates everything from the characteristic spiral shape to the clear eye region. Energetically, once formed a hurricane is a self sustaining heat engine, one that extracts energy from the enthalpy difference between the warm ocean surface and the cold upper atmosphere, and one that will continue its merry way until it is destroyed by some external influence (such as landfall). Hurricanes also are a response to the global climate in which they develop and can feed back to influence and perhaps even change that climate. For example a series of hurricanes moving into the higher latitudes in the Pacific can set off a train of events that are still affecting European weather a year later. From a societal perspective they are the most dangerous and deadly of all natural atmospheric systems, capable of causing widespread destruction and long-term disruptions to entire societies. The damage wreaked by Katrina in New Orleans provides a canonical example, but this was by no means the worse cyclone in history. Even lesser damage on a small island nation can be much more catastrophic and exceed their entire gross domestic product. This capacity for disruption arises from three main mechanisms: the high surface winds, the response of the ocean to these winds, and the intense rainfall. These have widely different contributions in different storms: the extended region of high winds and particularly the storm-surge response were dominant factors in Katrina; whereas the >10,000 deaths by Hurricane Mitch arose entirely from rainfall and the associated flooding and landslides. Societal response to this danger involves complex interplays of warning, communication culture

  11. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  12. Hurricanes Katrina and Rita: Temporary Emergency Impact Aid Provided Education Support for Displaced Students. Report to the Congressional Requesters. GAO-11-839

    ERIC Educational Resources Information Center

    Scott, George A.

    2011-01-01

    In August and September 2005, Hurricanes Katrina and Rita devastated large portions of the U.S. Gulf Coast, resulting in nearly 2,000 deaths and severe damage to 305,000 houses and apartments. Thousands of families relocated to communities throughout the United States and enrolled their children in local public or private schools. Some families…

  13. A Test of the Family Stress Model on Toddler-Aged Children's Adjustment among Hurricane Katrina Impacted and Nonimpacted Low-Income Families

    ERIC Educational Resources Information Center

    Scaramella, Laura V.; Sohr-Preston, Sara L.; Callahan, Kristin L.; Mirabile, Scott P.

    2008-01-01

    Hurricane Katrina dramatically altered the level of social and environmental stressors for the residents of the New Orleans area. The Family Stress Model describes a process whereby felt financial strain undermines parents' mental health, the quality of family relationships, and child adjustment. Our study considered the extent to which the Family…

  14. The Impact of Teacher Qualifications on Student Achievement: An Examination of Schools in New Orleans Pre- and Post-Hurricane Katrina

    ERIC Educational Resources Information Center

    Stewart, Jennifer Michelle

    2012-01-01

    One important outcome of the restructuring of the New Orleans school system post-Hurricane Katrina, and the subsequent performance of students, was an awareness that some fundamental premises in No Child Left Behind (NCLB) should be revisited. An examination of student performance in the restructured school system, for example, raised questions…

  15. Mining royalties: a global study of their impact on investors, government and civil society

    SciTech Connect

    Otto James

    2006-08-15

    The book discusses the history of royalties and the types currently in use, covering issues such as tax administration, revenue distribution and reporting. It identifies the strengths and weaknesses of various royalty approaches and their impact on production decisions and mine economics. A section on governance looks at the management of mining revenue by governments and the need for transparency. There is an attached CD with 4 appendixes with examples of royalty legislation from over 40 countries. 10 figs., 40 tabs., 4 apps.

  16. Morbidity of Hurricane Frederic.

    PubMed

    Longmire, A W; Ten Eyck, R P

    1984-05-01

    On September 12, 1979, Hurricane Frederic struck the Gulf Coasts of Mississippi and Alabama. A retrospective review of emergency department logs for a three-week period surrounding the storm was conducted to determine the amount and type of back up needed for an emergency department to cope with the results of such a disaster. There was a significant increase in the number of patients presenting to the emergency department for at least two weeks after the storm, with the greatest demand being for professionals skilled in outpatient trauma management. The nature of hurricanes is discussed, as are specific items to be considered in disaster planning for areas subjected to these storms.

  17. Falling out of the Ivory Tower: a Case Study of Mixing Hurricane Science, Politics, and the Media

    NASA Astrophysics Data System (ADS)

    Curry, J. A.

    2006-12-01

    During the past year, I was one of a group of several scientists investigating trends in hurricane characteristics that became embroiled in a public and acrimonious debate on the role of global warming in increasing hurricane activity. None of us had any substantial prior experience with the media or policy makers. Further, none of us had previously made public statements regarding global warming nor were we experts on the attribution of global warming. Hurricane Katrina served as a focusing event on the subject of global warming, and it often seemed like the fate of public acceptance of global warming hinged on the latest development in the hurricane and global warming debate. In the context of our experiences over the past year, this talks summarizes - challenges that we have faced in communicating "relevant" science to the public and policy makers in the context of the values gap between scientists, policy makers, and reporters. - the dilemma of involvement with policy makers and advocacy groups - the impact of political and scientific bias on the scientific process, including "turf wars" among scientists and government agencies, and the role of professional societies and blogs.

  18. The Dirty Dozen: Twelve Failures of the Hurricane Katrina Response and How Psychology Can Help

    ERIC Educational Resources Information Center

    Gheytanchi, Anahita; Joseph, Lisa; Gierlach, Elaine; Kimpara, Satoko; Housley, Jennifer; Franco, Zeno E.; Beutler, Larry E.

    2007-01-01

    This comprehensive analysis addresses the United States' alarming lack of preparedness to respond effectively to a massive disaster as evidenced by Hurricane Katrina. First, a timeline of problematic response events during and after Hurricane Katrina orients readers to some of the specific problems encountered at different levels of government.…

  19. On hurricane energy

    NASA Astrophysics Data System (ADS)

    Michaud, Louis M.

    2012-10-01

    Warm seawater is the energy source for hurricanes. Interfacial sea-to-air heat transfer without spray ranges from 100 W m-2 in light wind to 1,000 W m-2 in hurricane force wind. Spray can increase sea-to-air heat transfer by two orders of magnitude and result in heat transfers of up to 100,000 W m-2. Drops of spray falling back in the sea can be 2-4 °C colder than the drops leaving the sea, thus transferring a large quantity of heat from sea to air. The heat of evaporation is taken from the sensible heat of the remainder of the drop; evaporating approximately 0.3 % of a drop is sufficient to reduce its temperature to the wet bulb temperature of the air. The heat required to evaporate hurricane precipitation is roughly equal to the heat removed from the sea indicating that sea cooling is due to heat removal from above and not to the mixing of cold water from below. The paper shows how case studies of ideal thermodynamic processes can help explain hurricane intensity.

  20. Response to hurricane disasters.

    PubMed

    Shatz, David V; Wolcott, Katharine; Fairburn, Jennifer Bencie

    2006-06-01

    Unlike most natural and man-made disasters, preparation and planning for hurricanes is possible and effective. Medical needs can be disparate, given the large geographic area involved and the often-prolonged recovery phase. All aspects of medical response, from first responders to hospitals, can directly and negatively be affected by the storm. Planning and practice, however, can drastically improve the outcome.

  1. Hurricanes as teachers.

    PubMed

    Fore, Vickie E

    2002-01-01

    Hurricane Floyd came ashore and raced through eastern North Carolina on September 16, 1999. Even though Floyd's effects were devastating, some home care agencies in the affected area were up and running as soon as agency employees saw daylight. This article describes one agency's experience.

  2. Hurricane Proof This!

    ERIC Educational Resources Information Center

    Sterling, Donna R.

    2010-01-01

    While learning about the types of weather events that occur in the local area, students in grades 4-6 were asked to consider how structures can be built to withstand extreme weather conditions. Teams of students designed, constructed, and tested buildings to withstand hurricanes and designed the tests they would use to evaluate their structures.…

  3. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA.

    PubMed

    Shaw, Kristi S; Jacobs, John M; Crump, Byron C

    2014-01-01

    To determine if a storm event (i.e., high winds, large volumes of precipitation) could alter concentrations of Vibrio vulnificus and V. parahaemolyticus in aquacultured oysters (Crassostrea virginica) and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface (0.3 m) and near-bottom (just above the sediment). Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number (MPN) enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration for either Vibrio species by location (surface or near bottom oysters) or date sampled (oyster tissue, surface water, and sediment concentrations). V. vulnificus in oyster tissue was correlated with total suspended solids (r = 0.41, P = 0.04), and V. vulnificus in sediment was correlated with secchi depth (r = -0.93, P <0.01), salinity (r = -0.46, P = 0.02), tidal height (r = -0.45, P = 0.03), and surface water V. vulnificus (r = 0.98, P <0.01). V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth [r = -0.48, P = 0.02 (sediment); r = -0.97, P <0.01 (surface water)] and tidal height [r = -0.96, P <0.01 (sediment), r = -0.59, P <0.01 (surface water)]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4 × 10(5) MPN g(-1), V. parahaemolyticus 1 × 10(5) MPN g(-1)), and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density

  4. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA.

    PubMed

    Shaw, Kristi S; Jacobs, John M; Crump, Byron C

    2014-01-01

    To determine if a storm event (i.e., high winds, large volumes of precipitation) could alter concentrations of Vibrio vulnificus and V. parahaemolyticus in aquacultured oysters (Crassostrea virginica) and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface (0.3 m) and near-bottom (just above the sediment). Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number (MPN) enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration for either Vibrio species by location (surface or near bottom oysters) or date sampled (oyster tissue, surface water, and sediment concentrations). V. vulnificus in oyster tissue was correlated with total suspended solids (r = 0.41, P = 0.04), and V. vulnificus in sediment was correlated with secchi depth (r = -0.93, P <0.01), salinity (r = -0.46, P = 0.02), tidal height (r = -0.45, P = 0.03), and surface water V. vulnificus (r = 0.98, P <0.01). V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth [r = -0.48, P = 0.02 (sediment); r = -0.97, P <0.01 (surface water)] and tidal height [r = -0.96, P <0.01 (sediment), r = -0.59, P <0.01 (surface water)]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4 × 10(5) MPN g(-1), V. parahaemolyticus 1 × 10(5) MPN g(-1)), and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density

  5. 78 FR 46999 - Additional Waivers and Alternative Requirements for Hurricane Sandy Grantees in Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... impacted and distressed areas declared a major disaster due to Hurricane Sandy (see 78 FR 14329, published... notice published March 5, 2013 (78 FR 14329), the Department allocated $5.4 billion after analyzing the impacts of Hurricane Sandy and identifying unmet needs. A subsequent notice, providing additional...

  6. Church attendee help seeking priorities after Hurricane Katrina in Mississippi and Louisiana: a brief report.

    PubMed

    Aten, Jamie D; Gonzalez, Rose A; Boan, David M; Topping, Sharon; Livingston, William V; Hosey, John M

    2012-01-01

    After a disaster, survivors find themselves seeking many types of help from others in their communities. The purpose of this exploratory study was to assist in mental health service planning by determining the type and priority of support services sought by church attendees after Hurricane Katrina. Surveys were given to church attendees from two Mississippi coast and four New Orleans area churches that were directly affected by Hurricane Katrina participants were asked to review a list of 12 potential sources of help and were asked to rank the items chronologically from whom they had sought help first after Hurricane Katrina. Overall, participants sought out assistance from informal social networks such as family and friends first, followed by governmental and clergy support. This study also showed there may be differences in help-seeking behaviors between church attendees in more urban areas versus church attendees in more rural areas. Moreover, findings highlighted that very few church attendees seek out mental health services during the initial impact phase of a disaster. Since timely engagement with mental health services is important for resolving trauma, strategies that link professional mental health services with clergy and government resources following a disaster could improve the engagement with mental health professionals and improve mental health outcomes. Disaster mental health clinical implications and recommendations are offered for psychologists based on these findings.

  7. Church attendee help seeking priorities after Hurricane Katrina in Mississippi and Louisiana: a brief report.

    PubMed

    Aten, Jamie D; Gonzalez, Rose A; Boan, David M; Topping, Sharon; Livingston, William V; Hosey, John M

    2012-01-01

    After a disaster, survivors find themselves seeking many types of help from others in their communities. The purpose of this exploratory study was to assist in mental health service planning by determining the type and priority of support services sought by church attendees after Hurricane Katrina. Surveys were given to church attendees from two Mississippi coast and four New Orleans area churches that were directly affected by Hurricane Katrina participants were asked to review a list of 12 potential sources of help and were asked to rank the items chronologically from whom they had sought help first after Hurricane Katrina. Overall, participants sought out assistance from informal social networks such as family and friends first, followed by governmental and clergy support. This study also showed there may be differences in help-seeking behaviors between church attendees in more urban areas versus church attendees in more rural areas. Moreover, findings highlighted that very few church attendees seek out mental health services during the initial impact phase of a disaster. Since timely engagement with mental health services is important for resolving trauma, strategies that link professional mental health services with clergy and government resources following a disaster could improve the engagement with mental health professionals and improve mental health outcomes. Disaster mental health clinical implications and recommendations are offered for psychologists based on these findings. PMID:23156958

  8. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... COMMISSION 10 CFR Parts 50 and 52 Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... Hurricane and Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and...- basis hurricane and design-basis hurricane-generated missiles that a nuclear power plant should...

  9. A Quantitative Method for Estimating Probable Public Costs of Hurricanes.

    PubMed

    BOSWELL; DEYLE; SMITH; BAKER

    1999-04-01

    / A method is presented for estimating probable public costs resulting from damage caused by hurricanes, measured as local government expenditures approved for reimbursement under the Stafford Act Section 406 Public Assistance Program. The method employs a multivariate model developed through multiple regression analysis of an array of independent variables that measure meteorological, socioeconomic, and physical conditions related to the landfall of hurricanes within a local government jurisdiction. From the regression analysis we chose a log-log (base 10) model that explains 74% of the variance in the expenditure data using population and wind speed as predictors. We illustrate application of the method for a local jurisdiction-Lee County, Florida, USA. The results show that potential public costs range from $4.7 million for a category 1 hurricane with winds of 137 kilometers per hour (85 miles per hour) to $130 million for a category 5 hurricane with winds of 265 kilometers per hour (165 miles per hour). Based on these figures, we estimate expected annual public costs of $2.3 million. These cost estimates: (1) provide useful guidance for anticipating the magnitude of the federal, state, and local expenditures that would be required for the array of possible hurricanes that could affect that jurisdiction; (2) allow policy makers to assess the implications of alternative federal and state policies for providing public assistance to jurisdictions that experience hurricane damage; and (3) provide information needed to develop a contingency fund or other financial mechanism for assuring that the community has sufficient funds available to meet its obligations. KEY WORDS: Hurricane; Public costs; Local government; Disaster recovery; Disaster response; Florida; Stafford Act

  10. The Impacts of New Governance on Teaching at German Universities. Findings from a National Survey

    ERIC Educational Resources Information Center

    Wilkesmann, Uwe; Schmid, Christian J.

    2012-01-01

    In this article we will present findings from a national survey questioning the actual impact of the new governance structures at German universities on academic teaching. To begin with, we give a theoretical underpinning to the economization of higher education institutions (HEIs) according to Principal-Agent Theory. This allows for the…

  11. The Impact of the Government Performance and Results Act (GPRA) on Two State Cooperative Extension Systems

    ERIC Educational Resources Information Center

    Baughman, Sarah; Boyd, Heather H.; Kelsey, Kathleen D.

    2012-01-01

    The research reported here examined the impact of the Government Performance and Results Act on accountability and evaluation activities in two state Cooperative Extension Systems. Accountability was examined using five dimensions from Koppell's (2005) framework. Findings indicated both Extension systems transferred accountability activities…

  12. Estuarine response in northeastern Florida Bay to major hurricanes in 2005: Chapter 6I in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Woods, Jeff; Zucker, Mark

    2007-01-01

    Hurricanes and tropical storms are critical components of the south Florida hydrologic cycle. These storms cause dramatic and often rapid changes in water level of, salinity of, and discharge into northeastern Florida Bay as well as into adjacent marine estuaries. During 2005, two major hurricanes (Katrina and Wilma) crossed the southern estuaries of the Everglades and had substantial impacts on hydrologic conditions.

  13. MISR Views Hurricane Carlotta

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With winds reaching 155 mph, this year's Hurricane Carlotta became the second strongest eastern Pacific June hurricane on record. These images from MISR show the hurricane on June 21, the day of its peak intensity. The pictures are oriented so that the spacecraft's flight path is from left to right; north is at the left.

    The top image is a color view from MISR's vertical (nadir) camera, showing Carlotta's location in the eastern Pacific Ocean, about 500 km south of Puerto Vallarta, Mexico.

    The middle image is a stereoscopic 'anaglyph' created using MISR's nadir camera plus one of its aftward-viewing cameras, and shows a closer view of the area around the hurricane. Viewing with red/blue glasses (red filter over the left eye) is required to obtain a 3-D stereo effect.

    Near the center of the storm, the eye is about 25 km in diameter and partially obscured by a thin cloud. About 50 km to the left of the eye, the sharp drop-off from high-level to low-level cloud gives a sense of the vertical extent of the hidden eye wall. The low-level cloud is spiraling counterclockwise into the center of the cyclone. It then rises in the vicinity of the eye wall and emerges with a clockwise rotation at high altitude. Maximum surface winds are found near the eye wall.

    The bottom stereo image is a zoomed-in view of convective clouds in the hurricane's spiral arms. The arms are breeding grounds for severe thunderstorms, with associated heavy rain and flooding, frequent lightning, and tornadoes. Thunderstorms rise in dramatic fashion to about the same altitude as the high cloud near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their three-dimensional structure is clearly apparent in this stereo view.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science

  14. Task Force Examines U.S. Hurricane Research Agenda

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-01-01

    While U.S. federal, state, and local governments continue to debate what should be done, following the devastating 2005 hurricane season, to rebuild the Gulf Coast and to prevent future disasters, a task force of the U.S. National Science Board (NSB) has begun an effort to construct a national agenda for federally-sponsored hurricane research. At a 24 January meeting at the U.S. National Science Foundation (NSF) headquarters in Arlington,Va., task force members and government representatives examined current hurricane-related research conducted and supported by several federal agencies, identified gaps in understanding and future priorities, and discussed how these agencies can better coordinate their activities.

  15. Hurricane driven changes in land cover create biogeophysical climate feedbacks

    NASA Astrophysics Data System (ADS)

    Juárez, Robinson I. Negrón; Chambers, Jeffrey Q.; Zeng, Hongcheng; Baker, David B.

    2008-12-01

    Hurricanes can devastate thousands of hectares of forested area producing changes beyond simply vegetation damage and biomass loss. This study reports changes in regional climate associated with Hurricane Rita which made landfall on the Gulf Coastal Plain on September 24th, 2005. Results demonstrate that over severely disturbed forested areas, biogeophysical effects produced by Rita created anomalous precipitation patterns, with a decrease in precipitation the following winter, and an increase during the subsequent summer season. The dominant biogeophysical effect was a change in albedo caused by ~14,000 km2 of disturbed forested area (downed and dead, snapped and structurally damaged trees) from Rita, equivalent to a committed carbon release of 32 to 43% of the net annual U.S. sink in forest trees. As recent studies project a likely increase in hurricane intensity during the 21st century, understanding the potential impact of forest damage from hurricanes on regional climate is important.

  16. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    NASA Astrophysics Data System (ADS)

    Silva, A. C. S.; Galvão, C. O.; Silva, G. N. S.

    2015-06-01

    Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES) was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997-2000, when Brazil's new water policy was very young, and the other one in 2012-2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  17. Prognosis of Hurricanes CATEGORIE-5

    NASA Astrophysics Data System (ADS)

    Perez-Peraza, Jorge; Velasco Herrera, Victor Manuel; Zapotitla Roman, Julian; Juarez Zuñiga, Alan

    Category-5 Hurricanes are the most devastating from the standpoint of human and economic losses. Approximately 80 cyclones per year occurring worldwide, from which 8.8 per year occur on average in different regions of the Atlantic. However, category-5 Hurricanes do not follow a cyclic pattern but ar rather of quasi-stochastic nature. To assist in the alert processes o of hurricanes, we propose here a method to predict those kinds of hurricanes based on the Wavelet Analysis and applying techniques of Fuzzy Logic. For our study we consider North Atlantic category-5 hurricanes since 1920. Data was transformed into a series of Pulses with unitary value at the dates of hurricanes occurrence and 0 for dates of no occurrence. By means of the Wavelet transform we determine dominant oscillation periods. Under the hypothesis that the occurrence of hurricanes of this category can be described by the certain periodicities, we can define the dominant periods of oscillation and establish correspondence rules using fuzzy logic. The fuzzy logic searches for associations between the hurricanes occurrence and the behavior of the harmonics, and then delimits the occurrence of the next hurricane. The Wavelet Power Spectrum yields the following periodicities 2, 9, 14 and 24 years. According to the behavior of the harmonics we found that their combination restricts regions of possible Hurricane occurrence. Interpolation of this sinusoidal behavior allows for a good reconstruction of past Hurricanes dates as well as extrapolation to the future. In this way we conclude that there is a good probability that the next category-5 Hurricane in the north Atlantic occur of 2014-2015. Regarding categorie-5 typhoons in the pacific we delimitate the genesis regions of western of these kind of typhoons.

  18. Lessons learned from Hurricane Ike.

    PubMed

    Mitchell, Laurie; Anderle, Diane; Nastally, Kathleen; Sarver, Troy; Hafner-Burton, Tana; Owens, Sheron

    2009-06-01

    After the poorly planned evacuation for Hurricane Rita in 2005, many health care systems in the Houston area updated the disaster plans they would implement in the event of a major disaster. In September 2008, Texas health care systems in the Houston-Galveston area had the opportunity to execute those plans when Hurricane Ike made landfall. Despite hours of hurricane preparation at the Texas Orthopedic Hospital in Houston, TX, before the storm, we found that there were still lessons to be learned from Hurricane Ike that can be used by other health care systems to prepare for disaster.

  19. Impact of assimilating airborne Doppler radar velocity data using the ARPS 3DVAR on the analysis and prediction of Hurricane Ike (2008)

    NASA Astrophysics Data System (ADS)

    Du, Ningzhu; Xue, Ming; Zhao, Kun; Min, Jinzhong

    2012-09-01

    The ARPS 3DVAR data assimilation system is enhanced and used for the first time to assimilate airborne Doppler radar wind observations. It is applied to Hurricane Ike (2008), where radar observations taken along four flight legs through the hurricane vortex 14 to 18 h before it made landfall are assimilated. An optimal horizontal de-correlation scale for the background error is determined through sensitivity experiments. A comparison is made between assimilating retrieved winds and assimilating radial velocity data directly. The effect of the number of assimilation cycles, each analyzing data from one flight leg, is also examined. The assimilation of retrieved wind data and of radial velocity data produces similar results. However, direct assimilation of radial velocity data is recommended for both theoretical and practical reasons. In both cases, velocity data assimilation improves the analyzed hurricane structure and intensity as well as leads to better prediction of the intensity. Improvement to the track forecasting is also found. The assimilation of radial velocity observations from all four flight legs through intermittent assimilation cycles produces the best analyses and forecasts. The first analysis in the first cycle tends to produce the largest analysis increment. It is through the mutual adjustments among model variables during the forecast periods that a balanced vortex with lowered central pressure is established. The wind speeds extracted from the assimilated model state agree very well with independent surface wind measurements by the stepped-frequency microwave radiometer onboard the aircraft, and with independent flight-level wind speeds detected by the NOAA P-3 aircraft in-flight measurements. Twenty-four hour accumulated precipitation is noticeably improved over the case without radar data assimilation.

  20. Government use licenses in Thailand: an assessment of the health and economic impacts

    PubMed Central

    2011-01-01

    Background Between 2006 and 2008, Thailand's Ministry of Public Health (MOPH) granted government use licenses for seven patented drugs in order to improve access to these essential treatments. The decision to grant the government use licenses was contentious both within and beyond the country. In particular, concerns were highlighted that the negative consequences might outweigh the expected benefits of the policy. This study conducted assessments of the health and economic implications of these government use licenses. Methods The health and health-related economic impacts were quantified in terms of i) Quality Adjusted Life Years (QALYs) gained and ii) increased productivity in US dollars (USD) as a result of the increased access to drugs. The study adopted a five-year timeframe for the assessment, commencing from the time of the grant of the government use licenses. Empirical evidence gathered from national databases was used to assess the changes in volume of exports after US Generalized System of Preferences (GSP) withdrawal and level of foreign direct investment (FDI). Results As a result of the granting of the government use licenses, an additional 84,158 patients were estimated to have received access to the seven drugs over five years. Health gains from the use of the seven drugs compared to their best alternative accounted for 12,493 QALYs gained, which translates into quantifiable incremental benefits to society of USD132.4 million. The government use license on efavirenze was found to have the greatest benefit. In respect of the country's economy, the study found that Thailand's overall exports increased overtime, although exports of the three US GSP withdrawal products to the US did decline. There was also found to be no relationship between the government use licenses and the level of foreign investment over the period 2002 to 2008. Conclusions The public health benefits of the government use licenses were generally positive. Specifically, the policy

  1. Guiding principles for the improved governance of port and shipping impacts in the Great Barrier Reef.

    PubMed

    Grech, A; Bos, M; Brodie, J; Coles, R; Dale, A; Gilbert, R; Hamann, M; Marsh, H; Neil, K; Pressey, R L; Rasheed, M A; Sheaves, M; Smith, A

    2013-10-15

    The Great Barrier Reef (GBR) region of Queensland, Australia, encompasses a complex and diverse array of tropical marine ecosystems of global significance. The region is also a World Heritage Area and largely within one of the world's best managed marine protected areas. However, a recent World Heritage Committee report drew attention to serious governance problems associated with the management of ports and shipping. We review the impacts of ports and shipping on biodiversity in the GBR, and propose a series of guiding principles to improve the current governance arrangements. Implementing these principles will increase the capacity of decision makers to minimize the impacts of ports and shipping on biodiversity, and will provide certainty and clarity to port operators and developers. A 'business as usual' approach could lead to the GBR's inclusion on the List of World Heritage in Danger in 2014.

  2. Growth modelling indicates hurricanes and severe storms are linked to low coral recruitment in the Caribbean.

    PubMed

    Crabbe, M James C; Martinez, Edwin; Garcia, Christina; Chub, Juan; Castro, Leonardo; Guy, Jason

    2008-05-01

    This study set out to test the hypothesis that hurricanes and tropical storms limit the recruitment and subsequent survival of massive non-branching corals on the barrier reef off the coast of Belize in the Gulf of Honduras. Overall, the surface areas of 523 individual coral specimens were measured, and recruitment dates were then modelled. There was no significant difference in coral cover or coral biodiversity between any of the sites studied (p > 0.1). There were significant differences in non-branching coral recruitment in years when hurricanes impacted the area (p < 0.05) compared with years when no hurricanes impacted the area. There were significantly more non-branching massive corals recruited in non-hurricane years (mean 7.7) than in hurricane years (mean 3.8; p = 0.011). When years with tropical storms are added to the years with hurricanes, there was significantly lower coral recruitment (mean 4.7) relative to non-storm or hurricane years (mean 7.4; p = 0.019). These results show that hurricanes and severe storms limited the recruitment and survival of massive non-branching corals of the Mesoamerican barrier reef and on patch reefs near the Belize coast in the Caribbean, and suggests that marine park managers may need to assist coral recruitment in years where there are hurricanes or severe storms.

  3. Modeling hurricane effects on mangrove ecosystems

    USGS Publications Warehouse

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  4. Numerical simulations of Hurricane Bertha using a mesoscale atmospheric model

    SciTech Connect

    Buckley, R.L.

    1996-08-01

    The Regional Atmospheric Model System (RAMS) has been used to simulate Hurricane Bertha as it moved toward and onto shore during the period July 10--12, 1996. Using large-scale atmospheric data from 00 UTC, 11 July (Wednesday evening) to initialize the model, a 36-hour simulation was created for a domain centered over the Atlantic Ocean east of the Florida coast near Jacksonville. The simulated onshore impact time of the hurricane was much earlier than observed (due to the use of results from the large-scale model, which predicted early arrival). However, the movement of the hurricane center (eye) as it approached the North Carolina/South Carolina coast as simulated in RAMS was quite good. Observations revealed a northerly storm track off the South Carolina coast as it moved toward land. As it approached landfall, Hurricane Bertha turned to the north-northeast, roughly paralleling the North Carolina coast before moving inland near Wilmington. Large-scale model forecasts were unable to detect this change in advance and predicted landfall near Myrtle Beach, South Carolina; RAMS, however, correctly predicted the parallel coastal movement. For future hurricane activity in the southeast, RAMS is being configured to run in an operational model using input from the large-scale pressure data in hopes of providing more information on predicted hurricane movement and landfall location.

  5. The Connection Between Hurricanes and Precipitation in Maryland

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, Z.

    2015-12-01

    Precipitation, though necessary, can affect humanity in disastrous ways. Droughts, floods and other related disasters can costly damage economy. In 2012, Hurricane Sandy, caused a total economic loss of about 65 billion and in the state of Maryland, approximately 13.55 million. The purpose of this study is to determine what, if any effect do hurricanes have on monthly and annual precipitation in Maryland. Furthermore, using this information, discussion can be made on hurricane activity in Maryland and the possible connection to global climate change. To achieve this goal, three objectives were developed to: 1) Gain a better understanding of Maryland's terrain and how that affects precipitation; 2) Calculate monthly and annual precipitation in the state; and 3) Calculate how much precipitation was contributed by each hurricane. The NASA TRMM Multi-Satellite Precipitation Analysis (TMPA) precipitation products were used. Our results show that hurricanes do significantly affect both monthly and annual precipitation in Maryland, so much so that if removed, most monthly and annual precipitations would be below their averages. The methodology could be applied to other states or regions as well. Giving the global warming scenario, it is important to understand changes of hurricane size, track and intensity since both can have significant impacts on Maryland, which warrants further studies.

  6. Hurricanes in the Upper Midwest.

    ERIC Educational Resources Information Center

    Gravelle, John D.

    This document describes the procedures used by one group of Wisconsin high school students to compile data researched on all hurricanes in the Atlantic from 1886 through 1993. The students used data received on Internet to create a hypercard stack that would plot hurricanes. Students from Minnehaha Academy in Minnesota used the net to download…

  7. Monitoring Hurricane Effects on Aquifer Salinity Using ALSM

    NASA Astrophysics Data System (ADS)

    Sedighi, A.; Starek, M. J.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the severity of the storms resulted in drastic changes to the littoral zone geomorphology including extensive shoreline erosion and accretion that directly affected the subsurface hydrogeologic environment. The most important direct physical effects of a hurricane are the following: coastal erosion, shoreline inundation owing to higher than normal tide levels plus increased temporary surge levels during storms, and saltwater intrusion primarily into estuaries and groundwater aquifers. Erosion and deposition during the hurricane change the elevation, which causes change in the position of shoreline. The purpose of this study was to investigate the effects of sea level inundation due to the hurricanes on the near shore subsurface freshwater-saltwater interface. By utilizing high-resolution Airborne Laser Swath Mapping (ALSM) altimetry data acquired shortly before and after the three major hurricane landfalls, the change in shoreline topography was estimated to determine both small-scale and large-scale horizontal encroachment and volumetric change in shoreline. This information was used to develop a before and after variable density groundwater flow model to determine the impact of the hurricanes on the subsurface saltwater-freshwater interface. SEAWAT (Langevin 2001; Guo and Langevin 2002), which simulates three-dimensional, variable-density groundwater flow following a modular structure similar to MODFLOW (McDonald and Harbaugh 1988), was selected to represent the saltwater-freshwater interface in this investigation.

  8. Hurricane coastal flood analysis using multispectral spectral images

    NASA Astrophysics Data System (ADS)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  9. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  10. Ecosystem responses to extreme natural events: impacts of three sequential hurricanes in fall 1999 on sediment quality and condition of benthic fauna in the Neuse River Estuary, North Carolina.

    PubMed

    Balthis, W Leonard; Hyland, Jeffrey L; Bearden, Daniel W

    2006-08-01

    A study was conducted in November 1999 to assess sediment quality and condition of benthic fauna in the Neuse River Estuary (NRE), North Carolina, USA, following the passage of three Atlantic hurricanes during the two months prior. Samples for analysis of macroinfauna (>0.5 mm sieve size), chemical contamination of sediments, and other abiotic environmental variables (salinity, dissolved oxygen, pH, depth, sediment granulometry) were collected at 20 sites from the mouth of the Neuse River at Pamlico Sound to approximately 90 km upstream. Results were compared to those obtained from the same area in July 1998 using similar protocols. Depressed salinity, caused by extreme rainfall and associated high freshwater flow, persisted throughout much of the estuary, which had experienced periods of water-column stratification and hypoxia of underlying waters. Fifteen of the 20 sites, representing 299 km2 (76% of the survey area), also showed signs of benthic stress based on a multi-metric benthic index of biotic integrity (B-IBI). Benthic impacts included reductions in the abundance, diversity, and numbers of species and shifts in taxonomic composition, with a notable increase in dominance of the opportunistic polychaete Mediomastus ambiseta as other former dominant species declined. There was no significant increase in the extent of chemical contamination compared to pre-hurricane conditions. Storm-related reductions in dissolved oxygen and salinity were the more likely causes of the observed benthic impacts, though it was not possible, based on these results, to separate storm effects from seasonal changes in the benthos and annual episodes of summer anoxia and hypoxia.

  11. Participatory health impact assessment for the development of local government regulation on hazard control

    SciTech Connect

    Inmuong, Uraiwan; Rithmak, Panee; Srisookwatana, Soomol; Traithin, Nathathai; Maisuporn, Pornpun

    2011-07-15

    The Thai Public Health Act 1992 required the Thai local governments to issue respective regulations to take control of any possible health-hazard related activities, both from commercial and noncommercial sources. Since 1999, there has been centrally decentralized of power to a new form of local government establishment, namely Sub-district Administrative Organization (SAO). The SAO is asmall-scale local governing structure while its legitimate function is for community services, including control of health impact related activities. Most elected SAO administrators and officers are new and less experience with any of public health code of practice, particularly on health-hazard control. This action research attempted to introduce and apply a participatory health impact assessment (HIA) tool for the development of SAO health-hazard control regulation. The study sites were at Ban Meang and Kok See SAOs, Khon Kaen Province, Thailand, while all intervention activities conducted during May 2005-April 2006. A set of cooperative activities between researchers and community representatives were planned and organized by; surveying and identifying place and service base locally causing local environmental health problems, organizing community participatory workshops for drafting and proposing the health-hazard control regulation, and appropriate practices for health-hazard controlling measures. This action research eventually could successfully enable the SAO administrators and officers understanding of local environmental-related health problem, as well as development of imposed health-hazard control regulation for local community.

  12. Coastal Change During Hurricane Isabel 2003

    USGS Publications Warehouse

    Morgan, Karen

    2009-01-01

    On September 18, 2003, Hurricane Isabel made landfall on the northern Outer Banks of North Carolina. At the U.S. Army Corps of Engineer's Field Research Facility in Duck, 125 km north of where the eyewall cut across Hatteras Island, the Category 2 storm generated record conditions for the 27 years of monitoring. The storm produced an 8.1 m high wave measured at a waverider buoy in 20 m of water and a 1.5 m storm surge. As part of a program to document and better understand the changes in vulnerability of the Nation's coasts to extreme storms, the U.S. Geological Survey (USGS), in collaboration with the National Aeronautics and Space Administration (NASA), surveyed the impact zone of Hurricane Isabel. Methods included pre- and post-storm photography, videography, and lidar. Hurricane Isabel caused extensive erosion and overwash along the Outer Banks near Cape Hatteras, including the destruction of houses, the erosion of protective sand dunes, and the creation of island breaches. The storm eroded beaches and dunes in Frisco and Hatteras Village, southwest of the Cape. Overwash deposits covered roads and filled homes with sand. The most extensive beach changes were associated with the opening of a new breach about 500 m wide that divided into three separate channels that completely severed the island southwest of Cape Hatteras. The main breach, and a smaller one several kilometers to the south (not shown), occurred at minima in both island elevation and island width.

  13. Coastal Change during Hurricane Ivan 2004

    USGS Publications Warehouse

    Morgan, Karen L.M.

    2009-01-01

    Category 3 Hurricane Ivan came ashore near Gulf Shores, Alabama, on September 16, 2004. The barrier islands of the northern Gulf of Mexico near the Florida/Alabama border were exposed to the strongest winds. The communities of Gulf Shores, Pine Island and Orange Beach, AL, are, in places, very low lying with their dunes rising up only several meters. These dunes were unable to contain the 3-4 meter storm surge. The U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and U.S. Army Corps of Engineers (USACE) are cooperating in a research project investigating coastal change during Hurricane Ivan. On Friday September 17, 2004, the USGS acquired oblique aerial photography to help understand the impact of Ivan on the coastal environment. Two days later, airborne lidar was collected using NASA Experimental Advanced Airborne Research Lidar (EAARL). Gulf waters, driven by hurricane force winds spilled across the barrier islands creating currents strong enough to transport massive amounts of sand landward. These waters undermined buildings and roads and opened new island breaches. On top of the surge, breaking waves nearly as tall as the depth of the surge, eroded dunes and battered structures.

  14. Question of uncertainty : Transitioning from hurricanes to the BP Deepwater Horizon oil spill in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Cheong, S.

    2013-12-01

    Uncertainty is highlighted in the case of the oil spill. Hurricane is considered a known factor that people are used to and know how to handle. This uncertainty is primarily attributed to the magnitude of the spill. As the largest spill in the U.S., the long-term effects of the spill are difficult to assess. Uncertainty, however, has more to do with the novelty of the disaster and the accompanying regulatory change than the specific characteristics of this spill such as the size and longevity of the spill. The unfamiliarity with the Oil Pollution Act results in a lack of knowledge and uncertainty about local and state responses to the spill. The unpreparedness and unfamiliarity of this spill accompanied by different regulations underlie people's sense of uncertainty. This paper examines coastal Louisiana's shift from frequent hurricanes to the BP Deepwater Horizon oil spill in 2010, particularly focusing on the effects of changed regulations from the Stafford Act to the Oil Pollution Act. It documents how the federal, state, and local governments adjust, and discusses the shifting emphasis to the environment with the activation of the Oil Pollution Act and the Clean Water Act. One assumption is that people's established ways of behavior are commonly shaped by their previous experience of disasters, but this can paradoxically hinder their timely adaptation to new or different, high- impact environmental change. This leads to testing the hypothesis whether greater vulnerabilities result from adaptations to previous and well-known disasters. Results: The structural differences in regulations dictate the way governments and communities respond and adapt to the oil spill. The new set of regulations during the BP Deepwater Horizon oil spill unlike the ones during hurricanes served as barriers to adaptation. Governments at federal, state, and local levels had difficulties adjusting to new rules and changed authorities, and they, in turn, generated uncertainty and

  15. A Look Inside Hurricane Alma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  16. The Impact of General Strike on Government Healthcare Delivery in Kerala State in India

    PubMed Central

    Jacob, Aasems; Weiss, Heidi; Mathew, Aju

    2016-01-01

    General strike (also known as hartal) is used as a mode of protest by organizations and political parties in India. It is generally thought that hartals negatively impact the healthcare delivery in a society. We used the Right to Information Act to obtain data from government health centers in Kerala state in India for four hartal days (H-day) and two control days (A-day and B-day) for each H-day, from sixteen health centers including 6 Community Health Center (CHC), 6 Secondary Health Center (SHC), and 4 Tertiary Health Center (THC). Data on emergency room visits was available for six HCs. 15 HCs had a statistically significant decrease in the number of outpatient visits on H-day. There was no difference in the number of outpatient visits between the two control days (A and B) in 15 HCs, suggesting the lack of a posthartal surge in visits. Median decrease in outpatient visits in CHCs, SHCs, and THCs was 50.4%, 59.5%, and 47.4%, respectively. Hartal did not impact the number of emergency room visits in 6 out of 7 health centers assessed. Our study identified a significant harmful impact on government healthcare delivery due to hartals in Kerala. These findings have major public health implications. PMID:27242908

  17. The Impact of General Strike on Government Healthcare Delivery in Kerala State in India.

    PubMed

    Jacob, Aasems; Weiss, Heidi; Mathew, Aju

    2016-01-01

    General strike (also known as hartal) is used as a mode of protest by organizations and political parties in India. It is generally thought that hartals negatively impact the healthcare delivery in a society. We used the Right to Information Act to obtain data from government health centers in Kerala state in India for four hartal days (H-day) and two control days (A-day and B-day) for each H-day, from sixteen health centers including 6 Community Health Center (CHC), 6 Secondary Health Center (SHC), and 4 Tertiary Health Center (THC). Data on emergency room visits was available for six HCs. 15 HCs had a statistically significant decrease in the number of outpatient visits on H-day. There was no difference in the number of outpatient visits between the two control days (A and B) in 15 HCs, suggesting the lack of a posthartal surge in visits. Median decrease in outpatient visits in CHCs, SHCs, and THCs was 50.4%, 59.5%, and 47.4%, respectively. Hartal did not impact the number of emergency room visits in 6 out of 7 health centers assessed. Our study identified a significant harmful impact on government healthcare delivery due to hartals in Kerala. These findings have major public health implications. PMID:27242908

  18. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  19. The current situation of impact of coal mine developing on environment in China and government proposal

    SciTech Connect

    Lu Yang

    2005-07-01

    Current environmental problems caused by coal mining in China, the importance of management of the environment, impact of coal mining on land and water resources, and upcoming coal development are discussed. It is suggested that the government should act in two ways: take responsibility for management of reclamation of mines existing before 1986, and set up mechanisms to protect the environment, starting with the publishing of relevant laws and regulations. Methods for solving environmental issues include: prepare a practical plan, establish an environmental control fund, establish a special fund to protect the environment, and develop new ways to combine protection of the biological environment and land reclamation. 5 refs., 3 tabs.

  20. Information Technology (IT) Strategic Alignment: A Correlational Study between the Impact of IT Governance Structures and IT Strategic Alignment

    ERIC Educational Resources Information Center

    Asante, Keith K.

    2010-01-01

    This dissertation explored the extent to which Information Technology (IT) strategic alignment are impacted by IT governance structures. The study discusses several strategic alignment and IT governance literature that presents a gap in the literature domain. Subsequent studies researched issues surrounding why organizations are not able to align…

  1. The Impact of NAFTA on Training and Development in Mexico: The Perspective of Mexican Senior Government Agency Officials

    ERIC Educational Resources Information Center

    Ruiz, Carlos Enrique

    2009-01-01

    This study explored the perceptions of Mexican senior government agency officials with regard to the impact of NAFTA on training and development practices in Mexico. This study was conducted using a phenomenological tradition within qualitative research. The major findings of the study indicate that Mexican senior government agency officials…

  2. Five years later: recovery from post traumatic stress and psychological distress among low-income mothers affected by Hurricane Katrina.

    PubMed

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2012-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group-low income mothers-from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longitudinal surveys of 532 low-income mothers from New Orleans were conducted approximately one year before, 7-19 months after, and 43-54 months after Hurricane Katrina. The surveys collected information on mental health, social support, earnings and hurricane experiences. We document changes in post-traumatic stress symptoms (PTSS), as measured by the Impact of Event Scale-Revised, and symptoms of psychological distress (PD), as measured by the K6 scale. We find that although PTSS has declined over time after the hurricane, it remained high 43-54 months later. PD also declined, but did not return to pre-hurricane levels. At both time periods, psychological distress before the hurricane, hurricane-related home damage, and exposure to traumatic events were associated with PTSS that co-occurred with PD. Hurricane-related home damage and traumatic events were associated with PTSS without PD. Home damage was an especially important predictor of chronic PTSS, with and without PD. Most hurricane stressors did not have strong associations with PD alone over the short or long run. Over the long run, higher earnings were protective against PD, and greater social support was protective against PTSS. These results indicate that mental health problems, particularly PTSS alone or in co-occurrence with PD, among Hurricane Katrina survivors remain a concern, especially for those who experienced hurricane-related trauma and had poor mental health or low socioeconomic status before the hurricane.

  3. Hurricane slams gulf operations

    SciTech Connect

    Not Available

    1992-09-07

    This paper reports that reports of damage by Hurricane Andrew escalated last week as operators stepped up inspections of oil and gas installations in the Gulf of Mexico. By midweek, companies operating in the gulf and South Louisiana were beginning to agree that earlier assessments of damage only scratched the surface. Damage reports included scores of lost, toppled, or crippled platforms, pipeline ruptures, and oil slicks. By midweek the U.S. coast Guard had received reports of 79 oil spills. Even platforms capable of resuming production in some instances were begin curtailed because of damaged pipelines. Offshore service companies the another 2-4 weeks could be needed to fully assess Andrew's wrath. Lack of personnel and equipment was slowing damage assessment and repair.

  4. Gordon Becomes a Hurricane, Weakens

    NASA Video Gallery

    In this animation of satellite observations from August 17-20, 2012, Tropical Storm Gordon strengthens into a hurricane as an eye became visible on Aug. 18 just before Gordon affected the Azores Is...

  5. Hurricane intensity and eyewall replacement.

    PubMed

    Houze, Robert A; Chen, Shuyi S; Smull, Bradley F; Lee, Wen-Chau; Bell, Michael M

    2007-03-01

    Observations made during the historic 2005 hurricane season document a case of "eyewall replacement." Clouds outside the hurricane eyewall coalesce to form a new eyewall at a greater radius from the storm center, and the old eyewall dies. The winds in the new eyewall are initially weaker than those in the original eyewall, but as the new eyewall contracts, the storm reintensifies. Understanding this replacement mechanism is vital to forecasting variations in hurricane intensity. Processes in the "moat" region between the new and old eyewall have been particularly unclear. Aircraft data now show that the moat becomes dynamically similar to the eye and thus is converted into a region inimical to survival of the inner eyewall. We suggest that targeting aircraft to key parts of the storm to gain crucial input to high-resolution numerical models can lead to improvements in forecasting hurricane intensity.

  6. Biogeophysical Climate Feedbacks From Hurricanes

    NASA Astrophysics Data System (ADS)

    Negron-Juarez, R.; Chambers, J.; Zeng, H.; Baker, D.

    2008-12-01

    Hurricanes can devastate thousands of hectares of forested area producing changes beyond simply vegetation damage and biomass loss. This study reports changes in regional climate associated with Hurricane Rita which made landfall on the Gulf Coastal Plain on September 24th, 2005. Our analyses suggest that over severely disturbed forested areas, the biogeophysical effects produced by Rita may have affected the precipitation pattern producing a decrease in precipitation the following winter and an increase the next summer season. The dominant biogeophysical effect was a change in albedo as ~14,000 km2 of forested area were disturbed (downed and dead, snapped and structurally damaged trees) by Rita, equivalent to a carbon release of 32 to 43% of the net annual U.S. sink in forest trees. As recent studies project a likely increase in hurricane intensity during the 21st century, understanding the relationship between natural events such as hurricanes and climate is critical.

  7. GPM: Hurricanes Beyond the Tropics

    NASA Video Gallery

    NASA's Global Precipitation Measurement mission, or GPM, a joint NASA/JAXA mission, will provide rainfall data on storms and hurricanes like Irene that move out of the tropics. The data will be ava...

  8. Climate change: Unattributed hurricane damage

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  9. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making. PMID:26299597

  10. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making.

  11. Health Impact Assessment (HIA) in Ireland and the role of local government

    SciTech Connect

    O'Mullane, Monica

    2012-01-15

    Background: Health Impact Assessment (HIA) in Ireland has developed significantly since its endorsement in the health strategies of the Republic of Ireland (2001) and Northern Ireland (2002). Throughout 2007 and 2008, research was conducted to examine HIA as a policy-informing tool throughout both jurisdictions. One aspect of this research investigated the role of local government and its relationship in advancing HIA practise and use in Ireland. Methods: A case study research design was used which employed qualitative research methods, including semistructured interviewing and participant observation. In total 48 interviews were conducted with members of the HIA steering committees and individuals closely involved in the HIAs. Results: The relationship between local government and HIA in Northern Ireland is a positive one given the strong tradition of local government in the jurisdiction. The Review of Public Administration (RPA) negatively influenced the integration of HIA into local authority procedures. In the Republic of Ireland, the influence of social values and political will was found to be negatively present with the HIA on Traveller accommodation. Evidence from the HIA conducted on traffic and transport in Dublin was used to plan further health promotion and community planning activities in the area. Conclusion: Local government plays a vital role in HIA practise and development in both jurisdictions. The willingness to work with external partners (such as the health care services) was an important enabler or barrier to HIA operation. This will remain the case in the foreseeable future. - Highlights: Black-Right-Pointing-Pointer We investigated influences on the use of HIA knowledge of four cases from Northern Ireland and the Republic of Ireland. Black-Right-Pointing-Pointer The engagement of the public authorities assists implementation of the findings of the HIA. Black-Right-Pointing-Pointer Tension continues between positivist and incrementalist

  12. Factors Governing the Impact of Emerged Salt Diapirs on Water Resources.

    PubMed

    Zarei, M

    2016-05-01

    Salt diapirs in southern Iran are typically in contact with karstic and alluvial aquifers and consequently they are the most likely sources of groundwater salinization in this arid region. However, there are some salt diapirs that have no significant degradation effect on adjacent aquifers. Assessments of 62 of 122 Iranian-emerged salt diapirs based on geological, geomorphological, hydrogeological, and hydrochemical investigations indicated that 45% of the studied salt diapirs did not have a negative impact on surrounding water resources, whereas 55% of the salt diapirs have degraded water quality of adjacent aquifers. The impacts ranged from low- to high-grade salinization. We characterize here four major factors that control the impact of salt diapirs on surrounding water resources: (1) the evolutionary stage of the diapir, (2) the geological and (3) hydrogeological setting of the diapir, and (4) human activities. Identification of the major factors governing the influence of salt diapirs on the adjacent aquifers is necessary to understand the mechanism of salt diapir impact on adjacent aquifers, and subsequently to decide how to mitigate the deteriorating effect of the diapirs on the surrounding water resources. PMID:26394154

  13. Factors Governing the Impact of Emerged Salt Diapirs on Water Resources.

    PubMed

    Zarei, M

    2016-05-01

    Salt diapirs in southern Iran are typically in contact with karstic and alluvial aquifers and consequently they are the most likely sources of groundwater salinization in this arid region. However, there are some salt diapirs that have no significant degradation effect on adjacent aquifers. Assessments of 62 of 122 Iranian-emerged salt diapirs based on geological, geomorphological, hydrogeological, and hydrochemical investigations indicated that 45% of the studied salt diapirs did not have a negative impact on surrounding water resources, whereas 55% of the salt diapirs have degraded water quality of adjacent aquifers. The impacts ranged from low- to high-grade salinization. We characterize here four major factors that control the impact of salt diapirs on surrounding water resources: (1) the evolutionary stage of the diapir, (2) the geological and (3) hydrogeological setting of the diapir, and (4) human activities. Identification of the major factors governing the influence of salt diapirs on the adjacent aquifers is necessary to understand the mechanism of salt diapir impact on adjacent aquifers, and subsequently to decide how to mitigate the deteriorating effect of the diapirs on the surrounding water resources.

  14. Breakup of New Orleans Households after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  15. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    ERIC Educational Resources Information Center

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  16. Examining Pacific and Atlantic Hurricane Stage Duration and Length Since 1980

    NASA Astrophysics Data System (ADS)

    Wachtel, C. J.; Godek, M. L.

    2015-12-01

    Examining Pacific and Atlantic Hurricane Stage Duration and Length Since 1980Cassidy Wachtel and Melissa L. GodekDepartment of Earth and Atmospheric Sciences, State University of New York College at Oneonta, New York 13820 Abstract:Each year hurricanes impact thousands of people and over time changes in hurricane characteristics, such as intensity and frequency, have been identified. This study aims to examine changes in hurricane stage duration and track length of West Atlantic and eastern North Pacific hurricanes between 1980 and 2013. Category 2 through 5 hurricanes are analyzed as they evolved through the full life cycle of a hurricane (tropical depression to tropical storm to category). The NOAA National Ocean Service hurricane reanalysis datasets are used to identify 286 storms which are statistically analyzed by category for 1) temporal changes in stage duration with time and 2) temporal changes in stage track lengths with time. NOAA Earth System Research Laboratory daily mean composites of variables such as vertical wind shear and sea surface temperatures are then examined to explain the temporal tendencies that may be related to climate change. Preliminary results indicate that category 2, 4 and 5 storms experienced an overall decrease in stage duration since 1980. For storms of these magnitudes, generally more rapid intensification to category has occurred over time. Contrarily, increased stage duration is detected for hurricanes that reached category 3 status, showing that these storms have strengthened more slowly with time. In all categories, a few unique cases occurred that exhibited stage durations greater than 1 standard deviation from the mean of the long term trend. These cases require further scrutiny for the environmental conditions that might explain the anomalous departures. Keywords: Hurricanes, West Atlantic Ocean, North Pacific Ocean, Storm Tracks, Tropical Storm, Tropical Depression, Hurricane Stage

  17. Pet Ownership and Evacuation Prior to Hurricane Irene

    PubMed Central

    Hunt, Melissa G.; Bogue, Kelsey; Rohrbaugh, Nick

    2012-01-01

    Simple Summary Ninety pet owners and 27 non-pet owners who lived in mandatory evacuation zones during the 2011 Hurricane Irene were surveyed about whether or not they evacuated and about their experiences during the hurricane. Although pet-ownership was not statistically associated with evacuation failure, many pet owners who chose not to evacuate still claimed that they did not evacuate because of difficulties with evacuating their pet. These findings suggest that more work needs to be done in order to make evacuating with a pet easier. Abstract Pet ownership has historically been one of the biggest risk factors for evacuation failure prior to natural disasters. The forced abandonment of pets during Hurricane Katrina in 2005 made national headlines and led to the passage of the Pet Evacuation and Transportation Standards Act (PETS, 2006) which mandated local authorities to plan for companion animal evacuation. Hurricane Irene hit the East Coast of the United States in 2011, providing an excellent opportunity to examine the impact of the PETS legislation on frequency and ease of evacuation among pet owners and non-pet owners. Ninety pet owners and 27 non-pet owners who lived in mandatory evacuation zones completed questionnaires assessing their experiences during the hurricane and symptoms of depression, PTSD, dissociative experiences, and acute stress. Pet ownership was not found to be a statistical risk factor for evacuation failure. However, many pet owners who failed to evacuate continue to cite pet related reasons. PMID:26487162

  18. Hurricane Andrew-related injuries and illnesses, Louisiana, 1992.

    PubMed

    McNabb, S J; Kelso, K Y; Wilson, S A; McFarland, L; Farley, T A

    1995-06-01

    To determine the extent and types of injuries and illnesses in Louisiana associated with or related to Hurricane Andrew, we gathered data from hospital emergency departments and coroner's offices on demographic variables, institution, nature and cause of the injury or illness, body part affected, location, and date and time of the event. A hurricane-related injury or illness was defined as one that occurred from noon on August 24, 1992, through midnight on September 21, 1992, as a direct or indirect result of the preparation for (preimpact), the impact of, or the clean-up after the hurricane (postimpact). Nineteen parishes in south-central Louisiana that were most affected by Hurricane Andrew provided data from patients seen in emergency departments and reports from coroner's offices. Active, advance surveillance of this type promotes and facilitates the reporting of disaster-related health outcomes. Future planning for hurricanes should take into account the high rate of cuts, lacerations, and puncture wounds, particularly during the postimpact phase.

  19. Assessing the impact of Hurricanes Irene and Sandy on the morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2016-01-15

    This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moved alongshore to the southwest in water depths up to 30 meters during the 3-year period. The measured lateral offset distances range between about 1 and 450 meters with a mean of 20 meters. The mean distances computed indicate that change tended to decrease with increasing water depth. Comparison of isopach maps of modern sediment thickness show that a series of shoreface-attached sand ridges, which are the dominant sedimentary structures offshore of Fire Island, migrated toward the southwest because of erosion of the ridge crests and northeast-facing flanks as well as deposition on the southwest-facing flanks and in troughs between individual ridges. Statistics computed suggest that the modern sediment volume across the about 81 square kilometers of common sea floor mapped in both surveys decreased by 2.8 million cubic meters, which is a mean change of –0.03 meters, which is smaller than the resolution limit of the mapping systems used.

  20. Assessing the impact of Hurricanes Irene and Sandy on the morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2016-01-01

    This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moved alongshore to the southwest in water depths up to 30 meters during the 3-year period. The measured lateral offset distances range between about 1 and 450 meters with a mean of 20 meters. The mean distances computed indicate that change tended to decrease with increasing water depth. Comparison of isopach maps of modern sediment thickness show that a series of shoreface-attached sand ridges, which are the dominant sedimentary structures offshore of Fire Island, migrated toward the southwest because of erosion of the ridge crests and northeast-facing flanks as well as deposition on the southwest-facing flanks and in troughs between individual ridges. Statistics computed suggest that the modern sediment volume across the about 81 square kilometers of common sea floor mapped in both surveys decreased by 2.8 million cubic meters, which is a mean change of –0.03 meters, which is smaller than the resolution limit of the mapping systems used.

  1. Pet Ownership and Evacuation Prior to Hurricane Irene.

    PubMed

    Hunt, Melissa G; Bogue, Kelsey; Rohrbaugh, Nick

    2012-01-01

    Pet ownership has historically been one of the biggest risk factors for evacuation failure prior to natural disasters. The forced abandonment of pets during Hurricane Katrina in 2005 made national headlines and led to the passage of the Pet Evacuation and Transportation Standards Act (PETS, 2006) which mandated local authorities to plan for companion animal evacuation. Hurricane Irene hit the East Coast of the United States in 2011, providing an excellent opportunity to examine the impact of the PETS legislation on frequency and ease of evacuation among pet owners and non-pet owners. Ninety pet owners and 27 non-pet owners who lived in mandatory evacuation zones completed questionnaires assessing their experiences during the hurricane and symptoms of depression, PTSD, dissociative experiences, and acute stress. Pet ownership was not found to be a statistical risk factor for evacuation failure. However, many pet owners who failed to evacuate continue to cite pet related reasons.

  2. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  3. Did Hurricane Sandy influence the 2012 US presidential election?

    PubMed

    Hart, Joshua

    2014-07-01

    Despite drawing on a common pool of data, observers of the 2012 presidential campaign came to different conclusions about whether, how, and to what extent "October surprise" Hurricane Sandy influenced the election. The present study used a mixed correlational and experimental design to assess the relation between, and effect of, the salience of Hurricane Sandy on attitudes and voting intentions regarding President Barack Obama and Mitt Romney in a large sample of voting-aged adults. Results suggest that immediately following positive news coverage of Obama's handling of the storm's aftermath, Sandy's salience positively influenced attitudes toward Obama, but that by election day, reminders of the hurricane became a drag instead of a boon for the President. In addition to theoretical implications, this study provides an example of how to combine methodological approaches to help answer questions about the impact of unpredictable, large-scale events as they unfold. PMID:24767585

  4. Did Hurricane Sandy influence the 2012 US presidential election?

    PubMed

    Hart, Joshua

    2014-07-01

    Despite drawing on a common pool of data, observers of the 2012 presidential campaign came to different conclusions about whether, how, and to what extent "October surprise" Hurricane Sandy influenced the election. The present study used a mixed correlational and experimental design to assess the relation between, and effect of, the salience of Hurricane Sandy on attitudes and voting intentions regarding President Barack Obama and Mitt Romney in a large sample of voting-aged adults. Results suggest that immediately following positive news coverage of Obama's handling of the storm's aftermath, Sandy's salience positively influenced attitudes toward Obama, but that by election day, reminders of the hurricane became a drag instead of a boon for the President. In addition to theoretical implications, this study provides an example of how to combine methodological approaches to help answer questions about the impact of unpredictable, large-scale events as they unfold.

  5. Pet Ownership and Evacuation Prior to Hurricane Irene.

    PubMed

    Hunt, Melissa G; Bogue, Kelsey; Rohrbaugh, Nick

    2012-01-01

    Pet ownership has historically been one of the biggest risk factors for evacuation failure prior to natural disasters. The forced abandonment of pets during Hurricane Katrina in 2005 made national headlines and led to the passage of the Pet Evacuation and Transportation Standards Act (PETS, 2006) which mandated local authorities to plan for companion animal evacuation. Hurricane Irene hit the East Coast of the United States in 2011, providing an excellent opportunity to examine the impact of the PETS legislation on frequency and ease of evacuation among pet owners and non-pet owners. Ninety pet owners and 27 non-pet owners who lived in mandatory evacuation zones completed questionnaires assessing their experiences during the hurricane and symptoms of depression, PTSD, dissociative experiences, and acute stress. Pet ownership was not found to be a statistical risk factor for evacuation failure. However, many pet owners who failed to evacuate continue to cite pet related reasons. PMID:26487162

  6. Land loss due to recent hurricanes in coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Barras, John A.; Brock, John C.

    2013-01-01

    The aim of this study is to improve estimates of wetland land loss in two study regions of coastal Louisiana, U.S.A., due to the extreme storms that impacted the region between 2004 and 2009. The estimates are based on change-detection-mapping analysis that incorporates pre and postlandfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional-water classifications using a combination of high-resolution (<5 m) QuickBird, IKONOS, and GeoEye-1, and medium-resolution (30 m) Landsat Thematic Mapper satellite imagery. This process was applied in two study areas: the Hackberry area located in the southwestern part of chenier plain that was impacted by Hurricanes Rita (September 24, 2005) and Ike (September 13, 2008), and the Delacroix area located in the eastern delta plain that was impacted by Hurricanes Katrina (August 29, 2005) and Gustav (September 1, 2008). In both areas, effects of the hurricanes include enlargement of existing bodies of open water and erosion of fringing marsh areas. Surge-removed marsh was easily identified in stable marshes but was difficult to identify in degraded or flooded marshes. Persistent land loss in the Hackberry area due to Hurricane Rita was approximately 5.8% and increased by an additional 7.9% due to Hurricane Ike, although this additional area may yet recover. About 80% of the Hackberry study area remained unchanged since 2003. In the Delacroix area, persistent land loss due to Hurricane Katrina measured approximately 4.9% of the study area, while Hurricane Gustav caused minimal impact of 0.6% land loss by November 2009. Continued recovery in this area may further erase Hurricane Gustav's impact in the absence of new storm events.

  7. Diagnosing United States hurricane landfall risk: An alternative to count-based methodologies

    NASA Astrophysics Data System (ADS)

    Staehling, Erica M.; Truchelut, Ryan E.

    2016-08-01

    Assessing hurricane landfall risk is of immense public utility, yet extant methods of diagnosing annual tropical cyclone (TC) activity demonstrate no skill in diagnosing U.S. hurricane landfalls. Atlantic TC count itself has limited skill, explaining less than 20% of interannual variance in landfall incidence. Using extended landfall activity and reanalysis data sets, we employed empirical Poisson modeling to produce a landfall diagnostic index (LDI), incorporating spatially and temporally averaged upper level divergence, relative sea surface temperature, meridional wind, and zonal shear vorticity. LDI captures 31% of interannual variability of U.S. hurricane landfalls and offers physical insight into why indices that successfully capture TC activity fail to diagnose landfalls: there is inherent tension between conditions likely to steer hurricanes toward the U.S. and conditions favorable for TC development. Given this tension, attempting to diagnose, predict, or understand TC count is inadequate for quantifying societal impacts due to landfalling hurricanes.

  8. Estimating rates of land falling US hurricanes on a 5-year timescale

    NASA Astrophysics Data System (ADS)

    Coughlin, K.; Turner, J.; Jewson, S.; Bellone, E.; Rowlands, D.; Laepple, T.

    2010-03-01

    Atlantic hurricanes are the costliest of US natural disasters. Their frequency, intensity and likelihood of landfall are highly variable, being impacted by sea-surface and upper-atmosphere temperatures, wind shear, El Niño and other climatic variables. Risk Management Solutions has created a set of over 500,000 synthetic Atlantic hurricanes for use in catastrophe modelling. Until 2005, the rates associated with each of these storms were based on the averaged historical rate since 1900. However, there is evidence that hurricane frequencies are non-stationary and this means that long-term averaged rates may not be the best estimate of future rates. Furthermore, the insurance/reinsurance industry is particularly interested in 5-year projections of land falling US hurricanes. We show, using hindcasting, that simple statistical models can significantly improve estimates of the number of Atlantic hurricanes hitting land on this timescale.

  9. Web 2.0 Impact on Business Value at a Federal Government Housing Agency

    ERIC Educational Resources Information Center

    Lavender, Anthony L.

    2013-01-01

    The idea of Open Government is an extension of the Electronic Government Act of 2002 which addresses the accessibility, usability, and preservation of government information. The concept of Open Government has evolved into the open government directive that mandates Executive Departments and Agencies to become more open and transparent while…

  10. Mangroves, hurricanes, and lightning strikes: Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance

    USGS Publications Warehouse

    Smith, Thomas J.; Robblee, Michael B.; Wanless, Harold R.; Doyle, Thomas W.

    1994-01-01

    The track of Hurricane Andrew carried it across one of the most extensive mangrove for ests in the New World. Although it is well known that hurricanes affect mangrove forests, surprisingly little quantitative information exists concerning hurricane impact on forest structure, succession, species composition, and dynamics of mangrove-dependent fauna or on rates of eco-system recovery (see Craighead and Gilbert 1962, Roth 1992, Smith 1992, Smith and Duke 1987, Stoddart 1969).After Hurricane Andrew's passage across south Florida, we assessed the environmental damage to the natural resources of the Everglades and Biscayne National Parks. Quantitative data collected during subsequent field trips (October 1992 to July 1993) are also provided. We present measurements of initial tree mortality by species and size class, estimates of delayed (or continuing) tree mortality, and observations of geomorphological changes along the coast and in the forests that could influence the course of forest recovery. We discuss a potential interaction across two differing scales of disturbance within mangrove forest systems: hurricanes and lightning strikes.

  11. Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  12. The impact of service quality perception on patient satisfaction in Government Hospitals in Southern Saudi Arabia

    PubMed Central

    Alghamdi, Faris S.

    2014-01-01

    ABSTRACT Objectives: To examine the impact of service quality perception on patient satisfaction and determine which dimension from 5 dimensions (tangible, reliability, responsive, assurance, and empathy) has the greatest impact on patient satisfaction. Methods: A total of 183 eligible patients participated in this study. This study was conducted in Al-Baha province, Saudi Arabia from June 2013 to August 2013. We utilized the cross-sectional method, using a modified Assessment of Service Quality questionnaire to collect the data. Results: To test the study hypothesis, multiple regression analysis was carried out. Analysis of variance revealed that the overall result showed a statistically significant impact of health service quality on patient satisfaction (p=0.000). The beta-weights (beta) suggested that the empathy dimension had the greatest influence on patient satisfaction (ß=0.476), followed by tangible (ß=0.198) and responsiveness dimensions (ß=0.164). Conclusion: Patient satisfaction was influenced by health service quality, with the empathy dimension as the greatest influence on patient satisfaction. Therefore, it should be considered a priority by government hospitals to train doctors in interpersonal relationship skills to enhance the doctor-patient relationship. PMID:25316476

  13. Earth Science Week 2010 - Hurricane Energy

    NASA Video Gallery

    NASA hurricane scientist Dr. Jeff Halverson explains how hurricanes draw energy from the ocean surface. The video also provides an example of a classroom activity that allows students to map the ch...

  14. NASA Gets 'GRIP' on Hurricane Formation

    NASA Video Gallery

    NASA's GRIP 2010 hurricane mission is in full force. During this year's Atlantic hurricane season, researchers using powerful instruments onboard three aircraft will be able to "see"" below the clo...

  15. Hurricane Isaac Moving Towards Northern Gulf Coast

    NASA Video Gallery

    This is an animation of GOES-13 satellite imagery from Aug. 26-28, 2012 of Hurricane Isaac's track through the Gulf of Mexico. Isaac is headed for New Orleans, exactly 7 years after hurricane Katri...

  16. Hurricane Season 2005: Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Seventeen days after Hurricane Katrina flooded New Orleans, much of the city is still under water. In this pair of images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite, the affected areas can clearly be seen. The top image mosaic was acquired in April and September 2000, and the bottom image was acquired September 13, 2005. The flooded parts of the city appear dark blue, such as the golf course in the northeast corner, where there is standing water. Areas that have dried out appear light blue gray, such as the city park in the left middle. On the left side of the image, the failed 17th street canal marks a sharp boundary between flooded city to the east, and dry land to the west.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 10.4 by 7.1 kilometers Location: 30 degrees North latitude, 90.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 1, 2, and 3 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 13, 2005

  17. Hurricane Katrina at Tulane.

    NASA Astrophysics Data System (ADS)

    McGuire, Jim

    2008-03-01

    After hurricane Katrina struck New Orleans on August 29, 2005, Tulane University closed for the fall semester. Buildings on campus were closed and armed guards were hired to protect the campus. Faculty members were not allowed access to their offices and laboratories, except for exceptional cases when a Dean went with them. Many faculty members took their research groups to other universities accepting much welcomed invitations from colleagues. Undergraduates went to other colleges and universities, which accepted the without cost and a promise not to recruit them. The university email system went down for months. Collecting information on the welfare of faculty and students was difficult. The university was run from Houston by a small handful of senior administrators. Setting up the schedule of classes for the spring 2006 semester was done without records. Most faculty returned to New Orleans after several weeks. 80% of the city was flooded. Small trailers were provided. Some lived in the FEMA trailers for two years or more. When Tulane reopened, a wide reaching Renewal Plan, worked out by the upper administration, was implemented. A new emergency preparedness plan was also developed and put in place.

  18. Atlantic hurricane response to geoengineering

    NASA Astrophysics Data System (ADS)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  19. Medical response to hurricanes Katrina and Rita: local public health preparedness in action.

    PubMed

    Pierce, J Rush; Pittard, Alicia E I; West, Theresa A; Richardson, J Matthew

    2007-01-01

    Like more than 150 communities in Texas, our community participated in disaster response for Gulf coast citizens evacuated from hurricanes Katrina and Rita. We implemented and adjusted emergency operations plans that were designed to respond to a local disaster. Lessons learned will strengthen our disaster preparedness in the future, including the importance of a robust medical presence at evacuation shelters; the value of an accurate and timely database of medical needs for shelter occupants; the usefulness of brief paperwork; the need for a preidentified and pretrained group of healthcare workers; the necessity of timely and accurate communications with medical partners in the community; the requirement that our local city government plan, open, and operate disaster shelters in our community; and the impact of ease of travel, frequent and honest communication, and sincere appreciation on maintaining morale in our volunteers.

  20. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    USGS Publications Warehouse

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  1. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  2. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  3. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  4. 7 CFR 701.50 - 2005 hurricanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§...

  5. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  6. Amount and Percentage of Current Societal Assets in Areas on Kaua'i, Hawai'i, within the 1992 Hurricane 'Iniki Storm-Surge Inundation Zone

    USGS Publications Warehouse

    Wood, Nathan

    2008-01-01

    The Pacific Risk Management 'Ohana (PRiMO) is a network of partners and stakeholders involved in the development, delivery, and communication of risk management-related information, products, and services across the Pacific Ocean (National Oceanic and Atmospheric Administration Pacific Services Center, 2008). One PRiMO-related project is the NOAA National Climatic Data Center's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Climatology Information Products (PRICIP) initiative, which seeks to improve the understanding of patterns and trends of storm frequency and intensity ('storminess') within the Pacific region and to develop a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies, and other decision-makers (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008a). One of the PRICIP information products is a historical storm 'event anatomy', which includes a summary of sector-specific socioeconomic impacts associated with a particular event, as well as information about the event and its climatological context. The intent of an event anatomy is to convey the causes of an extreme storm event and the associated impacts in a format that users can understand. The event anatomies also are intended to familiarize users with the in-place and remotely sensed products typically employed to track and forecast weather and climate. The first event anatomy developed as a prototype and hosted on the PRICIP portal is for Hurricane 'Iniki (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008b), a Category 3-4 hurricane that made landfall on the south coast of Kaua'i Island on September 11, 1992, with estimated maximum sustained winds of more than 140 mph and gusts as high as 175 mph. Storm-surge inundation occurred on the southern and northeastern coast of Kaua

  7. Traumatic Loss and Natural Disaster: A Case Study of a School-Based Response to Hurricanes Katrina and Rita

    ERIC Educational Resources Information Center

    Clettenberg, Stacey; Gentry, Judy; Held, Matthew; Mock, Lou Ann

    2011-01-01

    This article tracks the trajectory and impact of Hurricanes Katrina and Rita on the communities of Houston/Harris County, Texas, USA, the schools, children, and families; along with the community partnerships that addressed the trauma and upheaval. Following the influx of individuals and families who were displaced by Hurricanes Katrina and Rita…

  8. Family and Individual Factors Associated with Substance Involvement and PTS Symptoms among Adolescents in Greater New Orleans after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rowe, Cynthia L.; La Greca, Annette M.; Alexandersson, Anders

    2010-01-01

    Objective: This study examined the influence of hurricane impact as well as family and individual risk factors on posttraumatic stress (PTS) symptoms and substance involvement among clinically referred adolescents affected by Hurricane Katrina. Method: A total of 80 adolescents (87% male; 13-17 years old; mean age = 15.6 years; 38% minorities) and…

  9. Industrialization study. [impact of government incentives and barriers on decision making in the industrial production of photovoltaics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The investment process in U.S. industries was studied in order to characterize the critical elements in major high risk investment decisions. Because motivation was determined to be the greatest single factor force in inducing a company to invest in a high risk venture, the relative impact of alternative government programs and policies on personal and financial motivations were analyzed qualitatively and quantitatively to ascertain the effect on these programs and policies on photovoltaic industrialization. The government alternatives are ranked on the basis of their ease of implementation and their probable effect. The recommended sequence in which government policies would be applied to maximize the industrialization of the photovoltaic venture is discussed.

  10. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  11. Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region

    NASA Astrophysics Data System (ADS)

    Androulidakis, Yannis; Kourafalou, Vassiliki; Halliwell, George; Le Hénaff, Matthieu; Kang, Heesook; Mehari, Michael; Atlas, Robert

    2016-10-01

    The evolution of three successive hurricanes (Katia, Maria, and Ophelia) is investigated over the river plume area formed by the Amazon and Orinoco river outflows during September of 2011. The study focuses on hurricane impacts on the ocean structure and the ocean feedback influencing hurricane intensification. High-resolution (1/25° × 1/25° horizontal grid) numerical simulations of the circulation in the extended Atlantic Hurricane Region (Caribbean Sea, Gulf of Mexico, and Northwest Atlantic Ocean) were used to investigate the upper ocean response during the three hurricane-plume interaction cases. The three hurricanes revealed different evolution and intensification characteristics over an area covered by brackish surface waters. The upper ocean response to the hurricane passages over the plume affected region showed high variability due to the interaction of oceanic and atmospheric processes. The existence of a barrier layer (BL), formed by the offshore spreading of brackish waters, probably facilitated intensification of the first storm (Hurricane Katia) because the river-induced BL enhanced the resistance of the upper ocean to cooling. This effect was missing in the subsequent two hurricanes (Maria and Ophelia) as the eroded BL (due to Katia passage) allowed the upper ocean cooling to be increased. As a consequence, the amount of ocean thermal energy provided to these storms was greatly reduced, which acted to limit intensification. Numerical experiments and analyses, in tandem with observational support, lead to the conclusion that the presence of a river plume-induced BL is a strong factor in the ocean conditions influencing hurricane intensification.

  12. Impact of global health governance on country health systems: the case of HIV initiatives in Nigeria

    PubMed Central

    Chima, Charles Chikodili; Homedes, Nuria

    2015-01-01

    existing health workers. There is poor policy direction, strategic planning and coordination, and regulation of externally–financed HIV programs by the government and this poses a great limitation to the optimal use of HIV–specific foreign aid in Nigeria. Conclusions A few reforms are necessary to improve the strengthening effect of GHIs and to minimize their negative and unintended consequences. This will require stronger leadership from the Nigerian government with regards to better coordination of externally–financed health programs. Also, donors need to play a greater role in addressing the negative consequences of foreign aid. The findings highlight important unintended consequences and system–wide impacts that get little attention in traditional program evaluation. PMID:25969731

  13. Mental health outcomes at the Jersey Shore after Hurricane Sandy.

    PubMed

    Boscarino, Joseph A; Hoffman, Stuart N; Kirchner, H Lester; Erlich, Porat M; Adams, Richard E; Figley, Charles R; Solhkhah, Ramon

    2013-01-01

    On October 29, 2012, Hurricane Sandy made landfall in the most densely populated region in the US. In New Jersey, thousands of families were made homeless and entire communities were destroyed in the worst disaster in the history of the state. The economic impact of Sandy was huge, comparable to Hurricane Katrina. The areas that sustained the most damage were the small- to medium-sized beach communities along New Jersey's Atlantic coastline. Six months following the hurricane, we conducted a random telephone survey of 200 adults residing in 18 beach communities located in Monmouth County. We found that 14.5% (95% CI = 9.9-20.2) of these residents screened positive for PTSD and 6.0% (95% CI = 3.1-10.2) met criteria for major depression. Altogether 13.5% (95% CI = 9.1-19.0) received mental health counseling and 20.5% (95% CI = 15.1-26.8) sought some type of mental health support in person or online, rates similar to those reported in New York after the World Trade Center disaster In multivariate analyses, the best predictors of mental health status and service use were having high hurricane exposure levels, having physical health limitations, and having environmental health concerns. Research is needed to assess the mental health status and service use of Jersey Shore residents over time, to evaluate environmental health concerns, and to better understand the storm's impact among those with physical health limitations. PMID:24558743

  14. Mental health outcomes at the Jersey Shore after Hurricane Sandy.

    PubMed

    Boscarino, Joseph A; Hoffman, Stuart N; Kirchner, H Lester; Erlich, Porat M; Adams, Richard E; Figley, Charles R; Solhkhah, Ramon

    2013-01-01

    On October 29, 2012, Hurricane Sandy made landfall in the most densely populated region in the US. In New Jersey, thousands of families were made homeless and entire communities were destroyed in the worst disaster in the history of the state. The economic impact of Sandy was huge, comparable to Hurricane Katrina. The areas that sustained the most damage were the small- to medium-sized beach communities along New Jersey's Atlantic coastline. Six months following the hurricane, we conducted a random telephone survey of 200 adults residing in 18 beach communities located in Monmouth County. We found that 14.5% (95% CI = 9.9-20.2) of these residents screened positive for PTSD and 6.0% (95% CI = 3.1-10.2) met criteria for major depression. Altogether 13.5% (95% CI = 9.1-19.0) received mental health counseling and 20.5% (95% CI = 15.1-26.8) sought some type of mental health support in person or online, rates similar to those reported in New York after the World Trade Center disaster In multivariate analyses, the best predictors of mental health status and service use were having high hurricane exposure levels, having physical health limitations, and having environmental health concerns. Research is needed to assess the mental health status and service use of Jersey Shore residents over time, to evaluate environmental health concerns, and to better understand the storm's impact among those with physical health limitations.

  15. The hurricane-flood-landslide continuum

    USGS Publications Warehouse

    Negri, A.J.; Burkardt, N.; Golden, J.H.; Halverson, J.B.; Huffman, G.J.; Larsen, M.C.; McGinley, J.A.; Updike, R.G.; Verdin, J.P.; Wieczorek, G.F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the US Geological Survey (USGS), as well as other government agencies and academic institutions convened in San Juan, Puerto Rico, at a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The purpose of the HFLC is to develop and integrate the multidisciplinary tools needed to issue regional guidance products for floods and landslide associated with major tropical rain systems with sufficient lead time that local emergency managers can notify vulnerable populations and protect infrastructure. The workshop sought to initiate discussion among these agencies about their highly complementary capabilities, and to establish a framework to leverage the strengths of each agency. Once a prototype system is developed, it could be adapted for use in regions that have a high frequency of tropical disturbances.

  16. The Influence of Hurricane Parameters on Hurricane Surge and Waves in Complex Coastal Zones

    NASA Astrophysics Data System (ADS)

    Udoh, I. E.; Taylor, A.; Irish, J. L.; Kaihatu, J. M.

    2012-12-01

    Studies on the impact of potential flooding in complex coastal regions, such as coastal bays, require efficient models for the estimation of surge and waves under various hurricane meteorological scenarios. Recently, surrogate models for high resolution numerical models have been successfully applied in extreme value flood studies (e.g. Resio et al. 2009; Niedoroda et al. 2008). Adequate identification of the primary parameters that drive the surge and wave trends, and physical understanding of the expected trends are important in developing non-dimensional equations which replicate the processes of surge and wave generation. Identified parameters can thus be used in developing scaling laws for the estimation of hurricane surge and wave response. In this study, we discuss surge and wave trends in Corpus Christi Bay, Texas as a function of meteorological and spatial parameters, and we isolate their influences on surge response. Changes in surge with hurricane forward speed in the bay is found to be primarily dependent on time available for surge development and re-distribution within the bay. The hurricane angle of approach affects surge generation based on the orientation of onshore-directed winds and the proximity of the storm track to the entrance of the bay and locations of interest. A positive linear trend is observed between sea level rise and storm surge in the bay - this is due to overtopping of the barrier island, and the fact that the irregular bay boundaries support surge accumulation. As a basis for investigating wave responses, hurricane parameters of central pressure and size were identified as main factors in characterizing the wave field. Results showed that with variation in the hurricane's central pressure and size, changes in wave heights are more pronounced in the nearshore and onshore environment at the open coast, than they are within the bay. Likewise, a similar spatial trend is observed in the variation of these hurricane parameters to

  17. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  18. Mental illness and suicidality after Hurricane Katrina.

    PubMed Central

    Kessler, Ronald C.; Galea, Sandro; Jones, Russell T.; Parker, Holly A.

    2006-01-01

    OBJECTIVE: To estimate the impact of Hurricane Katrina on mental illness and suicidality by comparing results of a post-Katrina survey with those of an earlier survey. METHODS: The National Comorbidity Survey-Replication, conducted between February 2001 and February 2003, interviewed 826 adults in the Census Divisions later affected by Hurricane Katrina. The post-Katrina survey interviewed a new sample of 1043 adults who lived in the same area before the hurricane. Identical questions were asked about mental illness and suicidality. The post-Katrina survey also assessed several dimensions of personal growth that resulted from the trauma (for example, increased closeness to a loved one, increased religiosity). Outcome measures used were the K6 screening scale of serious mental illness and mild-moderate mental illness and questions about suicidal ideation, plans and attempts. FINDINGS: Respondents to the post-Katrina survey had a significantly higher estimated prevalence of serious mental illness than respondents to the earlier survey (11.3% after Katrina versus 6.1% before; chi(2)1= 10.9; P < 0.001) and mild-moderate mental illness (19.9% after Katrina versus 9.7% before; chi(2)1 = 22.5; P < 0.001). Among respondents estimated to have mental illness, though, the prevalence of suicidal ideation and plans was significantly lower in the post-Katrina survey (suicidal ideation 0.7% after Katrina versus 8.4% before; chi(2)1 = 13.1; P < 0.001; plans for suicide 0.4% after Katrina versus 3.6% before; chi(2)1 = 6.0; P = 0.014). This lower conditional prevalence of suicidality was strongly related to two dimensions of personal growth after the trauma (faith in one's own ability to rebuild one's life, and realization of inner strength), without which between-survey differences in suicidality were insignificant. CONCLUSION: Despite the estimated prevalence of mental illness doubling after Hurricane Katrina, the prevalence of suicidality was unexpectedly low. The role of post

  19. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  20. Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change.

    PubMed

    Paerl, Hans W; Steppe, Timothy F; Buchan, Kenneth C; Potts, Malcolm

    2003-03-01

    The Atlantic hurricanes of 1999 caused widespread environmental damage throughout the Caribbean and US mid-Atlantic coastal regions. However, these storms also proved beneficial to certain microbial habitats; specifically, cyanobacteria-dominated mats. Modern mats represent the oldest known biological communities on earth, stromatolites. Contemporary mats are dominant biological communities in the hypersaline Bahamian lakes along the Atlantic hurricane track. We examined the impacts of varying levels of hypersalinity on 2 processes controlling mat growth, photosynthesis and nitrogen fixation, in Salt Pond, San Salvador Island, Bahamas. Hypersalinity (> 5 times seawater salinity) proved highly inhibitory to these processes. Freshwater input from Hurricane Floyd and other large storms alleviated this salt-inhibition. A predicted 10 to 40 year increase in Atlantic hurricane activity accompanied by more frequent "freshening" events will enhance mat productivity, CO2 sequestration and nutrient cycling. Cyanobacterial mats are sensitive short- and long-term indicators of climatic and ecological changes impacting these and other waterstressed environments.

  1. The post-disaster negative health legacy: pregnancy outcomes in Louisiana after Hurricane Andrew.

    PubMed

    Antipova, Anzhelika; Curtis, Andrew

    2015-10-01

    Disasters and displacement increasingly affect and challenge urban settings. How do pregnant women fare in the aftermath of a major disaster? This paper investigates the effect of pregnancies in disaster situations. The study tests a hypothesis that pregnant women residing in hurricane-prone areas suffer higher health risks. The setting is Louisiana in the Gulf Coast, United States, a state that continually experiences hurricane impacts. The time period for the analysis is three years following the landfall of Hurricane Andrew in 1992. We analysed low birth weight and preterm deliveries before and after landfall, as a whole and by race. Findings support an association between hazards and health of a community and indicate that pregnant women in the affected area, irrespective of race, are more likely to experience preterm deliveries compared to pre-event births. Results suggest there is a negative health legacy impact in Louisiana as a result of hurricane landfall.

  2. The human side of Hurricane Andrew

    SciTech Connect

    Marshall, R.; Callander, R.C.

    1994-12-31

    This paper examines the long-term psychological effects of the nation`s worst natural disaster on the employees of the Turkey Point nuclear power plant. It also examines the efforts made by plant personnel and company volunteers to aid employees` families affected by the storm. Despite significant damage at the plant, unit 4 was returned to service 5 weeks after the August 24, 1992, hurricane. Unit 3 was returned to service on December 3, 1992. Unit 3 was originally scheduled to start a refueling outage the day Hurricane Andrew struck. While plant personnel are still recovering from Andrew`s impact, the plant`s performance has never been better. On May 26, 1993, the plant completed a record-breaking 46-day refueling outage - 7 days ahead of schedule and $3 million under budget. Turkey Point`s recovery, return to service, and superior performance would not have been possible without the efforts of hundreds of employees who put their personal tragedies aside and focused on the common goal of the plant`s operation. To help employees with rebuilding their lives, the plant launched extensive assistance programs. Although the plant returned to normal operation, plant personnel continue to struggle in a community whose infrastructure (homes, schools, stores, etc.) have been almost eliminated.

  3. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  4. Estimating Hurricane Rates in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Coughlin, K.; Laepple, T.; Rowlands, D.; Jewson, S.; Bellone, E.

    2009-04-01

    The estimation of hurricane risk is of life-and-death importance for millions of people living on the West Coast of the Atlantic. Risk Management Solutions (RMS) provides products and services for the quantification and management of many catastrophe risks, including the risks associated with Atlantic hurricanes. Of particular importance in the modeling of hurricane risk, is the estimation of future hurricane rates. We are interested in making accurate estimates over the next 5-years of the underlying rates associated with Atlantic Hurricanes that make landfall. This presentation discusses our methodology used in making these estimates. Specifically, we discuss the importance of estimating the changing environments, both local and global, that affect hurricane formation and development. Our methodology combines statistical modeling, physical insight and modeling and expert opinion to provide RMS with accurate estimates of the underlying rate associated with landfalling hurricanes in the Atlantic.

  5. Quantifying hurricane-induced coastal changes using topographic lidar

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Krabill, William; Swift, Robert; Brock, John

    2001-01-01

    USGS and NASA are investigating the impacts of hurricanes on the United States East and Gulf of Mexico coasts with the ultimate objective of improving predictive capabilities. The cornerstone of our effort is to use topographic lidar to acquire pre- and post-storm topography to quantify changes to beaches and dunes. With its rapidity of acquisition and very high density, lidar is revolutionizing the. quantification of storm-induced coastal change. Lidar surveys have been acquired for the East and Gulf coasts to serve as pre-storm baselines. Within a few days of a hurricane landfall anywhere within the study area, the impacted area will be resurveyed to detect changes. For example, during 1999, Hurricane Dennis impacted the northern North Carolina coast. Along a 70-km length of coast between Cape Hatteras and Oregon Inlet, there was large variability in the types of impacts including overwash, dune erosion, dune stability, and even accretion at the base of dunes. These types of impacts were arranged in coherent patterns that repeated along the coast over scales of tens of kilometers. Preliminary results suggest the variability is related to the influence of offshore shoals that induce longshore gradients in wave energy by wave refraction.

  6. Hurricane Rina Headed to Mexico

    NASA Video Gallery

    An animation of NOAA GOES-13 satellite observations from October 23 at 2:45 p.m. EDT through Oct. 25 at 1:30 p.m. EDT shows a strengthening Hurricane Rina in the western Caribbean Sea and headed fo...

  7. Hurricane Irene on the Move

    NASA Video Gallery

    GOES-13 satellite imagery in 15 minute intervals from August 25, 2011, at 9:40 a.m. EDT to August 27 at 9:40 a.m. EDT. The animations show Hurricane Irene moving through the Bahamas and making land...

  8. A Hurricane for Physics Students.

    ERIC Educational Resources Information Center

    Mayo, Ned

    1994-01-01

    Describes how the study of a hurricane can be used to provide integrated basic mechanics in a first-year college course in engineering mechanics. Presents models that predict wind speed given surface eye pressure and several radial dimensions of the storm and calculate total kinetic energy once the wind speed is determined. (ZWH)

  9. Hurricane Irene at Category 3

    NASA Video Gallery

    Video sequence taken by the crew of the ISS on Aug. 23, 2011 at approximately 2:15PM EST. At that time, Hurricane Irene was a Category 3 storm with peak winds estimated at 115mph, moving west-north...

  10. Hurricane Katrina: more lessons learned.

    PubMed

    Stall, Robert S

    2010-11-01

    In August of 2007, the author testified as the medical expert witness on behalf of the State of Louisiana in the St. Rita's Nursing Home criminal case. Thirty-five residents drowned as floodwaters swept over the nursing home during Hurricane Katrina. For nursing home owners, administrators, and medical staff leadership, there are additional lessons to be learned from this catastrophe.

  11. Petroleum industry assists hurricane relief

    SciTech Connect

    Not Available

    1992-09-14

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas.

  12. Hurricane Rita: an unwelcome visitor to PPG industries in Lake Charles, Louisiana.

    PubMed

    Sanders, Roy E

    2008-11-15

    This paper intends to provide a glimpse of the within-the-fence activity of a major chlorine, caustic soda and chlorinated hydrocarbons manufacturing complex, immediately before and during the 2 weeks following Hurricane Rita. The paper touches on the basics, covering "preparation," "perseverance" and "powering up again" as this chemical complex began to return to normal. There are expected and unexpected things that a significant hurricane can impact, and you may wonder how your organization would fare.

  13. Specifics of landslide processes in Guatemala: apsect of the terrain and wind circulation during hurricanes

    NASA Astrophysics Data System (ADS)

    Gorokhovich, Y.; Machado, E.; Giron, I.; Ghahremani, M.

    2015-12-01

    Specific relationship between slope aspect and wind circulation during hurricane events exists for Guatemala. Analysis of hurricanes Mitch (1998) and Stan (2005) showed that eastern, southeastern and southern slopes are more subjected to landslides processes than other slope orientations. This conclusion is based on landslide data obtained immediately after hurricane occurences and satellite data on wind circulation during hurricane events. Because Guatemala is located between Atlantic and Pacific "swarms" of hurricane tracks, typical argument based on the strong right side impact of hurricanes cannot be applied here. We analyzed series of satellite based wind circulation data related to Mitch and Stan and established strong association between eastern, southeastern and southern wind directions and landslide affected areas. This is reflection of the local wind circulation during hurricane events at elevations 800 hPa. This is in agreement with previous meteorologic studies in the region by Portig (1965). It is possible that similar relationship is true for the rest of Central American region. If this is a case then future studies can develop a regional model that can be used as a tool in landslide assessment and hazard mapping on a regional level. However, data quality is a key factor in this type of analysis.

  14. Oceanic response around the Yucatan Peninsula to the 2005 hurricanes from remote sensing

    NASA Astrophysics Data System (ADS)

    D'Sa, Eurico J.; Tehrani, Nazanin C.; Rivera-Monroy, Victor H.

    2011-11-01

    Hurricanes Emily, Stan and Wilma made landfall along the Yucatan Peninsula (YP) in 2005 impacting regional coastal environments. The effects of these hurricanes on the coastal and oceanic waters around the YP were examined using multiple satellite sensor data such as winds from QuikSCAT, sea surface temperature (SST) from MODIS, and biooptical properties from the SeaWiFS ocean color sensor. QuikSCAT wind data revealed the hurricane paths along with typical changes in wind speed and direction and improved interpretation of the SST and ocean color data. SST imagery before and after hurricanes landfalling indicated variable extent of upper ocean cooling that varied with the hurricane track and its intensity. An examination of SeaWiFS-derived backscattering coefficient at 443 nm, an optical indicator of suspended particulate matter concentrations showed elevated levels of surface suspended material following the hurricane passages in both nearshore and offshore waters, likely due to resuspension and offshore transport. The use of multi-satellite data provided a greater understanding of the response and changes in sea surface properties to hurricanes in the YP.

  15. Science and the storms: the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  16. The Impact of Physics Laboratory on Students Offering Physics in Ethiope West Local Government Area of Delta State

    ERIC Educational Resources Information Center

    Godwin, Oluwasegun; Adrian, Ohwofosirai; Johnbull, Emagbetere

    2015-01-01

    The impact of Physics laboratory on students was carried out among senior secondary school students offering Physics in Ethiope West Local Government Area of Delta State using descriptive survey. Five public schools were random-even samplying technique was adopted for precision. Fifty questionnaires were distributed to students in each school,…

  17. A University Engagement Model for Achieving Technology Adoption and Performance Improvement Impacts in Healthcare, Manufacturing, and Government

    ERIC Educational Resources Information Center

    McKinnis, David R.; Sloan, Mary Anne; Snow, L. David; Garimella, Suresh V.

    2014-01-01

    The Purdue Technical Assistance Program (TAP) offers a model of university engagement and service that is achieving technology adoption and performance improvement impacts in healthcare, manufacturing, government, and other sectors. The TAP model focuses on understanding and meeting the changing and challenging needs of those served, always…

  18. Hurricane Sandy: observations and analysis of coastal change

    USGS Publications Warehouse

    Sopkin, Kristin L.; Stockdon, Hilary F.; Doran, Kara S.; Plant, Nathaniel G.; Morgan, Karen L.M.; Guy, Kristy K.; Smith, Kathryn E.L.

    2014-01-01

    Hurricane Sandy, the largest Atlantic hurricane on record, made landfall on October 29, 2012, and impacted a long swath of the U.S. Atlantic coastline. The barrier islands were breached in a number of places and beach and dune erosion occurred along most of the Mid-Atlantic coast. As a part of the National Assessment of Coastal Change Hazards project, the U.S. Geological Survey collected post-Hurricane Sandy oblique aerial photography and lidar topographic surveys to document the changes that occurred as a result of the storm. Comparisons of post-storm photographs to those collected prior to Sandy’s landfall were used to characterize the nature, magnitude, and spatial variability of hurricane-induced coastal changes. Analysis of pre- and post-storm lidar elevations was used to quantify magnitudes of change in shoreline position, dune elevation, and beach width. Erosion was observed along the coast from North Carolina to New York; however, as would be expected over such a large region, extensive spatial variability in storm response was observed.

  19. Prestorm estimation of hurricane damage to electric power distribution systems.

    PubMed

    Guikema, Seth D; Quiring, Steven M; Han, Seung-Ryong

    2010-12-01

    Hurricanes frequently cause damage to electric power systems in the United States, leading to widespread and prolonged loss of electric service. Restoring service quickly requires the use of repair crews and materials that must be requested, at considerable cost, prior to the storm. U.S. utilities have struggled to strike a good balance between over- and underpreparation largely because of a lack of methods for rigorously estimating the impacts of an approaching hurricane on their systems. Previous work developed methods for estimating the risk of power outages and customer loss of power, with an outage defined as nontransitory activation of a protective device. In this article, we move beyond these previous approaches to directly estimate damage to the electric power system. Our approach is based on damage data from past storms together with regression and data mining techniques to estimate the number of utility poles that will need to be replaced. Because restoration times and resource needs are more closely tied to the number of poles and transformers that need to be replaced than to the number of outages, this pole-based assessment provides a much stronger basis for prestorm planning by utilities. Our results show that damage to poles during hurricanes can be assessed accurately, provided that adequate past damage data are available. However, the availability of data can, and currently often is, the limiting factor in developing these types of models in practice. Opportunities for further enhancing the damage data recorded during hurricanes are also discussed.

  20. Prestorm estimation of hurricane damage to electric power distribution systems.

    PubMed

    Guikema, Seth D; Quiring, Steven M; Han, Seung-Ryong

    2010-12-01

    Hurricanes frequently cause damage to electric power systems in the United States, leading to widespread and prolonged loss of electric service. Restoring service quickly requires the use of repair crews and materials that must be requested, at considerable cost, prior to the storm. U.S. utilities have struggled to strike a good balance between over- and underpreparation largely because of a lack of methods for rigorously estimating the impacts of an approaching hurricane on their systems. Previous work developed methods for estimating the risk of power outages and customer loss of power, with an outage defined as nontransitory activation of a protective device. In this article, we move beyond these previous approaches to directly estimate damage to the electric power system. Our approach is based on damage data from past storms together with regression and data mining techniques to estimate the number of utility poles that will need to be replaced. Because restoration times and resource needs are more closely tied to the number of poles and transformers that need to be replaced than to the number of outages, this pole-based assessment provides a much stronger basis for prestorm planning by utilities. Our results show that damage to poles during hurricanes can be assessed accurately, provided that adequate past damage data are available. However, the availability of data can, and currently often is, the limiting factor in developing these types of models in practice. Opportunities for further enhancing the damage data recorded during hurricanes are also discussed. PMID:21039701

  1. A Coordinated USGS Science Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  2. Diversity and abundance of forest frogs (Anura: Leptodactylidae) before and after Hurricane Georges in the Cordillera Central of Puerto Rico

    USGS Publications Warehouse

    Vilella, F.J.; Fogarty, J.H.

    2005-01-01

    Caribbean hurricanes often impact terrestrial vertebrates in forested environments. On 21 September 1998, Hurricane Georges impacted Puerto Rico with sustained winds in excess of 166 km/hr, causing damage to forests of the island's principal mountain range; the Cordillera Central. We estimated forest frog abundance and diversity from call counts conducted along marked transects before and after Hurricane Georges in two forests reserves of the Cordillera Central (Maricao and Guilarte). We used distance sampling to estimate density of Eleutherodactylus coqui and recorded counts of other species. After the hurricane, the abundance of E. coqui increased in both reserves compared to prehurricane levels while abundance of other frog species decreased. In Maricao, relative abundance of E. richmondi (P = 0.013) and E. brittoni (P = 0.034) were significantly lower after the hurricane. Moreover, species richness and evenness of the Maricao and Guilarte frog assemblages declined after the hurricane. Our results on abundance patterns of the forest frog assemblages of Maricao and Guilarte Forests were similar to those reported from the Luquillo Experimental Forest after Hurricane Hugo in September 1989. Long-term demographic patterns of the forest frog assemblages in the Cordillera Central may be associated with changes due to the ecological succession in post-hurricane forests. Copyright 2005 College of Arts and Sciences.

  3. The Modulation of Hurricanes by African Dust

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Perez-Peraza, Jorge Alberto; Velasco Herrera, Graciela

    Here we apply cross-wavelet, the global wavelet spectra and a new wavelet coherency signal-noise method to theavailable data of African Dust for the period 1966-2004 and Database of hurricanes, from the National Weather Service (http:// weather.unisys. com/ hurricane/). Hurricane data was transformed into a series of Pulses Width modulation (PWM) of the type: n = number of hurricanes, 0 no hurricane. We apply the analysis to all categories of tropical cyclones. Results indicate that among the different periodicities common to both series, the more promi-nent is the decadal modulation of dust over hurricanes of category 5, and a annual modulation for all the other categories of Hurricanes. Hurricanes of category 5 develop in the minimums of the decadal variation of African dust, and preferable in areas of deep water of the Atlantic ocean, where the centre of the hurricane has the lowest pressure. If this tendency is sustained , tropical cyclones will not evolve to category 5 up to the next decadal minimum which will take place around the year 2015 2. This is an important result concerning the prediction of floods and for minimizing the human and economical lost provoked for hurricanes of category 5.

  4. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... COMMISSION Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles AGENCY....221 on Design-Basis Hurricane and Hurricane Missiles.'' The purpose of this ISG is to supplement the guidance regarding the application of Regulatory Guide 1.221, ``Design-Basis Hurricane and...

  5. Hurricane Katrina Wind Investigation Report

    SciTech Connect

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  6. The effects of hurricanes on birds, with special reference to Caribbean islands

    USGS Publications Warehouse

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  7. Downscaling tropical cyclone activity using regional models: Impact of air-sea coupling on the frequency and intensity of Atlantic hurricanes Authors: Jen-shan Hsieh, Mingkui Li, R. Saravanan, and Ping Chang Texas A & M University, College Station, TX

    NASA Astrophysics Data System (ADS)

    Hsieh, J.; Li, M.; Saravanan, R.; Chang, P.

    2009-12-01

    Tropical cyclones are an important component of climate variability in the tropics and the subtropics. Unfortunately, these cyclones are poorly represented in coarse-resolution global general circulation models. Fine-resolution regional atmospheric models can be used to better simulate the properties of tropical cyclones, typically using specified sea surface temperature as the lower boundary condition. Such a boundary condition cannot simulate the cold wake associated with a tropical cyclone, which arises due to the enhanced vertical mixing and entrainment below the oceanic mixed layer. This cold wake has potential implications for the intensity of the tropical cyclone itself, because it can act as a negative air-sea feedback and lead to a weakening of the storm. Therefore, proper representation of this air-sea feedback is important when assessing the sensitivity of tropical cyclone frequency and intensity to climate change. We address this issue using a coupled regional climate model, where a regional atmospheric model is coupled to a regional ocean model. The model domain encompasses the Atlantic Ocean and adjoining continental regions. The atmospheric component is the NCAR WRF model running at 30 km horizontal resolution. The oceanic component is the Regional Ocean Modeling System (ROMS) running at 0.25 degree resolution. The atmospheric and oceanic models exchange fluxes of momentum, heat, and freshwater. The control coupled integration using this model simulates fairly realistic tropical variability, including a number of hurricane-like tropical vortices. To assess the sensitivity of tropical cyclone activity to air-sea coupling, we have also carried out a companion uncoupled integration, where the time-evolving sea surface temperature from the control coupled integration is used as the lower boundary condition for the uncoupled atmospheric model. We analyze the frequency and intensity of the tropical cyclones, as well as the associated precipitation, in both

  8. AVHRR imagery used to identify hurricane damage in a forested wetland of Louisiana

    USGS Publications Warehouse

    Ramsey, Elijah W.; Chappell, D.K.; Baldwin, D.G.

    1997-01-01

    Certain events provide a unique opportunity to test the monitoring capability of AVHBR imagery. On 26 August 1992, Hurricane Andrew passed through Louisiana, impacting a large area of forested wetlands. One response to the widespread defoliation resulting from the hurricane impact was an abnormal bloom of new leaves and new growth in the underlying vegetation between September and October. To capture this atypical phenology, a time sequence of AVHRR images was transformed into a normalized difference vegetation index, NDVI, as an indicator of vegetation changes in the forest impacted by the passage of a hurricane. Using geographic information system functions, three sites in the impacted forest were vectorized as polygons, and the inclusive pixels were extracted for subsequent graphical and univariate statistical analysis. Temporal curves of mean NDVIs for the three sites for before, during, and after the hurricane passage, and aggregate curves of the impacted forest to an undisturbed forest, were compared. These comparisons corroborated the atypical phenology of the impacted forested wetland and directly related the cause to the hurricane passage.

  9. The New Political Economy of Health Care in the European Union: The Impact of Fiscal Governance.

    PubMed

    Greer, Scott L; Jarman, Holly; Baeten, Rita

    2016-01-01

    We argue that the political economy of health care in the European Union is being changed by the creation of a substantial new apparatus of European fiscal governance. A series of treaties and legal changes since 2008 have given the European Union new powers and duties to enforce budgetary austerity in the member states, and this apparatus of fiscal governance has already extended to include detailed and sometimes coercive policy recommendations to member states about the governance of their health care systems. We map the structures of this new fiscal governance and the way it purports to affect health care decision making.

  10. The New Political Economy of Health Care in the European Union: The Impact of Fiscal Governance.

    PubMed

    Greer, Scott L; Jarman, Holly; Baeten, Rita

    2016-01-01

    We argue that the political economy of health care in the European Union is being changed by the creation of a substantial new apparatus of European fiscal governance. A series of treaties and legal changes since 2008 have given the European Union new powers and duties to enforce budgetary austerity in the member states, and this apparatus of fiscal governance has already extended to include detailed and sometimes coercive policy recommendations to member states about the governance of their health care systems. We map the structures of this new fiscal governance and the way it purports to affect health care decision making. PMID:27076653

  11. NASA's Three Pronged Approach to Hurricane Research

    NASA Astrophysics Data System (ADS)

    Kakar, R. K.

    2006-12-01

    The direct question: How can weather forecast duration and reliability be improved and guide research within NASA's Weather Focus Area? A mandate of the Weather Focus Area is to investigate high impact weather events, such as severe tropical storms, through a combination of new and improved space-based observations, high-altitude research aircraft and sophisticated numerical models. The field experiments involving the NASA research aircraft are vital components of this three-pronged approach. The Convection and Moisture Experiment (CAMEX) - 3 studied inner core dynamics, synoptic flow environment, land falling intensity change and the genesis environment for several hurricanes in a field experiment carried out during the 1998 season. CAMEX-4 studied rapid intensification, storm structure and dynamics, scale interactions and intercomparison of remote sensing techniques during the 2001 hurricane season. Several state of the art remote sensing instruments were used in these studies from the NASA DC-8 and ER-2 aircraft. During July 2005, NASA conducted its Tropical Cloud Systems and Processes (TCSP) experiment from San Jose, Costa Rica. The purpose of TCSP was to investigate the genesis and intensification of tropical cyclones primarily in the eastern North Pacific. This ocean basin was chosen because climatologically it represents the most concentrated region of cyclone formation on the planet and is within range of research aircraft deploying from Costa Rica. In 2005, however, the Caribbean was particularly active instead. We were greeted by two of the strongest July hurricanes on record for the Caribbean. The NASA ER-2 high altitude research aircraft flew twelve separate missions, carrying a payload of several remote sensing instruments. Many of these missions were flown in coordination with the NOAA Hurricane Research Division (HRD) P-3 Orion research aircraft as part of NOAA's 2005 Intensity Forecast Experiment. TCSP's successor program, the NAMMA-06 (NASA African

  12. An Investigation of the Impact of Student Government Involvement at One Public Historically Black University on the Career Choice of African American Student Participants

    ERIC Educational Resources Information Center

    Laosebikan-Buggs, Morolake O.

    2009-01-01

    The purpose of this study was to investigate student participation in collegiate student governance, the impact of that involvement and its influence on career choice for African-American participants, and to enlighten educators about role and value of collegiate student government participation. If participation in student government and…

  13. Sediment deposition from Hurricane Rita on Hackberry Beach chenier in southwestern Louisiana: Chapter 6E in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Doyle, Thomas; Baldwin, Michael; Michot, Thomas; Wells, Christopher; Jeske, Clint

    2007-01-01

    Hurricane Rita significantly impacted the chenier forests of southwestern Louisiana, an important habitat for Neotropical migratory birds. Sediment deposition was measured along transects at Hackberry Beach chenier, and Rita's effects on chenier structure and morphology were determined.

  14. Impact analysis of government investment on water projects in the arid Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming

    In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.

  15. Vulnerable populations: Hurricane Katrina as a case study.

    PubMed

    Zoraster, Richard M

    2010-01-01

    Mitigating disaster impact requires identifying risk factors. The increased vulnerability of the physically fragile is easily understood. Less obvious are the socio-economic risk factors, especially within relatively affluent societies. Hurricane Katrina demonstrated many of these risks within the United States. These factors include poverty, home ownership, poor English language proficiency, ethnic minorities, immigrant status, and high-density housing. These risk factors must be considered when planning for disaster preparation, mitigation, and response.

  16. Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liu, Hui

    2009-06-01

    Hyperspectral infrared sounders such as the AIRS and IASI provide unprecedented global atmospheric temperature and moisture soundings with high vertical resolution and accuracy. The AIRS and IASI data have been used in global numerical weather prediction models with positive impact on weather forecasts. The high spatial resolution single field-of-view soundings retrieved from AIRS have been applied to hurricane track and intensity assimilations and forecasts. The newly developed NCAR WRF/DART ensemble data assimilation is performed at 36 km resolution. Studies show that the track error for Hurricane Ike (2008) is reduced greatly when AIRS soundings are used compared with the control run which includes other observations such as radiosonde, satellite cloud winds, aircraft data, ship data, and land surface data, etc. The hurricane intensity forecast is also substantially improved when AIRS data are assimilated. This study demonstrates the importance of high spatial and hyperspectral IR sounding data in forecasting hurricanes.

  17. Simulated increase of hurricane intensities in a CO2-warmed climate

    PubMed

    Knutson; Tuleya; Kurihara

    1998-02-13

    Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of these powerful storms could change in response to greenhouse gas-induced global warming. The impact of climate warming on hurricane intensities was investigated with a regional, high-resolution, hurricane prediction model. In a case study, 51 western Pacific storm cases under present-day climate conditions were compared with 51 storm cases under high-CO2 conditions. More idealized experiments were also performed. The large-scale initial conditions were derived from a global climate model. For a sea surface temperature warming of about 2.2 degrees C, the simulations yielded hurricanes that were more intense by 3 to 7 meters per second (5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure.

  18. Choosers and Losers: The Impact of Government Subsidies on Australian Secondary Schools

    ERIC Educational Resources Information Center

    Watson, Louise; Ryan, Chris

    2010-01-01

    For over three decades, government subsidies have been a major source of funds for private schools in Australia. Private schools now enrol more than one-third of all students. Analysing administrative and participation data, we find that Australian private schools have used government subsidies to increase the quality of their services (that is,…

  19. Impact of the Government Funding Reforms on the Teaching and Learning of Malaysian Public Universities

    ERIC Educational Resources Information Center

    Ahmad, Abd Rahman; Farley, Alan; Naidoo, Moonsamy

    2012-01-01

    The Malaysian Government intention to implement the higher education reforms is observable in the implementation of National Higher Education Strategic Plan beyond 2020 in 2007. This plan emphasises on improving the research and teaching in higher education in accordance with the government objectives. Parallel to the introduction of this plan,…

  20. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    PubMed

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  1. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    PubMed

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  2. The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: Large bedform migration but limited erosion

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Flood, Roger D.; Austin, James A., Jr.; Schwab, William C.; Christensen, Beth; Browne, Cassandra M.; Denny, Jane F.; Baldwin, Wayne E.

    2015-04-01

    We investigate the impact of superstorm Sandy on the lower shoreface and inner shelf offshore the barrier island system of Fire Island, NY using before-and-after surveys involving swath bathymetry, backscatter and CHIRP acoustic reflection data. As sea level rises over the long term, the shoreface and inner shelf are eroded as barrier islands migrate landward; large storms like Sandy are thought to be a primary driver of this largely evolutionary process. The "before" data were collected in 2011 by the U.S. Geological Survey as part of a long-term investigation of the Fire Island barrier system. The "after" data were collected in January, 2013, ~two months after the storm. Surprisingly, no widespread erosional event was observed. Rather, the primary impact of Sandy on the shoreface and inner shelf was to force migration of major bedforms (sand ridges and sorted bedforms) 10's of meters WSW alongshore, decreasing in migration distance with increasing water depth. Although greater in rate, this migratory behavior is no different than observations made over the 15-year span prior to the 2011 survey. Stratigraphic observations of buried, offshore-thinning fluvial channels indicate that long-term erosion of older sediments is focused in water depths ranging from the base of the shoreface (~13-16 m) to ~21 m on the inner shelf, which is coincident with the range of depth over which sand ridges and sorted bedforms migrated in response to Sandy. We hypothesize that bedform migration regulates erosion over these water depths and controls the formation of a widely observed transgressive ravinement; focusing erosion of older material occurs at the base of the stoss (upcurrent) flank of the bedforms. Secondary storm impacts include the formation of ephemeral hummocky bedforms and the deposition of a mud event layer.

  3. The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: large bedform migration but limited erosion

    USGS Publications Warehouse

    Goff, John A.; Flood, Roger D.; Austin, James A.; Schwab, William C.; Christensen, Beth A.; Browne, Cassandra M.; Denny, Jane F.; Baldwin, Wayne E.

    2015-01-01

    We investigate the impact of superstorm Sandy on the lower shoreface and inner shelf offshore the barrier island system of Fire Island, NY using before-and-after surveys involving swath bathymetry, backscatter and CHIRP acoustic reflection data. As sea level rises over the long term, the shoreface and inner shelf are eroded as barrier islands migrate landward; large storms like Sandy are thought to be a primary driver of this largely evolutionary process. The “before” data were collected in 2011 by the U.S. Geological Survey as part of a long-term investigation of the Fire Island barrier system. The “after” data were collected in January, 2013, ~two months after the storm. Surprisingly, no widespread erosional event was observed. Rather, the primary impact of Sandy on the shoreface and inner shelf was to force migration of major bedforms (sand ridges and sorted bedforms) 10’s of meters WSW alongshore, decreasing in migration distance with increasing water depth. Although greater in rate, this migratory behavior is no different than observations made over the 15-year span prior to the 2011 survey. Stratigraphic observations of buried, offshore-thinning fluvial channels indicate that long-term erosion of older sediments is focused in water depths ranging from the base of the shoreface (~13–16 m) to ~21 m on the inner shelf, which is coincident with the range of depth over which sand ridges and sorted bedforms migrated in response to Sandy. We hypothesize that bedform migration regulates erosion over these water depths and controls the formation of a widely observed transgressive ravinement; focusing erosion of older material occurs at the base of the stoss (upcurrent) flank of the bedforms. Secondary storm impacts include the formation of ephemeral hummocky bedforms and the deposition of a mud event layer.

  4. A tale of two storms: Surges and sediment deposition from Hurricanes Andrew and Wilma in Florida’s southwest coast mangrove forests: Chapter 6G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Smith, Thomas J.; Anderson, Gordon H.; Tiling, Ginger

    2007-01-01

    Hurricanes can be very different from each other. Here we examine the impacts that two hurricanes, Andrew and Wilma, had in terms of storm surge and sediment deposition on the southwest coast of Florida. Although Wilma was the weaker storm, it had the greater impact. Wilma had the higher storm surge over a larger area and deposited more sediment than did Andrew. This effect was most likely due to the size of Wilma's eye, which was four times larger than that of Andrew.

  5. Lessons Learnt From Hurricane Katrina.

    NASA Astrophysics Data System (ADS)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  6. Hurricane Preparedness and Control Plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This plan establishes policy and sets forth guidance, responsibilities and procedures utilized by Federal Electric Corp., communications department in support of the KSC Emergency Preparedness Plan, Annex A, Hurricane Control Plan (GP-355) dated 27 May 1971. This plan covers all FEC communications department personnel, facilities, and equipment situated at the Kennedy Space Center that are the responsibility of FEC contract NAS 10-4967.

  7. Preparation, experience, and aftermath of hurricane Floyd.

    PubMed

    Campese, C

    2000-07-01

    In September 1999, Hurricane Floyd threatened the southeastern coast of the United States, causing the largest peacetime evacuation in history. The hurricane moved onto land when it curved northward and slammed into southeastern North Carolina near Wilmington and Cape Fear. This region already had experienced three hurricanes in recent years and had been brushed by Hurricane Dennis one month earlier. This article describes actions taken by the New Hanover Regional Medical Center surgical services department in Wilmington, NC, to prepare for and weather the storm. The aftermath and cleanup also are discussed.

  8. One Typhoon and Two Hurricanes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The powerful super Typhoon Bilis hit Taiwan with 161 mph (260 kmh) winds on August 22, 2000. At times, the winds were strong enough to shake concrete buildings. In addition to the wind, heavy rains may bring flooding and mudslides to the island. Mudslides particularly threaten areas hit by 1999's powerful earthquake. This image (above) shows Bilis as the outer arms of the storm swept over Taiwan near noon local time on August 22, 2000. The true color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Meanwhile, in the Atlantic ... On the other side of the globe there were two relatively small hurricanes. Hurricane Alberto sat in the center of the North Atlantic, hanging on in its third week of life. Hurricane Debby was approaching Puerto Rico with sustained winds of only 75 mph (120 kph). NOAA's Geostationary Operational Environmental Satellite (GOES) acquired this image (below) of the Western Hemisphere, showing both Alberto and Debby, at 2:30 PM EDT August 22, 2000. Typhoon Bilis provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. GOES imagery courtesy GOES Project Science Office, NASA GSFC.

  9. Dynamic Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  10. The economic impact of diabetes through lost labour force participation on individuals and government: evidence from a microsimulation model

    PubMed Central

    2014-01-01

    Background Diabetes is a costly and debilitating disease. The aim of the study is to quantify the individual and national costs of diabetes resulting from people retiring early because of this disease, including lost income; lost income taxation, increased government welfare payments; and reductions in GDP. Methods A purpose-built microsimulation model, Health&WealthMOD2030, was used to estimate the economic costs of early retirement due to diabetes. The study included all Australians aged 45–64 years in 2010 based on Australian Bureau of Statistics’ Surveys of Disability, Ageing and Carers. A multiple regression model was used to identify significant differences in income, government welfare payments and taxation liabilities between people out of the labour force because of their diabetes and those employed full time with no chronic health condition. Results The median annual income of people who retired early because of their diabetes was significantly lower (AU$11 784) compared to those employed full time without a chronic health condition who received almost five times more income. At the national level, there was a loss of AU$384 million in individual earnings by those with diabetes, an extra AU$4 million spent in government welfare payments, a loss of AU$56 million in taxation revenue, and a loss of AU$1 324 million in GDP in 2010: all attributable to diabetes through its impact on labour force participation. Sensitivity analysis was used to assess the impact of different diabetes prevalence rates on estimates of lost income, lost income taxation, increased government welfare payments, and reduced GDP. Conclusions Individuals bear the cost of lost income in addition to the burden of the disease. The Government endures the impacts of lost productivity and income taxation revenue, as well as spending more in welfare payments. These national costs are in addition to the Government’s direct healthcare costs. PMID:24592931

  11. Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: Numerical computations of experimental observations

    NASA Astrophysics Data System (ADS)

    Raoelison, R. N.; Sapanathan, T.; Padayodi, E.; Buiron, N.; Rachik, M.

    2016-11-01

    This paper investigates the complex interfacial kinematics and governing mechanisms during high speed impact conditions. A robust numerical modelling technique using Eulerian simulations are used to explain the material response of the interface subjected to a high strain rate collision during a magnetic pulse welding. The capability of this model is demonstrated using the predictions of interfacial kinematics and revealing the governing mechanical behaviours. Numerical predictions of wave formation resulted with the upward or downward jetting and complex interfacial mixing governed by wake and vortex instabilities corroborate the experimental observations. Moreover, the prediction of the material ejection during the simulation explains the experimentally observed deposited particles outside the welded region. Formations of internal cavities along the interface is also closely resemble the resulted confined heating at the vicinity of the interface appeared from those wake and vortex instabilities. These results are key features of this simulation that also explains the potential mechanisms in the defects formation at the interface. These results indicate that the Eulerian computation not only has the advantage of predicting the governing mechanisms, but also it offers a non-destructive approach to identify the interfacial defects in an impact welded joint.

  12. Physical attributes of hurricane surges and their role in surge warning

    NASA Astrophysics Data System (ADS)

    Irish, J. L.

    2012-12-01

    In the last decade, the US has experienced some of its largest surges and hurricane-related damages on record. Effective evacuation in advance of a hurricane strike requires accurate estimation of the hurricane surge hazard that effectively conveys risk not only to government decision makers but also to the general public. Two primary challenges exist with the current structure for surge warning. First, existing computational methods for developing accurate, quantitative surge forecasts, namely surge height and inundation estimation, are limited by time and computational resources. Second, due primarily to the popularity and wide use of the Saffir-Simpson wind scale to convey the complete hurricane hazard, the public's perception of surge hazard is inaccurate. Here, we use dimensionless scaling and hydrodynamics arguments to quantify the influence of hurricane variables and regional geographic characteristics on the surge response. It will be shown that hurricane surge primarily scales with the hurricane's central pressure, and size and with continental shelf width at the landfall location (Irish et al. 2009, Nat. Haz.; Song et al. in press, Nat. Haz.). Secondary influences include the hurricane's forward speed and path. The developed physical scaling is applied in two ways: (1) as a means for expanding the utility of computational simulations for real-time surge height forecasting and (2) as a means to convey relative surge hazard via a readily evaluated algebraic surge scale. In the first application, the use of this physical scaling to develop surge response functions (SRF) enables instantaneous algebraic calculation of maximum surge height at any location of interest for any hurricane meteorological condition, without loss of accuracy gained via high-resolution computational simulation. When coupled with joint probability statistics, the use of SRFs enables rapid development of continuous probability density functions for probabilistic surge forecasting (Irish

  13. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  14. In the Wake of Hurricane Katrina: Delivering Crisis Mental Health Services to Host Communities

    ERIC Educational Resources Information Center

    Marbley, Aretha Faye

    2007-01-01

    Throughout the country and especially in Texas, local communities opened their arms to hurricane Katrina evacuees. Like the federal government, emergency health and mental health entities were unprepared for the massive numbers of people needing assistance. Mental health professionals, though armed with a wealth of crisis intervention information,…

  15. News of Hurricane Andrew: The Agenda of Sources and the Sources' Agendas.

    ERIC Educational Resources Information Center

    Salwen, Michael B.

    1995-01-01

    Studies quotations in newspaper coverage of Hurricane Andrew, showing that individuals who were not affiliated with government or business were quoted most often. Shows that most sources were quoted as experts, with individuals represented as suffering victims, providing the news media with human interest quotations. Notes that most sources…

  16. Ordinary and Extraordinary Trauma: Race, Indigeneity, and Hurricane Katrina in Tunica-Biloxi History

    ERIC Educational Resources Information Center

    Klopotek, Brian; Lintinger, Brenda; Barbry, John

    2008-01-01

    Hurricane Katrina traumatized the city of New Orleans and the Gulf South. It filled most Americans and global citizens with grief and rage in the late summer of 2005. As the world watched, feeling powerless to help the many thousands of suffering people, at first stunned and then furious over the ineptitude of government response to this…

  17. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh Anne; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  18. Oral history and Hurricane Katrina: reflections on shouts and silences.

    PubMed

    Sloan, Stephen

    2008-01-01

    In the immediate aftermath of Hurricane Katrina in August 2005, many oral historians throughout the nation began to consider the role their methodology could serve in documenting the storm and its aftermath. Interviewing so soon after such a traumatic event creates new considerations for oral history as an approach to recording experience. The problems and possibilities of oral history as such a moment initiated a vibrant discussion on H-Oralhist and at professional meetings in the fall of 2005. This article reflects on many of the topics raised in that dialogue, including issues of historical distance, objectivity, reflection, and emotional trauma. The piece also offers an early review of the work of the Center for Oral History and Cultural Heritage at the University of Southern Mississippi to document the impact of Hurricane Katrina in Mississippi.

  19. Florida households' expected responses to hurricane hazard mitigation incentives.

    PubMed

    Ge, Yue; Peacock, Walter Gillis; Lindell, Michael K

    2011-10-01

    This study tested a series of models predicting household expectations of participating in hurricane hazard mitigation incentive programs. Data from 599 households in Florida revealed that mitigation incentive adoption expectations were most strongly and consistently related to hazard intrusiveness and risk perception and, to a lesser extent, worry. Demographic and hazard exposure had indirect effects on mitigation incentive adoption expectations that were mediated by the psychological variables. The results also revealed differences in the factors affecting mitigation incentive adoption expectations for each of five specific incentive programs. Overall, the results suggest that hazard managers are more likely to increase participation in mitigation incentive programs if they provide messages that repeatedly (thus increasing hazard intrusiveness) remind people of the likelihood of severe negative consequences of hurricane impact (thus increasing risk perception).

  20. Use of Windbreaks for Hurricane Protection of Critical Facilities

    NASA Technical Reports Server (NTRS)

    Hyater-Adams, Sinone; DeYoung, Russell J.

    2012-01-01

    The protection of NASA Langley Research Center from future hurricanes is important in order to allow the center to fulfill its mission. The impact of the center is not only great within NASA but the economy as well. The infrastructure of the Center is under potential risk in the future because of more intense hurricanes with higher speed winds and flooding. A potential method of protecting the Center s facilities is the placement of a windbreak barrier composed of indigenous trees. The New Town program that is now in progress creates a more condensed area of focus for protection. A potential design for an efficient tree windbreak barrier for Langley Research center is proposed.

  1. Hurricane Public Health Research Center at Louisiana State University a Case of Academia Being Prepared

    NASA Astrophysics Data System (ADS)

    van Heerden, I. L.

    2006-12-01

    Recent floods along the Atlantic and Gulf seaboards and elsewhere in the world before Katrina had demonstrated the complexity of public health impacts including trauma; fires; chemical, sewerage, and corpse contamination of air and water; and diseases. We realized that Louisiana's vulnerability was exacerbated because forty percent of the state is coastal zone in which 70% of the population resides. Ninety percent of this zone is near or below sea level and protected by man-made hurricane-protection levees. New Orleans ranked among the highest in the nation with respect to potential societal, mortality, and economic impacts. Recognizing that emergency responders had in the past been unprepared for the extent of the public health impacts of these complex flooding disasters, we created a multi-disciplinary, multi-campus research center to address these issues for New Orleans. The Louisiana Board of Regents, through its millennium Health Excellence Fund, awarded a 5-year contract to the Center in 2001. The research team combined the resources of natural scientists, social scientists, engineers, and the mental health and medical communities. We met annually with a Board of Advisors, made up of federal, state, local government, and non-governmental agency officials, first responders and emergency managers. Their advice was invaluable in acquiring various datasets and directing aspects of the various research efforts. Our center developed detailed models for assessment and amelioration of public health impacts due to hurricanes and major floods. Initial research had showed that a Category 3 storm would cause levee overtopping, and that most levee systems were unprotected from the impacts of storm-induced wave erosion. Sections of levees with distinct sags suggested the beginnings of foundation and subsidence problems. We recognized that a slow moving Cat 3 could flood up to the eaves of houses and would have residence times of weeks. The resultant mix of sewage, corpses

  2. Integration of health into urban spatial planning through impact assessment: Identifying governance and policy barriers and facilitators

    SciTech Connect

    Carmichael, Laurence; Barton, Hugh; Gray, Selena; Lease, Helen; Pilkington, Paul

    2012-01-15

    This article presents the results of a review of literature examining the barriers and facilitators in integrating health in spatial planning at the local, mainly urban level, through appraisals. Our literature review covered the UK and non UK experiences of appraisals used to consider health issues in the planning process. We were able to identify four main categories of obstacles and facilitators including first the different knowledge and conceptual understanding of health by different actors/stakeholders, second the types of governance arrangements, in particular partnerships, in place and the political context, third the way institutions work, the responsibilities they have and their capacity and resources and fourth the timeliness, comprehensiveness and inclusiveness of the appraisal process. The findings allowed us to draw some lessons on the governance and policy framework regarding the integration of health impact into spatial planning, in particular considering the pros and cons of integrating health impact assessment (HIA) into other forms of impact assessment of spatial planning decisions such as environmental impact assessment (EIA) and strategic environment assessment (SEA). In addition, the research uncovered a gap in the literature that tends to focus on the mainly voluntary HIA to assess health outcomes of planning decisions and neglect the analysis of regulatory mechanisms such as EIA and SEA. - Highlights: Black-Right-Pointing-Pointer Governance and policy barriers and facilitators to the integration of health into urban planning. Black-Right-Pointing-Pointer Review of literature on impact assessment methods used across the world. Black-Right-Pointing-Pointer Knowledge, partnerships, management/resources and processes can impede integration. Black-Right-Pointing-Pointer HIA evaluations prevail uncovering research opportunities for evaluating other techniques.

  3. Spatial analysis of highway incident durations in the context of Hurricane Sandy.

    PubMed

    Xie, Kun; Ozbay, Kaan; Yang, Hong

    2015-01-01

    The objectives of this study are (1) to develop an incident duration model which can account for the spatial dependence of duration observations, and (2) to investigate the impacts of a hurricane on incident duration. Highway incident data from New York City and its surrounding regions before and after Hurricane Sandy was used for the study. Moran's I statistics confirmed that durations of the neighboring incidents were spatially correlated. Moreover, Lagrange Multiplier tests suggested that the spatial dependence should be captured in a spatial lag specification. A spatial error model, a spatial lag model and a standard model without consideration of spatial effects were developed. The spatial lag model is found to outperform the others by capturing the spatial dependence of incident durations via a spatially lagged dependent variable. It was further used to assess the effects of hurricane-related variables on incident duration. The results show that the incidents during and post the hurricane are expected to have 116.3% and 79.8% longer durations than those that occurred in the regular time. However, no significant increase in incident duration is observed in the evacuation period before Sandy's landfall. Results of temporal stability tests further confirm the existence of the significant changes in incident duration patterns during and post the hurricane. Those findings can provide insights to aid in the development of hurricane evacuation plans and emergency management strategies.

  4. Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models.

    PubMed

    Han, Seung-Ryong; Guikema, Seth D; Quiring, Steven M

    2009-10-01

    Electric power is a critical infrastructure service after hurricanes, and rapid restoration of electric power is important in order to minimize losses in the impacted areas. However, rapid restoration of electric power after a hurricane depends on obtaining the necessary resources, primarily repair crews and materials, before the hurricane makes landfall and then appropriately deploying these resources as soon as possible after the hurricane. This, in turn, depends on having sound estimates of both the overall severity of the storm and the relative risk of power outages in different areas. Past studies have developed statistical, regression-based approaches for estimating the number of power outages in advance of an approaching hurricane. However, these approaches have either not been applicable for future events or have had lower predictive accuracy than desired. This article shows that a different type of regression model, a generalized additive model (GAM), can outperform the types of models used previously. This is done by developing and validating a GAM based on power outage data during past hurricanes in the Gulf Coast region and comparing the results from this model to the previously used generalized linear models.

  5. Business closure and relocation: a comparative analysis of the Loma Prieta earthquake and Hurricane Andrew.

    PubMed

    Wasileski, Gabriela; Rodríguez, Havidán; Diaz, Walter

    2011-01-01

    The occurrence of a number of large-scale disasters or catastrophes in recent years, including the Indian Ocean tsunami (2004), the Kashmir earthquake (2005), Hurricane Katrina (2005) and Hurricane Ike (2008), have raised our awareness regarding the devastating effects of disasters on human populations and the importance of developing mitigation and preparedness strategies to limit the consequences of such events. However, there is still a dearth of social science research focusing on the socio-economic impact of disasters on businesses in the United States. This paper contributes to this research literature by focusing on the impact of disasters on business closure and relocation through the use of multivariate logistic regression models, specifically focusing on the Loma Prieta earthquake (1989) and Hurricane Andrew (1992). Using a multivariate model, we examine how physical damage to the infrastructure, lifeline disruption and business characteristics, among others, impact business closure and relocation following major disasters.

  6. LAWS hurricane studies

    NASA Technical Reports Server (NTRS)

    Molinari, John

    1995-01-01

    The Laser Atmospheric Wind Sounder (LAWS) has recently been deselected from the Earth Observing System (EOS). A broad range of orbital altitudes and laser power are being considered for future wind lidar missions. As a result, as was anticipated in the proposed work, it may be impossible to meaningfully study tropical cyclones with lidar wind data because data coverage (i.e., swath width) is insufficient. Research on this grant has focused on how to maximize the benefits of a wind lidar regardless of the choice of platform or laser. Our studies have shown that major unsolved problems in tropical meteorology relate to the structure, dynamics, and role in tropical cyclogenesis of 'easterly waves'. These disturbances exist almost everywhere in the global subtropics. Results are described that focus upon easterly wave impacts on eastern Pacific tropical cyclogenesis. The availability of wind lidar data would create tremendous opportunities for the study of these waves and their role in the general circulation.

  7. The Greatest Storm on Earth: Hurricane.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This publication, produced by the National Oceanic and Atmospheric Administration (NOAA), is an illustrated non-technical description of the meteorology of hurricanes and their effects on the land areas they hit. As an information source for students and teachers alike, this publication also describes the damage done in the past by hurricanes, the…

  8. Hurricane Emilia Chases Tropical Storm Daniel

    NASA Video Gallery

    An animation of satellite observations from July 8 (6:00 p.m. EDT) to July 11 (1:30 p.m. EDT), 2012, shows Hurricane Daniel as it loses its hurricane eye and become a tropical storm as it heads tow...

  9. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  10. Teaching and Learning Mathematics through Hurricane Tracking

    ERIC Educational Resources Information Center

    Fernandez, Maria L.; Schoen, Robert C.

    2008-01-01

    Mathematics teachers can tap into students' curiosity about hurricanes to develop their understanding of mathematical ideas within a real-life context. This article discusses hurricane-based mathematics tasks involving cooperative learning that were found to help students enhance their understanding of patterns, graphs, and rates of change. For…

  11. Gulf Coast Hurricanes Situation Report #39

    SciTech Connect

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  12. Hurricane Katrina. The disaster after the disaster.

    PubMed

    Colias, Mike

    2005-10-01

    More than a decade after Hurricane Andrew devastated much of South Florida and a year after a series of killer storms battered the state, hospitals there offer stark lessons--as well as inspiration and hope--for their counterparts reeling from Hurricane Katrina.

  13. Schooling the Forgotten Kids of Hurricane Katrina

    ERIC Educational Resources Information Center

    Cook, Glenn

    2006-01-01

    In this article, the author talks about students being taking in public schools in Houston and Dallas, as well as other states, after evacuating from New Orleans which was struck by Hurricane Katrina and Hurricane Rita. For students displaced by the storm, mobility is as constant as stability is elusive. Already traumatized and faced with the loss…

  14. Hurricanes: Science and Society - An Online Resource Collaboratively Developed By Scientists, Education and Outreach Professionals, and Educators

    NASA Astrophysics Data System (ADS)

    Scowcroft, G.; Ginis, I.; Knowlton, C. W.; Yablonsky, R. M.; Morin, H.

    2010-12-01

    There are many models for engaging scientists in education and outreach activities that can assist them in achieving broader impacts of their research. Successful models provide the participating scientists with an opportunity to contribute their expertise in such a way that there are long lasting effects and/or useful products from their engagement. These kinds of experiences encourage the scientific community to continue participating in education and outreach activities. Hurricanes: Science and Society is an education and outreach program funded by the National Science Foundation that has successfully assisted scientists in broadening the impacts of their work. It has produced a new online educational resource (the Hurricanes: Science and Society website) that was launched in October 2010. This multi-disciplinary tool has been developed with the guidance and input from a panel of leading U.S. hurricane researchers and the participation of U.S. formal and informal science educators. This educational resource is expected to become a classroom tool for those both teaching and learning hurricane science. It contains information tailored for specific audiences including middle school through undergraduate educators and students, the general public, and the media. In addition to the website, a 12-page publication for policymakers and other stakeholders has been produced along with an accompanying CD-ROM/DVD to assist formal and informal science educators in maximizing the use of this new resource. Hurricanes: Science and Society can play a substantial role in the effort to educate both students and adults about the science and impacts of hurricanes and the importance of pre-hurricane planning and mitigation. The model used for engaging the hurricane scientists in this education and outreach effort and in the production of the Hurricanes: Science and Society educational resources will be discussed. Screen shot from http://www.hurricanescience.org

  15. Do non-profit nursing homes separate governance roles? The impact of size and ownership characteristics.

    PubMed

    Dewaelheyns, Nico; Eeckloo, Kristof; Van Herck, Gustaaf; Van Hulle, Cynthia; Vleugels, Arthur

    2009-05-01

    Separation between operational responsibilities and those of oversight is an important point of discussion in governance. Novel to the literature, this paper not only offers direct evidence on the degree of separation, but also shows its relationship with size (ceteris paribus efficiency prescribes that large organizations implement more separation) and ownership characteristics of non-profit institutions. Using a sample of Belgian (Flemish) nursing homes, we find that in private nursing homes this separation increases with size while this is not the case in public homes. We document that this lack in flexibility in governance practices explains the micro-monitoring in public institutions. We formulate policy implications and suggest solutions to create more flexibility and likely also better governance. PMID:19026459

  16. Do non-profit nursing homes separate governance roles? The impact of size and ownership characteristics.

    PubMed

    Dewaelheyns, Nico; Eeckloo, Kristof; Van Herck, Gustaaf; Van Hulle, Cynthia; Vleugels, Arthur

    2009-05-01

    Separation between operational responsibilities and those of oversight is an important point of discussion in governance. Novel to the literature, this paper not only offers direct evidence on the degree of separation, but also shows its relationship with size (ceteris paribus efficiency prescribes that large organizations implement more separation) and ownership characteristics of non-profit institutions. Using a sample of Belgian (Flemish) nursing homes, we find that in private nursing homes this separation increases with size while this is not the case in public homes. We document that this lack in flexibility in governance practices explains the micro-monitoring in public institutions. We formulate policy implications and suggest solutions to create more flexibility and likely also better governance.

  17. Genesis of tornadoes associated with hurricanes

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  18. Gust Factors Applied to Hurricane Winds.

    NASA Astrophysics Data System (ADS)

    Krayer, William R.; Marshall, Richard D.

    1992-05-01

    An important consideration in the design of structures is their response to extreme winds. This is especially true in regions affected by hurricanes. In this research, gust factors derived from hurricane wind-speed records are compared with those derived by Durst and others from open-scale records obtained in well-developed, extratropical storms. Based on records obtained from tour hurricanes and 11 different recording stations, it is concluded that an upward adjustment of the Durst gust factors for the estimation of hurricane gust speeds may be in order. Anomalously high gust factors observed for hurricane winds in inland areas suggest the need for additional study. Also, it is concluded that a reexamination of the statistics of guest factors obtained from extratropical storm data would be useful in clearly identifying the appropriate probability distribution function.

  19. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  20. The Quality of Community Governance and the Impact of Energy Development.

    ERIC Educational Resources Information Center

    Copp, James H.

    Communities with a flexible, open leadership structure may weather energy booms better than communities with old-guard leadership cliques, according to a study of community governance in two small Texas towns. Although similar in location, ethnic composition, population, access to transportation, economic base, and importance in the county,…