Science.gov

Sample records for hyaluronic acid binding

  1. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  2. [Hyaluronic acid].

    PubMed

    Pomarede, N

    2008-01-01

    Hyaluronic Acid (HA) is now a leader product in esthetic procedures for the treatment of wrinkles and volumes. The structure of HA, its metabolism, its physiological function are foremost breaking down then its use in aesthetic dermatology: steps of injection, possible side effects, benefits and downsides of the use of HA in aesthetic dermatology.

  3. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid.

    PubMed

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A; Wepasnick, Kevin A; McDonnell, Peter; Elisseeff, Jennifer H

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  4. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  5. The role of hyaluronic acid in biomineralization

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-Hua; Ren, Xiu-Li; Zhou, Hui-Hui; Li, Xu-Dong

    2012-12-01

    Hyaluronic acid has been extensively investigated due to intrinsic properties of natural origin and strong ability to bind ions in water. Hyaluronic acid is an excellent crystal modifier because its abundant negatively charged carboxyl groups can bind the cations protruding from the crystal lattice. In this review, we mainly present the latest work focus on the role of hyaluronic acid in controlling the crystallization, breaking the symmetry of crystal, and the surface funtionalization of nanocrystals.

  6. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    PubMed

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (P<0.001), asthenozoospermic (P<0.001) and oligoasthenozoospermic (P<0.001) groups. Disomy of sex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (P<0.001) between sperm concentration and HA binding (r=0.658), between sperm concentration and estimated numerical chromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean

  7. Hyaluronic acid fillers.

    PubMed

    Monheit, Gary D; Coleman, Kyle M

    2006-01-01

    Although hyaluronic acids are a relatively new treatment for facial lines and wrinkles, they have provided numerous advances in the area of cosmetic surgery. This article discusses the inherent properties of hyaluronic acid fillers that make them ideal for treatment of facial lines. It encompasses a review of the current literature on U.S. Food and Drug Administration-approved hyaluronic acid fillers and the role that each of these fillers currently has in facial cosmetics. This article also discusses the potential pitfalls and adverse effects that can be associated with using hyaluronic acids for filling facial lines. Finally, it serves as an overview of current techniques for clinical assessment of patients as well as administration and treatment of facial lines and wrinkles.

  8. Hyaluronic acid binding, endocytosis and degradation by sinusoidal liver endothelial cells

    SciTech Connect

    McGary, C.T.

    1988-01-01

    The binding, endocytosis, and degradation of {sup 125}I-hyaluronic acid ({sup 125}I-HA) by liver endothelial cells (LEC) was studied under several conditions. The dissociation of receptor-bound {sup 125}I-HA was rapid, with a half time of {approx}31 min and a K{sub off} of 6.3 {times} 10{sup {minus}4}/sec. A large reversible increase in {sup 125}I-HA binding to LEC at pH 5.0 was due to an increase in the observed affinity of the binding interaction. Pronase digestion suggested the protein nature of the receptor and the intracellular location of the digitonin exposed binding activity. Binding and endocytosis occur in the presence of 10 mM EGTA indicating that divalent cations are not required for receptor function. To study the degradation of {sup 125}I-HA by LEC, a cetylpyridinium chloride (CPC) precipitation assay was characterized. The minimum HA length required for precipitation was elucidated. The fate of the LEC HA receptor after endocytosis was examined.

  9. Relationship between hyaluronic acid binding assay and outcome in ART: a pilot study.

    PubMed

    Nijs, Martine; Creemers, E; Cox, A; Janssen, M; Vanheusden, E; Van der Elst, J; Ombelet, W

    2010-10-01

    The sperm-hyaluronan binding assay (HBA) is a diagnostic kit for assessing sperm maturity, function and fertility. The aim of this prospective cohort pilot study was to evaluate the relationship between HBA and WHO sperm parameters (motility, concentration and detailed morphology) and possible influence of sperm processing on hyaluronic acid binding. A cohort of 68 patients undergoing a first combo in vitro fertilisation/intracytoplasmic sperm injection treatment after failure of three or more intrauterine insemination cycles were included in the study. Outcome measures studied were fertilisation rate, embryo quality, ongoing pregnancy rate and cumulative pregnancy rate. HBA outcome improved after sperm preparation and culture, but was not correlated to detailed sperm morphology, concentration or motility. HBA did not provide additional information for identifying patients with poor or absent fertilisation, although the latter had more immature sperm cells and cells with cytoplasmic retention present in their semen. HBA outcome in the neat sample was significantly correlated with embryo quality, with miscarriage rates and ongoing pregnancy rates in the fresh cycles, but not with the cumulative ongoing pregnancy rate. No threshold value for HBA and outcome in combo IVF/ICSI treatment could be established. The clinical value for HBA in addition to routine semen analysis for this patient population seems limited.

  10. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid.

    PubMed

    Ahrens, T; Sleeman, J P; Schempp, C M; Howells, N; Hofmann, M; Ponta, H; Herrlich, P; Simon, J C

    2001-06-01

    Proteolytic cleavage of the extracellular domain of CD44 from the surface of cells has been observed recently in different cell types. In cell culture supernatants of human melanoma cell lines a 70 kDa soluble CD44 protein (solCD44) was detected at concentrations of 250-300 ng/ml. Protease inhibitor studies revealed that serine proteases and metalloproteases are involved in the cleavage of CD44 from the surface of melanoma cells. To analyse a possible function of soluble CD44 a human malignant melanoma cell line was stably transfected with cDNAs encoding either wild type soluble CD44s or mutated forms with defective HA binding properties (CD44sR41A and CD44sR150A/R154A). Soluble CD44s almost completely inhibited hyaluronic acid binding by melanoma cells, whereas soluble CD44 mutated in the HA binding domain had no effect. When cultivated on hyaluronic acid, melanoma cell proliferation was induced by 30% for both the parental and the control transfected cells. This increase in proliferation was blocked completely in solCD44s-secreting transfectants, whereas solCD44sR41A and solCD44sR150A/R154A-secreting cells again showed hyaluronic acid-induced cell proliferation. These cell lines were subcutaneously injected into MF1 nu/nu mice to compare their growth as tumors in vivo. Compared to tumors derived from parental and control transfected cells, we observed a dramatic reduction of primary tumor growth with solCD44s expressing MM cells. Transfectants expressing solCD44s mutated in the HA binding domain in contrast developed fast-growing primary tumors. These results provide strong evidence that direct solCD44 interactions with hyaluronic acid interfere competitively with processes induced by hyaluronic acid binding to surface CD44. Autocrine, or drug-induced secretion of solCD44 by human melanoma cells may thus exert potent antitumoral effects in vivo. PMID:11423990

  11. Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation.

    PubMed

    Yokoo, Masaki; Miyahayashi, Yasunori; Naganuma, Takako; Kimura, Naoko; Sasada, Hiroshi; Sato, Eimei

    2002-10-01

    Hyaluronic acid-binding proteins (HABPs) are necessary for expansion of the cumulus-oocyte complex (COC) during oocyte maturation. In this study, to obtain the detailed information of HABPs during cumulus expansion, we examined the expression of HABPs in porcine COCs during in vitro maturation (IVM). After maturation culture, proteins were extracted from porcine COCs and separated by SDS-PAGE and then transferred to polyvinylidene fluoride membranes. After transfer, the membranes were subjected to ligand blotting with biotinylated hyaluronic acid (bHA) or fluorescein isothiocyanate-labeled hyaluronic acid (FITC-HA). Furthermore, the extracted proteins were subjected to immunoprecipitation, Western blotting, and immunofluorescence analysis to dissect the HABPs. Ligand blotting with FITC-HA could detect HABPs. Using this ligand-blotting method, 13 and 14 bands of HABPs were detected in porcine COCs after 0 and 48 h in culture, respectively. Of these, the level of expression of 85-kDa HABP increased with cumulus expansion during IVM and was newly detected after culture. Immunoprecipitation, Western blotting, and immunofluorescent analysis confirmed that the 85-kDa HABP corresponded to CD44 and that it existed on/in the membrane of cumulus cells. The present results indicated that HABP expressed in porcine COCs during IVM, particularly CD44, may form a network of the matrices in the extracellular space of the oocyte with cumulus expansion during IVM.

  12. Hyaluronic acid and tendon lesions

    PubMed Central

    Kaux, Jean-François; Samson, Antoine; Crielaard, Jean-Michel

    2015-01-01

    Summary Introduction recently, the viscoelastic properties of hyaluronic acid (HA) on liquid connective tissue have been proposed for the treatment of tendinopathies. Some fundamental studies show encouraging results on hyaluronic acid’s ability to promote tendon gliding and reduce adhesion as well as to improve tendon architectural organisation. Some observations also support its use in a clinical setting to improve pain and function. This literature review analyses studies relating to the use of hyaluronic acid in the treatment of tendinopathies. Methods this review was constructed using the Medline database via Pubmed, Scopus and Google Scholar. The key words hyaluronic acid, tendon and tendinopathy were used for the research. Results in total, 28 articles (in English and French) on the application of hyaluronic acid to tendons were selected for their relevance and scientific quality, including 13 for the in vitro part, 7 for the in vivo animal part and 8 for the human section. Conclusions preclinical studies demonstrate encouraging results: HA permits tendon gliding, reduces adhesions, creates better tendon architectural organisation and limits inflammation. These laboratory observations appear to be supported by limited but encouraging short-term clinical results on pain and function. However, controlled randomised studies are still needed. PMID:26958533

  13. No difference in high-magnification morphology and hyaluronic acid binding in the selection of euploid spermatozoa with intact DNA

    PubMed Central

    Mongkolchaipak, Suchada; Vutyavanich, Teraporn

    2013-01-01

    In this study, we compared conventional sperm selection with high-magnification morphology based on the motile sperm organellar morphology examination (MSOME) criteria, and hyaluronic acid (HA) binding for sperm chromosome aneuploidy and DNA fragmentation rates. Semen from 50 severe male factor cases was processed through density gradient centrifugation, and subjected to sperm selection by using the conventional method (control), high magnification at ×6650 or HA binding. Aneuploidy was detected by fluorescence in situ hybridization with probes for chromosomes 13, 18, 21, X and Y, and DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method. Spermatozoa selected under high-magnification had a lower DNA fragmentation rate (2.6% vs. 1.7% P=0.032), with no significant difference in aneuploidy rate (0.8% vs 0.7% P=0.583), than those selected by the HA binding method. Spermatozoa selected by both methods had much lower aneuploidy and DNA fragmentation rate than the controls (7% aneuploidy and 26.8% DNA fragmentation rates, respectively). In the high-magnification group, the aneuploidy rate was lower when the best spermatozoa were selected than when only the second-best spermatozoa were available for selection, but the DNA fragmentation rate was not different. In conclusion, sperm selection under high magnification was more effective than under HA binding in selecting spermatozoa with low DNA fragmentation rate, but the small difference (0.9%) might not be clinically meaningful. Both methods were better than the conventional method of sperm selection. PMID:23435468

  14. Is sperm hyaluronic acid binding ability predictive for clinical success of intracytoplasmic sperm injection: PICSI vs. ICSI?

    PubMed

    Mokánszki, Attila; Tóthné, Emese Varga; Bodnár, Béla; Tándor, Zoltán; Molnár, Zsuzsanna; Jakab, Attila; Ujfalusi, Anikó; Oláh, Éva

    2014-12-01

    Although intracytoplasmic sperm injection (ICSI) is now a widely-used technique, it is still of interest to improve our knowledge as to which is the best spermatozoon to be selected for ICSI. Infertile men have increased risks of producing aneuploid spermatozoa. Using hyaluronic acid (HA)-binding sperm selection may reduce the genetic risks such as chromosomal aberrations of offspring. In the present study we examined the clinical success of ICSI with HA-selected sperm ('physiologic' ICSI, PICSI) compared to conventional ICSI, as well as the necessity to differentiate patients according to the initial HA-binding assay result (HBA score) and whether the sperm concentration or HBA score can provide additional information. We observed a significantly higher fertilization rate (FR) of the PICSI group with >60% HBA, implantation rate (IR) of the PICSI group with ≤ 60% HBA, and clinical pregnancy rate (CPR) in every PICSI group compared to the ICSI groups (p < 0.01). We also observed a significantly higher life birth rate (LBR) in the PICSI group with ≤ 60% HBA compared to ICSI patients with ≤ 60% HBA (p < 0.001). The pregnancy loss rate (PLR) was significantly lower in PICSI patients compared to the ICSI group (p < 0.0001). The FR, IR, CPR, and LBR of the PICSI group with <50% HBA were significantly higher and the PLR was lower than in the ICSI group with <50% HBA (p < 0.01). A statistically significant correlation was found between the sperm concentration and the HA-binding capacity (r = 0.62, p < 0.001). We found a closer relationship between HBA score and FR (r = 0.53, NS) than between sperm concentration and FR (r = 0.14, NS). HBA could be considered for sperm selection prior to ICSI because of its success and apparent ability to reduce genetic complications. However, this must be extended to a larger study.

  15. Complications of hyaluronic acid fillers.

    PubMed

    Weinberg, Michael J; Solish, Nowell

    2009-12-01

    Hyaluronic acid filler use, user groups, and indications have expanded significantly in the past several years. This group of fillers is extremely safe in experienced hands. Complications are infrequent but can be devastating. There can be no substitution for recognized and specific training. Prompt recognition and proper treatment of serious complication can moderate and even prevent serious sequelae. This article describes the most frequent and serious complications, their prevention, and treatment.

  16. Hyaluronic acid fillers: a comprehensive review.

    PubMed

    Beasley, Karen L; Weiss, Margaret A; Weiss, Robert A

    2009-05-01

    Over the past decade, the popularity of nonsurgical cosmetic procedures has increased exponentially. Last year, according to the American Society of Aesthetic Plastic Surgery, more than 5 million procedures were performed using cosmetic injectables such as botulinum toxin and dermal filling agents. According to the society's recent statistics, more than 85% of all dermal filler procedures occurred with a hyaluronic acid derivative.These numbers are expected to rise in the future as there is currently no other class of filling agent that rivals the popularity of hyaluronic acid. The popularity of hyaluronic acid specifically stems from its effectiveness, ease of administration, and safety profile.

  17. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    SciTech Connect

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.

  18. Hylaform: a new hyaluronic acid filler.

    PubMed

    Monheit, Gary D

    2004-05-01

    Hylaform is a new facial filler composed of hyaluronic acid. Hylaform is derived from an avian source, and is a clear gel substance. Skin testing is not necessary, although rare allergic reactions can occur form the avian protein content. Hylaform is injected into the dermis to add volume and provide a rapid correction of facial contour defects. It works particularly well in wrinkles, grooves, and thin lips deflated from aging changes.

  19. Dietary hyaluronic acid migrates into the skin of rats.

    PubMed

    Oe, Mariko; Mitsugi, Koichi; Odanaka, Wataru; Yoshida, Hideto; Matsuoka, Ryosuke; Seino, Satoshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu

    2014-01-01

    Hyaluronic acid is a constituent of the skin and helps to maintain hydration. The oral intake of hyaluronic acid increases water in the horny layer as demonstrated by human trials, but in vivo kinetics has not been shown. This study confirmed the absorption, migration, and excretion of (14)C-labeled hyaluronic acid ((14)C-hyaluronic acid). (14)C-hyaluronic acid was orally or intravenously administered to male SD rats aged 7 to 8 weeks. Plasma radioactivity after oral administration showed the highest level 8 hours after administration, and orally administered (14)C-hyaluronic acid was found in the blood. Approximately 90% of (14)C-hyaluronic acid was absorbed from the digestive tract and used as an energy source or a structural constituent of tissues based on tests of the urine, feces, expired air, and cadaver up to 168 hours (one week) after administration. The autoradiographic results suggested that radioactivity was distributed systematically and then reduced over time. The radioactivity was higher in the skin than in the blood at 24 and 96 hours after administration. The results show the possibility that orally administered hyaluronic acid migrated into the skin. No excessive accumulation was observed and more than 90% of the hyaluronic acid was excreted in expired air or urine.

  20. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  1. Non-hyaluronic acid fillers.

    PubMed

    Thioly-Bensoussan, Daphne

    2008-01-01

    Fillers are numerous, and the products currently available have effects that may last from a few months to many years. These are used to treat facial wrinkles, and some of the new fillers exert a stimulatory effect, restoring volume in focal areas of the face by inducing collagen fibers. The dermasurgeon should thoroughly understand the indications and uses of these fillers to meet fully a patient's expectations. Some fillers are biodegradable (12-18 months), others slowly biodegradable (2-5 years), whereas others are permanent implants. The disadvantage of the traditional biodegradable fillers is their short duration (6-12 months). Over the past decade, semipermanent fillers (polylactic acid and ceramics) have been used: they do have a longer effect, but they might induce granulomas especially on the lips. Also, permanent fillers are traditionally linked to a higher incidence of granulomas and extrusions, although with the new formulations, the adverse events are decreased.

  2. Electrostatic effects on hyaluronic acid configuration

    NASA Astrophysics Data System (ADS)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  3. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. PMID:25078662

  4. Hyaluronic Acid Hydrogels for Biomedical Applications

    PubMed Central

    Burdick, Jason A.; Prestwich, Glenn D.

    2013-01-01

    Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms -- viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids -- for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. PMID:21394792

  5. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    PubMed

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. PMID:26311237

  6. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications.

  7. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. PMID:24656366

  8. Hyaluronic acid filler injections with a 31-gauge insulin syringe.

    PubMed

    Lim, Adrian C

    2010-02-01

    Hyaluronic acid gel is a commonly used skin/soft tissue filler in cosmetic dermatology. Hyaluronic acid fillers are packaged in proprietary luer-lock syringes that can be injected via a 30-gauge, 27-gauge or larger diameter needle depending on the consistency of the gel. A method of decanting proprietary hyaluronic acid fillers into multiple 31-gauge insulin syringes for injection is described. The use of a 31-gauge insulin syringe for filler injections can potentially enhance the injection process through more accurate product delivery and placement. This has the potential to produce a more balanced and symmetrical outcome for patients. Additional benefits include less injection pain, less bleeding/bruising and higher levels of patient satisfaction.

  9. [Rheology and hyaluronic acid in inflammatory joint effusions (author's transl)].

    PubMed

    Zeidler, H; Altmann, S

    1977-11-11

    The Weissenberg rheogoniometer was used to measure viscosity, normal force and the number of molecular entanglements, calculated from a shear modulus obtained by prestationary experiments, in inflammatory and non-inflammatory synovial fluid effusions. The rheological properties show greater pathological change in the inflammatory synovial fluid samples than in the non-inflammatory. Variation in the hyaluronic acid concentration is only partly responsible for the pathological rheology. Initial experiments with a normalization method for the viscosity flow curves suggest the possibility of determining changes in polymerization or structure of the hyaluronic acid by rheological measurements.

  10. Localization of hyaluronic acid in human articular cartilage.

    PubMed

    Asari, A; Miyauchi, S; Kuriyama, S; Machida, A; Kohno, K; Uchiyama, Y

    1994-04-01

    To demonstrate localization of hyaluronic acid (HA) in articular cartilage of the human femur, biotinylated HA-binding region, which specifically binds HA molecules, was applied to the tissue. In sections fixed by 2% paraformaldehyde-2% glutaraldehyde, HA staining was detected in lamina splendens and chondrocytes in the middle zone. By pretreatment with trypsin, intense HA staining appeared in the extracellular matrix of the deep zone and weak staining in the superficial and middle zones. Moreover, pre-treatment with chondroitinase ABC (CHase ABC) intensely enhanced the stainability for HA in the superficial and middle zones and weakly in the deeper zone. Combined pre-treatment of trypsin with CHase ABC abolished intra- and extracellular staining for HA in all zones. By microbiochemical study, the concentrations of HA and dermatan sulfate were high in the middle zone, whereas those of chondroitin sulfate and keratan sulfate were high in the deep zone. These results suggest that HA is abundantly synthesized in and secreted from the chondrocytes, particularly in the middle zone, whereas it is largely masked by proteoglycan constituents in the extracellular matrix. PMID:8126377

  11. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    PubMed

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  12. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures.

    PubMed

    Sandy, J D; Plaas, A H

    1989-06-01

    Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with [35S]sulfate, [3H]leucine, and [35S]cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with [35S]sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase (about 40% of the total) remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M. Conversion to high affinity was also achieved by incubation of monomers in aggregate with hyaluronic acid (HA) at pH 6.8 followed by dissociative reisolation of monomer

  13. Hyaluronic acid fillers on the horizon: roundtable discussion.

    PubMed

    Monheit, Gary; Kestemont, Philippe; Sundaram, Hema

    2012-08-01

    In this roundtable discussion, the physicochemical properties and potential clinical applications of two new ranges of hyaluronic acid fillers are reviewed. These fillers display enhanced tissue integration after implantation due to novel manufacturing processes, and one of the ranges is customized for specific clinical applications by variation of filler gel calibration and cross-linking.

  14. Editorial Commentary: Knee Hyaluronic Acid Viscosupplementation Reduces Osteoarthritis Pain.

    PubMed

    Lubowitz, James H

    2015-10-01

    In contrast to the AAOS knee osteoarthritis guidelines, systematic review of overlapping meta-analyses shows that viscosupplementation with intra-articular hyaluronic acid injection reduces knee osteoarthritis pain and improves function according to the highest level of evidence. PMID:26433240

  15. Effect of hyaluronic acid molecular weight on the morphology of quantum dot-hyaluronic acid conjugates.

    PubMed

    Kim, Jiseok; Park, Kitae; Hahn, Sei Kwang

    2008-01-01

    The morphological analysis of novel quantum dot-hyaluronic acid (QDot-HA) conjugates was carried out with a transmission electron microscope (TEM). Adipic acid dihydrazide-modified HA (HA-ADH) was synthesized and conjugated to quantum dots (QDots) having carboxyl terminal ligands which were activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS). HA molecules with a molecular weight (MW) of 20K, 234 K and 3000 K were used to investigate the effect of MW on the morphology of QDot-HA conjugates. The TEM micrographs of QDot-HA conjugates showed branched and multi-layered chain type morphology formed by inter- and intra-molecular conjugation of QDots to HA molecules. The size of QDot-HA conjugate increased with the MW of HA. QDot-HA conjugate could be successfully used for real-time bio-imaging of HA derivatives in nude mice. The novel QDot-HA conjugate will be further used to investigate the biological roles of HA with a different MW in the body. PMID:17936350

  16. 1- and 2-particle Microrheology of Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott

    2015-03-01

    Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.

  17. Chemical Sintering Generates Uniform Porous Hyaluronic Acid Hydrogels

    PubMed Central

    Cam, Cynthia; Segura, Tatiana

    2014-01-01

    Implantation of scaffolds for tissue repair has been met with limited success primarily due to the inability to achieve vascularization within the construct. Many strategies have shifted to incorporate pores into these scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed comparable pore uniformity and interconnectivity as the commonly used non- and heat sintering techniques. Moreover, similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading, proliferation in vitro, as well as, cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generating porous hyaluronic acid hydrogels since it requires equal or ten-fold less processing time as the currently used non-sintering or heat sintering technique, respectively. PMID:24120847

  18. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    PubMed Central

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-01-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution. PMID:27087008

  19. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  20. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule

    PubMed Central

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina

    2016-01-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  1. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  2. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin.

  3. A biocompatible calcium salt of hyaluronic acid grafted with polyacrylic acid.

    PubMed

    Nakagawa, Yoshiyuki; Nakasako, Satoshi; Ohta, Seiichi; Ito, Taichi

    2015-03-01

    We have synthesized hyaluronic acid (HA) grafted with polyacrylic acid (PAA) via controlled radical polymerization (CRP) in aqueous media. The grafted HA (HA-g-PAA) showed slow degradation by hyaluronidase compared with unmodified HA as a result of the steric hindrance produced by grafted PAA, and PAA was detached by hydrolysis and enzymatic degradation by lipase. It formed an insoluble salt immediately after mixing with Ca(2+) by the binding between grafted PAA and Ca(2+). Both HA-g-PAA and its salt showed good biocompatibility, especially to mesothelial cells in vitro. Finally, they were administered into mice subcutaneously and intraperitoneally. The residue of the material was observed 7 days after subcutaneous administration, while the material was almost cleared from the peritoneum 7 days after intraperitoneal administration with or without Ca(2+). HA-g-PAA is expected to be applicable to medical uses such as drug delivery in the peritoneum and for materials preventing peritoneal adhesion.

  4. Equilibrium-binding studies of pig laryngeal cartilage proteoglycans with hyaluronate oligosaccharide fractions.

    PubMed Central

    Nieduszynski, I A; Sheehan, J K; Phelps, C F; Hardingham, T E; Muir, H

    1980-01-01

    The binding of hyaluronate oligosaccharide fractions to proteoglycans from pig laryngeal cartilage has been studied by equilibrium dialysis in dilute solution. It has been shown that: (1) each proteoglycan monomer binds only one hyaluronate oligosaccharide molecule [containing about eighteen saccharide residues (HA approximately 18) and of number-average molecule weight (Mn) 37501]; (2) the dissociation constant, Kd, for interaction between proteoglycan monomer and oligosaccharide HA approximately 18 is 3 x 10(-8) M at 6 degrees C at I 0.15-0.5, pH 7.4; (3) the dissociation constant has little dependence on temperature, so that Kd at 54 degrees C is 3 x 10(-7) M under the same conditions; (4) the aggregatability is high at 6 degrees C, falls significantly at 54 degrees C, but much of it can be recovered on cooling to 6 degrees C again, demonstrating reversible denaturation; (5) a method for determining the proportion of the proteoglycan molecules capable of binding to hyaluronate by equilibrium dialysis was compared with gel-chromatographic and ultracentrifugal methods; (6) a hyaluronate oligosaccharide, HA approximately 56 (Mn 11 000), could bind more than one proteoglycan molecule; (7) consideration of ultracentrifugal data shows that when proteoglycans bind to a hyaluronate of larger size (mol..wt. 670 000), an average Kd of 12 x 10(7) M fits the data in 0.5 M-guanidine hydrochloride at 20 degrees C. PMID:7378043

  5. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  6. Induction of antibodies to hyaluronic acid by immunization of rabbits with encapsulated streptococci

    PubMed Central

    1986-01-01

    The immunogenicity of hyaluronic acid was investigated. Rabbits were immunized with encapsulated group A and C streptococci. Intact long- chain hyaluronate was conjugated to BSA for use as antigen in an ELISA. Antibodies to the hyaluronate-BSA conjugate were detected in peak immune sera. The specificity of the antibodies for both mammalian and streptococcal hyaluronate was shown by inhibition studies. To further confirm the presence of antihyaluronate antibodies, hyaluronidase- digested streptococcal hyaluronate was conjugated to biotin and used as an antigen in the ELISA. A clear immunization effect was shown for each rabbit by the study of preimmune and postimmunization bleedings. Titers for each rabbit increased by greater than 32 - 256 - fold. Inhibition studies using hyaluronidase-digested hyaluronate and periodate-treated hyaluronate showed that the immunodominant site of antibody reactivity was a terminal glucuronic acid residue. Further studies showed that the carboxyl group of the terminal glucuronide was the major immunoreactive site. Both mammalian and streptococcal hyaluronate inhibited the immune rabbit sera reaction to streptococcal hyaluronate, demonstrating crossreactivity of these molecules. Thus, hyaluronate was shown to be immunogenic in rabbits. PMID:2427634

  7. Human glans penis augmentation using injectable hyaluronic acid gel.

    PubMed

    Kim, J J; Kwak, T I; Jeon, B G; Cheon, J; Moon, D G

    2003-12-01

    Although augmentation phalloplasty is not an established procedure, some patients still need enlargement of their penis. Current penile augmentation is girth enhancement of penile body by dermofat graft. We performed this study to identify the efficacy and the patient's satisfaction of human glans penis augmentation with injectable hyaluronic acid gel. In 100 patients of subjective small penis (Group I) and 87 patients of small glans after dermofat graft (Group II), 2 cm(3) of hyaluronic acid gel was injected into the glans penis, subcutaneously. At 1 y after injection, changes of glandular diameter were measured by tapeline. Patient's visual estimation of glandular size (Gr 0-4) and patient's satisfaction (Grade (Gr) 0-4) were evaluated, respectively. Any adverse reactions were also evaluated. The mean age of patients was 42.2 (30-70) y in Group I and 42.13 (28-61) y in Group II. The maximal glandular circumference was significantly increased compared to basal circumference of 9.13+/-0.64 cm in Group I (P<0.01) and 9.49+/-1.05 cm in Group II (P<0.01) at 1 y after injection. Net increase of maximal glandular circumference after glans augmentation was 14.93+/-0.80 mm in Group I and 14.78+/-0.89 mm in Group II. In patient's visual estimation, more than 50% of injected volume was maintained in 95% of Group 1 and 100% of Group II. The percentage of postoperative satisfaction (Gr 4, 5) was 77% in Group 1 and 69% in Group II. There was no abnormal reaction in area feeling, texture, and color. In most cases, initial discoloration by glandular swelling recovered to normal within 2 weeks. There were no signs of inflammation and no serious adverse reactions in all cases. These results suggest that injectable hyaluronic acid gel is a safe and effective material for augmentation of glans penis. PMID:14671664

  8. Human glans penis augmentation using injectable hyaluronic acid gel.

    PubMed

    Kim, J J; Kwak, T I; Jeon, B G; Cheon, J; Moon, D G

    2003-12-01

    Although augmentation phalloplasty is not an established procedure, some patients still need enlargement of their penis. Current penile augmentation is girth enhancement of penile body by dermofat graft. We performed this study to identify the efficacy and the patient's satisfaction of human glans penis augmentation with injectable hyaluronic acid gel. In 100 patients of subjective small penis (Group I) and 87 patients of small glans after dermofat graft (Group II), 2 cm(3) of hyaluronic acid gel was injected into the glans penis, subcutaneously. At 1 y after injection, changes of glandular diameter were measured by tapeline. Patient's visual estimation of glandular size (Gr 0-4) and patient's satisfaction (Grade (Gr) 0-4) were evaluated, respectively. Any adverse reactions were also evaluated. The mean age of patients was 42.2 (30-70) y in Group I and 42.13 (28-61) y in Group II. The maximal glandular circumference was significantly increased compared to basal circumference of 9.13+/-0.64 cm in Group I (P<0.01) and 9.49+/-1.05 cm in Group II (P<0.01) at 1 y after injection. Net increase of maximal glandular circumference after glans augmentation was 14.93+/-0.80 mm in Group I and 14.78+/-0.89 mm in Group II. In patient's visual estimation, more than 50% of injected volume was maintained in 95% of Group 1 and 100% of Group II. The percentage of postoperative satisfaction (Gr 4, 5) was 77% in Group 1 and 69% in Group II. There was no abnormal reaction in area feeling, texture, and color. In most cases, initial discoloration by glandular swelling recovered to normal within 2 weeks. There were no signs of inflammation and no serious adverse reactions in all cases. These results suggest that injectable hyaluronic acid gel is a safe and effective material for augmentation of glans penis.

  9. [Non perforating trabecular surgery with reticulated hyaluronic acid implant].

    PubMed

    Robe-Collignon, N J; Collignon-Brach, J D

    2000-01-01

    Non perforating trabecular surgery (NPTS) with reticulated hyaluronic acid implant (Skgel) allows aqueous humor to leave anterior chamber through a thin trabeculo-Descemet's membrane into a sclerocorneal space filled with Skgel implant and then via the outflow physiological channels. Good intraocular pressure results are obtained with less or without external filtration decreasing the incidence of per- and postoperative complications found after trabeculectomy. This surgery is actually only indicated for primary open angle glaucoma, the trabeculectomy still remaining the gold standard procedure for the other glaucoma cases. PMID:11262887

  10. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    PubMed

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients.

  11. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures

    SciTech Connect

    Sandy, J.D.; Plaas, A.H.

    1989-06-01

    Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with (35S)sulfate, (3H)leucine, and (35S)cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with (35S)sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M.

  12. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium

    PubMed Central

    Zhu, Yi; Hu, Jianguo; Yu, Tinghe; Ren, Yan; Hu, Lina

    2016-01-01

    Background Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman’s syndrome. Material/Methods Endometrial fibrosis in a mouse model of Asherman’s syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. Results The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. Conclusions Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions. PMID:27670361

  13. Hyaluronic acid hydrogels for vocal fold wound healing.

    PubMed

    Gaston, Joel; Thibeault, Susan L

    2013-01-01

    The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models. PMID:23507923

  14. Hyaluronic acid hydrogels for vocal fold wound healing

    PubMed Central

    Gaston, Joel; Thibeault, Susan L.

    2013-01-01

    The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models. PMID:23507923

  15. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.

    PubMed

    Kim, Jungju; Park, Yongdoo; Tae, Giyoong; Lee, Kyu Back; Hwang, Chang Mo; Hwang, Soon Jung; Kim, In Sook; Noh, Insup; Sun, Kyung

    2009-03-15

    Hyaluronic acid is a natural glycosaminoglycan involved in biological processes. Low-molecular-weight hyaluronic acid (10 and 50 kDa)-based hydrogel was synthesized using derivatized hyaluronic acid. Hyaluronic acid was acrylated by two steps: (1) introduction of an amine group using adipic acid dihydrazide, and (2) acrylation by N-acryloxysuccinimide. Injectable hyaluronic acid-based hydrogel was prepared by using acrylated hyaluronic acid and poly(ethylene glycol) tetra-thiols via Michael-type addition reaction. Mechanical properties of the hydrogel were evaluated by varying the molecular weight of acrylated hyaluronic acid (10 and 50 kDa) and the weight percent of hydrogel. Hydrogel based on 50-kDa hyaluronic acid showed the shortest gelation time and the highest complex modulus. Next, human mesenchymal stem cells were cultured in cell-adhesive RGD peptide-immobilized hydrogels together with bone morphogenic protein-2 (BMP-2). Cells cultured in the RGD/BMP-2-incorporated hydrogels showed proliferation rates higher than that of control or RGD-immobilized hydrogels. Real-time RT-PCR showed that the expression of osteoblast marker genes such as CBFalpha1 and alkaline phosphatase was increased in hyaluronic acid-based hydrogel, and the expression level was dependent on the molecular weight of hyaluronic acid, RGD peptide, and BMP-2. This study indicates that low-molecular-weight hyaluronic acid-based hydrogel can be applied to tissue regeneration as differentiation guidance materials of stem cells. PMID:18384163

  16. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections.

    PubMed

    Drago, Lorenzo; Cappelletti, Laura; De Vecchi, Elena; Pignataro, Lorenzo; Torretta, Sara; Mattina, Roberto

    2014-10-01

    To address the problem of limited efficacy of existing antibiotics in the treatment of bacterial biofilm, it is necessary to find alternative remedies. One candidate could be hyaluronic acid; this study therefore aimed to evaluate the in vitro antiadhesive and antibiofilm activity of hyaluronic acid toward bacterial species commonly isolated from respiratory infections. Interference exerted on bacterial adhesion was evaluated by using Hep-2 cells, while the antibiofilm activity was assessed by means of spectrophotometry after incubation of biofilm with hyaluronic acid and staining with crystal violet. Our data suggest that hyaluronic acid is able to interfere with bacterial adhesion to a cellular substrate in a concentration-dependent manner, being notably active when assessed as pure substance. Moreover, we found that Staphylococcus aureus biofilm was more sensitive to the action of hyaluronic acid than biofilm produced by Haemophilus influenzae and Moraxella catarrhalis. In conclusion, hyaluronic acid is characterized by notable antiadhesive properties, while it shows a moderate activity against bacterial biofilm. As bacterial adhesion to oral cells is the first step for colonization, these results further sustain the role of hyaluronic acid in prevention of respiratory infections. PMID:24698341

  17. Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds

    PubMed Central

    Segura, Tatiana

    2013-01-01

    The design of hyaluronic acid-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of hyaluronic acid, knowledge needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell behavior. Specifically, recent methods of incorporating various bioactive, mechanical, and spatial signals are reviewed, as well as novel hyaluronic acid modifications and crosslinking schemes with a focus on specificity. PMID:23899481

  18. Effect of adipic dihydrazide modification on the performance of collagen/hyaluronic acid scaffold.

    PubMed

    Zhang, Ling; Xiao, Yumei; Jiang, Bo; Fan, Hongsong; Zhang, Xingdong

    2010-02-01

    Collagen and hydrazide-functionalized hyaluronic acid derivatives were hybridized by gelating and genipin crosslinking to form composite hydrogel. The study contributed to the understanding of the effects of adipic dihydrazide modification on the physicochemical and biological properties of the collagen/hyaluronic acid scaffold. The investigation included morphology observation, mechanical measurement, swelling evaluation, and collagenase degradation. The results revealed that the stability of composites was increased through adipic dihydrazide modification and genipin crosslinking. The improved biocompatibility and retention of hyaluronic acid made the composite material more favorable to chondrocytes growing, suggesting the prepared scaffold might be high potential for chondrogenesis. PMID:19810117

  19. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    PubMed

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  20. Microbial production of hyaluronic acid from agricultural resource derivatives.

    PubMed

    Pires, Aline M B; Macedo, André C; Eguchi, Silvia Y; Santana, Maria H A

    2010-08-01

    Agricultural resource derivatives (ARDs) such as hydrolysate soy protein concentrate (HSPC), whey protein concentrate (WPC), and cashew apple juice (CAJ) were studied with focus on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Supplementation of the media with corn steep liquor (CSL) was also evaluated. Synthetic medium containing glucose and yeast extract was used as control. CAJ was a promising medium for the production of HA. It produced the highest amount of HA (0.89 g L(-1)), similar to that of the control (0.86 g L(-1)). WPC and HSPC media were the most effective for the production of biomass. CSL did not influence the production of HA when HSPC and WPC were used. However, in the synthetic medium it doubled the yield of HA from glucose. The average molecular weight of HA ranged from 10(3) to 10(4)Da for the ARDs and 10(7)Da for the synthetic medium.

  1. Permanent hair dye-incorporated hyaluronic acid nanoparticles.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Kim, Da-Hye; Choi, Ki-Choon

    2013-01-01

    We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye. PMID:23088321

  2. Juvéderm: a hyaluronic acid dermal filler.

    PubMed

    Monheit, Gary D; Prather, Chad L

    2007-11-01

    Over the past decade, the use of nonsurgical products and devices to correct facial contour defects and signs of skin aging has exploded with new lasers, toxins for muscle relaxation, and dermal fillers revolutionizing aesthetic medicine. Of all the nonsurgical modalities employed during this period, the dermal filler industry has seen the most growth in demand. In 2006, the worldwide market for dermal fillers increased by 19%; and the US market is expected to increase a further 20% to 25%. This is due in large part to new products, particularly the hyaluronic acids such as Juvéderm, which now promise greater longevity, fewer side effects, a more natural appearance, and easier administration.

  3. Comprehensive Treatment of Periorbital Region with Hyaluronic Acid

    PubMed Central

    Rocha, Camila Roos Mariano Da; Bastos, Julien Toni De; Silva, Priscila Mara Chaves e

    2015-01-01

    The periorbital subunit is one of the first facial regions to show signs of aging, primarily due to volume depletion of the soft tissue and bony resorption. Surgical and office-based nonsurgical procedures form an important basis for periorbital rejuvenation. It is important to make a detailed clinical evaluation of the patient to indicate the most appropriate procedure to be performed. With the objective of showing a nonsurgical procedure for the rejuvenation of the periorbital area, the authors describe a technique of applying fillers in the upper and lower periorbital regions, paying attention to the anatomy of this facial region and the type of product to be used besides the expected results of the procedure and its possible adverse effects and complications. The nonsurgical rejuvenation of the periorbicular region with hyaluronic acid is a new and innovative technique. In the opinion of the authors, it is a great aesthetic impact area and consequently brings high satisfaction to patients. PMID:26155325

  4. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies

    PubMed Central

    Saturnino, Carmela; Sinicropi, Maria Stefania; Puoci, Francesco

    2014-01-01

    Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradation in vivo and its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1). PMID:25114930

  5. Fabrication of Biopolymer Nanofibers of Hyaluronic Acid via Electrospinning

    NASA Astrophysics Data System (ADS)

    Young, Denice; Queen, Hailey; Krause, Wendy

    2006-03-01

    Electrospinning is a novel technology that uses an electric field to form fibrous materials from a polymer solution. Unlike traditional spinning techniques, electrospinning can produce fibers on the order of 100 nm that can be utilized in applications where nanoscale fibers are necessary for successful implementation, including tissue engineering. Hyaluronic acid (HA) is a widely used biopolymer found in the extracellular matrix and currently marketed in medical applications for joint lubrications and tissue engineering. The high viscosity and surface tension of HA make it an unlikely candidate for electrospinning processes as viscosity is an important parameter in successful electrospinning. To promote HA fiber formation by electrospinning, the effects of salt (NaCl), which is used to reduce the viscosity of aqueous HA solutions; molecular weight of the HA; and an additional biocompatible polymer (e.g., PEO) are under investigation.

  6. Isolation and characterization of hyaluronic acid from marine organisms.

    PubMed

    Giji, Sadhasivam; Arumugam, Muthuvel

    2014-01-01

    Hyaluronic acid (HA) being a viscous slippery substance is a multifunctional glue with immense therapeutic applications such as ophthalmic surgery, orthopedic surgery and rheumatology, drug delivery systems, pulmonary pathology, joint pathologies, and tissue engineering. Although HA has been isolated from terrestrial origin (human umbilical cord, rooster comb, bacterial sources, etc.) so far, the increasing interest on this polysaccharide significantly aroused the alternative search from marine sources since it is at the preliminary level. Enthrallingly, marine environments are considered more biologically diverse than terrestrial environments. Although numerous methods have been described for the extraction and purification of HA, the hitch on the isolation methods which greatly influences the yield as well as the molecular weight of the polymer still exists. Adaptation of suitable method is essential in this venture. Stimulated by the developed technology, to sketch the steps involved in isolation and analytical techniques for characterization of this polymer, a brief report on the concerned approach has been reviewed.

  7. [A case of nasal tip necrosis after hyaluronic acid injection].

    PubMed

    Honart, J-F; Duron, J-B; Mazouz Dorval, S; Rausky, J; Revol, M

    2013-12-01

    Hyaluronic acid (HA) is the most used dermal filler. Some complications associated with its use have been described, but most of them are rare and benign. We report an exceptional case of skin necrosis of the tip of the nose, in a 22-year-old patient, after HA injection. The initial appearance may occurred subsequent aesthetic sequels. After necrotic tissue excision, patient was followed in rapid succession. Daily local care has led to wound healing, without any important sequel. This rare complication reminds us that HA injections are not without risk, despite their apparent simplicity of use. Moreover, the case presented confirms the potential healing of the nasal tip, allowing treatment with wound healing, rather than other early invasive procedure.

  8. Permanent hair dye-incorporated hyaluronic acid nanoparticles.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Kim, Da-Hye; Choi, Ki-Choon

    2013-01-01

    We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye.

  9. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production.

    PubMed

    Oliveira, Adriano H; Ogrodowski, Cristiane C; de Macedo, André C; Santana, Maria Helena A; Gonçalves, Luciana R B

    2013-12-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.

  10. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering.

    PubMed

    Kurisawa, Motoichi; Chung, Joo Eun; Yang, Yi Yan; Gao, Shu Jun; Uyama, Hiroshi

    2005-09-14

    The sequential injection of hyaluronic acid-tyramine conjugates and enzymes forms biodegradable hydrogels in vivo by enzyme-induced oxidative coupling, offering high potential as a promising biomaterial for drug delivery and tissue engineering.

  11. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production

    PubMed Central

    Oliveira, Adriano H.; Ogrodowski, Cristiane C.; de Macedo, André C.; Santana, Maria Helena A.; Gonçalves, Luciana R.B.

    2013-01-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer. PMID:24688498

  12. Physics of soft hyaluronic acid-collagen type II double network gels

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2015-03-01

    Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.

  13. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications. PMID:25447786

  14. An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus.

    PubMed

    Rangaswamy, Vidhya; Jain, Dharmendra

    2008-03-01

    Growth of Streptococcus zooepidemicus in a 10 l bioreactor with 50 g sucrose/l and 10 g casein hydrolysate/l gave 5-6 g hyaluronic acid/l after 24-28 h. Purification of hyaluronic acid gave a recovery of 65% with the final material having an Mr of approximately 4 x 10(6) Da with less than 0.1% protein.

  15. A Lanthanum-Tagged Chemotherapeutic Agent HA-Pt to Track the In Vivo Distribution of Hyaluronic Acid Complexes

    PubMed Central

    Forrest, W.C.; Cai, Shuang; Aires, Daniel; Forrest, M. Laird

    2015-01-01

    Hyaluronic acid drug conjugates can target anti-cancer drugs directly to tumor tissue for loco-regional treatment with enhanced bioavailability, local efficacy and reduced toxicity. In this study, the distribution and pharmacokinetics of hyaluronic acid carrier and a conjugated cisplatin anti-cancer drug were tracked by lanthanum (III) [La(III)] affinity tagging of the nanocarrier. The strong binding affinity of La(III) to HA enabled the simple preparation of a physiologically stable complex HA-Pt-La and straightforward simultaneous detection of HA-La and Pt in biological matrices using inductively coupled plasma-mass spectrometry (ICP-MS). Consequently, after subcutaneous injection of HA-Pt-La nanoparticles in human head and neck squamous cell carcinoma (HNSCC) tumor-bearing mice, the HA and Pt content were detected and quantified simultaneously in the plasma, primary tumor, liver and spleen. PMID:26756040

  16. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  17. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  18. In vivo response to dynamic hyaluronic acid hydrogels.

    PubMed

    Young, Jennifer L; Tuler, Jeremy; Braden, Rebecca; Schüp-Magoffin, Pamela; Schaefer, Jacquelyn; Kretchmer, Kyle; Christman, Karen L; Engler, Adam J

    2013-07-01

    Tissue-specific elasticity arises in part from developmental changes in extracellular matrix over time, e.g. ~10-fold myocardial stiffening in the chicken embryo. When this time-dependent stiffening has been mimicked in vitro with thiolated hyaluronic acid (HA-SH) hydrogels, improved cardiomyocyte maturation has been observed. However, host interactions, matrix polymerization, and the stiffening kinetics remain uncertain in vivo, and each plays a critical role in therapeutic applications using HA-SH. Hematological and histological analysis of subcutaneously injected HA-SH hydrogels showed minimal systemic immune response and host cell infiltration. Most importantly, subcutaneously injected HA-SH hydrogels exhibited time-dependent porosity and stiffness changes at a rate similar to hydrogels polymerized in vitro. When injected intramyocardially host cells begin to actively degrade HA-SH hydrogels within 1week post-injection, continuing this process while producing matrix to nearly replace the hydrogel within 1month post-injection. While non-thiolated HA did not degrade after injection into the myocardium, it also did not elicit an immune response, unlike HA-SH, where visible granulomas and macrophage infiltration were present 1month post-injection, likely due to reactive thiol groups. Altogether these data suggest that the HA-SH hydrogel responds appropriately in a less vascularized niche and stiffens as had been demonstrated in vitro, but in more vascularized tissues, in vivo applicability appears limited.

  19. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

  20. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    PubMed

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications.

  1. Targeting Hyaluronic Acid Family for Cancer Chemoprevention and Therapy

    PubMed Central

    Lokeshwar, Vinata B.; Mirza, Summan; Jordan, Andre

    2016-01-01

    Hyaluronic acid or hyaluronan (HA) is perhaps one of the most uncomplicated large polymers that regulates several normal physiological processes and, at the same time, contributes to the manifestation of a variety of chronic and acute diseases, including cancer. Members of the HA signaling pathway (HA synthases, HA receptors, and HYAL-1 hyaluronidase) have been experimentally shown to promote tumor growth, metastasis, and angiogenesis, and hence each of them is a potential target for cancer therapy. Furthermore, as these members are also overexpressed in a variety of carcinomas, targeting of the HA family is clinically relevant. A variety of targeted approaches have been developed to target various HA family members, including small-molecule inhibitors and antibody and vaccine therapies. These treatment approaches inhibit HA-mediated intracellular signaling that promotes tumor cell proliferation, motility, and invasion, as well as induction of endothelial cell functions. Being nontoxic, nonimmunogenic, and versatile for modifications, HA has been used in nanoparticle preparations for the targeted delivery of chemotherapy drugs and other anticancer compounds to tumor cells through interaction with cell-surface HA receptors. This review discusses basic and clinical translational aspects of targeting each HA family member and respective treatment approaches that have been described in the literature. PMID:25081525

  2. Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films.

    PubMed

    Yamanlar, Seda; Sant, Shilpa; Boudou, Thomas; Picart, Catherine; Khademhosseini, Ali

    2011-08-01

    Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(l-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film (PEM) formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems.

  3. Clinical experience with hyaluronic acid-filler complications.

    PubMed

    Park, Tae-Hwan; Seo, Sang-Won; Kim, June-Kyu; Chang, Choong-Hyun

    2011-07-01

    Hyaluronic acid (HA) fillers have become the material of choice for soft-tissue augmentation. HA fillers are longer lasting, less immunogenic and can be broken down by hyaluronidase. These advantages make HA fillers the most common of the temporary fillers on the market. However, early and delayed complications, ranging from minor to severe, can occur following HA-filler injection. We evaluated and treated 28 cases of HA-filler-related complications that were referred to our hospital over a period of 5 years from July 2004 to October 2009. Twenty-eight patients were included in our study; 82.1% of the patients were female and 17.9% were male. Complications were roughly classified as nodular masses, inflammation, tissue necrosis and dyspigmentation. Affected locations, in descending order of frequency, were the perioral area, forehead, including glabella, nose, nasolabial fold, mentum, including marionette wrinkles, cheek area and periocular wrinkles. The most disastrous complication was alar rim necrosis following injection of the nasolabial fold. We propose two 'danger zones' that are particularly vulnerable to tissue necrosis following filler injection: the glabella and nasal ala. Although there is no definite treatment modality for the correction of HA-filler complications, we have managed them with various available treatment modalities aimed at minimising patient morbidity.

  4. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.

    PubMed

    Falcone, Samuel J; Berg, Richard A

    2008-10-01

    Temporary dermal fillers composed of crosslinked hyaluronic acid (XLHA) are space filling gels that are readily available in the United States and Europe. Several families of dermal fillers based on XLHA are now available and here we compare the physical and rheological properties of these fillers to the clinical effectiveness. The XLHA fillers are prepared with different crosslinkers, using HA isolated from different sources, have different particle sizes, and differ substantially in rheological properties. For these fillers, the magnitude of the complex viscosity, |eta*|, varies by a factor of 20, the magnitude of the complex rigidity modulus, |G*|, and the magnitude of the complex compliance, |J*| vary by a factor of 10, the percent elasticity varies from 58% to 89.9%, and the tan delta varies from 0.11 to 0.70. The available clinical data cannot be correlated with either the oscillatory dynamic or steady flow rotational rheological properties of the various fillers. However, the clinical data appear to correlate strongly with the total concentration of XLHA in the products and to a lesser extent with percent elasticity. Hence, our data suggest the following correlation: dermal filler persistence = [polymer] x [% elasticity] and the clinical persistence of a dermal filler composed of XLHA is dominated by the mass and elasticity of the material implanted. This work predicts that the development of future XLHA dermal filler formulations should focus on increasing the polymer concentration and elasticity to improve the clinical persistence.

  5. Surface Functionalization of Hyaluronic Acid Hydrogels by Polyelectrolyte Multilayer Films

    PubMed Central

    Yamanlar, Seda; Sant, Shilpa; Boudou, Thomas; Picart, Catherine; Khademhosseini, Ali

    2011-01-01

    Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(L-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems. PMID:21571364

  6. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.

    PubMed

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-04-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g., cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three-dimensional culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications.

  7. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  8. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.

    PubMed

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  9. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  10. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    PubMed

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. PMID:26674836

  11. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.

    PubMed

    Tan, Huaping; Ramirez, Christina M; Miljkovic, Natasa; Li, Han; Rubin, J Peter; Marra, Kacey G

    2009-12-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4'-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by (1)H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as approximately 30 degrees C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37 degrees C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37 degrees C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  12. Synthesis and degradation test of hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei Kwang; Park, Jung Kyu; Tomimatsu, Takashi; Shimoboji, Tsuyoshi

    2007-03-10

    Hyaluronic acid (HA) hydrogels prepared with three different crosslinking reagents were assessed by in vitro and in vivo degradation tests for various tissue engineering applications. Adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and used for the preparation of methacrylated HA (HA-MA) with methacrylic anhydride and thiolated HA (HA-SH) with Traut's reagent (imminothiolane). (1)H NMR analysis showed that the degrees of HA-ADH, HA-MA, and HA-SH modification were 69, 29, and 56 mol%, respectively. HA-ADH hydrogel was prepared by the crosslinking with bis(sulfosuccinimidyl) suberate (BS(3)), HA-MA hydrogel with dithiothreitol (DTT) by Michael addition, and HA-SH hydrogel with sodium tetrathionate by disulfide bond formation. According to in vitro degradation tests, HA-SH hydrogel was degraded very fast, compared to HA-ADH and HA-MA hydrogels. HA-ADH hydrogel was degraded slightly faster than HA-MA hydrogel. Based on these results, HA-MA hydrogels and HA-SH hydrogels were implanted in the back of SD rats and their degradation was assessed according to the pre-determined time schedule. As expected from the in vitro degradation test results, HA-SH hydrogel was in vivo degraded completely only in 2 weeks, whereas HA-MA hydrogels were degraded only partially even in 29 days. The degradation rate of HA hydrogels were thought to be controlled by changing the crosslinking reagents and the functional group of HA derivatives. In addition, the state of HA hydrogel was another factor in controlling the degradation rate. Dried HA hydrogel at 37 degrees C for a day resulted in relatively slow degradation compared to the bulk HA hydrogel. There was no adverse effect during the in vivo tests. PMID:17101173

  13. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering

    PubMed Central

    Tan, Huaping; Ramirez, Christina M.; Miljkovic, Natasa; Li, Han; Rubin, J. Peter; Marra, Kacey G.

    2009-01-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4′-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by 1H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as ~30°C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37°C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37°C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  14. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  15. The Use of Hyaluronic Acid after Tendon Surgery and in Tendinopathies

    PubMed Central

    Schiavone, Cosima; Salini, Vincenzo

    2014-01-01

    Viscosupplementation with hyaluronic acid is safe and effective in the management of osteoarthritis, but its use in the treatment of tendon disorders has received less attention. The aim of this review is to summarize the current knowledge on this topic, evaluating experimental and clinical trials. A search of English-language articles was performed using the key search terms “hyaluronic acid” or “viscosupplementation” combined with “tendon,” “tendinopathy,“ “adhesions,“ or “gliding,“ independently. In quite all the experimental studies, performed after surgical procedures for tendon injuries or in the treatment of chronic tendinopathies, using different hyaluronic acid compounds, positive results (reduced formation of scars and granulation tissue after tendon repair, less adhesions and gliding resistance, and improved tissue healing) were observed. In a limited number of cases, hyaluronic acid has been employed in clinical practice. After flexor tendon surgery, a greater total active motion and fingers function, with an earlier return to work and daily activities, were observed. Similarly, in patients suffering from elbow, patellar, and shoulder tendons disorders, pain was reduced, and function improved. The positive effect of hyaluronic acid can be attributed to the anti-inflammatory activity, enhanced cell proliferation, and collagen deposition, besides the lubricating action on the sliding surface of the tendon. PMID:24895610

  16. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo. PMID:21780370

  17. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.

  18. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand. PMID:23791684

  19. Homeostasis of Hyaluronic Acid in Normal and Scarred Vocal Folds

    PubMed Central

    Tateya, Ichiro; Tateya, Tomoko; Watanuki, Makoto; Bless, Diane M.

    2015-01-01

    Summary Objectives/Hypothesis Vocal fold scarring is one of the most challenging laryngeal disorders to treat. Hyaluronic acid (HA) is the main component of lamina propria, and it plays an important role in proper vocal fold vibration and is also thought to be important in fetal wound healing without scarring. Although several animal models of vocal fold scarring have been reported, little is known about the way in which HA is maintained in vocal folds. The purpose of this study was to clarify the homeostasis of HA by examining the expression of hyaluronan synthase (Has) and hyaluronidase (Hyal), which produce and digest HA, respectively. Study Design Experimental prospective animal study. Methods Vocal fold stripping was performed on 38 Sprague-Dawley rats. Vocal fold tissue was collected at five time points (3 days–2 months). Expression of HA was examined by immunohistochemistry, and messenger RNA (mRNA) expression of Has and Hyal was examined by real-time polymerase chain reaction and in-situ hybridization. Results In scarred vocal folds, expression of Has1 and Has2 increased at day 3 together with expression of HA and returned to normal at 2 weeks. At 2 months, Has3 and Hyal3 mRNA showed higher expressions than normal. Conclusions Expression patterns of Has and Hyal genes differed between normal, acute-scarred, and chronic-scarred vocal folds, indicating the distinct roles of each enzyme in maintaining HA. Continuous upregulation of Has genes in the acute phase may be necessary to achieve scarless healing of vocal folds. PMID:25499520

  20. Tranexamic Acid and Hyaluronate/Carboxymethylcellulose Create Cell Injury

    PubMed Central

    Yılmaz, Bayram; Dilbaz, Serdar; Üstün, Yusuf; Kumru, Selahattin

    2014-01-01

    Background and Objectives: Postoperative pelvic adhesions are associated with chronic pelvic pain, dyspareunia, and infertility. The aim of this study was to evaluate the adhesion prevention effects of tranexamic acid (TA) and hyaluronate/carboxymethylcellulose (HA/CMC) barrier in the rat uterine horn models on the basis of macroscopic and microscopic adhesion scores and histopathological as well as biochemical parameters of inflammation. Methods: Twenty-one Wistar rats were randomly divided into 3 groups. Ten lesions were created on the antimesenteric surface of both uterine horns by bipolar cautery. Three milliliters of 0.9% sodium chloride solution were administered in the control group. A single layer of 2 × 2 cm HA/CMC was plated in group 2. Two milliliters of TA was applied in the last group. All rats were sacrificed at postoperative day 21. Results: No significant difference was found among the control group, the HA/CMC group, and the TA group in terms of macro-adhesion score (P = .206) and microadhesion score (P = .056). No significant difference was found among the 3 groups in terms of inflammation score (P = .815) and inflammatory cell activity (P = .835). Malondialdehyde levels were significantly lower in the control group than in the TA group and HA/CMC group (P = .028). Superoxide dismutase and glutathione S-transferase activities were found to be higher in the control group than in the TA group (P = .005) and HA/CMC group (P = .009). Conclusions: TA and HA/CMC had no efficacy in preventing macroscopic or microscopic adhesion formation and decreasing inflammatory cell activity or inflammation score in our rat models. TA and HA/CMC increased the levels of free radicals and reduced the activities of superoxide dismutase and glutathione S-transferase enzymes, which act to reduce tissue injury. PMID:25392658

  1. A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.

    PubMed

    Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio

    2011-01-01

    A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems. PMID:22433568

  2. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid

    PubMed Central

    Bonnevie, Edward D.; Galesso, Devis; Secchieri, Cynthia; Cohen, Itai; Bonassar, Lawrence J.

    2015-01-01

    When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants. PMID:26599797

  3. An experimental study of tissue reaction to hyaluronic acid (Restylane) and polymethylmethacrylate (Metacrill) in the mouse.

    PubMed

    Rosa, Simone C; Macedo, Jefferson L S; Magalhães, Albino V

    2012-10-01

    The aging skin is a challenge for medical science. Plastic surgeons and dermatologists are called every day to solve problems like filling wrinkles or folds. The material used must be biocompatible because abnormal reactions may cause catastrophic results. This study analyzes the biological behavior of polymethylmethacrylate (Metacrill) and hyaluronic acid (Restylane), using a histopathologic study in mice. A prospective study was performed using 40 mice for each substance: polymethylmethacrylate or hyaluronic acid was injected into the right ear, the left ear been used as a control. Histopathologic analyses of the right ear, liver, and kidney were performed at intervals during the study and revealed the development of a granulomatous reaction with fibrosis and absorption of spheres and signs of liver and kidney sistematization for polymethylmethacrylate. A discrete cellular reaction, with less formation of fibrosis, and no giant cells were seen in the mice injected with hyaluronic acid.

  4. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid.

    PubMed

    Bonnevie, Edward D; Galesso, Devis; Secchieri, Cynthia; Cohen, Itai; Bonassar, Lawrence J

    2015-01-01

    When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.

  5. Ibuprofen-conjugated hyaluronate/polygalacturonic acid hydrogel for the prevention of epidural fibrosis.

    PubMed

    Lin, Cheng-Yi; Peng, Hsiu-Hui; Chen, Mei-Hsiu; Sun, Jui-Sheng; Chang, Chih-Ju; Liu, Tse-Ying; Chen, Ming-Hong

    2016-05-01

    The formation of fibrous tissue is part of the natural healing response following a laminectomy. Severe scar tissue adhesion, known as epidural fibrosis, is a common cause of failed back surgery syndrome. In this study, by combining the advantages of drug treatment with a physical barrier, an ibuprofen-conjugated crosslinkable polygalacturonic acid and hyaluronic acid hydrogel was developed for epidural fibrosis prevention. Conjugation was confirmed and measured by 1D(1)H NMR spectroscopy.In vitroanalysis showed that the ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel showed low cytotoxicity. In addition, the conjugated ibuprofen decreased prostaglandin E2production of the lipopolysaccharide-induced RAW264.7 cells. Histological data inin vivostudies indicated that the scar tissue adhesion of laminectomized male adult rats was reduced by the application of our ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel. Its use also reduced the population of giant cells and collagen deposition of scar tissue without inducing extensive cell recruitment. The results of this study therefore suggest that the local delivery of ibuprofenviaa polygalacturonic acid-hyaluronic acid-based hydrogel reduces the possibility of epidural fibrosis.

  6. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-08-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of Un

  7. Fe2+ and Cu2+ increase the production of hyaluronic acid by lactobacilli via affecting different stages of the pentose phosphate pathway.

    PubMed

    Choi, Sy-Bing; Lew, Lee-Ching; Hor, Kok-Chiu; Liong, Min-Tze

    2014-05-01

    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P < 0.05) affected the production of hyaluronic acid. Subsequent optimization yielded hyaluronic acid at concentration of 0.6152 mg/mL in the presence of 1.24 mol L(-1) iron (II) sulphate and 0.16 mol L(-1) of copper (II) sulphate (103 % increase compared to absence of divalent metal ions). Data from molecular docking showed Fe(2+) improved the binding affinity of UDP-pyrophophorylase towards glucose-1-phosphate, while Cu(2+) contributed towards the interaction between UDP-glucose dehydrogenase and UDP-glucose. We have demonstrated that lactobacilli could produce hyaluronic acid at increased concentration upon facilitation by specific divalent metal ions, via specific targets of enzymes and substrates along pentose phosphate pathway.

  8. Development and characterization of microemulsions containing hyaluronic acid.

    PubMed

    Alkrad, Jamal Alyoussef; Mrestani, Yahya; Neubert, Reinhard H H

    2016-04-30

    Tween80 and Span20 were used as surfactant mixture for developing non-ionic microemulsions (MEs) containing hyaluronic acid 22 kDa (HA). The effect of Tween80:Span20 ratio (T:S ratio) on microemulsion (ME) water intake and stability was studied. Moreover, the effect of HA on the consumed surfactant amount which is for stabilizing the MEs, for reducing water intake was investigated. Two W/O MEs containing HA were optimized. The first ME was composed of 2% HA, 13.8% Tween:80:Span20 (2:3), 4.2% water and 79.9% isopropylpalmitate (IPP). The second was composed of 2% HA, 16% Span20, 9.6% water:dimethyl sulfoxide (W:DMSO) (6:3.6) and 72.4% medium chain triglycerides (MCTG). The droplet sizes of MEs were determined using dynamic light scattering (DLS). The multilayer membrane system (MLMS) was used for testing the release of HA from both MEs and the released amount of HA was quantified using capillary zone electrophoresis (CZE). Furthermore, three phase diagrams and relevant rheological characteristics were generated. The droplet size of the ME without HA decreased and increased with increasing the temperature. Furthermore, the droplet size of the IPP-ME and MCTG-ME without HA and of the MCTG-ME with HA decreased with increasing temperature. In contrast to this results, the droplet size of the IPP-ME with HA increased with increased temperature. This ME belongs to the Newtonian fluids. Compared to the first ME, the second ME shows droplet sizes at 25 °C of 6.5 nm without and 37 nm with HA. The droplet size in the second ME decreased proportionally with an increase of the temperature with and without HA. The release of HA was faster from the IPP ME compared to the MCTG-ME. The two developed MEs were stable, isotropic and their properties comply with ME properties concerning the droplet size and viscosity. PMID:26902172

  9. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    SciTech Connect

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  10. Optimal Viscosity and Particle Shape of Hyaluronic Acid Filler as a Scaffold for Human Fibroblasts.

    PubMed

    Kim, Deok-Yeol; Namgoong, Sik; Han, Seung-Kyu; Won, Chang-Hoon; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-07-01

    The authors previously reported that cultured human fibroblasts suspended in a hyaluronic acid filler can produce human dermal matrices with extended in vivo stability in animal and clinical studies. The present study was undertaken to determine the optimal viscosity and particle shape of hyaluronic acid filler as a scaffold for cultured human dermal fibroblasts to enhance the maximal viability of injected cells. The fibroblasts were suspended in either 1 of 3 hyaluronic acid viscosities at 2 different particle shapes. The viscosities used in this study were low (600,000-800,000 centipoises), moderate (2,000,000-4,000,000 centipoises), and high (8,000,000-12,000,000 centipoises). The particle shape was evaluated by testing round and irregular shapes. The fibroblast mixed bioimplants were injected into the back of individual athymic nude mice. The levels of type I collagen were measured using fluorescent-activated cell sorting (FACS) and immunohistochemical staining at 16 weeks after the injections. Results of FACS demonstrated that the mean cell ratio with human collagens in the moderate viscosity group was greater than those of control, low, and high viscosity groups. An immunohistochemical study showed similar results. The moderate viscosity group demonstrated the highest positive staining of human collagens. However, there were no significant differences between groups of irregular and round shape particles. A hyaluronic acid bioimplant with moderate viscosity is superior to that with low or high viscosity in the viability for human fibroblasts. However, the particle shape does not influence the viability of the fibroblasts.

  11. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy.

    PubMed

    Kaderli, S; Boulocher, C; Pillet, E; Watrelot-Virieux, D; Rougemont, A L; Roger, T; Viguier, E; Gurny, R; Scapozza, L; Jordan, O

    2015-04-10

    A conventional therapy for the treatment of osteoarthrosis is intra-articular injection of hyaluronic acid, which requires repeated, frequent injections. To extend the viscosupplementation effect of hyaluronic acid, we propose to associate it with another biopolymer in the form of a hybrid hydrogel. Chitosan was chosen because of its structural similarity to synovial glycosaminoglycans, its anti-inflammatory effects and its ability to promote cartilage growth. To avoid polyelectrolyte aggregation and obtain transparent, homogeneous gels, chitosan was reacetylated to a 50% degree, and different salts and formulation buffers were investigated. The biocompatibility of the hybrid gels was tested in vitro on human arthrosic synoviocytes, and in vivo assessments were made 1 week after subcutaneous injection in rats and 1 month after intra-articular injection in rabbits. Hyaluronic acid-chitosan polyelectrolyte complexes were prevented by cationic complexation of the negative charges of hyaluronic acid. The different salts tested were found to alter the viscosity and thermal degradation of the gels. Good biocompatibility was observed in rats, although the calcium-containing formulation induced calcium deposits after 1 week. The sodium chloride formulation was further tested in rabbits and did not show acute clinical signs of pain or inflammation. Hybrid HA-Cs hydrogels may be a valuable alternative viscosupplementation agent.

  12. A case of diffuse alveolar hemorrhage associated with hyaluronic acid dermal fillers

    PubMed Central

    Basora, Jose F.; Fernandez, Ricardo; Gonzalez, Modesto; Adorno, Jose

    2014-01-01

    Patient: Male, 25 Final Diagnosis: Diffuse alveolar hemorrhage Symptoms: Cough dry • short of breath Medication: — Clinical Procedure: — Specialty: — Objective: Unusual clinical course Background: Hyaluronic acid is a substance that is naturally present in the human body, especially in joints and eyes. Hyaluronic acid injectable gels have been available for the general market since 2003 as cosmetic dermal fillers and skin boosters. Diffuse alveolar hemorrhage is an acute event that threatens the life of the patient and can lead to pulmonary fibrosis. Alveolar hemorrhage associated with hyaluronic acid dermal fillers is an entity that to the best of our knowledge has never been described in the medical literature. Case Report: We describe a patient who presented with dyspnea and cough after a subcutaneous injection of hyaluronic acid, with radiographic abnormalities including ground glass opacities and consolidation. The patient underwent flexible bronchoscopy and was diagnosed with diffuse alveolar hemorrhage. Conclusions: This case emphasizes that this life threatening condition may occur with the use of this medication and physicians must be aware of this disorder, as early recognition and management can reduce morbidity. PMID:24826208

  13. Use of hyaluronic acid fillers for the treatment of the aging face.

    PubMed

    Gold, Michael H

    2007-01-01

    Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patients. The purpose of this manuscript is to review the characteristics of the HA fillers and to review each of the current products currently available for use in the US.

  14. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes.

    PubMed

    Sgorla, Débora; Almeida, Andreia; Azevedo, Claudia; Bunhak, Élcio Jose; Sarmento, Bruno; Cavalcanti, Osvaldo Albuquerque

    2016-09-10

    The aim of this work was to develop and characterize new hyaluronic acid-based responsive materials for film coating of solid dosage forms. Crosslinking of hyaluronic acid with trisodium trimetaphosphate was performed under controlled alkaline aqueous environment. The films were produced through casting process by mixing crosslinked or bare biopolymer in aqueous dispersion of ethylcellulose, at different proportions. Films were further characterized regarding morphology by scanning electron microscopy, robustness by permeation to water vapor transmission, and ability to hydrate in simulated gastric and intestinal physiological fluids. The safety and biocompatibility of films were assessed against Caco-2 and HT29-MTX intestinal cells. The permeation to water vapor transmission was favored by increasing hyaluronic acid content in the final formulation. When in simulated gastric fluid, films exhibited lower hydration ability compared to more extensive hydration in simulated intestinal fluids. Simultaneously, in simulated intestinal fluids, films partially lost weight, revealing ability for preventing drug release at gastric pH, but tailoring the release at higher intestinal pH. The physiochemical characterization suggests thermal stability of films and physical interaction between compounds of formulation. Lastly, cytotoxicity tests demonstrated that films and individual components of the formulations, when incubated for 4h, were safe for intestinal cells Overall, these evidences suggest that hyaluronic acid-based responsive films, applied as coating material of oral solid dosage forms, can prevent the premature release of drugs in harsh stomach conditions, but control the release it in gastrointestinal tract distal portion, assuring safety to intestinal mucosa. PMID:27436707

  15. [Use the hyaluronic acid according to the concept Face Recurve: vacuum technical and interpores technical].

    PubMed

    Le Louarn, C

    2008-06-01

    Two new applications of the Face Recurve concept to hyaluronic acid injections are: --the vacuum technique, for deep and for retro muscular injections, which is performed to avoid diffusion and increase precision; --the interpore technique for superficial injections, which is performed in the epidermis to macroscopically erase the interpore wrinkle and to decrease the pore diameter.

  16. A blanching technique for intradermal injection of the hyaluronic acid Belotero.

    PubMed

    Micheels, Patrick; Sarazin, Didier; Besse, Stéphanie; Sundaram, Hema; Flynn, Timothy C

    2013-10-01

    With the proliferation of dermal fillers in the aesthetic workplace have come instructions from various manufacturers regarding dermal placement. Determination of injection needle location in the dermis has in large part been based on physician expertise, product and needle familiarity, and patient-specific skin characteristics. An understanding of the precise depth of dermal structures may help practitioners improve injection specificity. Unlike other dermal fillers that suggest intradermal and deep dermal injection planes, a new hyaluronic acid with a cohesive polydensified matrix may be more appropriate for the superficial dermis because of its structure and its high degree of integration into the dermis. To that end, the authors designed a small study to quantify the depth of the superficial dermis by means of ultrasound and histology. Using ultrasound resources, the authors determined the depths of the epidermis, the dermis, and the reticular dermis in the buttocks of six patients; the authors then extrapolated the depth of the superficial reticular dermis. Histologic studies of two of the patients showed full integration of the product in the reticular dermis. Following determination of injection depths and filler integration, the authors describe a technique ("blanching") for injection of the cohesive polydensified matrix hyaluronic acid into the superficial dermis. At this time, blanching is appropriate only for injection of the cohesive polydensified matrix hyaluronic acid known as Belotero Balance in the United States, although it may have applications for other hyaluronic acid products outside of the United States.

  17. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. PMID:20843434

  18. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration. PMID:20193782

  19. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.

  20. Prevention of postoperative pericardial adhesions with a hyaluronic acid coating solution. Experimental safety and efficacy studies.

    PubMed

    Mitchell, J D; Lee, R; Hodakowski, G T; Neya, K; Harringer, W; Valeri, C R; Vlahakes, G J

    1994-06-01

    Postoperative pericardial adhesions complicate reoperative cardiac procedures. Topical application of solutions containing hyaluronic acid have been shown to reduce adhesions after abdominal and orthopedic surgery. The mechanism by which hyaluronic acid solutions prevent adhesion formation is unknown but may be due to a cytoprotective effect on mesothelial surfaces, which would limit intraoperative injury. In this study, we tested the efficacy and safety of hyaluronic acid coating solutions for the prevention of postoperative intrapericardial adhesion formation. Eighteen mongrel dogs underwent median sternotomy and pericardiotomy followed by a standardized 2-hour protocol of forced warm air desiccation and abrasion of the pericardial and epicardial surfaces. Group 1 (n = 6) served as untreated control animals. Group 2 (n = 6) received topical administration of 0.4% hyaluronic acid in phosphate-buffered saline solution at the time of pericardiotomy, at 20-minute intervals during the desiccation/abrasion protocol, and at pericardial closure. The total test dose was less than 1% of the circulating blood volume. Group 3 (n = 6) served as a vehicle control, receiving phosphate-buffered saline solution as a topical agent in a fashion identical to that used in group 2. At resternotomy 8 weeks after the initial operation, the intrapericardial adhesions were graded on a 0 to 4 severity scale at seven different areas covering the ventricular, atrial, and great vessel surfaces. In both the untreated control (group 1, mean score 3.2 +/- 0.4) and vehicle control (group 3, mean score 3.3 +/- 0.2) animals, dense adhesions were encountered. In contrast, animals treated with the hyaluronic acid solution (group 2, mean score 0.8 +/- 0.3) characteristically had no adhesions or filmy, transparent adhesions graded significantly less severe than either the untreated control (group 2 versus group 1, p < 0.001) or vehicle control (group 2 versus group 3, p < 0.001) animals. In separate

  1. Propolis Induces Chondroitin/Dermatan Sulphate and Hyaluronic Acid Accumulation in the Skin of Burned Wound

    PubMed Central

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M.

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  2. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.

    PubMed

    Almeida, Patrick V; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-09-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.

  3. Propolis induces chondroitin/dermatan sulphate and hyaluronic Acid accumulation in the skin of burned wound.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair.

  4. The association between radiographic embrasure morphology and interdental papilla reconstruction using injectable hyaluronic acid gel

    PubMed Central

    2016-01-01

    Purpose The purpose of this study was to evaluate the clinical efficacy of enhancing deficient interdental papilla with hyaluronic acid gel injection by assessing the radiographic anatomical factors affecting the reconstruction of the interdental papilla. Methods Fifty-seven treated sites from 13 patients (6 males and 7 females) were included. Patients had papillary deficiency in the upper anterior area. Prior to treatment, photographic and periapical radiographic standardization devices were designed for each patient. A 30-gauge needle was used with an injection-assistance device to inject a hyaluronic acid gel to the involved papilla. This treatment was repeated up to 5 times every 3 weeks. Patients were followed up for 6 months after the initial gel application. Clinical photographic measurements of the black triangle area (BTA), height (BTH), and width (BTW) and periapical radiographic measurements of the contact point and the bone crest (CP-BC) and the interproximal distance between roots (IDR) were undertaken using computer software. The interdental papilla reconstruction rate (IPRR) was calculated to determine the percentage change of BTA between the initial and final examination and the association between radiographic factors and the reconstruction of the interdental papilla by means of injectable hyaluronic acid gel were evaluated. Results All sites showed improvement between treatment examinations. Thirty-six sites had complete interdental papilla reconstruction and 21 sites showed improvement ranging from 19% to 96%. The CP-BC correlated with the IPRR. More specifically, when the CP-BC reached 6 mm, virtually complete interdental papilla reconstruction via injectable hyaluronic acid gel was achieved. Conclusions These results suggest that the CP-BC is closely related to the efficacy of hyaluronic acid gel injection for interdental papilla reconstruction. PMID:27588217

  5. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  6. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    PubMed

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  7. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    PubMed

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.

  8. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    PubMed Central

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  9. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation

    PubMed Central

    Liu, Kai; Wang, Zhi-qi; Wang, Shi-jiang; Liu, Ping; Qin, Yue-hong; Ma, Yan; Li, Xiao-Chen; Huo, Zhi-Jun

    2015-01-01

    Colon cancer is one of the leading causes of cancer-related death worldwide, and the therapeutic application of 5-fluorouracil (5-FU) is limited due to its nonspecificity, low bioavailability, and overdose. The present study is an attempt to improve the chemotherapeutic efficacy of 5-FU in colon cancers. Therefore, we have prepared 5-FU-loaded hyaluronic acid (HA)-conjugated silica nanoparticles (SiNPs) to target to colon cancer cells. In this study, we have showed the specific binding and intracellular accumulation of targeted nanoparticles based on HA surface modifications in colon carcinoma cells. The particles had spherical shapes with sizes of approximately 130 nm. HA-conjugated nanoparticles showed a sustained release pattern for 5-FU and continuously released for 120 hours. We have further investigated the cytotoxicity potential of targeted and nontargeted nanoparticles in colo-205 cancer cells. IC50 value of 5-FU/hyaluronic acid-conjugated silica nanoparticles (HSNP) was 0.65 µg/mL compared with ~2.8 µg/mL for 5-FU/SNP after 24 hours of incubation. The result clearly showed that HA-conjugated NP was more effective in inducing apoptosis in cancer cells than nontargeted NP. The 5-FU/HSNP showed ~45% of cell apoptosis (early and late apoptosis stage) compared with only 20% for 5-FU/silica nanoparticles (SNP)-treated group. The HA-conjugated nanoparticles provide the possibility of efficient drug transport into tumors that could effectively reduce the side effects in the normal tissues. 5-FU/HSNP was highly efficient in suppressing the tumor growth in xenograft tumor model. The proportion of Ki67 in 5-FU/HSNP-treated group was significantly lower than that of either free drug or nontargeted SiNPs. Altogether, we have showed that conjugation of HA to SiNPs could result in enhanced uptake of 5-FU through CD44-mediated endocytosis uptake and could result in significant antitumor efficacy. Thus, 5-FU/HSNP could be a promising drug delivery system for colon cancer

  10. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation.

    PubMed

    Liu, Kai; Wang, Zhi-qi; Wang, Shi-jiang; Liu, Ping; Qin, Yue-hong; Ma, Yan; Li, Xiao-Chen; Huo, Zhi-Jun

    2015-01-01

    Colon cancer is one of the leading causes of cancer-related death worldwide, and the therapeutic application of 5-fluorouracil (5-FU) is limited due to its nonspecificity, low bioavailability, and overdose. The present study is an attempt to improve the chemotherapeutic efficacy of 5-FU in colon cancers. Therefore, we have prepared 5-FU-loaded hyaluronic acid (HA)-conjugated silica nanoparticles (SiNPs) to target to colon cancer cells. In this study, we have showed the specific binding and intracellular accumulation of targeted nanoparticles based on HA surface modifications in colon carcinoma cells. The particles had spherical shapes with sizes of approximately 130 nm. HA-conjugated nanoparticles showed a sustained release pattern for 5-FU and continuously released for 120 hours. We have further investigated the cytotoxicity potential of targeted and nontargeted nanoparticles in colo-205 cancer cells. IC50 value of 5-FU/hyaluronic acid-conjugated silica nanoparticles (HSNP) was 0.65 µg/mL compared with ~2.8 µg/mL for 5-FU/SNP after 24 hours of incubation. The result clearly showed that HA-conjugated NP was more effective in inducing apoptosis in cancer cells than nontargeted NP. The 5-FU/HSNP showed ~45% of cell apoptosis (early and late apoptosis stage) compared with only 20% for 5-FU/silica nanoparticles (SNP)-treated group. The HA-conjugated nanoparticles provide the possibility of efficient drug transport into tumors that could effectively reduce the side effects in the normal tissues. 5-FU/HSNP was highly efficient in suppressing the tumor growth in xenograft tumor model. The proportion of Ki67 in 5-FU/HSNP-treated group was significantly lower than that of either free drug or nontargeted SiNPs. Altogether, we have showed that conjugation of HA to SiNPs could result in enhanced uptake of 5-FU through CD44-mediated endocytosis uptake and could result in significant antitumor efficacy. Thus, 5-FU/HSNP could be a promising drug delivery system for colon cancer

  11. Protein, cell and bacterial response to atmospheric pressure plasma grafted hyaluronic acid on poly(methylmethacrylate).

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McMahon, M Ann S; McDowell, David A; Meenan, Brian J

    2015-11-01

    Hyaluronic acid (HA) has been immobilised on poly(methyl methacrylate) (PMMA) surfaces using a novel dielectric barrier discharge (DBD) plasma process for the purposes of repelling protein, cellular and bacterial adhesion in the context of improving the performance of ophthalmic devices. Grafting was achieved by the following steps: (1) treatment of the PMMA with a DBD plasma operating at atmospheric pressure, (2) amine functionalisation of the activated polymer surface by exposure to a 3-aminopropyltrimethoxysilane (APTMS) linker molecule and (3) reaction of HA with the surface bound amine. The mechanism and effectiveness of the grafting process was verified by surface analysis. XPS data indicates that the APTMS linker molecule binds to PMMA via the Si-O chemistry and has the required pendant amine moiety. The carboxylic acid moiety on HA then binds with this -NH2 group via standard carbodiimide chemistry. ToF-SIMS confirms the presence of a coherent HA layer the microstructure of which is verified by AFM. The plasma grafted HA coating surfaces showed a pronounced decrease in protein and cellular adhesion when tested with bovine serum albumin and human corneal epithelial cells, respectively. The ability of these coatings to resist bacterial adhesion was established using Staphylococcus aureus NTC8325. Interestingly, the coatings did not repel bacterial adhesion, indicating that the mechanism of adhesion of bacterial cells is different to that for the surface interactions of mammalian cells. It is proposed that this difference is a consequence of the specific HA conformation that occurs under the conditions employed here. Hence, it is apparent that the microstructure/architecture of the HA coatings is an important factor in fabricating surfaces intended to repel proteins, mammalian and bacterial cells.

  12. Protein, cell and bacterial response to atmospheric pressure plasma grafted hyaluronic acid on poly(methylmethacrylate).

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McMahon, M Ann S; McDowell, David A; Meenan, Brian J

    2015-11-01

    Hyaluronic acid (HA) has been immobilised on poly(methyl methacrylate) (PMMA) surfaces using a novel dielectric barrier discharge (DBD) plasma process for the purposes of repelling protein, cellular and bacterial adhesion in the context of improving the performance of ophthalmic devices. Grafting was achieved by the following steps: (1) treatment of the PMMA with a DBD plasma operating at atmospheric pressure, (2) amine functionalisation of the activated polymer surface by exposure to a 3-aminopropyltrimethoxysilane (APTMS) linker molecule and (3) reaction of HA with the surface bound amine. The mechanism and effectiveness of the grafting process was verified by surface analysis. XPS data indicates that the APTMS linker molecule binds to PMMA via the Si-O chemistry and has the required pendant amine moiety. The carboxylic acid moiety on HA then binds with this -NH2 group via standard carbodiimide chemistry. ToF-SIMS confirms the presence of a coherent HA layer the microstructure of which is verified by AFM. The plasma grafted HA coating surfaces showed a pronounced decrease in protein and cellular adhesion when tested with bovine serum albumin and human corneal epithelial cells, respectively. The ability of these coatings to resist bacterial adhesion was established using Staphylococcus aureus NTC8325. Interestingly, the coatings did not repel bacterial adhesion, indicating that the mechanism of adhesion of bacterial cells is different to that for the surface interactions of mammalian cells. It is proposed that this difference is a consequence of the specific HA conformation that occurs under the conditions employed here. Hence, it is apparent that the microstructure/architecture of the HA coatings is an important factor in fabricating surfaces intended to repel proteins, mammalian and bacterial cells. PMID:26449450

  13. Conformational Analysis of the Streptococcus pneumoniae Hyaluronate Lyase and Characterization of Its Hyaluronan-specific Carbohydrate-binding Module*

    PubMed Central

    Suits, Michael D. L.; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S.; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B.

    2014-01-01

    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. PMID:25100731

  14. Enhanced affinity of ketotifen toward tamarind seed polysaccharide in comparison with hydroxyethylcellulose and hyaluronic acid: a nuclear magnetic resonance investigation.

    PubMed

    Uccello-Barretta, Gloria; Nazzi, Samuele; Balzano, Federica; Di Colo, Giacomo; Zambito, Ylenia; Zaino, Chiara; Sansò, Marco; Salvadori, Eleonora; Benvenuti, Marco

    2008-08-01

    Nuclear magnetic resonance (NMR) spectroscopy demonstrated that, in aqueous solution, ketotifen fumarate bound more strongly to tamarind seed polysaccharide (TSP) than to hydroxyethylcellulose or hyaluronic acid. Results were confirmed by dynamic dialysis technique.

  15. The effect of hyaluronic acid (Cicatridine) on healing and regeneration of the uterine cervix and vagina and vulvar dystrophy therapy.

    PubMed

    Markowska, J; Madry, R; Markowska, A

    2011-01-01

    Procedures aimed at the treatment of precancerous lesions and ectopia on the uterine cervix are frequently linked to lesions of anatomical structures. The application of hyaluronic acid (Cicatridine vaginal ovules) promotes accelerated healing of the uterine cervix and acquisition of a normal shape in the uterine cervix canal. Local application of hyaluronic acid in the vagina following radiotherapy due to cancer in the uterine cervix or endometrium favourably affects the healing of post-irradiation lesions in the vagina and improves quality of life. Over 90% of patients responded positively to the application of hyaluronic acid in the form of a cream on dystrophic lesions in the vulva. Hyaluronic acid aids the healing process of post-procedural wounds in the uterine cervix, following radiotherapy applied due to cancer of the uterine cervix, endometrium and in vulvar dystrophy.

  16. Is vaginal hyaluronic acid as effective as vaginal estriol for vaginal dryness relief?

    PubMed

    Stute, Petra

    2013-12-01

    In a multicenter, randomized, controlled, open-label, parallel- group trial hyaluronic acid vaginal gel (Hyalofemme) was compared to estriol vaginal cream (Ovestin) in women with vaginal dryness due to various causes. A total of 144 supposedly postmenopausal women below age 70 years were randomized in a 1:1 ratio to either receive hyaluronic acid vaginal gel (5 g per application) or estriol vaginal cream (0.5 g cream per application = 0.5 mg estriol) every 3 days for a total of ten applications, respectively. Exclusion criteria included vaginal infections, conventional contraindications to estrogens, use of vaginal products other than the investigational compounds, being unmarried, pregnant, or breastfeeding. The aim of the study was to test for non-inferiority of hyaluronic acid vaginal gel compared to estriol vaginal cream. The primary efficacy end point was the percentage (%) improvement in vaginal dryness, with the secondary end points being the percentage (%) improvements in vaginal itching, burning, and dyspareunia. Efficacy was assessed by using a visual analog scale (VAS) (0-10; 0 = absent, 10 = intolerable) at baseline (V0), during telephone contact after the third administration (V1), and at the final visit after the tenth administration (V2). Safety parameters included vaginal pH, endometrial thickness, and a vaginal smear for vaginal microecosystem assessment. Adverse events were recorded according to international guidelines. 133 women completed the study. At baseline, participants' characteristics did not differ significantly. Mean age was 54 years, time since menopause was 5 years on average, and cause of menopause was mostly natural. However, mean menstrual cycle days were also reported, although according to inclusion criteria only postmenopausal women were eligible for the study. At V1, an improvement in vaginal dryness was reported by about 49 % of women using hyaluronic acid vaginal gel, and by 53 % of women using estriol vaginal cream (p = 0

  17. Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection.

    PubMed

    Schrager, H M; Rheinwald, J G; Wessels, M R

    1996-11-01

    It has been suggested that entry of pathogenic bacteria, including streptococci, into epithelial cells may represent an early stage of invasive infections. We found that poorly encapsulated wild-type strains and unencapsulated mutants of group A Streptococcus entered cultured human keratinocytes with high efficiency, while strains that produced large amounts of hyaluronic acid capsule did not, regardless of M-protein type or clinical source of the isolate. However, encapsulated streptococci produced extensive local necrosis and systemic infection in a mouse model of skin infection, while an isogenic acapsular strain did not. The results implicate the hyaluronic acid capsule as a virulence factor in soft tissue infection. Entry of poorly encapsulated group A Streptococcus into human epithelial cells does not appear to represent an initial step in invasive disease; rather, the capacity of encapsulated strains to avoid uptake by epithelial cells is associated with enhanced virulence in skin and soft tissue infection.

  18. Delayed-type Necrosis after Soft-tissue Augmentation with Hyaluronic Acid

    PubMed Central

    Klotz De Almeida Balassiano, Laila; Roos Mariano Da Rocha, Camila; Barbosa De Sousa Padilha, Carolina; Martinezt Torrado, Carolina; Teixeira Da Silva, Roberta; Carlos Regazzi Avelleira, João

    2015-01-01

    The growing use of dermal fillers, specifically the use of hyaluronic acid, can be explained by their effectiveness and versatility as well as their favorable safety profiles. Nevertheless, early and late complications with varying levels of severity may occur. The incidence of complications is low and the majority of adverse events are mild (edema, erythema, and local ecchymosis) and of limited duration. However, more severe events, such as ischemia and necrosis, may occur. The symptoms of ischemia can occur immediately after the injection or several hours after the procedure. Here, the authors report three cases of necrosis after hyaluronic acid injection with the first symptoms presenting only several hours after the procedure. The patients were treated immediately after the diagnosis. The aim of this review is to communicate the possibility of the delayed-type presentation of necrosis, present the signs and symptoms that lead to early diagnosis, and review the treatment possibilities of this severe complication. PMID:26705447

  19. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration.

    PubMed

    Palumbo, Fabio S; Fiorica, Calogero; Di Stefano, Mauro; Pitarresi, Giovanna; Gulino, Alessandro; Agnello, Stefano; Giammona, Gaetano

    2015-05-20

    An in situ forming hydrogel obtained by crosslinking of amino functionalized hyaluronic acid derivatives with divinylsulfone functionalized inulin (INU-DV) has been here designed and characterized. In particular two hyaluronic acid derivatives bearing respectively a pendant ethylenediamino (EDA) portion (HA-EDA) and both EDA and octadecyl pendant groups (HA-EDA-C18) were crosslinked through an azo-Michael reaction with INU-DV. Gelation time and consumption of DV portions have been evaluated on hydrogel obtained using HA-EDA and HA-EDA-C18 derivatives with a concentration of 3% w/v and a ratio 80/20 w/w respect to the crosslinker INU-DV. The presence of pendant C18 chains improves mechanical performances of hydrogels and decreases the susceptibility to hyaluronidase hydrolysis. Bovine chondrocytes, encapsulated during crosslinking, sufficiently survive and efficiently proliferate until 28 days of analysis.

  20. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required.

  1. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  2. Incorporation of TGF-beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential.

    PubMed

    Matsiko, Amos; Levingstone, Tanya J; Gleeson, John P; O'Brien, Fergal J

    2015-06-01

    Incorporation of therapeutics in the form of growth factors within biomaterials can enhance their biofunctionality. Two methods of incorporating transforming growth factor-beta 3 within collagen-hyaluronic acid scaffolds are described, markedly improving mesenchymal stem cell-mediated chondrogenic differentiation and matrix production. Such scaffolds offer control over the release of therapeutics, demonstrating their potential for repair of complex chondral defects requiring additional stimuli.

  3. Treating atopic dermatitis: safety, efficacy, and patient acceptability of a ceramide hyaluronic acid emollient foam

    PubMed Central

    Pacha, Omar; Hebert, Adelaide A

    2012-01-01

    Advances in current understanding of the pathophysiology of atopic dermatitis have led to improved targeting of the structural deficiencies in atopic skin. Ceramide deficiency appears to be one of the major alterations in atopic dermatitis and the replenishment of this epidermal component through topically applied ceramide based emollients appears to be safe, well tolerated, and effective. Recently a ceramide hyaluronic acid foam has become commercially available and increasing evidence supports its safety and efficacy in patients who suffer from atopic dermatitis. PMID:22690129

  4. In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots.

    PubMed

    Kim, Jiseok; Kim, Ki Su; Jiang, Ge; Kang, Hyungu; Kim, Sungjee; Kim, Byung-Soo; Park, Moon Hyang; Hahn, Sei Kwang

    2008-12-01

    The effect of chemical modification of hyaluronic acid (HA) on its distribution throughout the body was successfully visualized in nude mice through real-time bioimaging using quantum dots (QDots). Adipic acid dihydrazide modified HA (HA-ADH) was synthesized and conjugated with QDots having carboxyl terminal ligands activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. The formation of HA-QDot conjugates could be confirmed by gel permeation chromatography, fluorometry, transmission electron microscopy, and zeta-size analysis. According to the real-time bioimaging of HA-QDot conjugates after subcutaneous injection to nude mice, the fluorescence of HA-QDot conjugates with a near infrared wavelength of 800 nm could be detected up to 2 months, whereas that with an emission wavelength of 655 nm disappeared almost completely within 5 days. The results can be ascribed to the fact that near-infrared light has a high penetration depth of about 5-6 cm in the body compared to that of about 7-10 mm for visible light. Thereby, using QDots with a near-infrared emission wavelength of 800 nm, the distribution of HA-QDot conjugates throughout the body was bioimaged in real-time after their tail-vein injection into nude mice. HA-QDot conjugates with 35 mol% ADH content maintaining enough binding sites for HA receptors were mainly accumulated in the liver, while those with 68 mol% ADH content losing much of HA characteristics were evenly distributed to the tissues in the body. The results are well matched with the fact that HA receptors are abundantly present in the liver with a high specificity to HA molecules. PMID:18690665

  5. Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear.

    PubMed

    El Kechai, Naila; Mamelle, Elisabeth; Nguyen, Yann; Huang, Nicolas; Nicolas, Valérie; Chaminade, Pierre; Yen-Nicolaÿ, Stéphanie; Gueutin, Claire; Granger, Benjamin; Ferrary, Evelyne; Agnely, Florence; Bochot, Amélie

    2016-03-28

    The inner ear is one of the most challenging organs for drug delivery, mainly because of the blood-perilymph barrier. Therefore, local rather than systemic drug delivery methods are being developed for inner ear therapy. In this work, we have evaluated the benefit of a hyaluronic acid liposomal gel for sustained delivery of a corticoid to the inner ear after local injection into the middle ear in a guinea pig model. The liposomal gel was easily injectable as a result of the shear-thinning behavior of hyaluronic acid. A prolonged residence time at the site of injection as well as in the round window were achieved without any negative effect on the hearing thresholds of the animals. The presence of liposomes in the formulation resulted in sustained release of the drug in the perilymph for 30days and promoted the conversion of the prodrug loaded within the liposomes (dexamethasone phosphate) into its active form (dexamethasone). In this way, therapeutic doses were attained in the perilymph. A small amount of intact liposomes was visualized in the perilymph, whereas the main proportion of liposomes seemed to be trapped in the round window resulting in a reservoir effect. Thus, the administration of hyaluronic acid liposomal gel to the middle ear is an efficient strategy for delivering corticoids to the inner ear in a sustained manner.

  6. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer.

    PubMed

    Jing, Lijia; Shao, Shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect.

  7. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  8. Combined anticalcification treatment of bovine pericardium with decellularization and hyaluronic acid derivative.

    PubMed

    Zhu, Deyi; Jin, Liqiang; Wang, Xuemei; Xu, Li; Liu, Tianqi

    2014-01-01

    The objective of this work was to evaluate the effect of decellularization and hyaluronic acid derivative on the improvement of anticalcification of glutaraldehyde fixed bovine pericardium (GFBP) using a rat subcutaneous implantation model A cell extraction process was employed to remove the cells and cellular components from bovine pericardium (BP), leaving a framework of largely insoluble collagen. Then acellular BP was cross-linked by glutaraldehyde solution and treated with hyaluronic acid derivative (HA-ADH) which was obtained by coupling adipic dihydrazide (ADH) on-COOH of hyaluronic acid (HA). The results of in vivo calcification tests showed that the calcium content was decreased dramatically by decellularization alone (from 28.07 ± 18.87 to 2.44 ± 0.55 μg Ca/mg dry tissue after 8 weeks' implantation), and even less concentration was shown by the combination of HA derivative treatment and decellularization (GFaBP-HA group) (0.25 ± 0.08 μg Ca/mg dry tissue after 8 weeks' implantation). In addition, GFaBP-HA group not only presented a lower degree of calcification, but also showed lower ratios of Ca/P molar, which corresponded to amorphous calcium phosphates. The obtained results indicated that GFaBP-HA was a potential candidate for the manufacture of anticalcification bioprostheses. PMID:24211959

  9. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation.

    PubMed

    Pang, Xin; Lu, Zhen; Du, Hongliang; Yang, Xiaoye; Zhai, Guangxi

    2014-11-01

    A tumor cell-targeted prodrug was developed for quercetin, using hyaluronic acid as polymeric carrier. Hyaluronic acid-quercetin (HA-QT) bioconjugates were synthesized by linking the hydroxy of quercetin via a succinate ester to adipic dihydrazide-modified hyaluronic acid. The mirco-morphology demonstrated that the prepared prodrug could form self-assembled micelles possessing spherical shape, 172.1 nm average diameter and -20.30 mV surface potential. The HA-QT micelles exhibited significant sustained and pH-dependent drug release behaviors without dramatic initial burst. Compared to free quercetin solution, the HA-QT micelles were found a 4 times increase in cytotoxicity on MCF-7 cells (CD44-overexpressing cell lines), while weak enhancement in inhibitory activity was observed towards L929 cells (CD44 deficient cell lines). Promisingly, 20.1-fold increase in the half-life and 4.9-fold increase in the area-under-the-curve (AUC) of quercetin were achieved for the HA-QT micelles compared with the parent drug. In addition, the HA-QT micelles also showed excellent inhibition effect on tumor growth in H22 tumor-bearing mice. Hemolytic toxicity and vein irritation assay further suggested that the HA-QT micelles were a safe and potent drug delivery system for targeted antitumor therapy. PMID:25454664

  10. "Click" Chemistry-Tethered Hyaluronic Acid-Based Contact Lens Coatings Improve Lens Wettability and Lower Protein Adsorption.

    PubMed

    Deng, Xudong; Korogiannaki, Myrto; Rastegari, Banafsheh; Zhang, Jianfeng; Chen, Mengsu; Fu, Qiang; Sheardown, Heather; Filipe, Carlos D M; Hoare, Todd

    2016-08-31

    Improving the wettability of and reducing the protein adsorption to contact lenses may be beneficial for improving wearer comfort. Herein, we describe a simple "click" chemistry approach to surface functionalize poly(2-hydroxyethyl methacrylate) (pHEMA)-based contact lenses with hyaluronic acid (HA), a carbohydrate naturally contributing to the wettability of the native tear film. A two-step preparation technique consisting of laccase/TEMPO-mediated oxidation followed by covalent grafting of hydrazide-functionalized HA via simple immersion resulted in a model lens surface that is significantly more wettable, more water retentive, and less protein binding than unmodified pHEMA while maintaining the favorable transparency, refractive, and mechanical properties of a native lens. The dipping/coating method we developed to covalently tether the HA wetting agent is simple, readily scalable, and a highly efficient route for contact lens modification. PMID:27509015

  11. Endocytosis of hyaluronic acid by rat liver endothelial cells. Evidence for receptor recycling.

    PubMed Central

    McGary, C T; Raja, R H; Weigel, P H

    1989-01-01

    Hyaluronic acid (HA) is cleared from the blood by liver endothelial cells through receptor-mediated endocytosis [Eriksson, Fraser, Laurent, Pertoft & Smedsrod (1983) Exp. Cell Res. 144, 223-238]. We have measured the capacity of cultured rat liver endothelial cells to endocytose and degrade 125I-HA (Mr approximately 44,000) at 37 degrees C. Endocytosis was linear for 3 h and then reached a plateau. The rate of endocytosis was concentration-dependent and reached a maximum of 250 molecules/s per cell. Endocytosis of 125I-HA was inhibited more than 92% by a 150-fold excess of non-radiolabelled HA. HA, chondroitin sulphate and heparin effectively competed for endocytosis of 125I-HA, whereas glucuronic acid, N-acetylglucosamine, DNA, RNA, polygalacturonic acid and dextran did not compete. In the absence of cycloheximide, endothelial cells processed 13 times more 125I-HA in 6 h than their total (cell-surface and intracellular) specific HA-binding capacity. This result was not due to degradation and rapid replacement of receptors, because, even in the presence of cycloheximide, these cells processed 6 times more HA than their total receptor content in 6 h. Also, in the presence of cycloheximide, no decrease in 125I-HA-binding capacity was seen in cells processing or not processing HA for 6 h, indicating that receptors are not degraded after the endocytosis of HA. During endocytosis of HA at 37 degrees C, at least 65% of the intracellular HA receptors became occupied with HA within 30 min. This indicates that the intracellular HA receptors (75% of the total) function during continuous endocytosis. Hyperosmolarity inhibits endocytosis and receptor recycling in the asialoglycoprotein and low-density-lipoprotein receptor systems by disrupting the coated-pit pathway [Heuser & Anderson (1987) J. Cell Biol. 105, 230a; Oka & Weigel (1988) J. Cell. Biochem. 36, 169-183]. Hyperosmolarity inhibited 125I-HA endocytosis in liver endothelial cells by more than 90%, suggesting use of a

  12. The reaction of hyaluronic acid and its monomers, glucuronic acid and N-acetylglucosamine, with reactive oxygen species.

    PubMed

    Jahn, M; Baynes, J W; Spiteller, G

    1999-10-15

    Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.

  13. HYALURONIC ACID AND HYAL-1 EXPRESSION IN PROSTATE BIOPSY SPECIMENS: PREDICTORS OF BIOCHEMICAL RECURRENCE

    PubMed Central

    Gomez, Christopher S; Gomez, Pablo; Knapp, Judith; Jorda, Merce; Soloway, Mark S.; Lokeshwar, Vinata B.

    2010-01-01

    Purpose Molecular markers could aid PSA, biopsy Gleason sum and clinical stage in providing accurate information about prostate cancer (CaP) progression. HYAL-1 hyaluronidase and hyaluronic acid (HA) staining in prostatectomy specimens predicts biochemical recurrence. We examined whether HA and HYAL-1 staining in biopsy specimens predicts biochemical recurrence and correlates with the staining in matched prostatectomy specimens. Materials and Methods Biopsy and prostatectomy specimens were obtained from patients with clinically localized CaP (n = 61; mean follow-up = 103.1 months) from multiple centers; Gr. 1: patients with biochemical recurrence (n = 23); Gr. 2: patients without recurrence (n = 38). A biotinylated HA-binding protein and an anti-HYAL-1 antibody were used for HA and HYAL-1 staining. The staining was graded between 0 – 300 depending upon staining intensity and the area. Results HYAL-1 and HA were expressed in tumor cells and stroma, respectively. In biopsy specimens, HYAL-1 and HA expression was higher in Gr.1 (203.9 and 182.1) when compared to Gr. 2 (48.8 and 87.0; P < 0.0001). In univariate analysis, HA, HYAL-1, biopsy Gleason and PSA significantly predicted biochemical recurrence (P < 0.001). In multivariate analysis only HYAL-1 staining was an independent predictor of recurrence (P < 0.001; accuracy: 81.8%). In prostatectomy specimens only HYAL-1 staining correlated with the staining in biopsy specimens (Spearman ρ= 0.72; P = 0.0002), and predicted biochemical recurrence. Conclusion This is the first report that demonstrates that in biopsy specimens HYAL-1 staining is an independent predictor of biochemical recurrence and may be useful in selecting treatment. PMID:19683287

  14. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors.

    PubMed

    Chopra, Anant; Lin, Victor; McCollough, Amanda; Atzet, Sarah; Prestwich, Glenn D; Wechsler, Andrew S; Murray, Maria E; Oake, Shaina A; Kresh, J Yasha; Janmey, Paul A

    2012-03-15

    The elastic modulus of bioengineered materials has a strong influence on the phenotype of many cells including cardiomyocytes. On polyacrylamide (PAA) gels that are laminated with ligands for integrins, cardiac myocytes develop well organized sarcomeres only when cultured on substrates with elastic moduli in the range 10 kPa-30 kPa, near those of the healthy tissue. On stiffer substrates (>60 kPa) approximating the damaged heart, myocytes form stress fiber-like filament bundles but lack organized sarcomeres or an elongated shape. On soft (<1 kPa) PAA gels myocytes exhibit disorganized actin networks and sarcomeres. However, when the polyacrylamide matrix is replaced by hyaluronic acid (HA) as the gel network to which integrin ligands are attached, robust development of functional neonatal rat ventricular myocytes occurs on gels with elastic moduli of 200 Pa, a stiffness far below that of the neonatal heart and on which myocytes would be amorphous and dysfunctional when cultured on polyacrylamide-based gels. The HA matrix by itself is not adhesive for myocytes, and the myocyte phenotype depends on the type of integrin ligand that is incorporated within the HA gel, with fibronectin, gelatin, or fibrinogen being more effective than collagen I. These results show that HA alters the integrin-dependent stiffness response of cells in vitro and suggests that expression of HA within the extracellular matrix (ECM) in vivo might similarly alter the response of cells that bind the ECM through integrins. The integration of HA with integrin-specific ECM signaling proteins provides a rationale for engineering a new class of soft hybrid hydrogels that can be used in therapeutic strategies to reverse the remodeling of the injured myocardium.

  15. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors

    PubMed Central

    Chopra, Anant; Lin, Victor; McCollough, Amanda; Atzet, Sarah; Prestwich, Glenn D.; Wechsler, Andrew S.; Murray, Maria E.; Oake, Shaina A.; Kresh, J. Yasha; Janmey, Paul A.

    2012-01-01

    The elastic modulus of bioengineered materials has a strong influence on the phenotype of many cells including cardiomyocytes. On polyacrylamide (PAA) gels that are laminated with ligands for integrins, cardiac myocytes develop well organized sarcomeres only when cultured on substrates with elastic moduli in the range of 10 kPa to 30 kPa, near those of the healthy tissue. On stiffer substrates (>60 kPa) approximating the damaged heart, myocytes form stress fiber-like filament bundles but lack organized sarcomeres or an elongated shape. On soft (<1 kPa) PAA gels myocytes exhibit disorganized actin networks and sarcomeres. However, when the polyacrylamide matrix is replaced by hyaluronic acid (HA) as the gel network to which integrin ligands are attached, robust development of functional neonatal rat ventricular myocytes occurs on gels with elastic moduli of 200 Pa, a stiffness far below that of the neonatal heart and on which myocytes would be amorphous and dysfunctional when cultured on polyacrylamide-based gels. The HA matrix by itself is not adhesive for myocytes, and the myocyte phenotype depends on the type of integrin ligand that is incorporated within the HA gel, with fibronectin, gelatin, or fibrinogen being more effective than collagen 1. These results show that HA alters the integrin-dependent stiffness response of cells in vitro and suggests that expression of HA within the extracellular matrix (ECM) in vivo might similarly alter the response of cells that bind the ECM through integrins. The integration of HA with integrin-specific ECM signaling proteins provides a rationale for engineering a new class of soft hybrid hydrogels that can be used in therapeutic strategies to reverse the remodeling of the injured myocardium. PMID:22196970

  16. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors.

    PubMed

    Chopra, Anant; Lin, Victor; McCollough, Amanda; Atzet, Sarah; Prestwich, Glenn D; Wechsler, Andrew S; Murray, Maria E; Oake, Shaina A; Kresh, J Yasha; Janmey, Paul A

    2012-03-15

    The elastic modulus of bioengineered materials has a strong influence on the phenotype of many cells including cardiomyocytes. On polyacrylamide (PAA) gels that are laminated with ligands for integrins, cardiac myocytes develop well organized sarcomeres only when cultured on substrates with elastic moduli in the range 10 kPa-30 kPa, near those of the healthy tissue. On stiffer substrates (>60 kPa) approximating the damaged heart, myocytes form stress fiber-like filament bundles but lack organized sarcomeres or an elongated shape. On soft (<1 kPa) PAA gels myocytes exhibit disorganized actin networks and sarcomeres. However, when the polyacrylamide matrix is replaced by hyaluronic acid (HA) as the gel network to which integrin ligands are attached, robust development of functional neonatal rat ventricular myocytes occurs on gels with elastic moduli of 200 Pa, a stiffness far below that of the neonatal heart and on which myocytes would be amorphous and dysfunctional when cultured on polyacrylamide-based gels. The HA matrix by itself is not adhesive for myocytes, and the myocyte phenotype depends on the type of integrin ligand that is incorporated within the HA gel, with fibronectin, gelatin, or fibrinogen being more effective than collagen I. These results show that HA alters the integrin-dependent stiffness response of cells in vitro and suggests that expression of HA within the extracellular matrix (ECM) in vivo might similarly alter the response of cells that bind the ECM through integrins. The integration of HA with integrin-specific ECM signaling proteins provides a rationale for engineering a new class of soft hybrid hydrogels that can be used in therapeutic strategies to reverse the remodeling of the injured myocardium. PMID:22196970

  17. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures.

    PubMed

    Engel, Brian J; Constantinou, Pamela E; Sablatura, Lindsey K; Doty, Nathaniel J; Carson, Daniel D; Farach-Carson, Mary C; Harrington, Daniel A; Zarembinski, Thomas I

    2015-08-01

    Validation of a high-throughput compatible 3D hyaluronic acid hydrogel coculture of cancer cells with stromal cells. The multilayered hyaluronic acid hydrogels improve drug screening predictability as evaluated with a panel of clinically relevant chemotherapeutics in both prostate and endometrial cancer cell lines compared to 2D culture. PMID:26059746

  18. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    NASA Astrophysics Data System (ADS)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  19. Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel.

    PubMed

    Ünlüer, Özlem Biçen; Ersöz, Arzu; Denizli, Adil; Demirel, Rasime; Say, Rıdvan

    2013-09-01

    Hyaluronic acid (HA) has been used in many applications such as pharmaceutical, clinical and cosmetics, so its separation and purification is very important. In this study, firstly d-glucuronic acid imprinted polymers (MIPs) have been synthesized for the separation of HA which has glucuronic acid part in its structure. MIP particles have characterized by elemental analysis, Fourier Transform Infrared Spectroscopy (FT-IR) and swelling tests. Then, synthesized MIP particles have embedded into polyacrylamide based cryogel. Cryogel has prepared by free radical cryogelation process initiated by N,N,N',N'-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as redox initiators. This cryogel material was characterized by FT-IR, swelling tests, scanning electron microscopy (SEM) and surface adsorption analyze including pore size analyzer (BET) method. The adsorption of HA has investigated by spectrophotometric method using MIPs embedded into cryogel columns (GAIPEC) and the maximum HA adsorption capacity was found to be 318mgg(-1). The selectivity of GAIPEC column has estimated using N-acetylglucose amine as interfering agent since this molecule is a part of HA and the results have shown that GAIPEC has been nearly 35 times selective for HA than N-acetylglucose amine. The optimum chromatographic conditions for separation of HA were investigated. pH 7.0 buffer solution for elution and 0.1M of NaCl solution as desorption agent were used at 0.5mLmin(-1) flow rate. Also, recovery of GAIPEC was investigated and the results have shown that GAIPEC could be used many times without decreasing its adsorption capacity significantly. Here in, combining selectivity of MIP particles and mechanical properties of cryogel, a rigid and stable material was prepared for the separation and purification of HA. To point out this, HA has been isolated from fish eye and fermentation of Streptococcus equi RSKK 679 cell culture. After that, it has characterized and Fast Protein Liquid

  20. Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel.

    PubMed

    Ünlüer, Özlem Biçen; Ersöz, Arzu; Denizli, Adil; Demirel, Rasime; Say, Rıdvan

    2013-09-01

    Hyaluronic acid (HA) has been used in many applications such as pharmaceutical, clinical and cosmetics, so its separation and purification is very important. In this study, firstly d-glucuronic acid imprinted polymers (MIPs) have been synthesized for the separation of HA which has glucuronic acid part in its structure. MIP particles have characterized by elemental analysis, Fourier Transform Infrared Spectroscopy (FT-IR) and swelling tests. Then, synthesized MIP particles have embedded into polyacrylamide based cryogel. Cryogel has prepared by free radical cryogelation process initiated by N,N,N',N'-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as redox initiators. This cryogel material was characterized by FT-IR, swelling tests, scanning electron microscopy (SEM) and surface adsorption analyze including pore size analyzer (BET) method. The adsorption of HA has investigated by spectrophotometric method using MIPs embedded into cryogel columns (GAIPEC) and the maximum HA adsorption capacity was found to be 318mgg(-1). The selectivity of GAIPEC column has estimated using N-acetylglucose amine as interfering agent since this molecule is a part of HA and the results have shown that GAIPEC has been nearly 35 times selective for HA than N-acetylglucose amine. The optimum chromatographic conditions for separation of HA were investigated. pH 7.0 buffer solution for elution and 0.1M of NaCl solution as desorption agent were used at 0.5mLmin(-1) flow rate. Also, recovery of GAIPEC was investigated and the results have shown that GAIPEC could be used many times without decreasing its adsorption capacity significantly. Here in, combining selectivity of MIP particles and mechanical properties of cryogel, a rigid and stable material was prepared for the separation and purification of HA. To point out this, HA has been isolated from fish eye and fermentation of Streptococcus equi RSKK 679 cell culture. After that, it has characterized and Fast Protein Liquid

  1. [Effects of two UDP-glucose dehydrogenases on hyaluronic acid biotransformation].

    PubMed

    GuoI, Donghui; Han, Jian; Liu, Weifeng; Fu, Zhenzhou; Zhu, Qizhong; Tao, Yong

    2014-11-01

    We amplified genes encoding UDP-glucose dehydrogenase, ecohasB from Escherichia coli and spyhasB from Streptococcus pyogenes. Both ecohasB and spyhasB were inserted into T7 expression vector pRX2 to construct recombinant plasmids pRXEB and pRXSB, and to express in E. coli BL21(DE3). After nickel column purification of UDP-glucose dehydrogenases, the enzymes were characterized. The optimum reaction condition of spyHasB was at 30 °C and pH 10. The specific activity reached 12.2 U/mg under optimum condition. The optimum reaction condition of ecoHasB was at 30 °C and pH 9. Its specific activity reached 5.55 U/mg under optimum condition. The pmuhasA gene encoding hyaluronic acid synthase was amplified from Pasteurella multocida and ligated with ecohasB and spyhasB to construct the coexpression vectors pBPAEB and pBPASB, respectively. The co-expression vectors were transformed into E. coli BW25113. Hyaluronic acid (HA) was produced by biotransformation and the conditions were optimized. When recombinant strains were used to produce hyaluronic acid, the higher the activity of UDP-glucose dehydrogenase was, the better its stability was, and the higher the HA production could reach. Under the optimal conditions, the yields of HA produced by pBPAEB/BW25113 and pBPASB/BW25113 in shake flasks were 1.52 and 1.70 g/L, respectively, and the production increased more than 2-3 folds as previously reported. PMID:25985520

  2. A pilot study to compare two different hyaluronic acid compounds for treatment of knee osteoarthritis.

    PubMed

    Iannitti, T; Rottigni, V; Palmieri, B

    2012-01-01

    Osteoarthritis is characterized by progressive articular cartilage degeneration, changes in subchondral bone and synovial inflammation, leading to pain and disability. Viscosupplementation with hyaluronic acid has been widely investigated due to the viscoelastic properties of this compound to manage pain improving the ability to perform daily activities in patients affected by osteoarthritis. In the present study we investigated the clinical effectiveness of viscosupplementation with a new highly cross-linked hyaluronic acid, Variofill, in patients affected by bilateral knee osteoarthritis in comparison with the widely used Synvisc. A total of 20 patients, aged between 24-74 years and affected by bilateral knee osteoarthritis, participated in this pilot randomized triple-blind clinical study. They received two injections (2 ml each) of Synvisc in their left knee and 2 injections (2 ml each) of Variofill in their right knee spaced 15 days apart. Visual Analogue Scale and Western Ontario McMaster Universities Osteoarthritis Index score were used to evaluate the efficacy of hyaluronic acid injections before and 3 and 6 months after treatment. Both treatment regimens resulted in a significant improvement vs baseline in all endpoints at 3 and 6 months (p less than 0.001). Treatment with Variofill resulted in a high percentage improvement in Visual Analogue Scale pain, Western Ontario McMaster universities Osteoarthritis Index score pain and physical activity, when compared to Synvisc viscosupplementation, at 6 months (p less than 0.05). These results are encouraging for larger clinical trials with Variofill in larger cohorts of patients affected by osteoarthritis of the knee. PMID:23298499

  3. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties.

    PubMed

    Piluso, Susanna; Hiebl, Bernhard; Gorb, Stanislav N; Kovalev, Alexander; Lendlein, Andreas; Neffe, Axel T

    2011-02-01

    Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper- catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications. PMID:21374560

  4. [Hyaluronic acid: a new trend to cure skin injuries an observational study].

    PubMed

    Rueda Lópex, Justo; Segovia Gómez, Teresa; Guerrero Palmero, Alberto; Bermejo Martínez, Mariano; Muñoz Bueno, Ana Maria

    2005-06-01

    The authors made an observational study to evaluate the efficiency of Jaloplast (hyaluronic acid AH) as treatment for skin injuries having different etiologies. The authors highlight its results regarding cicatrisation (69%) and the improvement of lesions (15.38%). Moreover 80% of lesions have cicatrized in a time less than 11 weeks, without showing any adverse effects nor secondary effects. From these observations, the authors deduce the importance of this molecule formed by glucosamine glycane (hyalyuronate) at the organic level in general and specifically in the process of cicatrisation.

  5. Soft-tissue augmentation with hyaluronic acid and calcium hydroxyl apatite fillers.

    PubMed

    Redbord, Kelley Pagliai; Busso, Mariano; Hanke, C William

    2011-01-01

    Soft-tissue augmentation with hyaluronic acid and calcium hydroxyl apatite are among the most widely used minimally invasive cosmetic treatments for the correction of contour deficiencies and wrinkles of the face without the risk, recovery time, and expense of a major surgery. Training and experience in the art and science of fillers is essential for the successful creation of a more youthful and natural appearance. An understanding of the different products, the injection techniques, the indications, and the potential complications of each filler are paramount to success.

  6. Intra-articular hyaluronic acid in the treatment of haemophilic chronic arthropathy.

    PubMed

    Fernández-Palazzi, F; Viso, R; Boadas, A; Ruiz-Sáez, A; Caviglia, H; De Bosch, N Blumenfeld

    2002-05-01

    We report our preliminary experience with the use of hyaluronic acid (Synvisc) in 29 joints from 25 different haemophilic patients (17 knees, six shoulders, four ankles, one elbow and one hip). All the joints were grade III of our classification, characterized by synovial thickening, axial deformities and muscle atrophy (chronic arthropathy). In view of the very satisfactory results obtained with this procedure, we have substituted Synvisc for the previous use of intra-articular long-standing corticosteroids that we had been used for some years. This method is theoretically more physiological and does not destroy the joint cartilage further, as corticosteroids can.

  7. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    SciTech Connect

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  8. [Use of hyaluronidase to correct hyaluronic acid injections in aesthetic medicine].

    PubMed

    Lacoste, C; Hersant, B; Bosc, R; Noel, W; Meningaud, J P

    2016-04-01

    Hyaluronic acid (HA) is the most commonly used filler in aesthetic medicine. However, overcorrections are frequent even with experienced practitioner. Hyaluronidase is an enzyme that hydrolyzes HA. Hyaluronidase has been recently proposed to correct unsatisfactory results of HA injections in aesthetic medicine (overcorrection, asymmetry, Tyndall effect) and to treat immediate complications such as arterial or venous thrombosis. The objective of this technical note was to summarize the literature data regarding the efficacy, safety and technique of use of hyaluronidase. Hyaluronidase may be responsible for allergies. The practitioner should take this risk and the possible drug interactions into account before using this antidote in order to weigh up the risk/benefit ratio.

  9. Effect of gamma irradiation on hyaluronic acid and dipalmitoylphosphatidylcholine (DPPC) interaction

    SciTech Connect

    Ahmad, Ainee Fatimah; Mohd, Hur Munawar Kabir; Taqiyuddin Mawardi bin Ayob, Muhammad; Rosli, Nur Ratasha Alia Md; Mohamed, Faizal; Radiman, Shahidan; Rahman, Irman Abdul

    2014-09-03

    DPPC lipids are the major component constituting the biological membrane, and their importances in various physiological functions are well documented. Hyaluronic acid (HA) in the synovial joint fluid functions as a lubricant, shock absorber and a nutrient carrier. Gamma irradiation has also been found to be effective in depolymerizing and cleaving molecular chains related to free radicals, thus extends with changes in chemical composition as well as its physiological functions. This research are conducted to investigate the hyaluronic acid (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect to gamma radiation. The size of DPPC vesicles formed via gentle hydration method is between 100 to 200 nm in diameter. HA (0.1, 0.5 and 1.0 mg/ml) was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 300 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the size of vesicles decreased as HA was degraded. To elucidate the mechanism of these effects, FTIR spectra were carried out and have shown that at absorption bands at 1700–1750 cm{sup −1} due to formation of carboxylic acid and leads to alteration of HA structure.

  10. Effect of gamma irradiation on hyaluronic acid and dipalmitoylphosphatidylcholine (DPPC) interaction

    NASA Astrophysics Data System (ADS)

    Ahmad, Ainee Fatimah; Mohd, Hur Munawar Kabir; bin Ayob, Muhammad Taqiyuddin Mawardi; Rosli, Nur Ratasha Alia Md; Mohamed, Faizal; Radiman, Shahidan; Rahman, Irman Abdul

    2014-09-01

    DPPC lipids are the major component constituting the biological membrane, and their importances in various physiological functions are well documented. Hyaluronic acid (HA) in the synovial joint fluid functions as a lubricant, shock absorber and a nutrient carrier. Gamma irradiation has also been found to be effective in depolymerizing and cleaving molecular chains related to free radicals, thus extends with changes in chemical composition as well as its physiological functions. This research are conducted to investigate the hyaluronic acid (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect to gamma radiation. The size of DPPC vesicles formed via gentle hydration method is between 100 to 200 nm in diameter. HA (0.1, 0.5 and 1.0 mg/ml) was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 300 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the size of vesicles decreased as HA was degraded. To elucidate the mechanism of these effects, FTIR spectra were carried out and have shown that at absorption bands at 1700-1750 cm-1 due to formation of carboxylic acid and leads to alteration of HA structure.

  11. Hyaluronic acid used for the correction of nasal deviation in an 18-year-old Middle Eastern man

    PubMed Central

    Piggott, JR; Yazdani, A

    2011-01-01

    The use of fillers for nonsurgical rhinoplasty has advanced in both materials and methods, and continues to gain popularity in North America. This technique is most often used for secondary revisions, although reports of fillers used in primary rhinoplasty in selected patients have been recently described. The present report details the use of a hyaluronic acid dermal filler in a young Middle Eastern man for a post-traumatic crooked nose deformity. Primary correction of the patient’s right-sided nasal bone deviation using hyaluronic acid as a soft tissue filler was achieved with excellent results and patient satisfaction. The current use of fillers in nasal contouring is reviewed. PMID:23204891

  12. Corticosteroid and hyaluronic acid treatments in equine degenerative joint disease. A review.

    PubMed

    Nizolek, D J; White, K K

    1981-10-01

    Degenerative arthrosis is perhaps the most common debilitating disease of performance horses. Treatment should be based upon a knowledge of the anatomy and physiology of normal joints and upon an understanding of the processes of degeneration and repair. These topics are briefly reviewed. Although rest is probably, the most beneficial therapy, physical and pharmaceutical treatments are often employed in an effort to speed recovery. The effects and relative benefits of intrasynovial injections of corticosteroids, hyaluronica cid, and Arteparon are considered in detail. Although local corticosteroid therapy is inexpensive and is effective in reducing lameness caused by degenerative joint disease, it is rarely indicated. Septic arthritis and "steroid arthropathy" are two serious sequelae. Whereas the incidence of the former may be avoided through careful technique, the latter effect is inherent in the action of the drug. The accelerated rate of joint destruction observed in steroid arthropathy is due to suppression of chondrocyte metabolism and thus the processes of cartilage maintenance and repair. Hyaluronic acid is present in the synovial fluid and within the matrix of cartilage. The commercial preparation is no approved for use in the United States, but it is commonly obtained from other countries. Although hyaluronate apparently does not function in the lubrication of cartilage surfaces, it may improve lubrication of soft tissues thus decreasing resistance to joint movement and lessening pain. Reports substantiate the effectiveness of hyaluronic acid in treating early cases of degenerative arthrosis despite the fact that the drug does not significantly promote cartilage healing. Arteparon, a polysulfated glycosaminoglycan, has been used in Europe for two decades in the treatment of degeneration joint disease and is currently being tested in this country. The drug is deposited within diseased cartilage and improves the functional properties of the cartilage as

  13. The evolving role of hyaluronic acid fillers for facial volume restoration and contouring: a Canadian overview.

    PubMed

    Muhn, Channy; Rosen, Nathan; Solish, Nowell; Bertucci, Vince; Lupin, Mark; Dansereau, Alain; Weksberg, Fred; Remington, B Kent; Swift, Arthur

    2012-01-01

    Recent advancements, including more versatile facial fillers, refined injection techniques and the adoption of a global facial approach, have contributed to improved patient outcome and increased patient satisfaction. Nine Canadian specialists (eight dermatologists, one plastic surgeon) collaborated to develop an overview on volume restoration and contouring based on published literature and their collective clinical experience. The specialists concurred that optimal results in volume restoration and contouring depend on correcting deficiencies at various layers of the facial envelope. This includes creating a foundation for deep structural support in the supraperiosteal or submuscular plane; volume repletion of subcutaneous fat compartments; and the reestablishment of dermal and subdermal support to minimize cutaneous rhytids, grooves and furrows. It was also agreed that volume restoration and contouring using a global facial approach is essential to create a natural, youthful appearance in facial aesthetics. A comprehensive non-surgical approach should therefore incorporate combining fillers such as high-viscosity, low-molecular-weight hyaluronic acid (LMWHA) for structural support and hyaluronic acid (HA) for lines, grooves and furrows with neuromodulators, lasers and energy devices.

  14. The evolving role of hyaluronic acid fillers for facial volume restoration and contouring: a Canadian overview

    PubMed Central

    Muhn, Channy; Rosen, Nathan; Solish, Nowell; Bertucci, Vince; Lupin, Mark; Dansereau, Alain; Weksberg, Fred; Remington, B Kent; Swift, Arthur

    2012-01-01

    Recent advancements, including more versatile facial fillers, refined injection techniques and the adoption of a global facial approach, have contributed to improved patient outcome and increased patient satisfaction. Nine Canadian specialists (eight dermatologists, one plastic surgeon) collaborated to develop an overview on volume restoration and contouring based on published literature and their collective clinical experience. The specialists concurred that optimal results in volume restoration and contouring depend on correcting deficiencies at various layers of the facial envelope. This includes creating a foundation for deep structural support in the supraperiosteal or submuscular plane; volume repletion of subcutaneous fat compartments; and the reestablishment of dermal and subdermal support to minimize cutaneous rhytids, grooves and furrows. It was also agreed that volume restoration and contouring using a global facial approach is essential to create a natural, youthful appearance in facial aesthetics. A comprehensive non-surgical approach should therefore incorporate combining fillers such as high-viscosity, low-molecular-weight hyaluronic acid (LMWHA) for structural support and hyaluronic acid (HA) for lines, grooves and furrows with neuromodulators, lasers and energy devices. PMID:23071398

  15. Posterior Ciliary Artery Occlusion Caused by Hyaluronic Acid Injections Into the Forehead: A Case Report.

    PubMed

    Hu, Xiu Zhuo; Hu, Jun Yan; Wu, Peng Sen; Yu, Sheng Bo; Kikkawa, Don O; Lu, Wei

    2016-03-01

    Although cosmetic facial soft tissue fillers are generally safe and effective, improper injections can lead to devastating and irreversible consequences. We represent the first known case of posterior ciliary artery occlusion caused by hyaluronic acid. A 41-year-old female presented with right visual loss 7 hours after receiving cosmetic hyaluronic acid injections into her forehead. Examination revealed no light perception in the right eye and multiple dark ischemic area of injection over the forehead and nose. The right fundus revealed a pink retina with optic nerve edema. Fluorescein angiogram showed several filling defects in the choroidal circulation and late hyperfluorescence in the choroid. A right posterior ciliary artery occlusion and embolic occlusion of facial artery braches was diagnosed. With hyaluronidase injection, hyperbaric oxygen therapy, oral aspirin, oral acetazolamide and dexamethasone venotransfuse treatment, the patient's forehead and nasal skin improved and vision recovered to hand movements. With proper technique, vascular occlusion is rare following facial filler injection. Vision consequences can be severe if filler emboli enter the ocular circulation. Physicians should be aware of this potential side effect, recognize its presentation, and be knowledgeable of effective management. PMID:26986163

  16. In vitro and ex vivo effect of hyaluronic acid on erythrocyte flow properties

    PubMed Central

    2010-01-01

    Background Hyaluronic acid (HA) is present in many tissues; its presence in serum may be related to certain inflammatory conditions, tissue damage, sepsis, liver malfunction and some malignancies. In the present work, our goal was to investigate the significance of hyaluronic acid effect on erythrocyte flow properties. Therefore we performed in vitro experiments incubating red blood cells (RBCs) with several HA concentrations. Afterwards, in order to corroborate the pathophysiological significance of the results obtained, we replicated the in vitro experiment with ex vivo RBCs from diagnosed rheumatoid arthritis (RA) patients, a serum HA-increasing pathology. Methods Erythrocyte deformability (by filtration through nucleopore membranes) and erythrocyte aggregability (EA) were tested on blood from healthy donors additioned with purified HA. EA was measured by transmitted light and analyzed with a mathematical model yielding two parameters, the aggregation rate and the size of the aggregates. Conformational changes of cytoskeleton proteins were estimated by electron paramagnetic resonance spectroscopy (EPR). Results In vitro, erythrocytes treated with HA showed increased rigidity index (RI) and reduced aggregability, situation strongly related to the rigidization of the membrane cytoskeleton triggered by HA, as shown by EPR results. Also, a significant correlation (r: 0.77, p < 0.00001) was found between RI and serum HA in RA patients. Conclusions Our results lead us to postulate the hypothesis that HA interacts with the erythrocyte surface leading to modifications in erythrocyte rheological and flow properties, both ex vivo and in vitro. PMID:20152040

  17. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  18. Friction Force Microscopy of Lubricin and Hyaluronic Acid between Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    Chang, Debby P.; Abu-Lail, Nehal I.; Coles, Jeffrey M.; Guilak, Farshid; Jay, Gregory D.; Zauscher, Stefan

    2010-01-01

    Lubricin and hyaluronic acid (HA), molecular constituents of synovial fluid, have long been theorized to play a role in joint lubrication and wear protection. While lubricin has been shown to function as a boundary lubricant, conflicting evidence exists as to the boundary lubricating ability of hyaluronic acid. Here, we use colloidal force microscopy to explore the friction behavior of these two molecules on the microscale between chemically uniform hydrophilic (hydroxyl-terminated) and hydrophobic (methyl-terminated) surfaces in physiological buffer solution. Behaviors on both surfaces are physiologically relevant since the heterogeneous articular cartilage surface contains both hydrophilic and hydrophobic elements. Friction between hydrophobic surfaces was initially high (μ=1.1, at 100nN of applied normal load) and was significantly reduced by lubricin addition while friction between hydrophilic surfaces was initially low (μ=0.1) and was slightly increased by lubricin addition. At lubricin concentrations above 200 µg/ml, friction behavior on the two surfaces was similar (μ=0.2) indicating that nearly all interaction between the two surfaces was between adsorbed lubricin molecules rather than between the surfaces themselves. In contrast, addition of HA did not appreciably alter the frictional behavior between the model surfaces. No synergistic effect on friction behavior was seen in a physiological mixture of lubricin and HA. Lubricin can equally mediate the frictional response between both hydrophilic and hydrophobic surfaces, likely fully preventing direct surface-to-surface contact at sufficient concentrations, whereas HA provides considerably less boundary lubrication. PMID:20936046

  19. Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings

    PubMed Central

    Ao, Haiyong; Xie, Youtao; Tan, Honglue; Yang, Shengbing; Li, Kai; Wu, Xiaodong; Zheng, Xuebin; Tang, Tingting

    2013-01-01

    Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants. PMID:23635490

  20. The Design of In Vitro Liver Sinusoid Mimics Using Chitosan–Hyaluronic Acid Polyelectrolyte Multilayers

    PubMed Central

    Kim, Yeonhee; Larkin, Adam L.; Davis, Richey M.

    2010-01-01

    Interactions between hepatocytes and liver sinusoidal endothelial cells (LSECs) are essential for the development and maintenance of hepatic phenotypic functions. We report the assembly of three-dimensional liver sinusoidal mimics comprised of primary rat hepatocytes, LSECs, and an intermediate chitosan–hyaluronic acid polyelectrolyte multilayer (PEM). The height of the PEMs ranged from 30 to 55 nm and exhibited a shear modulus of ∼100 kPa. Hepatocyte–PEM cellular constructs exhibited stable urea and albumin production over a 7-day period, and these values were either higher or similar to cells cultured in a collagen sandwich. This is of significance because the thickness of a collagen gel is ∼1000-fold higher than the height of the chitosan–hyaluronic acid PEM. In the hepatocyte–PEM–LSEC liver-mimetic cellular constructs, LSEC phenotype was maintained, and these cultures exhibited stable urea and albumin production. CYP1A1/2 activity measured over a 7-day period was significantly higher in the hepatocyte–PEM–LSEC constructs than in collagen sandwich cultures. A 16-fold increase in CYP1A1/2 activity was observed for hepatocyte–PEM–10,000 LSEC samples, thereby suggesting that interactions between hepatocytes and LSECs are critical in enhancing the detoxification capability in hepatic cultures in vitro. PMID:20491586

  1. Proteome analysis of the hyaluronic acid-producing bacterium, Streptococcus zooepidemicus

    PubMed Central

    Marcellin, Esteban; Gruber, Christian W; Archer, Colin; Craik, David J; Nielsen, Lars K

    2009-01-01

    Background Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a commensal of horses and an opportunistic pathogen in many animals and humans. Some strains produce copious amounts of hyaluronic acid, making S. zooepidemicus an important industrial microorganism for the production of this valuable biopolymer used in the pharmaceutical and cosmetic industry. Encapsulation by hyaluronic acid is considered an important virulence factor in other streptococci, though the importance in S. zooepidemicus remains poorly understood. Proteomics may provide a better understanding of virulence factors in S. zooepidemicus, facilitate the design of better diagnostics and treatments, and guide engineering of superior production strains. Results Using hyaluronidase to remove the capsule and by optimising cellular lysis, a reference map for S. zooepidemicus was completed. This protocol significantly increased protein recovery, allowing for visualisation of 682 spots and the identification of 86 proteins using mass spectrometry (LC-ESI-MS/MS and MALDI-TOF/TOF); of which 16 were membrane proteins. Conclusion The data presented constitute the first reference map for S. zooepidemicus and provide new information on the identity and characteristics of the more abundantly expressed proteins. PMID:19327162

  2. Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click" Reaction.

    PubMed

    Baier, Grit; Fichter, Michael; Kreyes, Andreas; Klein, Katja; Mailänder, Volker; Gehring, Stephan; Landfester, Katharina

    2016-01-11

    Azide-functionalized hyaluronic acid and disulfide dialkyne have been used for "click" reaction polymerization at the miniemulsion droplets interface leading to glutathione responsive nanocapsules (NCs). Inverse miniemulsion polymerization was chosen, due to its excellent performance properties, for example, tuning of size and size distribution, shell thickness/density, and high pay loading efficiency. The obtained size, size distribution, and encapsulation efficiency were checked via fluorescent spectroscopy, and the tripeptide glutathione was used to release an encapsulated fluorescent dye after cleavage of the nanocapsules shell. To show the glutathione-mediated intracellular cleavage of disulfide-containing NC shells, CellTracker was encapsulated into the nanocapsules. The cellular uptake in dendritic cells and the cleavage of the nanocapsules in the cells were studied using confocal laser scanning microscopy. Because of the mild reaction conditions used during the interfacial polymerization and the excellent cleavage properties, we believe that the synthesis of glutathione responsive hyaluronic acid NCs reported herein are of high interest for the encapsulation and release of sensitive compounds at high yields.

  3. Characterisation of hyaluronic acid and chondroitin/dermatan sulfate from the lumpsucker fish, C. lumpus.

    PubMed

    Panagos, Charalampos G; Thomson, Derek; Moss, Claire; Bavington, Charles D; Olafsson, Halldór G; Uhrín, Dušan

    2014-06-15

    The lumpsucker, Cyclopterus lumpus, a cottoid teleost fish found in the cold waters of the North Atlantic, and North Pacific, was identified as a possible source of GAGs. The GAGs present in the C. lumpus dorsal hump and body wall tissue were isolated and purified. Two fractions were analysed by NMR and their GAG structures determined as hyaluronic acid and CS/DS chains. The latter fraction contained GlcA (65% of the total uronic acids) and IdoA (the remaining 35%). All uronic acid residues were unsulfated, whilst 86% of the GalNAc was 4-sulfated and 14% was 6-sulfated. The presence of GlcA-GalNAc4S, IdoA-GalNAc4S and GlcA-GalNAc6S disaccharide fragments was confirmed. The isolated GAGs obtained from each tissue were biochemically characterised. The lumpsucker offers a high yield source of GAGs, which compares favourably with other sources such as shark cartilage.

  4. Topical administration of hyaluronic acid in children with recurrent or chronic middle ear inflammations.

    PubMed

    Torretta, Sara; Marchisio, Paola; Rinaldi, Vittorio; Gaffuri, Michele; Pascariello, Carla; Drago, Lorenzo; Baggi, Elena; Pignataro, Lorenzo

    2016-09-01

    Hyaluronic acid (HA) treatment has been successfully performed in patients with recurrent upper airway infections or rhinitis. The aim of this study was to assess the efficacy and safety of the topical nasal administration of an HA-based compound by investigating its effects in children with recurrent or chronic middle ear inflammations and chronic adenoiditis. A prospective, single-blind, 1:1 randomised controlled study was performed to compare otoscopy, tympanometry and pure-tone audiometry in children which received the daily topical administration of normal 0.9% sodium chloride saline solution (control group) or 9 mg of sodium hyaluronate in 3 mL of a 0.9% sodium saline solution. The final analysis was based on 116 children (49.1% boys; mean age, 62.9 ± 17.9 months): 58 in the control group and 58 in the study group. At the end of follow-up, the prevalence of patients with impaired otoscopy was significantly lower in the study group (P value = 0.024) compared to baseline but not in the control group. In comparison with baseline, the prevalence of patients with impaired tympanometry at the end of the follow-up period was significantly lower in the study group (P value = 0.047) but not in the control group. The reduction in the prevalence of patients with conductive hearing loss (CHL) (P value = 0.008) and those with moderate CHL (P value = 0.048) was significant in the study group, but not in the control group. The mean auditory threshold had also significantly improved by the end of treatment in the study group (P value = 0.004) but not in the control group. Our findings confirm the safety of intermittent treatment with a topical nasal sodium hyaluronate solution and are the first to document its beneficial effect on clinical and audiological outcomes in children with recurrent or chronic middle ear inflammations associated with chronic adenoiditis. PMID:27481884

  5. Hyaluronic Acid Gel Injection to Prevent Thermal Injury of Adjacent Gastrointestinal Tract during Percutaneous Liver Radiofrequency Ablation

    SciTech Connect

    Hasegawa, Takaaki Takaki, Haruyuki; Miyagi, Hideki; Nakatsuka, Atsuhiro; Uraki, Junji; Yamanaka, Takashi; Fujimori, Masashi; Sakuma, Hajime; Yamakado, Koichiro

    2013-08-01

    This study evaluated the safety, feasibility, and clinical utility of hyaluronic acid gel injection to separate the gastrointestinal tract from the tumor during liver radiofrequency ablation (RFA). Eleven patients with liver tumors measuring 0.9-3.5 cm (mean {+-} standard deviation, 2.1 {+-} 0.8 cm) that were adjacent to the gastrointestinal tracts received RFA after the mixture of hyaluronic acid gel and contrast material (volume, 26.4 {+-} 14.5 mL; range, 10-60 mL) was injected between the tumor and the gastrointestinal tract under computed tomographic-fluoroscopic guidance. Each tumor was separated from the gastrointestinal tract by 1.0-1.5 cm (distance, 1.2 {+-} 0.2 cm) after injection of hyaluronic acid gel, and subsequent RFA was performed without any complications in all patients. Although tumor enhancement disappeared in all patients, local tumor progression was found in a patient (9.1 %, 1 of 11) during the follow-up of 5.5 {+-} 3.2 months (range, 0.4-9.9 months). In conclusion, hyaluronic acid gel injection is a safe and useful technique to avoid thermal injury of the adjacent gastrointestinal tract during liver RFA.

  6. Hyaluronic acid as a biomarker of fibrosis in chronic liver diseases of different etiologies

    PubMed Central

    ORASAN, OLGA HILDA; CIULEI, GEORGE; COZMA, ANGELA; SAVA, MADALINA; DUMITRASCU, DAN LUCIAN

    2016-01-01

    Chronic liver diseases represent a significant public health problem worldwide. The degree of liver fibrosis secondary to these diseases is important, because it is the main predictor of their evolution and prognosis. Hyaluronic acid is studied as a non-invasive marker of liver fibrosis in chronic liver diseases, in an attempt to avoid the complications of liver puncture biopsy, considered the gold standard in the evaluation of fibrosis. We review the advantages and limitations of hyaluronc acid, a biomarker, used to manage patients with chronic viral hepatitis B or C infection, non-alcoholic fatty liver disease, HIV-HCV coinfection, alcoholic liver disease, primary biliary cirrhosis, biliary atresia, hereditary hemochromatosis and cystic fibrosis. PMID:27004022

  7. Clinical evidence in the treatment of rotator cuff tears with hyaluronic acid

    PubMed Central

    Osti, Leonardo; Buda, Matteo; Buono, Angelo Del; Osti, Raffaella; Massari, Leo

    2015-01-01

    Summary Purpose the aim of this quantitative review is to document potential benefit and adverse effects of hyaluronic acid (HA) injection into the shoulder with rotator cuff tears. Methods a systematic literature search was performed in english PubMed, Medline, Ovid, Google Scholar and Embase databases using the combined key words “hyaluronic acid”, “rotator cuff tear”, “hyaluronate”, “shoulder”, “viscosupplementation”, with no limit regarding the year of publication. Articles were included if they reported data on clinical and functional outcomes, complications in series of patients who had undergone HA injection for management of rotator cuff tears. Two Authors screened the selected articles for title, abstract and full text in accordance with predefined inclusion and exclusion criteria. The papers were accurately analyzed focusing on objective rating scores reported. Results a total of 11 studies, prospective, 7 were randomized were included by full text. A total of 1102 patients were evaluated clinically after different HA injection compare with corticosteroid injection, physically therapies, saline solution injection and control groups. The use of HA in patients with rotator cuff tears improve VAS and functional score in all trials that we have analyzed. Conclusion intra-articular injection with HA is effective in reducing pain and improving function in shoulder with rotator cuff tears and without severe adverse reaction. Level of evidence Level I. PMID:26958534

  8. Efficacy and Safety of a Low-Molecular Weight Hyaluronic Acid Topical Gel in the Treatment of Facial Seborrheic Dermatitis

    PubMed Central

    Rowland Powell, Callie

    2012-01-01

    Objective: Hyaluronic acid sodium salt gel 0.2% is a topical device effective in reducing skin inflammation. Facial seborrheic dermatitis, characterized by erythema and or flaking/scaling in areas of high sebaceous activity, affects up to five percent of the United States population. Despite ongoing studies, the cause of the condition is yet unknown, but has been associated with yeast colonization and resultant immune-derived inflammation. First-line management typically is with topical steroids as well as the immunosuppressant agents pimecrolimus and tacrolimus. The objective of this study was to evaluate the efficacy and safety of a topical anti-inflammatory containing low-molecular weight hyaluronic acid. Design and setting: Prospective, observational, non-blinded safety and efficacy study in an outpatient setting. Participants: Individuals 18 to 75 years of age with facial seborrheic dermatitis. Measurements: Outcome measures included scale, erythema, pruritus, and the provider global assessment, which were all measured on a five-point scale. Subjects were assessed at Baseline, Week 2, Week 4, and Week 8. Results: Interim data for 7 of 15 subjects are presented. Hyaluronic acid sodium salt gel 0.2% was shown through visual grading assessments to improve the provider global assessment by 47.62 percent from Baseline to Week 4. Reductions in scale, erythema, and pruritus were 66.67, 50, and 60 percent, respectively at Week 4. At Week 8, the provider global assessment was improved from baseline in 100 percent of subjects. Conclusion: Treatment with topical low-molecular weight hyaluronic acid resulted in improvement in the measured endpoints. Topical low-molecular weight hyaluronic acid is another option that may be considered for the treatment of facial seborrheic dermatitis in the adult population. Compliance and tolerance were excellent. PMID:23125886

  9. Sterilization of auto-crosslinked hyaluronic acid scaffolds structured in microparticles and sponges.

    PubMed

    Shimojo, Andréa Arruda Martins; de Souza Brissac, Isabela Cambraia; Pina, Lucas Martins; Lambert, Carlos Salles; Santana, Maria Helena Andrade

    2015-01-01

    This work evaluated the effects of UV irradiation, plasma radiation, steam and 70% ethanol treatments on the sterilization and integrity of auto-crosslinked hyaluronic acid (HA-ACP) scaffolds structured in microparticles and sponges aiming in vivo applications for regenerative medicine of bone tissue. The integrity of the microparticles was characterized by rheological behavior, while for the sponges, it was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The effectiveness of the sterilization treatment was verified by the number of microorganism colonies in the samples after the treatments. In conclusion, plasma radiation was the best treatment for the sponges, while steam sterilization in the autoclave at 126°C (1.5 kgf/cm2) for 5 min was the best treatment for the microparticles. PMID:26684890

  10. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    PubMed

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media.

  11. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives.

    PubMed

    Cadete, Ana; Alonso, María José

    2016-09-01

    Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.

  12. Management of Vesicoureteral Reflux by Endoscopic Injection of Dextranomer/Hyaluronic Acid in Adults

    PubMed Central

    Stark, Timothy W; Lacy, John M; Preston, David M

    2016-01-01

    A 74-year-old man presented for evaluation after discovery of a left bladder-wall tumor. He underwent transurethral resection of bladder tumor (TURBT) operation for treatment of low-grade, Ta urothelial cancer of the bladder. The patient developed recurrent disease and returned to the operating room for repeat TURBT, circumcision, and administration of intravesical mitomycin C. The patient developed balanitis xerotica obliterans 4 years post-circumcision, requiring self-dilation with a catheter. He subsequently developed 3 consecutive episodes of left-sided pyelonephritis. Further investigation with voiding cystourethrogram (VCUG) revealed Grade 3, left-sided vesicoureteral reflux (VUR). Due to existing comorbidities, the patient elected treatment with endoscopic dextranomer/hyaluronic acid injection. A post-operative VCUG demonstrated complete resolution of left-sided VUR. This patient has remained symptom free for 8 months post-injection, with no episodes of pyelonephritis. PMID:27162514

  13. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Chen, Zhaowei; Li, Zhenhua; Lin, Youhui; Yin, Meili; Ren, Jinsong; Qu, Xiaogang

    2013-01-28

    In this paper, we present a facile strategy to synthesize hyaluronic acid (HA) conjugated mesoporous silica nanoparticles (MSP) for targeted enzyme responsive drug delivery, in which the anchored HA polysaccharides not only act as capping agents but also as targeting ligands without the need of additional modification. The nanoconjugates possess many attractive features including chemical simplicity, high colloidal stability, good biocompatibility, cell-targeting ability, and precise cargo release, making them promising agents for biomedical applications. As a proof-of-concept demonstration, the nanoconjugates are shown to release cargoes from the interior pores of MSPs upon HA degradation in response to hyaluronidase-1 (Hyal-1). Moreover, after receptor-mediated endocytosis into cancer cells, the anchored HA was degraded into small fragments, facilitating the release of drugs to kill the cancer cells. Overall, we envision that this system might open the door to a new generation of carrier system for site-selective, controlled-release delivery of anticancer drugs.

  14. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer

    PubMed Central

    Choi, Ki Young; Saravanakumar, Gurusamy; Park, Jae Hyung; Park, Kinam

    2011-01-01

    The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics. PMID:22079699

  15. Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid.

    PubMed

    Ito, Tomoko; Iida-Tanaka, Naoko; Koyama, Yoshiyuki

    2008-05-01

    Plasmid DNA was mixed with polyethyleneimine (PEI) and hyaluronic acid (HA) to afford ternary complexes with negative surface charge regardless of the mixing order. They showed reduced non-specific interactions with blood components. When DNA and PEI were mixed at a high concentration such as that used in in vivo experiments, they soon aggregated, and large particles were formed. On the other hand, pre-addition of HA to DNA prior to PEI effectively diminished the aggregation, and 10% (in volume) of the complexes remained as small particles with a diameter below 80 nm. Those negatively charged small ternary complexes induced a much stronger extra-gene expression in tumor than binary DNA/PEI complex after intratumoral or intravenous injection into the mice bearing B16 cells. PMID:18446606

  16. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  17. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  18. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor.

    PubMed

    Matsumoto, Yasuhiro; Kuroyanagi, Yoshimitsu

    2010-01-01

    Hyaluronic acid (HA) has the ability to promote wound healing. Epidermal growth factor (EGF) is able to promote the proliferation of various cell types, in addition to epidermal cells. A novel wound dressing was designed using high-molecular-weight hyaluronic acid (HMW-HA) and low-molecular-weight hyaluronic acid (LMW-HA). Spongy sheets composed of cross-linked high-molecular-weight hyaluronic acid (c-HMW-HA) were prepared by freeze-drying an aqueous solution of HMW-HA containing a crosslinking agent. Each spongy sheet was immersed into an aqueous solution of LMW-HA containing arginine (Arg) alone or both Arg and epidermal growth factor (EGF), and were then freeze-dried to prepare two types of product. One was a wound dressing composed of c-HMW-HA sponge containing LMW-HA and Arg (c-HMW-HA/LMW-HA + Arg; Group I). The other was a wound dressing composed of c-HMW-HA sponge containing LMW-HA, Arg and EGF (c-HMW-HA/LMW-HA + Arg + EGF; Group II). The efficacy of these products was evaluated in animal tests using rats. In the first experiment, each wound dressing was applied to a full-thickness skin defect with a diameter of 35 mm in the abdominal region of Sprague-Dawley (SD) rats, leaving an intact skin island measuring 15 mm in diameter in the central area of this skin defect. Commercially available polyurethane film dressing was then applied to each wound dressing as a covering material. In the control group, the wound surface was covered with polyurethane film dressing alone. Both wound dressings (Group I and Group II) potently decreased the size of the full-thickness skin defect and increased the size of the intact skin island, when compared with the control group. The wound dressing in Group II showed particularly potent activity in increasing the distance of epithelization from the intact skin island. This suggests that EGF release from the spongy sheet serves to promote epithelization. The wound dressing in Group II enhanced early-stage inflammation after 1 week

  19. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    PubMed

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. PMID:26769504

  20. Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Imai, T.; Yamauchi, M.; Nagao, K.

    1996-01-01

    We performed morphological studies of skin and measured glycosaminoglycans in the urine from patients with sporadic amyotrophic lateral sclerosis (ALS) and control subjects. The wide spaces separating collagen bundles reacted strongly with alcian blue stain in ALS patients and stained more markedly as ALS progressed. Staining with alcian blue was virtually eliminated by Streptomyces hyaluronidase. The urinary excretion of hyaluronic acid (HA) (mg/day) was significantly increased (P < 0.01) in ALS patients compared with that of control subjects, and there was a significant positive correlation between the excreted amount of HA and the duration of illness in advanced ALS patients with a duration of more than 2 years from clinical onset (r = 0.72, P < 0.02). We suggest that sporadic ALS includes a metabolic disorder of HA in which an accumulation of HA in the skin is linked to an increased urinary excretion of HA.

  1. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery.

    PubMed

    Lei, Yuguo; Rahim, Maha; Ng, Quinn; Segura, Tatiana

    2011-08-10

    Local delivery of DNA through a hydrogel scaffold would increase the applicability of gene therapy in tissue regeneration and cancer therapy. However, the delivery of DNA/cationic polymer nanoparticles (polyplexes) using hydrogels is challenging due to the aggregation and inactivation of polyplexes during their incorporation into hydrogel scaffolds. We developed a novel process (termed caged nanoparticle encapsulation or CnE) to load concentrated and unaggregated non-viral gene delivery nanoparticles into various hydrogels. Previously, we showed that PEG hydrogels loaded with DNA/PEI polyplexes through this process were able to deliver genes both in vitro and in vivo. In this study, we found that hyaluronic acid and fibrin hydrogels with concentrated and unaggregated polyplexes loaded through CnE were able to deliver genes in vivo as well, demonstrating the universality of the process.

  2. A novel method to inject hyaluronic acid: the Fern Pattern Technique.

    PubMed

    van Eijk, Tom; Braun, Martin

    2007-08-01

    Nonanimal Stabilized Hyaluronic Acid (NASHA) has proven itself as one of the safest, most versatile dermal fillers with a high patient and physician satisfaction. The authors describe a novel technique to inject Restylane (NASHA) in the dermis for optimal correction of dynamic facial lines. Mobile facial folds represent a greater challenge for correction using standard injection techniques. The injection technique described is named the Fern Pattern Technique. The purpose of the Fern Pattern Technique is to use Restylane in such a way that it becomes a skin stiffening agent, rather than a simple filler in order to provide optimal correction for lines that deepen with expressive facial movements. The Fern Pattern Technique also uses less material to provide a correction that is not visible at rest or during dynamic movement for lines that deepen during a smile, as well as the dynamic lower nasolabial fold.

  3. Hyaluronic acid and silver sulfadiazine-impregnated polyurethane foams for wound dressing application.

    PubMed

    Cho, Y-S; Lee, J-W; Lee, J-S; Lee, J H; Yoon, T R; Kuroyanagi, Y; Park, M H; Pyun, D G; Kim, H J

    2002-09-01

    Five different kinds of PU foam wound dressings were prepared to investigate their wound healing capability. They include (i) PU+silver sulfadiazine (AgSD), (ii) PU+alginate (Al), (iii) PU+Al+AgSD, (i.v.) PU+hyaluronic acid (HA), and (v) PU+HA+AgSD. Physical properties and in vitro behaviors of AgSD release and fibroblast adhesion on those dressings were evaluated. From the drug release and fibroblast adhesion studies, it was observed that PU foam impregnated with both HA and AgSD shows good drug release behavior and low adhesion of the cells. Furthermore, the HA and AgSD-containing PU foam showed excellent wound healing effect without any inflammation or yellow cluster. The wound size decreased around 77% after 1 week application of that foam dressing onto a rat skin defect.

  4. Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards

    PubMed Central

    Vázquez, José A.; Pastrana, Lorenzo; Piñeiro, Carmen; Teixeira, José A.; Pérez-Martín, Ricardo I.; Amado, Isabel R.

    2015-01-01

    This work investigates the production of hyaluronic acid (H) by Streptococcus equi subsp. zooepidemicus in complex media formulated with peptones obtained from Scyliorhinus canicula viscera by-products. Initially, in batch cultures, the greatest productions were achieved using commercial media (3.03 g/L) followed by peptones from alcalase hydrolyzed viscera (2.32 g/L) and peptones from non-hydrolyzed viscera (2.26 g/L). An increase of between 12% and 15% was found in subsequent fed-batch cultures performed on waste peptones. Such organic nitrogen sources were shown to be an excellent low-cost substrate for microbial H, saving more than 50% of the nutrient costs. PMID:26512678

  5. Strong and Biostable Hyaluronic Acid-Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process.

    PubMed

    Jeong, Seol-Ha; Koh, Young-Hag; Kim, Suk-Wha; Park, Ji-Ung; Kim, Hyoun-Ee; Song, Juha

    2016-03-14

    Hyaluronic acid (HAc) hydrogel exhibits excellent biocompatibility, but it has limited biomedical application due to its poor biomechanical properties as well as too-fast enzymatic degradation. In this study, we have developed an in situ precipitation process for the fabrication of a HAc-calcium phosphate nanocomposite hydrogel, after the formation of the glycidyl methacrylate-conjugated HAc (GMHA) hydrogels via photo-cross-linking, to improve the mechanical and biological properties under physiological conditions. In particular, our process facilitates the rapid incorporation of calcium phosphate (CaP) nanoparticles of uniform size and with minimal agglomeration into a polymer matrix, homogeneously. Compared with pure HAc, the nanocomposite hydrogels exhibit improved mechanical behavior. Specifically, the shear modulus is improved by a factor of 4. The biostability of the nanocomposite hydrogel was also significantly improved compared with that of pure HAc hydrogels under both in vitro and in vivo conditions. PMID:26878437

  6. Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium.

    PubMed

    Ohri, Rachit; Hahn, Sei K; Hoffman, Allan S; Stayton, Patrick S; Giachelli, Cecilia M

    2004-08-01

    Pathologic calcification is the leading cause of the clinical failure of glutaraldehyde-fixed bovine pericardium used in bioprosthetic valves. A novel surface modification of glutaraldehyde fixed bovine pericardium was carried out with high molecular weight hyaluronic acid (HA). HA was chemically modified with adipic dihydrazide (ADH) to introduce hydrazide functional groups onto the HA backbone. Glutaraldehyde-fixed bovine pericardium (GFBP) was modified by grafting this HA to the free aldehyde groups on the tissue via the hydrazide groups. Following a 2-week subcutaneous implantation in osteopontin (OPN)-null mice, the calcification of HA-modified bovine pericardium was drastically reduced (by 84.5%) compared to positive controls (tissue without HA-modification) (p = 0.005). The calcification-mitigating effect of HA surface modification was also confirmed by microscopic analysis of explanted tissue stained with Alizarin Red S for calcium. PMID:15227678

  7. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium. PMID:16529430

  8. Effect of oxygen and shear stress on molecular weight of hyaluronic acid.

    PubMed

    Duan, Xu-Jie; Yang, Li; Zhang, Xu; Tan, Wen-Song

    2008-04-01

    Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effect on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only (1.22+/-0.02) x 106 Da. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of (2.19+/- 0.05) x 106 Da at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

  9. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer.

  10. Surface functionalization of styrenic block copolymer elastomeric biomaterials with hyaluronic acid via a "grafting to" strategy.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Yuan, Shuaishuai; Song, Lingjie; Zhao, Jie; Ma, Jiao; Shi, Hengchong; Yang, Huawei; Jin, Jing; Yin, Jinghua

    2013-12-01

    As a biostable elastomer, the hydrophobicity of styrenic block copolymer (SBC) intensely limits its biomedical applications. In order to overcome such shortcoming, the SBC films were grafted with hyaluronic acid (HA) using a coupling agent. The surface chemistry of the modified films was examined by ATR-FTIR and XPS techniques, and the surface morphology was visually described by AFM. The biological performances of the HA-modified films were evaluated by a series of experiments, such as protein adsorption, platelet adhesion, and in vitro cytocompatibility. It was found that the HA-modified samples showed a low adhesiveness to fibroblast at the initial stage; however, it stimulated the growth of fibroblast. The L929 fibroblast growth presented a strong dependence on the molecular weight (MW) of HA. The samples modified with 17kDa HA exhibited the worst wettability and platelet adhesion, while providing the best results of supporting fibroblast proliferation. PMID:23974002

  11. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives.

    PubMed

    Cadete, Ana; Alonso, María José

    2016-09-01

    Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development. PMID:27526874

  12. Management of Vesicoureteral Reflux by Endoscopic Injection of Dextranomer/Hyaluronic Acid in Adults.

    PubMed

    Stark, Timothy W; Lacy, John M; Preston, David M

    2016-01-01

    A 74-year-old man presented for evaluation after discovery of a left bladder-wall tumor. He underwent transurethral resection of bladder tumor (TURBT) operation for treatment of low-grade, Ta urothelial cancer of the bladder. The patient developed recurrent disease and returned to the operating room for repeat TURBT, circumcision, and administration of intravesical mitomycin C. The patient developed balanitis xerotica obliterans 4 years post-circumcision, requiring self-dilation with a catheter. He subsequently developed 3 consecutive episodes of left-sided pyelonephritis. Further investigation with voiding cystourethrogram (VCUG) revealed Grade 3, left-sided vesicoureteral reflux (VUR). Due to existing comorbidities, the patient elected treatment with endoscopic dextranomer/hyaluronic acid injection. A post-operative VCUG demonstrated complete resolution of left-sided VUR. This patient has remained symptom free for 8 months post-injection, with no episodes of pyelonephritis. PMID:27162514

  13. Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation.

    PubMed

    Poveda-Reyes, Sara; Moulisova, Vladimira; Sanmartín-Masiá, Esther; Quintanilla-Sierra, Luis; Salmerón-Sánchez, Manuel; Ferrer, Gloria Gallego

    2016-09-01

    Cells interact mechanically with their environment, exerting mechanical forces that probe the extracellular matrix (ECM). The mechanical properties of the ECM determine cell behavior and control cell differentiation both in 2D and 3D environments. Gelatin (Gel) is a soft hydrogel into which cells can be embedded. This study shows significant 3D Gel shrinking due to the high traction cellular forces exerted by the cells on the matrix, which prevents cell differentiation. To modulate this process, Gel with hyaluronic acid (HA) has been combined in an injectable crosslinked hydrogel with controlled Gel-HA ratio. HA increases matrix stiffness. The addition of small amounts of HA leads to a significant reduction in hydrogel shrinking after cell encapsulation (C2C12 myoblasts). We show that hydrogel stiffness counterbalanced traction forces of cells and this was decisive in promoting cell differentiation and myotube formation of C2C12 encapsulated in the hybrid hydrogels.

  14. Bone-defects healing by high-molecular hyaluronic acid: preliminary results

    PubMed Central

    Baldini, Alberto; Zaffe, Davide; Nicolini, Gabriella

    2010-01-01

    Summary Aim. The aim of this study is to evaluate the capability of Hyaloss™ matrix (Fab – Fidia Advanced Biopolymers – Pd – Italy), a biomaterial based on hyaluronic acid, used as organic scaffold in bone repair in post-extractive defects. Materials and methods: 20 post-extractive sockets were selected, with similar size defects in the same patient and in the same hemiarch. Hyaluronic acid with high molecular weight (Hyaloss™ matrix, Fab – Pd – Italy) was mixed with autologous bone obtained using Safescraper® curve (Meta – Re – Italy) to repair post-extractive sites. Safescraper® is a cutting edge system that allows to the collection of autologous bone without using traditional, incision-based collection techniques, which could cause discomfort to the patient. Results: Clinical and hystological evaluations were performed, four months after grafting, in the maxilla and in the mandible. From a clinical point of view Hyaloss™ matrix mixed with autologous bone and patient’s blood becomes a substance similar to gel, which is easy to insert in to the defect. From a hystological point of view, in the treated site there is the presence of an erosive activity, with accelerated angiogenetic and bone remodelling activities. Conclusions: The preliminary results show an acceleration of the bone deposit process and of its remodelling due to the presence of Hyaloss™ matrix, which, from a clinical point of view, improves the handling and application of the bone matrix inside the defects and, from a hystologic point of view makes it possible to obtain bone regeneration in less time when it is used with autologous bone. PMID:22238698

  15. Evaluation of liver fibrosis in patients with thalassemia: the important role of hyaluronic acid.

    PubMed

    Papastamataki, Maria; Delaporta, Polyxeni; Premetis, Evangelos; Kattamis, Antonios; Ladis, Vassilios; Papassotiriou, Ioannis

    2010-10-15

    Patients with transfusion-dependent thalassemia major often develop liver fibrosis due to liver iron overload and/or hepatitis virus C (HCV) infection. Hyaluronic acid (HA) plays a prominent role in the pathogenesis of liver fibrosis and the elevation of serum HA concentration is due to either increased synthesis by inflammatory cells and hepatic stellate cells or impaired degradation by sinusoidal endothelial cells (SECs) and thus is proposed as a non-invasive biomarker of liver fibrosis either by itself and/or included in the Hepascore formula. In this study we evaluated prospectively a screening of liver fibrosis in 201 adult patients aged 19-54 years with transfusion-dependent thalassemia major, based on HA measurements. 41/201 patients were HCV-RNA (+). HA was measured with a turbidimetric assay applied on a clinical chemistry analyzer. The Hepascore was computed from the results by using the model previously published. The main results of the study showed that: a) HA levels were increased in 110/201 (55%) thalassemia patients 85.0 ± 10.3 ng/ml, ranged from 15.0 to 1495.0 μg/l, compared to 20.8 ± 7.4 μg/l reference laboratory values, p<0.001, b) HA levels were significantly higher in HCV-RNA(+) compared to HCV-RNA(-) patients, 171.6 ± 202 vs 53.8 ± 35.5 μg/l, p<0.0001 c) no significant correlations were found between HA levels and/or Hepascore with ferritin and liver iron content (LIC) assessed with MRI (p>0.324 and p>0.270, respectively). Our findings indicate that hyaluronic acid measurements contribute to the assessment of liver fibrosis in patients with thalassemia and might be helpful for further evaluation of patients with liver biopsy if this is truly needed. Furthermore, liver fibrosis in thalassemia seems to be independent from liver siderosis.

  16. Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation

    PubMed Central

    Zhao, Meng-Dan; Cheng, Jin-Lin; Yan, Jing-Jing; Chen, Feng-Ying; Sheng, Jian-Zhong; Sun, Dong-Li; Chen, Jian; Miao, Jing; Zhang, Run-Ju; Zheng, Cai-Hong; Huang, He-Feng

    2016-01-01

    To identify a new drug candidate for treating endometriosis which has fewer side effects, a new polymeric nanoparticle gene delivery system consisting of polyethylenimine-grafted chitosan oligosaccharide (CSO-PEI) with hyaluronic acid (HA) and small interfering RNA (siRNA) was designed. There was no obvious difference in sizes observed between (CSO-PEI/siRNA)HA and CSO-PEI/siRNA, but the fluorescence accumulation in the endometriotic lesion was more significant for (CSO-PEI/siRNA)HA compared with CSO-PEI/siRNA due to the specific binding of HA to CD44. In addition, the (CSO-PEI/siRNA)HA nanoparticle gene therapy significantly decreased the endometriotic lesion sizes with atrophy and degeneration of the ectopic endometrium. The epithelial cells of ectopic endometrium from rat models of endometriosis showed a significantly lower CD44 expression than control after treatment with (CSO-PEI/siRNA)HA. Furthermore, observation under an electron microscope showed no obvious toxic effect on the reproductive organs. Therefore, (CSO-PEI/siRNA)HA gene delivery system can be used as an effective method for the treatment of endometriosis. PMID:27099493

  17. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment.

    PubMed

    Kisiel, Marta; Martino, Mikaël M; Ventura, Manuela; Hubbell, Jeffrey A; Hilborn, Jöns; Ossipov, Dmitri A

    2013-01-01

    While human bone morphogenetic protein-2 (rhBMP-2) is a promising growth factor for bone regeneration, its clinical efficacy has recently shown to be below expectation. In order to improve the clinical translation of rhBMP-2, there exists strong motivation to engineer better delivery systems. Hyaluronic acid (HA) hydrogel is a suitable carrier for the delivery of rhBMP-2, but a major limitation of this scaffold is its low cell adhesive properties. In this study, we have determined whether covalent grafting of an integrin-specific ligands into HA hydrogel could improve cell attachment and further enhance the osteogenic potential of rhBMP-2. A structurally stabilized fibronectin (FN) fragment containing the major integrin-binding domain of full-length FN (FN III9*-10) was engineered, in order to be incorporated into HA hydrogel. Compared to non-functionalized HA hydrogel, HA-FN hydrogel remarkably improved the capacity of the material to support mesenchymal stem cell attachment and spreading. In an ectopic bone formation model in the rat, delivery of rhBMP-2 with HA-FN hydrogel resulted in the formation of twice as much bone with better organization of collagen fibers compared to delivering the growth factor in non-functionalized HA hydrogel. This engineered hydrogel carrier for rhBMP-2 can be relevant in clinical bone repair.

  18. Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism.

    PubMed

    Galer, Chad E; Sano, Daisuke; Ghosh, Sukhen C; Hah, Jeong H; Auzenne, Edmund; Hamir, Amirali N; Myers, Jeffrey N; Klostergaard, Jim

    2011-11-01

    Chemotherapeutic regimens incorporating taxanes significantly improve outcomes for patients with squamous cell carcinomas of the head and neck (SCCHN). However, treatment with taxanes is limited by toxicities, including bone marrow suppression and peripheral neuropathies. We proposed that conjugating taxanes to targeting carrier molecules would increase antitumor efficacy and decrease toxicity. The cell surface proteoglycan, CD44, is expressed on most SCCHNs, and we hypothesized that it is an attractive candidate for targeted therapy via its natural ligand, hyaluronic acid (HA). We determined whether HA-paclitaxel conjugates were able to decrease tumor growth and improve survival in orthotopic nude mouse human SCCHN xenograft models. HA-paclitaxel concentration-dependent growth inhibition of human SCCHN cell lines OSC-19 and HN5 in vitro, very similarly to free paclitaxel treatment. Tumor cell uptake of FITC-labeled HA-paclitaxel was significantly blocked with free HA, indicating the dependence of uptake on CD44. HA-paclitaxel administered intravenously once per week for three weeks at 120 mg/kg paclitaxel equivalents, far above the paclitaxel maximum tolerated dose, exerted superior tumor growth control to that of paclitaxel in both orthotopic OSC-19-luciferase and HN5 xenograft models in vivo. Mouse survival following HA-paclitaxel administration was prolonged compared with that of controls in mice implanted with either of these xenografts. Mice treated with HA-paclitaxel displayed increased TUNEL(+) cells in tumor tissue, as well as markedly reduced microvessel density compared to those treated with free paclitaxel. No acute histopathological changes were observed in mice treated with HA-paclitaxel. Thus, we conclude that HA-paclitaxel effectively inhibits tumor growth in human SCCHN xenografts via an HA-mediated mechanism and this conjugate should be considered for further preclinical development for this disease.

  19. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics.

    PubMed

    Jia, Xu; Han, Yu; Pei, Mingliang; Zhao, Xubo; Tian, Kun; Zhou, Tingting; Liu, Peng

    2016-11-01

    Hyaluronic acid (HA)-based theranostic nanogels were designed for the tumor diagnosis and chemotherapy, by crosslinking the folate-terminated poly(ethylene glycol) modified hyaluronic acid (FA-PEG-HA) with carbon dots (CDs) for the first time. Due to the extraordinary fluorescence property of the integrated CDs, the theranostic nanogels could be used for the real-time and noninvasive location tracking to cancer cells. HA could load Doxorubicin (DOX) via electrostatic interaction with a drug-loading capacity (DLC) of 32.5%. The nanogels possessed an ideal release of DOX in the weak acid environment, while it was restrained in the neutral media, demonstrating the pH-responsive controlled release behavior. The cytotoxicity and cellular uptake results clearly illustrated that most DOX was released and accumulated in the cell nuclei and killed the cancer cells efficaciously, due to their dual receptor-mediated targeting characteristics. PMID:27516286

  20. Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers

    PubMed Central

    Edwards, Paul C; Fantasia, John E

    2007-01-01

    Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as “redefining” dermal fillers in the fields of dermatology and cosmetic facial surgery. Although hyaluronic acid-based dermal fillers have a low overall incidence of long term side effects, occasional adverse outcomes, ranging from chronic lymphoplasmacytic inflammatory reactions to classic foreign body-type granulomatous reactions have been documented. These long-term adverse events are reviewed. PMID:18225451

  1. Optimizing facial rejuvenation outcomes by combining poly-L-lactic acid, hyaluronic acid, calcium hydroxylapatite, and neurotoxins: two case studies.

    PubMed

    Lorenc, Z Paul; Daro-Kaftan, Elizabeth

    2014-02-01

    Reversal of the visible signs of facial aging with the use of injectable products as an alternative to surgery has become more popular, with nearly 5 million procedures performed in the United States in 2012. Volume augmentation products, such as hyaluronic acid (HA), calcium hydroxylapatite (CaHA), and poly-L-lactic acid (PLLA), are often used in combination with one another and with neurotoxins for facial rejuvenation because of the complementary modes of action. This article presents 2 case reports involving patientspecific combinations of 2 different HA products, injectable PLLA, and CaHA with incobotulinumtoxinA or abobotulinumtoxinA. The combination of HA, CaHA, PLLA, and neurotoxins has resulted in outstanding outcomes for many patients, with no clinical evidence of increased adverse events secondary to combination therapy. PMID:24509971

  2. Optimizing facial rejuvenation outcomes by combining poly-L-lactic acid, hyaluronic acid, calcium hydroxylapatite, and neurotoxins: two case studies.

    PubMed

    Lorenc, Z Paul; Daro-Kaftan, Elizabeth

    2014-02-01

    Reversal of the visible signs of facial aging with the use of injectable products as an alternative to surgery has become more popular, with nearly 5 million procedures performed in the United States in 2012. Volume augmentation products, such as hyaluronic acid (HA), calcium hydroxylapatite (CaHA), and poly-L-lactic acid (PLLA), are often used in combination with one another and with neurotoxins for facial rejuvenation because of the complementary modes of action. This article presents 2 case reports involving patientspecific combinations of 2 different HA products, injectable PLLA, and CaHA with incobotulinumtoxinA or abobotulinumtoxinA. The combination of HA, CaHA, PLLA, and neurotoxins has resulted in outstanding outcomes for many patients, with no clinical evidence of increased adverse events secondary to combination therapy.

  3. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release

    PubMed Central

    Jha, Amit K.; Yang, Weidong; Kirn-Safran, Catherine B.; Farach-Carson, Mary C.; Jia, Xinqiao

    2009-01-01

    We have developed a biomimetic growth factor delivery system that effectively stimulates the chondrogenic differentiation of the cultured mesenchymal stem cells via the controlled presentation of bone morphogenetic protein 2 (BMP-2). Hyaluronic acid (HA)-based, microscopic hydrogel particles (HGPs) with inherent nanopores and defined functional groups were synthesized by an inverse emulsion polymerization technique. Recombinantly produced, heparan sulfate (HS)-bearing perlecan domain I (PlnDI) was covalently immobilized to HA HGPs (HGP-P1) via a flexible poly(ethylene glycol) (PEG) linker through the lysine amines in the core protein of PlnDI employing reductive amination. Compared to HGP without PlnDI, HGP-P1 exhibited significantly (p<0.05) higher BMP-2 binding capacity and distinctly different BMP-2 release kinetics. Heparitinase treatment increased the amount of BMP-2 released from HGP-P1, confirming the HS-dependent BMP-2 binding. While BMP-2 was released from HGPs with a distinct burst release followed by a minimal cumulative release, its release from HGP-P1 exhibited a minimal burst release followed by linear release kinetics over 15 days. The bioactivity of the hydrogel particles was evaluated using micromass culture of multipotent mesenchymal stem cells (MSCs), and the chondrogenic differentiation was assessed by the production of glycosaminoglycan, aggrecan and collagen type II. Our results revealed that BMP-2 loaded HGP-P1 stimulates more robust cartilage specific ECM production as compared to BMP-2 loaded HGP, due to the ability of HGP-P1 to potentiate BMP-2 and modulate its release with a near zero-order release kinetics. The PlnDI conjugated, HA HGPs provide an improved BMP-2 delivery system for stimulating chondrogenic differentiation in vitro, with potential therapeutic application for cartilage repair and regeneration. PMID:19775743

  4. Serum Collagen Type II Cleavage Epitope and Serum Hyaluronic Acid as Biomarkers for Treatment Monitoring of Dogs with Hip Osteoarthritis

    PubMed Central

    Vilar, José M.; Rubio, Mónica; Spinella, Giuseppe; Cuervo, Belén; Sopena, Joaquín; Cugat, Ramón; Garcia-Balletbó, Montserrat; Dominguez, Juan M.; Granados, Maria; Tvarijonaviciute, Asta; Ceron, José J.; Carrillo, José M.

    2016-01-01

    The aim of this study was to evaluate the use of serum type II collagen cleavage epitope and serum hyaluronic acid as biomarkers for treatment monitoring in osteoarthritic dogs. For this purpose, a treatment model based on mesenchymal stem cells derived from adipose tissue combined with plasma rich in growth factors was used. This clinical study included 10 dogs with hip osteoarthritis. Both analytes were measured in serum at baseline, just before applying the treatment, and 1, 3, and 6 months after treatment. These results were compared with those obtained from force plate analysis using the same animals during the same study period. Levels of type II collagen cleavage epitope decreased and those of hyaluronic acid increased with clinical improvement objectively verified via force plate analysis, suggesting these two biomarkers could be effective as indicators of clinical development of joint disease in dogs. PMID:26886592

  5. Hyaluronic acid filler and botulinum Neurotoxin delivered simultaneously in the same syringe for effective and convenient combination aesthetic rejuvenation therapy.

    PubMed

    Kenner, Julie R

    2010-09-01

    Facial aesthetics and rejuvenation techniques have been evolving, with the most commonly applied techniques being the use of hyaluronic acid fillers and botulinum neurotoxins. Because of complementary actions, it is common for both products to be used in the same anatomical sites to optimize outcomes, either administered consecutively at one visit or at two separate visits. The author shows for the first time that hyaluronic acid (HA) and botulinum neurotoxin (BNT) can be delivered in combination in the same syringe--at the same time--to rejuvenate the upper face. Not only does concomitant administration result in excellent clinical outcome, without apparently compromising the attributes of either product alone, but this technique enhances the patient experience by allowing the use of small-gauge needles and inherently decreasing, by half or more, the number of needle sticks incurred. Larger studies are underway to study optimal techniques for administering HA and BNT combined in a single syringe.

  6. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model.

    PubMed

    Yeo, Yoon; Highley, Christopher B; Bellas, Evangelia; Ito, Taichi; Marini, Robert; Langer, Robert; Kohane, Daniel S

    2006-09-01

    We studied the efficacy of an in situ cross-linked hyaluronic acid hydrogel (HAX) in preventing post-surgical peritoneal adhesions, using a rabbit sidewall defect-cecum abrasion model. Two cross-linkable precursors were prepared by modifying hyaluronic acid with adipic dihydrazide and aldehyde, respectively. The hydrogel precursors cross-linked to form a flexible hydrogel upon mixing. The hydrogel was biodegradable and provided a durable physical barrier, which was highly effective in reducing the formation of post-operative adhesions. Ten out of 12 animals in the untreated control group developed fibrous adhesions requiring sharp dissection, while only 2 out of 8 animals treated with HAX gels showed such adhesions, and those occurred in locations that were not covered by the hydrogel. We also studied means by which gel degradation time can be modulated by varying the precursor concentration and molecular weight. PMID:16750564

  7. Desire for penile girth enhancement and the effects of the self-injection of hyaluronic Acid gel.

    PubMed

    Coskuner, Enis Rauf; Canter, Halil Ibrahim

    2012-07-01

    Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation. PMID:23112518

  8. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface

    NASA Astrophysics Data System (ADS)

    Li, Jingan; Li, Guicai; Zhang, Kun; Liao, Yuzhen; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2013-05-01

    Micro-patterning as an effective bio-modification technique is increasingly used in the development of biomaterials with superior mechanical and biological properties. However, as of now, little is known about the simultaneous regulation of endothelial cells (EC) and smooth muscle cells (SMC) by cardiovascular implants. In this study, a co-culture system of EC and SMC was built on titanium surface by the high molecular weight hyaluronic acid (HMW-HA) micro-pattern. Firstly, the micro-pattern sample with a geometry of 25 μm wide HMW-HA ridges, and 25 μm alkali-activated Ti grooves was prepared by microtransfer molding (μTM) for regulating SMC morphology. Secondly, hyaluronidase was used to decompose high molecular weight hyaluronic acid into low molecular weight hyaluronic acid which could promote EC adhesion. Finally, the morphology of the adherent EC was elongated by the SMC micro-pattern. The surface morphology of the patterned Ti was imaged by SEM. The existence of high molecular weight hyaluronic acid on the modified Ti surface was demonstrated by FTIR. The SMC micro-pattern and EC/SMC co-culture system were characterized by immunofluorescence microscopy. The nitric oxide release test and cell retention calculation were used to evaluate EC function on inhibiting hyperplasia and cell shedding, respectively. The results indicate that EC in EC/SMC co-culture system displayed a higher NO release and cell retention compared with EC cultured alone. It can be suggested that the EC/SMC co-culture system possessed superiority to EC cultured alone in inhibiting hyperplasia and cell shedding at least in a short time of 24 h.

  9. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  10. Delayed immune mediated adverse effects to hyaluronic Acid fillers: report of five cases and review of the literature.

    PubMed

    Bitterman-Deutsch, Ora; Kogan, Leonid; Nasser, Faris

    2015-03-16

    Hyaluronic acid (HA) fillers in cosmetic medicine have been considered relatively safe, though fillers used in European countries and throughout the world are not necessarily approved by the Food and Drug Administration. As their use continues to expand worldwide, physicians in a wide range of medical specialties are authorized to perform HA injections, including general medicine practitioners and even dentists. An increasing number of reports have appeared regarding side effects to these products. It is now known that reactions to Hyaluronic acid are related not only to technical faults of the injections, but also to immune responses, including delayed hypersensitivity and granulomatous reactions. Herein, we describe five cases treated by a variety of treatment modalities, all with delayed reactions to different brands of hyaluronic acid fillers. As there is currently no standardization of treatment options of adverse effects, these cases accentuate the debate regarding the approach to the individual patient and the possible need for pre-testing in patients with an atopic tendency. PMID:25918619

  11. Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics.

    PubMed

    Jin, Yushen; Ma, Xibo; Feng, Shanshan; Liang, Xiao; Dai, Zhifei; Tian, Jie; Yue, Xiuli

    2015-12-16

    Theranostic tantalum oxide nanoparticles (TaOxNPs) of about 40 nm were successfully developed by conjugating functional molecules including polyethylene glycol (PEG), near-infrared (NIR) fluorescent dye, doxorubicin (DOX), and hyaluronic acid (HA) onto the surface of the nanoparticles (TaOx@Cy7-DOX-PEG-HA NPs) for actively targeting delivery, pH-responsive drug release, and NIR fluorescence/X-ray CT bimodal imaging. The obtained nanoagent exhibits good biocompatibility, high cumulative release rate in the acidic microenvironments, long blood circulation time, and superior tumor-targeting ability. Both in vitro and in vivo experiments show that it can serve as an excellent contrast agent to simultaneously enhance fluorescence imaging and CT imaging greatly. Most importantly, such a nanoagent could enhance the therapeutic efficacy of the tumor greatly and the tumor growth inhibition was evaluated to be 87.5%. In a word, multifunctional TaOx@Cy7-DOX-PEG-HA NPs can serve as a theranostic nanomedicine for fluorescence/X-ray CT bimodal imaging, remote-controlled therapeutics, enabling personalized detection, and treatment of cancer with high efficacy.

  12. Biodistribution profiling of the chemical modified hyaluronic acid derivatives used for oral delivery system.

    PubMed

    Hsieh, Chien-Ming; Huang, Yu-Wen; Sheu, Ming-Thau; Ho, Hsiu-O

    2014-03-01

    A series of adipic acid dihydrazide (ADH)-modified hyaluronic acid (HA-ADH) compounds were synthesized and conjugated with QDots (QDots-HA conjugates) to assess the effects of the molecular weight (MW) and extent of chemical modification of HA on its biodistribution. Their physicochemical structures were confirmed by complementary application of GPC, (1)H NMR, FTIR, and UV-vis spectroscopic methods. In vivo imaging of QDots-HA conjugates after oral administration was analyzed to investigate their biodistribution in nude mice. Simultaneously, real-time bioimaging was confirmed by an anatomical analysis to investigate the organ-specific accumulation of conjugates. QDot-HA conjugates with a higher MW of HA or high modification presented relatively slow clearance leading to an extension of the retention time for up to 10 days, whereas those with lower MWs of HA or a low modification extent exhibited quick absorption and elimination after oral administration. Taken together, HA derivatives with suitable MWs and chemical modification extents can be used to design new, more-sophisticated, and intelligent HA-based vehicles for oral delivery with diverse characteristics. PMID:24315950

  13. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor. PMID:26876867

  14. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation.

    PubMed

    Oh, Eun Ju; Kang, Sun-Woong; Kim, Byung-Soo; Jiang, Ge; Cho, Il Hwan; Hahn, Sei Kwang

    2008-09-01

    A novel protocol to control the molecular degradation of hyaluronic acid (HA) hydrogels was successfully developed for tissue augmentation applications. HA has a different conformational structure in water and organic solvent, and the carboxyl group of HA is known to be the recognition site of hyaluronidase and HA receptors. Based on these findings, HA was chemically modified by grafting adipic acid dihydrazide (ADH) to the carboxyl group of HA in the water to prepare HA-ADH(WATER) and in the mixed solvent of water and ethanol to prepare degradation-controlled HA-ADH(WATER/ETHANOL). Three kinds of HA hydrogels were prepared by the crosslinking of HA-ADH(WATER) or HA-ADH(WATER/ETHANOL) with bis(sulfosuccinimidyl) suberate, and by the crosslinking of HA-OH with divinyl sulfone (DVS). In vitro and in vivo degradation tests showed that HA-DVS hydrogels were degraded most rapidly, followed by HA-ADH(WATER) hydrogels and HA-ADH(WATER/ETHANOL) hydrogels. There was no adverse effect during and after in vivo degradation tests. All of the HA hydrogel samples appeared to be biocompatible, according to the histological analysis with hematoxylin-eosin and Alcian blue. PMID:18022803

  15. Changes in the viscosity of hyaluronic acid after exposure to a myeloperoxidase-derived oxidant

    SciTech Connect

    Baker, M.S.; Green, S.P.; Lowther, D.A.

    1989-04-01

    Both purified hyaluronic acid (HA) and bovine synovial fluid react with OCI-, the major oxidant produced by the myeloperoxidase (MPO)/H/sub 2/O/sub 2//CI- system, resulting in a decrease in their specific viscosity. This reaction is inhibited in the presence of excess methionine. H/sub 2/O/sub 2/ alone decreases the viscosity of HA, presumably by the Fenton reaction, in the absence (but not in the presence) of the iron chelator, diethyltriaminepentacetic acid (DETAPAC). In the presence of DETAPAC, incubation of HA with the complete MPO/H/sub 2/O/sub 2//CI- system lowered the viscosity of HA. Analysis of 3H-HA exposed to OCI- by gel filtration chromatography indicated that cleavage of HA occurred only at higher OCI- concentrations. We suggest that the reduction in viscosity of HA by the MPO/H/sub 2/O/sub 2//CI- system may be due to a combination of oxidative cleavage and changes in the conformation of the molecule. We speculate that the changes in the molecular size of rheumatoid synovial fluid HA may be due to the action of the neutrophil MPO/H/sub 2/O/sub 2//CI- system.

  16. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells.

    PubMed

    Cao, Xueyan; Tao, Lei; Wen, Shihui; Hou, Wenxiu; Shi, Xiangyang

    2015-03-20

    Development of novel drug carriers for targeted cancer therapy with high efficiency and specificity is of paramount importance and has been one of the major topics in current nanomedicine. Here we report a general approach to using multifunctional multiwalled carbon nanotubes (MWCNTs) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for targeted cancer therapy. In this approach, polyethyleneimine (PEI)-modified MWCNTs were covalently conjugated with fluorescein isothiocyanate (FI) and hyaluronic acid (HA). The formed MWCNT/PEI-FI-HA conjugates were characterized via different techniques and were used as a new carrier system to encapsulate the anticancer drug doxorubicin for targeted delivery to cancer cells overexpressing CD44 receptors. We show that the formed MWCNT/PEI-FI-HA/DOX complexes with a drug loading percentage of 72% are water soluble and stable. In vitro release studies show that the drug release rate under an acidic condition (pH 5.8, tumor cell microenvironment) is higher than that under physiological condition (pH 7.4). Cell viability assay demonstrates that the carrier material has good biocompatibility in the tested concentration range, and the MWCNT/PEI-FI-HA/DOX complexes can specifically target cancer cells overexpressing CD44 receptors and exert growth inhibition effect to the cancer cells. The developed HA-modified MWCNTs hold a great promise to be used as an efficient anticancer drug carrier for tumor-targeted chemotherapy.

  17. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.

  18. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  19. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry.

    PubMed

    Hu, Xiaohong; Li, Dan; Zhou, Feng; Gao, Changyou

    2011-04-01

    In order to mimic the natural cartilage extracellular matrix, which is composed of core proteins and glycosaminoglycans, a biological hydrogel was synthesized from the biopolymers hyaluronic acid (HA), chondroitin sulfate (CS) and gelatin via click chemistry. HA and CS were modified with 11-azido-3,6,9-trioxaundecan-1-amine (AA) and gelatin was modified with propiolic acid (PA). The molecular structures were verified by (1)H nuclear magnetic resonance, infrared spectroscopy and elemental analysis, giving substitution degrees of 29%, 89% and 44% for HA-AA, CS-AA and gelatin-PA (G-PA), respectively. The -N(3) groups of HA-AA and CS-AA were reacted with the acetylene groups of G-PA, catalyzed by Cu(I), to form triazole rings, thereby forming a cross-linked hydrogel. The gelation time was decreased monotonically with increasing Cu(I) concentration up to 0.95 mg ml(-1). The hydrogel obtained was in a highly swollen state and showed the characteristics of an elastomer. Incubation in phosphate-buffered saline for 4 weeks resulted in a weight loss of up to 45%. Moreover, about 20% gelatin and 10% CS were released from the hydrogel in 2 weeks. In vitro cell culture showed that the hydrogel could support the adhesion and proliferation of chondrocytes. PMID:21145437

  20. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition.

    PubMed

    Hahn, Sei Kwang; Oh, Eun Ju; Miyamoto, Hajime; Shimobouji, Tsuyoshi

    2006-09-28

    A novel sustained release formulation of erythropoietin (EPO) was successfully developed using hyaluronic acid (HA) hydrogels crosslinked by Michael addition. Adipic acid dihydrazide grafted HA (HA-ADH) was prepared and then modified into methacrylated HA (HA-MA). (1)H NMR analysis showed that the degrees of HA-ADH and HA-MA modification were 69 and 29 mol%, respectively. Using the specific crosslinkers of dithiothreitol (DTT) and peptide linker, EPO was loaded during HA-MA hydrogel preparation by Michael addition chemistry between thiol and methacrylate groups. The amount of EPO recovered from both hydrogels after degradation with hyaluronidase SD (HAse SD) was about 90%. The crosslinking reaction with peptide linker (GCYKNRDCG) was faster than that with DTT. The gelation time was about 30 min for peptide linker and 180 min for DTT. In vitro release test of EPO from HA-MA hydrogel at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 7 days from HA-MA hydrogels. The released EPO appeared to be intact from the analysis with RP-HPLC. According to in vivo release test of EPO from HA-MA hydrogels crosslinked with the peptide linker in Sprague-Dawley (SD) rats, elevated plasma concentration of EPO was maintained up to 7 days. There was no adverse effect during and after the in vivo tests. PMID:16781096

  1. Interconnected hyaluronic acid derivative-based nanoparticles for anticancer drug delivery.

    PubMed

    Park, Ju-Hwan; Cho, Hyun-Jong; Termsarasab, Ubonvan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Yoon, In-Soo; Kim, Dae-Duk

    2014-09-01

    Doxorubicin (DOX)-loaded nanoparticles (NPs) based on interconnected hyaluronic acid-ceramide (HACE) structure were fabricated and their anti-tumor efficacy was evaluated in vitro. Interconnected HACE was synthesized by cross-linking HACE with adipic acid dihydrazide (ADH) and its synthesis was identified by (1)H NMR analysis. DOX-loaded NPs with <200nm mean diameter, negative zeta potential, and spherical shape were prepared. Interconnected HACE-based NPs increased drug-loading capacity and in vitro drug release, compared to HACE-based NPs. DOX release was dependent on the environmental pH, implying the feasibility of enhancing drug release in tumor region and endosomal compartments. Synthesized interconnected HACE did not show cytotoxic effect up to 1000μg/ml concentration in NIH3T3 and MDA-MB-231 cells. In cellular uptake studies using confocal laser scanning microscopy (CLSM) and flow cytometry in MDA-MB-231 cells, higher uptake of DOX was observed in the interconnected HACE-based NPs than HACE NPs. In vitro anti-tumor efficacy was assessed by MTS-based assay, in which cytotoxic effect of DOX-loaded interconnected HACE NPs was higher than that of DOX-loaded HACE NPs. Thus, these results suggest the feasibility of interconnected HACE-based NPs to be used for efficient tumor-targeted delivery of anticancer drugs. PMID:24993066

  2. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms.

    PubMed

    de Oliveira, Juliana Davies; Carvalho, Lucas Silva; Gomes, Antônio Milton Vieira; Queiroz, Lúcio Rezende; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-01-01

    Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA. PMID:27370777

  3. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain. PMID:27598554

  4. Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering.

    PubMed

    Cui, Ning; Qian, Junmin; Liu, Ting; Zhao, Na; Wang, Hongjie

    2015-08-01

    In this study, in order to better mimick the nature of bone extracellular matrix, hyaluronic acid (HA) hydrogels having a triple degradation behavior were synthesized from 3,3'-dithiodipropionate hydrazide-modified HA (DTPH-HA) and polyethylene glycol dilevulinate (LEV-PEG-LEV) via the reaction of the ketone carbonyl groups of LEV-PEG-LEV with the hydrazide groups of DTPH-HA. The HA hydrogels were characterized by solid state (13)C NMR, FT-IR, SEM, and rheological, swelling and degradation tests. The results showed that the HA hydrogels exhibited a highly porous morphology and had pore diameters ranging from 20 to 200 μm. The equilibrium swelling ratio of the HA hydrogels was no less than 37.5. The HA hydrogels could be degraded by hyaluronidase and reducing substances or at acidic pH values. The biocompatibility of the HA hydrogels was evaluated using osteoblast-like MC3T3-E1 cells by live/dead staining and MTT assays. The results revealed that the HA hydrogels had good biocompatibility and could support the attachment and proliferation of MC3T3-E1 cells. All the results indicated that the HA hydrogels synthesized by hydrazone bond crosslinking might have great potential to be used in bone tissue engineering. PMID:25933539

  5. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  6. Comparison of the Hyaluronic Acid Vaginal Cream and Conjugated Estrogen Used in Treatment of Vaginal Atrophy of Menopause Women: A Randomized Controlled Clinical Trial

    PubMed Central

    Jokar, Azam; Davari, Tayebe; Asadi, Nasrin; Ahmadi, Fateme; Foruhari, Sedighe

    2016-01-01

    Background: Vaginal atrophy is a common complication in menopause which does not improve with time and, if untreated, can affect the quality of life for women. The aim of this study was to compare the effectiveness of the vaginal cream of hyaluronic acid and conjugated estrogen (Premarin) in treatment of vaginal atrophy. Methods: This study was a randomized controlled clinical trial on 56 menopausal women with symptoms of vaginal atrophy; they were randomly allocated to two groups (recipient conjugated estrogen and hyaluronic acid). The severity of each sign of atrophy was evaluated by visual analog signals (VAS) and on the basis of a four point scale. Also to recognize the cellular maturation with pap smear and the maturation degree were calculated according to the formula and scores 0-100. As to the vaginal PH, we used PH marker band, the rate of which was divided into 4 degrees. Data were analyzed using SPSS, version 20, and P≤0.05 was considered as significant. Results: The results of this study showed that the symptoms of vaginal atrophy compared with the baseline level were relieved significantly in both groups. Dryness, itching, maturation index, PH and composite score of the vaginal symptoms were relieved significantly in both groups (P<0.001). Dyspareunia in Premarin (P<0.05) and hyaluronic acid (P<0.001) decreased compared with pre-treatment. Urinary incontinence only showed improvement in the hyaluronic acid group (P<0.05). Improvement in urinary incontinence, dryness, maturation index (P<0.05) and composite score of vaginal symptoms (P<0.001) in the hyaluronic acid group was better than those in the Premarin group. Conclusion: According to the results of the present study, hyaluronic acid and conjugated estrogen improved the symptoms of vaginal atrophy. But hyaluronic acid was more effective and this drug is suggested for those who do not want to or cannot take local hormone treatment. Trial Registration Number: IRCT2013022712644N1 PMID:26793732

  7. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.

    PubMed

    Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar

    2014-04-01

    Different biocomposite pastes were prepared from a solid phase that was nanoparticles of sol-gel-derived bioactive glass and different liquid phases including 3% hyaluronic acid solution, sodium alginate solutions (3% and 10 %) or mixtures of hyaluronic acid and sodium alginate (3% or 10 %) solutions in 50:50 volume ratio. Rheological properties of the pastes were measured in both rotatory and oscillatory modes. The washout behavior and in vitro apatite formation of the pastes were determined by soaking them in simulated body fluid under dynamic situation for 14 days. The proliferation and alkaline phosphatase activity of MG-63 osteoblastic cells were also determined using extracts of the pastes. All pastes could be easily injected from the standard syringes with different tip diameters. All pastes exhibited visco-elastic character, but a nonthixotropic paste was obtained using hyaluronic acid in which the loss modulus was higher than the storage modulus. The thixotropy and storage modulus were increasingly improved by adding/using sodium alginate as mixing liquid. Moreover, the pastes in which the liquid phase was sodium alginate or mixture of hyaluronic acid and 10% sodium alginate solution revealed better apatite formation ability and washout resistance than that made of hyaluronic acid alone. No cytotoxicity effects were observed by extracts of the pastes on osteoblasts but better alkaline phosphatase activity was found for the pastes containing hyaluronic acid. Overall, injectable biocomposites can be produced by mixing bioactive glass nanoparticles and sodium alginate/hyaluronic acid polymers. They are potentially useful for hard and even soft tissues treatments. PMID:24123918

  8. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds.

    PubMed

    Hu, Min; Sabelman, Eric E; Cao, Yang; Chang, James; Hentz, Vincent R

    2003-10-15

    Hyaluronic acid (HA) has been found to play important roles in tissue regeneration and wound-healing processes. Fetal tissue with a high concentration of HA heals rapidly without scarring. The present study employed HA formed into three-dimensional strands with or without keratinocytes to treat full-thickness skin incision wounds in rats. Wound closure rates of HA strand grafts both with and without keratinocytes were substantially enhanced. The closure times of both HA grafts were less than 1 day (average 16 h), about 1/7 that of the contralateral control incisions (114 h, p <.01). Average wound areas after 10 days were HA-only graft: 0.151 mm2 +/- 0.035; HA + cell grafts: 0.143 mm2 +/- 0.036 and controls: 14.434 mm2 +/- 1.175, experimental areas were 1% of the controls (p < 0.01). Transforming growth factor (TGF) beta1 measured by immunostaining was remarkably reduced in HA-treated wounds compared to the controls. In conclusion, HA grafts appeared to produce a fetal-like environment with reduced TGF-beta1, which is known to be elevated in incipient scars. The HA strands with or without cultured cells may potentially improve clinical wound healing as well as reduce scar formation.

  9. Synthesis and characterization of a self-fluorescent hyaluronic acid-based gel for dermal applications.

    PubMed

    Menegatti, Stefano; Ruocco, Nino; Kumar, Sunny; Zakrewsky, Michael; Sanchez De Oliveira, Joshua; Helgeson, Matthew E; Leal, Gary L; Mitragotri, Samir

    2015-10-28

    Combinations of polymer conjugates affording in situ gelation hold promise for treatment of pathological cavities (e.g., arthritis) and sustained drug release. In particular, hyaluronic acid (HA) functionalized with reactive groups is regarded as an excellent biomaterial due to its tunable cross-linking kinetics and mechanical properties. HA-based reagents, however, can be irritating to surrounding tissues due to the reactivity of pendant groups, and their fast gelation kinetics can result in poor cavity filling. In this study, a biocompatible "click" reaction between cyanobenzothiazole (CBT) and d-cysteine (d-Cys) is employed to produce HA-based conjugates for in situ gelation. Rheological studies conducted on a gel obtained from the combination of HA-CBT and HA-d-Cys indicate optimal gelation time and mechanical properties. Further, in vitro studies on porcine skin demonstrate the ability of the gel to form in situ upon subcutaneous injection or topical application, and to act as a reservoir for sustained release of protein therapeutics. Finally, the safety of the HA-based conjugates is demonstrated on human keratinocytes. The presented results demonstrate the applicability of the binary mixture for in situ gelation and the potential of the proposed system for a variety of biomedical applications.

  10. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.

    PubMed

    Lee, Fan; Chung, Joo Eun; Kurisawa, Motoichi

    2009-03-19

    Previously, we reported the independent tuning of mechanical strength (crosslinking density) and gelation rate of an injectable hydrogel system composed of hyaluronic acid-tyramine (HA-Tyr) conjugates. The hydrogels were formed through the oxidative coupling of tyramines which was catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Herein, we studied the encapsulation and release of model proteins using the HA-Tyr hydrogel. It was shown that the rapid gelation achieved by an optimal concentration of HRP could effectively encapsulate the proteins within the hydrogel network and thus prevented the undesired leakage of proteins into the surrounding tissues after injection. Hydrogels with different mechanical strengths were formed by changing the concentration of H(2)O(2) while maintaining the rapid gelation rate. The mechanical strength of the hydrogel controlled the release rate of proteins: stiff hydrogels released proteins slower compared to weak hydrogels. In phosphate buffer saline, alpha-amylase (negatively charged) was released sustainably from the hydrogel. Conversely, the release of lysozyme (positively charged) discontinued after the fourth hour due to electrostatic interactions with HA. In the presence of hyaluronidase, lysozymes were released continuously and completely from the hydrogel due to degradation of the hydrogel network. The activities of the released proteins were mostly retained which suggested that the HA-Tyr hydrogel is a suitable injectable and biodegradable system for the delivery of therapeutic proteins. PMID:19121348

  11. Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shujun; Tan, Min-Han; Kurisawa, Motoichi

    2015-10-28

    We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the enzymatic crosslinking utilizing hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Through electrostatic interactions with the HA, trastuzumab was retained in the hydrogel to minimize its burst release. Hyaluronidase was incorporated in the hydrogel to release trastuzumab from the hydrogels. The hydrogels were degraded and showed sustained release of trastuzumab in phosphate buffer over four weeks in vitro. Both the rates of drug release and gel degradation were controlled by the concentration of hyaluronidase. Trastuzumab released from the hydrogels inhibited the proliferation of BT-474 cells in vitro. In an animal model, the single subcutaneous injection of a mixture solution of HA-Tyr conjugates, H2O2, HRP, trastuzumab and hyaluronidase inhibited tumor growth significantly, whereas injection of trastuzumab alone at the same dose failed to do so. Compared to trastuzumab alone, the hyaluronidase-incorporated HA-Tyr hydrogels improved the pharmacokinetic profile of trastuzumab in the plasma of mice. Furthermore, they were fully degraded over two weeks, and the formation of fibrous capsules was not observed in mice. PMID:26260452

  12. Hyaluronic Acid-Based Biocompatible Supramolecular Assembly for Sustained Release of Antiretroviral Drug.

    PubMed

    Song, Byeongwoon; Puskás, István; Szente, Lajos; Hildreth, James E K

    2016-09-01

    Human immunodeficiency virus (HIV) infection and its associated diseases continue to increase despite the progress in our understanding of HIV biology and the availability of a number of antiretroviral drugs. Adherence is a significant factor in the success of HIV therapy and current HIV treatment regimens require a combination of antiviral drugs to be taken at least daily for the remainder of a patient's life. A drug delivery system that allows sustained drug delivery could reduce the medical burden and costs associated with medication nonadherence. Here, we describe a novel supramolecular assembly or matrix that contains an anionic polymer hyaluronic acid, cationic polymer poly-l-lysine, and anionic oligosaccharide sulfobutylether-beta-cyclodextrin. HIV reverse transcriptase inhibitors Zidovudine and Lamivudine were successfully encapsulated into the polymer assembly in a noncovalent manner. The physicochemical properties and antiviral activity of the polymer assemblies were studied. The results of this study suggest that the supramolecular assemblies loaded with HIV drugs exert potent antiviral activity and allow sustained drug release. A novel drug delivery formulation such as the one described here could facilitate our efforts to reduce the morbidity and mortality associated with HIV infections and could be utilized in the design of therapeutic approaches for other diseases. PMID:26975245

  13. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits.

    PubMed

    Chiang, En-Rung; Ma, Hsiao-Li; Wang, Jung-Pan; Liu, Chien-Lin; Chen, Tain-Hsiung; Hung, Shih-Chieh

    2016-01-01

    Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo.

  14. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    PubMed Central

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-01-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications. PMID:26423010

  15. Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery.

    PubMed

    Liu, Ya; Kong, Ming; Cheng, Xiao Jie; Wang, Qian Qian; Jiang, Li Ming; Chen, Xi Guang

    2013-04-15

    The present work described nanoparticles (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) using coacervation process as novel potential carriers for gene delivery. An N/P ratio of 5 and OCMCS/HA weight ratio of 4 were the optimal conditions leading to the smallest (164.94 nm), positive charged (+14.2 mV) and monodispersed NPs. OCMCS-HA/DNA (OHD) NPs showed higher in vitro DNA release rates and increased cellular uptake by Caco-2 cells due to the HA involved in NPs. The MTT survival assay indicated no significant cytotoxicity. The transfection efficiency of OHD NPs was 5-fold higher than OCMCS/DNA (OD) NPs; however, it decreased significantly in the presence of excess free HA. The results indicated that OHD NPs internalized in Caco-2 cells were mediated by the hyaluronan receptor CD44. The data obtained in the present research gave evidence of the potential of OHD NPs for the targeting and further transfer of genes to the epithelial cells. PMID:23544543

  16. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid

    PubMed Central

    Kim, Iris L.; Mauck, Robert L.; Burdick, Jason A.

    2011-01-01

    Hyaline cartilage serves as a low-friction and wear-resistant articulating surface in load-bearing, diarthrodial joints. Unfortunately, as the avascular, alymphatic nature of cartilage significantly impedes the body’s natural ability to regenerate, damage resulting from trauma and osteoarthritis necessitates repair attempts. Current clinical methods are generally limited in their ability to regenerate functional cartilage, and so research in recent years has focused on tissue engineering solutions in which the regeneration of cartilage is pursued through combinations of cells (e.g., chondrocytes or stem cells) paired with scaffolds (e.g., hydrogels, sponges, and meshes) in conjunction with stimulatory growth factors and bioreactors. A variety of synthetic and natural materials have been employed, most commonly in the form of hydrogels, and these systems have been tuned for optimal nutrient diffusion, connectivity of deposited matrix, degradation, soluble factor delivery, and mechanical loading for enhanced matrix production and organization. Even with these promising advances, the complex mechanical properties and biochemical composition of native cartilage have not been achieved, and engineering cartilage tissue still remains a significant challenge. Using hyaluronic acid hydrogels as an example, this review will follow the progress of material design specific to cartilage tissue engineering and propose possible future directions for the field. PMID:21903262

  17. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice.

    PubMed

    Ito, Tomoko; Yoshihara, Chieko; Hamada, Katsuyuki; Koyama, Yoshiyuki

    2010-04-01

    The highest barriers for non-viral vectors to an efficient in vivo gene transfection would be (1) non-specific interaction with biological molecules, and (2) large size of the DNA complex particles. Protective coating of the DNA/polyethyleneimine (PEI) complexes by hyaluronic acid (HA) effectively diminished the adverse interactions with biological molecules. Here we found HA also protected the DNA/PEI complexes against aggregation and inactivation through lyophilization-and-rehydration procedures. It allows us to prepare the concentrated very small DNA complex particles (<70 nm) suspension by preparing the complexes at highly diluted conditions, followed by lyophilized-and-rehydrated to a small volume. In vivo gene expression efficiency of the small complex was examined with mice subcutaneously inoculated with B16 melanoma cells. These formulations showed high reporter-gene expression level in tumor after intravenous injection into tumor-bearing mice. Small complex was then made of the plasmid encoding GM-CSF gene, and injected into the mice bearing subcutaneous solid B16 tumor. After intravenous injection, it induced apparent tumor growth suppression in 50% of the mice. Notably, significant therapeutic effect was detected in the mice that received intratumoral injection, and 75% of the mice were completely cured with disappearance of tumor. PMID:20047759

  18. Effectiveness of hyaluronic acid for treating diabetic foot: a systematic review and meta-analysis.

    PubMed

    Chen, Chao-Pen; Hung, Wei; Lin, Sheng-Hsuan

    2014-01-01

    Diabetic foot ulceration is a major complication of diabetes mellitus. Hyaluronic acid (HA) is used in the treatment of diabetic foot. This meta-analysis was designed to evaluate if HA increased the complete healing rate of diabetic foot compared with controls. We searched Medline, Cochrane, EMBASE, Google Scholar (until January 31, 2014) databases for prospective randomized controlled trials that assessed the effectiveness of HA in treating foot ulcers resulting from diabetes. The primary outcome for the study was complete healing rate of the ulcer at 12 weeks. Three hundred twenty-eight patients were identified from four studies that evaluated the rate of healing of diabetic foot that were treated with HA or controls. Among the four studies, odd ratios (OR) ranged from 1.19 to 8.86, with the overall OR being 1.71 (p = 0.047; 95% confidence interval = 1.01 to 2.90). In summary, our meta-analysis strengthens the findings that HA is beneficial in treating diabetic foot by increasing the rate of wound healing. These findings support the use of HA in treating diabetic foot.

  19. Key importance of compression properties in the biophysical characteristics of hyaluronic acid soft-tissue fillers.

    PubMed

    Gavard Molliard, Samuel; Albert, Séverine; Mondon, Karine

    2016-08-01

    Hyaluronic acid (HA) soft-tissue fillers are the most popular degradable injectable products used for correcting skin depressions and restoring facial volume loss. From a rheological perspective, HA fillers are commonly characterised through their viscoelastic properties under shear-stress. However, despite the continuous mechanical pressure that the skin applies on the fillers, compression properties in static and dynamic modes are rarely considered. In this article, three different rheological tests (shear-stress test and compression tests in static and dynamic mode) were carried out on nine CE-marked cross-linked HA fillers. Corresponding shear-stress (G', tanδ) and compression (E', tanδc, normal force FN) parameters were measured. We show here that the tested products behave differently under shear-stress and under compression even though they are used for the same indications. G' showed the expected influence on the tissue volumising capacity, and the same influence was also observed for the compression parameters E'. In conclusion, HA soft-tissue fillers exhibit widely different biophysical characteristics and many variables contribute to their overall performance. The elastic modulus G' is not the only critical parameter to consider amongst the rheological properties: the compression parameters E' and FN also provide key information, which should be taken into account for a better prediction of clinical outcomes, especially for predicting the volumising capacity and probably the ability to stimulate collagen production by fibroblasts. PMID:27093589

  20. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Wang, Min-Dan; Zhai, Peng; Schreyer, David J.; Zheng, Ruo-Shi; Sun, Xiao-Dan; Cui, Fu-Zhai; Chen, Xiong-Biao

    2013-09-01

    Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calciumions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite hydrogels display biocompatibility that is comparable to simple HA hydrogels, allowing for Schwann cell survival and growth. No significant difference was found between composite hydrogels made from different ratios of alginate and HA. A 3D BioPlotter™ rapid prototyping system was used to fabricate 3D scaffolds. The result indicated that combining HA with alginate facilitated the fabrication process and that 3D scaffolds with porous inner structure can be fabricated from the composite hydrogels, but not from HA alone. This information provides a basis for continuing in vitro and in vivo tests of the suitability of alginate/HA hydrogel as a biomaterial to create living cell scaffolds to support nerve regeneration.

  1. Shell-crosslinked hyaluronic acid nanogels for live monitoring of hyaluronidase activity in vivo.

    PubMed

    Kim, Jihyun; Chong, Youhoon; Mok, Hyejung

    2014-06-01

    A hyaluronidase (HAdase) has been noticed as a potential drug target as well as prognostic marker because of its close associations with tumor invasion, metastasis, and angiogenesis. Accordingly, precise monitoring of HAdase activity in vivo seems to be crucial not only for the evaluation of HAdase activity but also for non-invasive molecular imaging. In our study, we propose a new organic, near-infrared fluorescence imaging probe, indocyanine green (ICG)-based stimuli-responsive fluorescence probe for selective imaging of HAdases with appreciable signal-to-noise (S/N) ratios in serum and in vivo. Shell-crosslinked hyaluronic acid (HA) nanogels (sc-nanogels) are generated via a reducible covalent linkage which incorporate ICG derivatives. The ICG-embeded HA nanogels via shell-crosslinking have preferable properties for ideal selective imaging and detection of HAdase activity in vivo. The sc-nanogels exhibit prominent chemical stability against external light, greatly control background signals in serum, and small size compared to use of self-assembled ICG-based carriers. Collapsed ICG in the hydrogel core is selectively disentangled by HAdase treatment for selective near-infrared imaging without unwanted background signal. The newly designed sc-nanogels may have great potential to serve as probes for improved selective imaging of HAdase-associated diseases in clinics as well as HAdase-activity screening in vivo. PMID:24505028

  2. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  3. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering

    PubMed Central

    Lai, Jui-Yang; Cheng, Hsiao-Yun; Ma, David Hui-Kang

    2015-01-01

    Hyaluronic acid (HA) is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC) sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function. PMID:26296087

  4. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS.

    PubMed

    Yang, Biao; Guo, Xueping; Zang, Hengchang; Liu, Jianjian

    2015-10-20

    Determination of modification degree in BDDE-modified hyaluronic acid (HA) hydrogel is of particular interest. In this paper, three crosslinking parameters (degree of total modification, t-MOD; degree of cross-link modification, c-MOD; degree of pendent modification, p-MOD) are defined and determined by quantification of the modified fragments in hydrogel digestion by size exclusion chromatography combined with mass spectrometry (SEC-MS). The digestion products of a novel hyaluronidase HAase-B produced by Bacillus sp. A50 are studied and only a few modified fragments are identified by (1)H NMR and MS. As a result, Three HA hydrogels prepared in lab have different t-MOD, c-MOD and p-MOD, but the ratio of c-MOD to p-MOD result in the almost same value of 75%. Hydrogel products from Q-Med have nearly same t-MOD about 0.8% and c-MOD about 0.1%, the ratio of c-MOD to p-MOD is about 13%. Hydrogels from ANTEIS S.A all have much higher t-MOD values, the ratio of c-MOD and p-MOD is about 8%. PMID:26256180

  5. Topical Delivery of Hyaluronic Acid into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Gupta, Vivek; Anselmo, Aaron C.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Topical penetration of macromolecules into skin is limited by their low permeability. Here, we report the use of a skin penetrating peptide, SPACE peptide, to enhance topical delivery of a macromolecule, hyaluronic acid (HA, MW: 200–325 kDa). The peptide was conjugated to phospholipids and used to prepare an ethosomal carrier system (~110 nm diameter), encapsulating HA. The SPACE-ethosomal system (SES) enhanced HA penetration into porcine skin in vitro by 7.8+/−1.1-fold compared to PBS. The system also enhanced penetration of HA in human skin in vitro, penetrating deep into the epidermis and dermis in skin of both species. In vivo experiments performed using SKH1 hairless mice also confirmed increased dermal penetration of HA using the delivery system; a 5-fold enhancement in penetration was found compared to PBS control. Concentrations of HA in skin were about 1000-fold higher than those in blood; confirming the localized nature of HA delivery into skin. The SPACE-ethosomal delivery system provides a formulation for topical delivery of macromolecules that are otherwise difficult to deliver into skin. PMID:24129342

  6. Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells

    PubMed Central

    Sewell-Loftin, Mary Kathryn; DeLaughter, Daniel M.; Peacock, Jon R.; Brown, Christopher B.; Baldwin, H. Scott; Barnett, Joey V.; Merryman, W. David

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) of endocardial cells is a critical initial step in the formation of heart valves. The collagen gel in vitro model has provided significant information on the role of growth factors regulating EMT but has not permitted investigation of mechanical factors. Therefore we sought to develop a system to probe the effects of mechanical inputs on endocardial EMT by incorporating hyaluronic acid (HA), the primary component of endocardial cushions in developing heart valves, into the gel assay. This was achieved using a combination collagen and crosslinkable methacrylated HA hydrogel (Coll-MeHA). Avian atrioventricular canal explants on Coll-MeHA gels showed increased numbers of transformed cells. Analysis of the mechanical properties of Coll-MeHA gels show that stiffness does not directly affect EMT. Hydrogel deformation from the beating myocardium of explants directly led to higher levels of regional gel deformation and larger average strain magnitudes associated with invaded cells on Coll-MeHA gels. Inhibition of this contraction reduced EMT on all gel types, although to a lesser extent on Coll-MeHA gels. Using the system we have developed, which permits the manipulation of mechanical factors, we have demonstrated that active mechanical forces play a role in the regulation of endocardial EMT. PMID:24433835

  7. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    PubMed Central

    Hou, Lin; Zhang, Huijuan; Wang, Yating; Wang, Lili; Yang, Xiaomin; Zhang, Zhenzhong

    2015-01-01

    A tumor-targeting carrier, hyaluronic acid (HA)-functionalized single-walled carbon nanotubes (SWCNTs), was explored to deliver magnetic resonance imaging (MRI) contrast agents (CAs) targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd)/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor. PMID:26213465

  8. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering.

    PubMed

    Park, Kyeng Min; Yang, Jeong-A; Jung, Hyuntae; Yeom, Junseok; Park, Ji Sun; Park, Keun-Hong; Hoffman, Allan S; Hahn, Sei Kwang; Kim, Kimoon

    2012-04-24

    A facile in situ supramolecular assembly and modular modification of biocompatible hydrogels were demonstrated using cucurbit[6]uril-conjugated hyaluronic acid (CB[6]-HA), diaminohexane-conjugated HA (DAH-HA), and tags-CB[6] for cellular engineering applications. The strong and selective host-guest interaction between CB[6] and DAH made possible the supramolecular assembly of CB[6]/DAH-HA hydrogels in the presence of cells. Then, the 3D environment of CB[6]/DAH-HA hydrogels was modularly modified by the simple treatment with various multifunctional tags-CB[6]. Furthermore, we could confirm in situ formation of CB[6]/DAH-HA hydrogels under the skin of nude mice by sequential subcutaneous injections of CB[6]-HA and DAH-HA solutions. The fluorescence of modularly modified fluorescein isothiocyanate (FITC)-CB[6] in the hydrogels was maintained for up to 11 days, reflecting the feasibility to deliver the proper cues for cellular proliferation and differentiation in the body. Taken together, CB[6]/DAH-HA hydrogels might be successfully exploited as a 3D artificial extracellular matrix for various tissue engineering applications.

  9. Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering.

    PubMed

    Kazemirad, Siavash; Heris, Hossein K; Mongeau, Luc

    2016-02-01

    Crosslinked injectable hyaluronic acid (HA)-gelatin (Ge) hydrogels have remarkable viscoelastic and biological properties for vocal fold tissue engineering. Patient-specific tuning of the viscoelastic properties of this injectable biomaterial could improve tissue regeneration. The frequency-dependent viscoelasticity of crosslinked HA-Ge hydrogels was measured as a function of the concentration of HA, Ge, and crosslinker. Synthetic extracellular matrix hydrogels were fabricated using thiol-modified HA and Ge, and crosslinked by poly(ethylene glycol) diacrylate. A recently developed characterization method based on Rayleigh wave propagation was used to quantify the frequency-dependent viscoelastic properties of these hydrogels, including shear storage and loss moduli, over a broad frequency range; that is, from 40 to 4000 Hz. The viscoelastic properties of the hydrogels increased with frequency. The storage and loss moduli values and the rate of increase with frequency varied with the concentrations of the constituents. The range of the viscoelastic properties of the hydrogels was within that of human vocal fold tissue obtained from in vivo and ex vivo measurements. Frequency-dependent parametric relations were obtained using a linear least-squares regression. The results are useful to better fine-tune the storage and loss moduli of HA-Ge hydrogels by varying the concentrations of the constituents for use in patient-specific treatments.

  10. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model.

    PubMed

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2015-05-01

    The treatment of impaired wounds requires the use of biomaterials that can provide mechanical and biological queues to the surrounding environment to promote angiogenesis, granulation tissue formation, and wound closure. Porous hydrogels show promotion of angiogenesis, even in the absence of proangiogenic factors. It is hypothesized that the added delivery of nonviral DNA encoding for proangiogenic growth factors can further enhance this effect. Here, 100 and 60 μm porous and nonporous (n-pore) hyaluronic acid-MMP hydrogels with encapsulated reporter (pGFPluc) or proangiogenic (pVEGF) plasmids are used to investigate scaffold-mediated gene delivery for local gene therapy in a diabetic wound healing mouse model. Porous hydrogels allow for significantly faster wound closure compared with n-pore hydrogels, which do not degrade and essentially provide a mechanical barrier to closure. Interestingly, the delivery of pDNA/PEI polyplexes positively promotes granulation tissue formation even when the DNA does not encode for an angiogenic protein. And although transfected cells are present throughout the granulation tissue surrounding, all hydrogels at 2 weeks, pVEGF delivery does not further enhance the angiogenic response. Despite this, the presence of transfected cells shows promise for the use of polyplex-loaded porous hydrogels for local gene delivery in the treatment of diabetic wounds.

  11. Bone reservoir: Injectable hyaluronic acid hydrogel for minimal invasive bone augmentation.

    PubMed

    Martínez-Sanz, Elena; Ossipov, Dmitri A; Hilborn, Jöns; Larsson, Sune; Jonsson, Kenneth B; Varghese, Oommen P

    2011-06-10

    A strategy has been designed to develop hyaluronic acid (HA) hydrogel for in vivo bone augmentation using minimal invasive technique. A mild synthetic procedure was developed to prepare aldehyde modified HA by incorporating an amino-glycerol side chain via amidation reaction and selective oxidation of the pendent group. This modification, upon mixing with hydrazide modified HA formed hydrazone-crosslinked hydrogel within 30s that was stable at physiological pH. In vitro experiments showed no cytotoxicity of hydrogel with the controlled release of active bone morphogenic protein-2 (BMP-2). In vivo evaluation of this gel as a BMP-2 carrier was performed by injecting gels over the rat calvarium and showed bone formation in 8 weeks in correlation with the amount of BMP-2 loaded (0, 1 and 30μg) within the gel. Furthermore, hydrogels with 30μg of BMP-2 induced less bone formation upon subcutaneous injection in comparison with subperiosteal implantation. Histological examination showed newly formed bone with a high expression of osteocalcin, osteopontin and with angiogenic bone marrow when higher BMP-2 concentration was employed. Our result suggests that novel HA hydrogels could be used as a BMP-2 carrier and can promote bone augmentation for potential orthopedic applications.

  12. Hyaluronic Acid Hydrogels with Controlled Degradation Properties for Oriented Bone Regeneration

    PubMed Central

    Patterson, J; Siew, R; Herring, SW; Lin, ASP; Guldberg, R; Stayton, PS

    2010-01-01

    Non-healing fractures can result from trauma, disease, or age-related bone loss. While many treatments focus on restoring bone volume, few try to recapitulate bone organization. However, the native architecture of bone is optimized to provide its necessary mechanical properties. Hyaluronic acid (HA) hydrogel scaffold systems with tunable degradation properties were developed for the controlled delivery of osteoinductive and angiogenic growth factors, thus affecting the quantity and quality of regenerated tissue. HA hydrogels were designed to degrade at fast, intermediate, and slow rates due to hydrolysis and further provided controlled release of cationic proteins due to electrostatic interactions. Scaffolds delivering bone morphogenetic protein-2 (BMP-2) were evaluated in a rat calvarial bone critical size defect model. BMP-2 delivery from the HA hydrogels had a clear osteoinductive effect in vivo and, for all hydrogel types, BMP-2 delivery resulted in significant mineralization compared to control hydrogels. The temporal progression of this effect could be modulated by altering the degradation rate of the scaffold. All three degradation rates tested resulted in similar amounts of mineral formation at the latest (six week) time point examined. Interestingly, however, the fastest and slowest degrading scaffolds seemed to result in more organized bone than the intermediate degrading scaffold, which was designed to degrade in 6–8 weeks to match the healing time. Additionally, healing could be enhanced by co-delivery of vascular endothelial growth factor along with BMP-2. PMID:20573393

  13. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    PubMed

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  14. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    NASA Astrophysics Data System (ADS)

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-10-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.

  15. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction.

    PubMed

    Yan, Shuqin; Zhang, Qiang; Wang, Jiannan; Liu, Yu; Lu, Shenzhou; Li, Mingzhong; Kaplan, David L

    2013-06-01

    The fabrication of new dermal substitutes providing mechanical support and cellular cues is urgently needed in dermal reconstruction. Silk fibroin (SF)/chondroitin sulfate (CS)/hyaluronic acid (HA) ternary scaffolds (95-248μm in pore diameter, 88-93% in porosity) were prepared by freeze-drying. By the incorporation of CS and HA with the SF solution, the chemical potential and quantity of free water around ice crystals could be controlled to form smaller pores in the SF/CS/HA ternary scaffold main pores and improve scaffold equilibrium swelling. This feature offers benefits for cell adhesion, survival and proliferation. In vivo SF, SF/HA and SF/CS/HA (80/5/15) scaffolds as dermal equivalents were implanted onto dorsal full-thickness wounds of Sprague-Dawley rats to evaluate wound healing. Compared to SF and SF/HA scaffolds, the SF/CS/HA (80/5/15) scaffolds promoted dermis regeneration, related to improved angiogenesis and collagen deposition. Further, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) expression in the SF/CS/HA (80/5/15) groups were investigated by immunohistochemistry to assess the mechanisms involved in the stimulation of secretion of VEGF, PDGF and bFGF and accumulation of these growth factors related to accelerated wound process. These new three-dimensional ternary scaffolds offer potential for dermal tissue regeneration.

  16. Hyaluronic acid and its use as a "rejuvenation" agent in cosmetic dermatology.

    PubMed

    Andre, Pierre

    2004-12-01

    Since 1996, hyaluronic acid (HA) has been launched onto the market in Europe. Since then, different companies proposed their HAs. Biomatrix (NJ, USA) proposes an animal-derived HA (from rooster comb). Q-Med AB (Uppsala, Sweden) and LEA-DERM (Paris, France) are the main companies to have a nonanimal HA. HA is produced by bacterial fermentation from a specific strain of streptococci. HA has no species specificity and theoretically has no risk of allergy. No skin testing is necessary before injecting because HA is a biodegradable agent. To be utilized as a filler agent for improving wrinkles, scars, or increasing volumes, HA must be stabilized to obtain a sufficient half-life. Process of stabilization varies, according to each manufacturer. This explains the differences in longevity and in viscosity of the different products. Several HAs are suitable to fine lines, to deep wrinkles/folds, or to increase volume. A new indication for "rejuvenation" is injection into the superficial dermis and epidermis. The HA (stabilized or not) is not used to fill in but rather to hydrate and finally to rejuvenate the skin. This procedure must be repeated at intervals of a few weeks or months. If HA is the safest filler agent in cosmetic indications today, some rare side effects may appear and must be known to inform patients. Most of these complications are not severe and will disappear when the product is degraded.

  17. Science of Hyaluronic Acid Beyond Filling: Fibroblasts and Their Response to the Extracellular Matrix.

    PubMed

    Landau, Marina; Fagien, Steven

    2015-11-01

    Loss of viscoelasticity is one of the primarily signs of skin aging, followed by appearance of visible wrinkles. Hyaluronic acid (HA)-based fillers are widely used to fill wrinkles and compensate for volume loss. Recent clinical observations demonstrate persistence of the filling effect longer than the biological availability of the filler. Stimulation of new collagen by cross-linked HA and up-regulation of elastin have been suggested as possible explanation to this observation and have been supported experimentally. Cross-linked HA substitutes for fragmented collagen in restoring extracellular matrix required for normal activity of fibroblasts, such as collagen and elastin production. To restore extracellular matrix efficiently, serial monthly treatments are required. Boosting of facial and nonfacial skin through fibroblast activation is a new indication for HA-based products. Injectable HA has also been recently registered in Europe as agents specific for the improvement of skin quality (Restylane Skinboosters). Further explanation of the possible mechanisms supported by long-term clinical examples is presented herein.

  18. Improved synthesis of hyaluronic acid hydrogel and its effect on tissue augmentation.

    PubMed

    Yan, Xiang Mei; Seo, Moo Seok; Hwang, Eui Jin; Cho, Il Hwan; Hahn, Sei Kwang; Sohn, Uy Dong

    2012-08-01

    HA-HMDA hydrogels were developed by direct amide bond formation between the carboxyl groups of hyaluronic acid (HA) and hexamethylenediamine (HMDA) with an optimized carboxyl group modification in the preliminary experiment. However, these HA-HMDA hydrogels transformed into an unstable liquid form after steam sterilization, and were problematic for application to actual dermal filler. A new method to overcome the problem of the previously developed HA-HMDA hydrogels is to prepare them by adjusting the pH in this study. Not only are these improved HA-HMDA hydrogels prepared with lower amounts of cross-linking and activation agents compared to the previously developed hydrogels, but they also maintain a stable form after steam sterilization. These improved HA-HMDA hydrogels showed higher viscoelasticity and longer lasting effects than the previous ones, despite the fact that the amount of the HMDA used as a cross-linking agent as well as 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and 1-hydroxybenzotriazole monohydrated (HOBt) used as activation agents were substantially reduced. According to an in vivo test using a wrinkled mouse model, the improved HA-HMDA hydrogels exhibited significantly improved tissue augmentation effects compared to a positive control of Restylane, which is widely used for the tissue augmentation throughout the world. Furthermore, histological analysis revealed excellent biocompatibility and safety of the improved synthesized HA-HMDA hydrogels.

  19. Surface Engineered Protein Nanoparticles With Hyaluronic Acid Based Multilayers For Targeted Delivery Of Anticancer Agents.

    PubMed

    Pulakkat, Sreeranjini; Balaji, Sai A; Rangarajan, Annapoorni; Raichur, Ashok M

    2016-09-14

    Layer-by-layer (LbL) technique was employed to modify the surface of doxorubicin (Dox)-loaded bovine serum albumin (BSA) nanoparticles using hyaluronic acid (HA) to enable targeted delivery to overexpressed CD44 receptors in metastatic breast cancer cells. LbL technique offers a versatile approach to modify the surface of colloidal nanoparticles without any covalent modification. Dox-loaded BSA (Dox Ab) nanoparticles optimized for their size, zeta potential, and drug encapsulation efficiency were prepared by modified desolvation technique. The cellular uptake and cytotoxicity of the LbL coated Dox Ab nanoparticles were analyzed in CD44 overexpressing breast cancer cell line MDA-MB-231. Nanoparticles with HA as the final layer (Dox Ab HA) showed maximum cellular uptake in MDA-MB-231 cells owing to the CD44 receptor-mediated endocytosis and hence, exhibited more cytotoxicity as compared to free Dox. Further, luciferase-transfected MDA-MB-231 cells were used to induce tumor in BALB/c female nude mice to enable whole body tumor imaging. The mice were imaged before and after Dox treatment to visualize the tumor growth. The in vivo biodistribution of Dox Ab HA nanoparticles in nude mice showed maximum accumulation in tumor, and importantly, better tumor reduction in comparison with free Dox, thus paving the way for improved drug delivery into tumors. PMID:27560126

  20. Therapeutic effect of hyaluronic acid on experimental osteoarthrosis of ovine temporomandibular joint.

    PubMed

    Kim, C H; Lee, B J; Yoon, J; Seo, K M; Park, J H; Lee, J W; Cho, E S; Hong, J J; Lee, Y S; Park, J H

    2001-10-01

    A symptomatic relief by hyaluronic acid (HA, MW: 3.5 x 10(6)), which is synthesized by Streptococcus spp, was investigated in experimental ovine osteoarthrosis. Bilateral osteoarthrosis (OA) of the temporo-mandibular joints (TMJs) was induced by perforating discs and by scrapping subchondral condylar surface. HA was intra-articularly injected into the left joints of 6 sheep on 7, 10, 14, 17 and 21 days after the operation and physiological saline as the control was injected into the contralateral (right) joints on the same day. Three sheep were killed at I month post-operation (MPO) and the remaining three sheep were killed at 3 MPO. Various responses such as proliferation of fibrous tissue, denudation, erosion, osteophyte formation, subcortical cyst formation and ankylosis were observed radiographically and histopathologically. The treatment of HA ameliorated the degenerative changes and lowered the osteoarthrotic score in the left joints at I MPO (9.96 vs 5.81) and 3 MPO (10.86 vs 5.29) compared to the right joints. These results indicate that a repeated intra-articular injection of HA inhibits the progression of OA in ovine TMJs by inducing the development of articular cartilage and by reducing the proliferation of fibrotic tissue.

  1. Sustained Effect of Hyaluronic Acid in Subcutaneous Administration to the Cochlear Spiral Ganglion

    PubMed Central

    Inagaki, Yozo; Fujioka, Masato; Kanzaki, Sho; Watanabe, Kotaro; Oishi, Naoki; Itakura, Go; Yasuda, Akimasa; Shibata, Shinsuke; Nakamura, Masaya; Okano, Hirotaka James; Okano, Hideyuki; Ogawa, Kaoru

    2016-01-01

    The spatiotemporal distribution of drugs in the inner ear cannot be precisely evaluated because of its small area and complex structure. In the present study, we used hyaluronic acid (HA)-dispersed luciferin to image transgenic mice and to determine the effect of HA on controlled drug delivery to the cochlea. GFAP-luc mice, which express luciferase in cochlear spiral ganglion cells, were subcutaneously administered HA-luciferin (HA-sc) or luciferin dissolved in saline (NS-sc) or intraperitoneally administered luciferin dissolved in saline (NS-ip). The bioluminescence of luciferin was monitored in vivo in real time. The peak time and half-life of fluorescence emission were significantly increased in HA-sc-treated mice compared with those in NS-sc- and NS-ip-treated mice; however, significant differences were not observed in peak photon counts. We detected differences in the pharmacokinetics of luciferin in the inner ear, including its sustained release, in the presence of HA. The results indicate the clinical potential of using HA for controlled drug delivery to the cochlea. PMID:27099926

  2. Severe visual loss and cerebral infarction after injection of hyaluronic acid gel.

    PubMed

    Kim, Eung Gyu; Eom, Tae Kyung; Kang, Seok Joo

    2014-01-01

    We report a case of a 23-year-old man with cerebral infarction and permanent visual loss after injection of a hyaluronic acid gel filler for augmentation rhinoplasty. The patient was admitted to the hospital with complaints of loss of vision in the right eye, facial paralysis on the right side, and paralysis of the left limbs with severe pain during augmentation rhinoplasty with filler injection. Brain magnetic resonance imaging and computed tomography showed ophthalmic artery obstruction and right middle cerebral artery infarction. Acute thrombolysis was performed to treat the infarction; however, the patient's condition did not improve. Intracerebral hemorrhage in the right temporal/frontal/occipital/parietal lobe, subarachnoid hemorrhage, and midline shifting were observed on brain computed tomography after 24 hours after thrombolysis. Emergency decompressive craniectomy was performed. After the surgery, the patient continued to experience drowsiness, with no improvement in visual loss and motor weakness. Three months later, he could walk with cane. This case indicates that surgeons who administer filler injections should be familiar with the possibility of accidental intravascular injection and should explain the adverse effects of fillers to patients before surgery.

  3. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.

    PubMed

    Hesaraki, Saeed; Nezafati, Nader

    2014-08-01

    The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering. PMID:24399509

  4. Sustained Small Molecule Delivery from Injectable Hyaluronic Acid Hydrogels through Host-Guest Mediated Retention

    PubMed Central

    Mealy, Joshua E.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Self-assembled and injectable hydrogels have many beneficial properties for the local delivery of therapeutics; however, challenges still exist in the sustained release of small molecules from these highly hydrated networks. Host-guest chemistry between cyclodextrin and adamantane has been used to create supramolecular hydrogels from modified polymers. Beyond assembly, this chemistry may also provide increased drug retention and sustained release through the formation of inclusion complexes between drugs and cyclodextrin. Here, we engineered a two-component system from adamantane-modified and β-cyclodextrin (CD)-modified hyaluronic acid (HA), a natural component of the extracellular matrix, to produce hydrogels that are both injectable and able to sustain the release of small molecules. The conjugation of cyclodextrin to HA dramatically altered its affinity for hydrophobic small molecules, such as tryptophan. This interaction led to lower molecule diffusivity and the release of small molecules for up to 21 days with release profiles dependent on CD concentration and drug-CD affinity. There was significant attenuation of release from the supramolecular hydrogels (~20% release in 24h) when compared to hydrogels without CD (~90% release in 24h). The loading of small molecules also had no effect on hydrogel mechanics or self-assembly properties. Finally, to illustrate this controlled delivery approach with clinically used small molecule pharmaceuticals, we sustained the release of two widely used drugs (i.e., doxycycline and doxorubicin) from these hydrogels. PMID:26693019

  5. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.

    PubMed

    Vafaei, Seyed Yaser; Esmaeili, Motahareh; Amini, Mohsen; Atyabi, Fatemeh; Ostad, Seyed Naser; Dinarvand, Rassoul

    2016-06-25

    To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment. PMID:27083829

  6. Perspectives in the selection of hyaluronic acid fillers for facial wrinkles and aging skin.

    PubMed

    John, Hannah E; Price, Richard D

    2009-01-01

    Aesthetic surgery is, in the USA at least, no longer a taboo subject. Outside North America, public acceptance continues to grow as more procedures are performed each year. While there appears, anecdotally, to be a decrease in patients undergoing cosmetic treatments because of the global financial crisis, the overall trend remains upward. Although popular television programs espouse the benefits of surgery, it is nonsurgical procedures that account, numerically, for the majority of procedures performed; in the USA, there was a 48% growth from 2000 to 2008 in nonsurgical treatments undertaken by women, and 64% in men and while the average surgeon might perform 60 blepharoplasty operations in 2007, (s)he would also undertake 375 botulinum injections, and almost 200 filler injections of varying sorts. Clearly there is enthusiasm for nonsurgical treatments, and this trend appears to be rising. With this in mind, we present an overview of the commonest filler injection material, hyaluronic acid. We present the mechanism of action, the purported risks and benefits, and briefly discuss technique. PMID:19936165

  7. Role of Hyaluronic Acid Treatment in the Prevention of Keloid Scarring

    PubMed Central

    Hoffmann, Andrea; Hoing, Jessica Lynn; Newman, Mackenzie; Simman, Richard

    2013-01-01

    Background Keloids are benign dermal scars characterized by enhanced growth factor signaling, hyperproliferation activity and reduced extracellular matrix (ECM) deposition of hyaluronic acid. Our hypothesis is that high molecular weight HA can be used to replenish HA deposition in keloids thereby normalizing the keloid fibroblast phenotype. Methods One normal (NF1) fibroblast culture and five keloid (KF1, KF2, KF3, KF4, KF5) fibroblast cultures were analyzed for changes in hyperproliferation, growth factor production and extracellular matrix deposition following 72 hour treatment with or without 10 μg/ml HA. Results Proliferation activity decreased significantly in KF3 following HA treatment. Pro-collagen I expression in KF2 was decreased following HA treatment in association with changes in fiber arrangement to more parallel collagen bundles. In addition, HA demonstrated a downregulation on TGF-b1 growth factor expression in KF3 and KF4 and a decrease in active TGF-b1 release in KF2 and KF5 using ELISA. Conclusion Our data demonstrates that HA has the potential to normalize keloid fibroblast characteristic features such as hyperproliferation, growth factor production and ECM deposition depending on the specific genotype of the keloid fibroblast cell line. This study suggests that high molecular weight HA can be used to replenish HA deposition in keloid fibroblasts thereby decreasing fibrosis and ultimately decreasing keloid manifestation. PMID:24936445

  8. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells.

    PubMed

    Camci-Unal, Gulden; Aubin, Hug; Ahari, Amirhossein Farajzadeh; Bae, Hojae; Nichol, Jason William; Khademhosseini, Ali

    2010-10-21

    A major challenge to the effective treatment of injured cardiovascular tissues is the promotion of endothelialization of damaged tissues and implanted devices. For this reason, there is a need for new biomaterials that promote endothelialization to enhance vascular repair. The goal of this work was to develop antibody-modified polysaccharide-based hydrogels that could selectively capture endothelial progenitor cells (EPCs). We showed that CD34 antibody immobilization on hyaluronic acid (HA) hydrogels provides a suitable surface to capture EPCs. The effect of CD34 antibody immobilization on EPC adhesion was found to be dependent on antibody concentration. The highest level of EPC attachment was found to be 52.2 cells per mm(2) on 1% HA gels modified with 25 μg mL(-1) antibody concentration. Macrophages did not exhibit significant attachment on these modified hydrogel surfaces compared to the EPCs, demonstrating the selectivity of the system. Hydrogels containing only HA, with or without immobilized CD34, did not allow for spreading of EPCs 48 h after cell seeding, even though the cells were adhered to the hydrogel surface. To promote spreading of EPCs, 2% (w/v) gelatin methacrylate (GelMA) containing HA hydrogels were synthesized and shown to improve cell spreading and elongation. This strategy could potentially be useful to enhance the biocompatibility of implants such as artificial heart valves or in other tissue engineering applications where formation of vascular structures is required.

  9. Surface Engineered Protein Nanoparticles With Hyaluronic Acid Based Multilayers For Targeted Delivery Of Anticancer Agents.

    PubMed

    Pulakkat, Sreeranjini; Balaji, Sai A; Rangarajan, Annapoorni; Raichur, Ashok M

    2016-09-14

    Layer-by-layer (LbL) technique was employed to modify the surface of doxorubicin (Dox)-loaded bovine serum albumin (BSA) nanoparticles using hyaluronic acid (HA) to enable targeted delivery to overexpressed CD44 receptors in metastatic breast cancer cells. LbL technique offers a versatile approach to modify the surface of colloidal nanoparticles without any covalent modification. Dox-loaded BSA (Dox Ab) nanoparticles optimized for their size, zeta potential, and drug encapsulation efficiency were prepared by modified desolvation technique. The cellular uptake and cytotoxicity of the LbL coated Dox Ab nanoparticles were analyzed in CD44 overexpressing breast cancer cell line MDA-MB-231. Nanoparticles with HA as the final layer (Dox Ab HA) showed maximum cellular uptake in MDA-MB-231 cells owing to the CD44 receptor-mediated endocytosis and hence, exhibited more cytotoxicity as compared to free Dox. Further, luciferase-transfected MDA-MB-231 cells were used to induce tumor in BALB/c female nude mice to enable whole body tumor imaging. The mice were imaged before and after Dox treatment to visualize the tumor growth. The in vivo biodistribution of Dox Ab HA nanoparticles in nude mice showed maximum accumulation in tumor, and importantly, better tumor reduction in comparison with free Dox, thus paving the way for improved drug delivery into tumors.

  10. Resurfacing with Chemically Modified Hyaluronic Acid and Lubricin for Flexor Tendon Reconstruction

    PubMed Central

    Zhao, Chunfeng; Hashimoto, Takahiro; Kirk, Ramona L.; Thoreson, Andrew R.; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2013-01-01

    We assessed surface coating with carbodiimide derivatized hyaluronic acid combined with lubricin (cd-HA-Lubricin) as a way to improve extrasynovial tendon surface quality and, consequently, the functional results in flexor tendon reconstruction, using a canine in vivo model. The second and fifth flexor digitorum profundus tendons from 14 dogs were reconstructed with autologs peroneus longus (PL) tendons 6 weeks after a failed primary repair. One digit was treated with cd-HA-Lubricin, and the other was treated with saline as the control. Six weeks following grafting, the digits and graft tendons were functionally and histologically evaluated. Adhesion score, normalized work of flexion, graft friction in zone II, and adhesion breaking strength at the proximal repair site in zone III were all lower in the cd-HA-Lubricin treated group compared to the control group. The strength at the distal tendon/bone interface was decreased in the cd-HA-Lubricin treated grafts compared to the control grafts. Histology showed inferior healing in the cd-HA-Lubricin group at both proximal and distal repair sites. However, cd-HA-Lubricin treatment did not result in any gap or rupture at either the proximal or distal repair sites. These results demonstrate that cd-HA-Lubricin can eliminate graft adhesions and improve digit function, but that treatment may have an adverse effect on tendon healing. PMID:23335124

  11. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication.

    PubMed

    Das, Saurabh; Banquy, Xavier; Zappone, Bruno; Greene, George W; Jay, Gregory D; Israelachvili, Jacob N

    2013-05-13

    Normal (e.g., adhesion) and lateral (friction) forces were measured between physisorbed and chemically grafted layers of hyaluronic acid (HA), an anionic polyelectrolyte in the presence of lubricin (Lub), a mucinous glycoprotein, on mica surfaces using a surface forces apparatus (SFA). This work demonstrates that high friction coefficients between the surfaces do not necessarily correlate with surface damage and that chemically grafted HA acts synergistically with Lub to provide friction reduction and enhanced wear protection to the surfaces. Surface immobilization of HA by grafting is necessary for such wear protection. Increasing the concentration of Lub enhances the threshold load that a chemically grafted HA surface can be subjected to before the onset of wear. Addition of Lub does not have any beneficial effect if HA is physisorbed to the mica surfaces. Damage occurs at loads less than 1 mN regardless of the amount of Lub, indicating that the molecules in the bulk play little or no role in protecting the surfaces from damage. Lub penetrates into the chemically bound HA to form a visco-elastic gel that reduces the coefficient of friction as well as boosts the strength of the surface against abrasive wear (damage).

  12. Resurfacing with chemically modified hyaluronic acid and lubricin for flexor tendon reconstruction.

    PubMed

    Zhao, Chunfeng; Hashimoto, Takahiro; Kirk, Ramona L; Thoreson, Andrew R; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C

    2013-06-01

    We assessed surface coating with carbodiimide derivatized hyaluronic acid combined with lubricin (cd-HA-Lubricin) as a way to improve extrasynovial tendon surface quality and, consequently, the functional results in flexor tendon reconstruction, using a canine in vivo model. The second and fifth flexor digitorum profundus tendons from 14 dogs were reconstructed with autologs peroneus longus (PL) tendons 6 weeks after a failed primary repair. One digit was treated with cd-HA-Lubricin, and the other was treated with saline as the control. Six weeks following grafting, the digits and graft tendons were functionally and histologically evaluated. Adhesion score, normalized work of flexion, graft friction in zone II, and adhesion breaking strength at the proximal repair site in zone III were all lower in the cd-HA-Lubricin treated group compared to the control group. The strength at the distal tendon/bone interface was decreased in the cd-HA-Lubricin treated grafts compared to the control grafts. Histology showed inferior healing in the cd-HA-Lubricin group at both proximal and distal repair sites. However, cd-HA-Lubricin treatment did not result in any gap or rupture at either the proximal or distal repair sites. These results demonstrate that cd-HA-Lubricin can eliminate graft adhesions and improve digit function, but that treatment may have an adverse effect on tendon healing.

  13. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    PubMed

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680

  14. Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors.

    PubMed

    De Santis, Serena; Diociaiuti, Marco; Cametti, Cesare; Masci, Giancarlo

    2014-01-30

    Hyaluronic acid (HA) and alginate (AL) covalent nanogels cross-linked with l-lysine ethyl ester were prepared by template chemical cross-linking of the polysaccharide in polyion complex micelle (PIC) nanoreactors. By using this method we were able to prepare HA and AL nanogels without organic solvents. PICs were prepared by using poly(ethylene oxide)-block-poly[(3-acrylamidopropyl)-trimethylammonium chloride] (PEO-b-PAMPTMA) or poly[(N-isopropylacrylamide)-block-PAMPTMA] (PNIPAAM-b-PAMPTMA). Only PNIPAAM-b-PAMPTMA block copolymers allowed to prepare PIC with small and controlled size. Short polysaccharide chains (Xn=50 and 63 for AL and HA, respectively, where Xn is the number of monosaccharidic units present in the polysaccharide) where used to optimize PIC formation. The remarkable difference in charge density and rigidity of HA and AL did not have a significant influence on the formation of PICs. PICs with small size (diameter of about 50-80 nm) and low polydispersity were obtained up to 5mg/mL of polymer. After cross-linking with l-lysine ethyl ester, the nanoreactors were dissociated by adding NaCl. The nanogels were easily purified and isolated by dialysis. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H NMR, DLS, TEM and ζ-potential measurements. The size of the smallest nanogels in solution in the swollen state was 50-70 nm in presence of salt and 80-100 nm in water.

  15. Hyaluronic Acid Hydrogels Formed in Situ by Transglutaminase-Catalyzed Reaction.

    PubMed

    Ranga, Adrian; Lutolf, Matthias P; Hilborn, Jöns; Ossipov, Dmitri A

    2016-05-01

    Enzymatically cross-linked hydrogels can be formed in situ and permit highly versatile and selective tethering of bioactive molecules, thereby allowing for a wealth of applications in cell biology and tissue engineering. While a number of studies have reported the bioconjugation of extracellular matrix (ECM) proteins and peptides into such matrices, the site-specific incorporation of biologically highly relevant polysaccharides such as hyaluronic acid (HA) has thus far not been reported, limiting our ability to reconstruct this key feature of the in vivo ECM. Here we demonstrate a novel strategy for transglutaminase-mediated covalent linking of HA moieties to a synthetic poly(ethylene glycol) (PEG) macromer resulting in the formation of hybrid HA-PEG hydrogels. We characterize the ensuing matrix properties and demonstrate how these cytocompatible gels can serve to modulate the cellular phenotype of human mammary cancer epithelial cells as well as mouse myoblasts. The use of HA as a novel building block in the increasingly varied library of synthetic PEG-based artificial ECMs should have applications as a structural as well as a signaling component and offers significant potential as an injectable matrix for regenerative medicine. PMID:27014785

  16. The Survival of Engrafted Neural Stem Cells Within Hyaluronic Acid Hydrogels

    PubMed Central

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W.M.

    2013-01-01

    Successful cell-based therapy of neurological disorders is highly dependent on the survival of transplanted stem cells, with the overall graft survival of naked, unprotected cells in general remaining poor. We investigated the use of an injectable hyaluronic acid (HA) hydrogel for enhancement of survival of transplanted mouse C17.2 cells, human neural progenitor cells (ReNcells), and human glial-restricted precursors (GRPs). The gelation properties of the HA hydrogel were first characterized and optimized for intracerebral injection, resulting in a 25 min delayed-injection after mixing of the hydrogel components. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that the hydrogel can protect xenografted cells as evidenced by the prolonged survival of C17.2 cells implanted in immunocompetent rats (p<0.01 at day 12). The survival of human ReNcells and human GRPs implanted in the brain of immunocompetent or immunodeficient mice was also significantly improved after hydrogel scaffolding (ReNcells, p<0.05 at day 5; GRPs, p<0.05 at day 7). However, an inflammatory response could be noted two weeks after injection of hydrogel into immunocompetent mice brains. We conclude that hydrogel scaffolding increases the survival of engrafted neural stem cells, justifying further optimization of hydrogel compositions. PMID:23623429

  17. Severe visual loss and cerebral infarction after injection of hyaluronic acid gel.

    PubMed

    Kim, Eung Gyu; Eom, Tae Kyung; Kang, Seok Joo

    2014-01-01

    We report a case of a 23-year-old man with cerebral infarction and permanent visual loss after injection of a hyaluronic acid gel filler for augmentation rhinoplasty. The patient was admitted to the hospital with complaints of loss of vision in the right eye, facial paralysis on the right side, and paralysis of the left limbs with severe pain during augmentation rhinoplasty with filler injection. Brain magnetic resonance imaging and computed tomography showed ophthalmic artery obstruction and right middle cerebral artery infarction. Acute thrombolysis was performed to treat the infarction; however, the patient's condition did not improve. Intracerebral hemorrhage in the right temporal/frontal/occipital/parietal lobe, subarachnoid hemorrhage, and midline shifting were observed on brain computed tomography after 24 hours after thrombolysis. Emergency decompressive craniectomy was performed. After the surgery, the patient continued to experience drowsiness, with no improvement in visual loss and motor weakness. Three months later, he could walk with cane. This case indicates that surgeons who administer filler injections should be familiar with the possibility of accidental intravascular injection and should explain the adverse effects of fillers to patients before surgery. PMID:24621723

  18. Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shujun; Tan, Min-Han; Kurisawa, Motoichi

    2015-10-28

    We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the enzymatic crosslinking utilizing hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Through electrostatic interactions with the HA, trastuzumab was retained in the hydrogel to minimize its burst release. Hyaluronidase was incorporated in the hydrogel to release trastuzumab from the hydrogels. The hydrogels were degraded and showed sustained release of trastuzumab in phosphate buffer over four weeks in vitro. Both the rates of drug release and gel degradation were controlled by the concentration of hyaluronidase. Trastuzumab released from the hydrogels inhibited the proliferation of BT-474 cells in vitro. In an animal model, the single subcutaneous injection of a mixture solution of HA-Tyr conjugates, H2O2, HRP, trastuzumab and hyaluronidase inhibited tumor growth significantly, whereas injection of trastuzumab alone at the same dose failed to do so. Compared to trastuzumab alone, the hyaluronidase-incorporated HA-Tyr hydrogels improved the pharmacokinetic profile of trastuzumab in the plasma of mice. Furthermore, they were fully degraded over two weeks, and the formation of fibrous capsules was not observed in mice.

  19. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors

    PubMed Central

    Bajaj, Gaurav; Kim, Mi Ran; Mohammed, Sulma I.; Yeo, Yoon

    2012-01-01

    Intraperitoneal (IP) chemotherapy is an effective way of treating local and regional malignancies confined in the peritoneal cavity such as ovarian cancer. However, a persistent major challenge in IP chemotherapy is the need to provide effective drug concentrations in the peritoneal cavity for an extended period of time. We hypothesized that hyaluronic acid (HA)-based in-situ crosslinkable hydrogel would serve as a carrier of paclitaxel (PTX) particles to improve their IP retention and therapeutic effects. In-vitro gel degradation and release kinetics studies demonstrated that HA gels could entrap microparticulate PTX (>100 μm) and release the drug over 10 days, gradually degraded by hyaluronidase, but had limited effect on retention of Taxol, a 14-nm micelle form of PTX. When administered IP to tumor-bearing nude mice, PTX was best retained in the peritoneal cavity as PTX-gel (microparticulate PTX entrapped in the HA gel), whereas Taxol-gel and other Taxol-based formulations left negligible amount of PTX in the cavity after 14 days. Despite the increase in IP retention of PTX, PTX-gel did not further decrease the tumor burdens than Taxol-based formulations, presumably due to the limited dissolution of PTX. This result indicates that spatial availability of a drug does not necessarily translate to the enhanced anti-tumor effect unless it is accompanied by the temporal availability. PMID:22178261

  20. Bisphosphonate-functionalized hyaluronic acid showing selective affinity for osteoclasts as a potential treatment for osteoporosis.

    PubMed

    Kootala, Sujit; Ossipov, Dmitri; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander; Hilborn, Jöns

    2015-08-01

    Current treatments for osteoporosis involve the administration of high doses of bisphosphonates (BPs) over a number of years. However, the efficiency of the absorption of these drugs and specificity towards targeted osteoclastic cells is still suboptimal. In this study, we have exploited the natural affinity of high (H) and low (L) molecular-weight hyaluronic acid (HA) towards a cluster of differentiation 44 (CD44) receptors on osteoclasts to use it as a biodegradable targeting vehicle. We covalently bonded BP to functionalised HA (HA-BP) and found that HA-BP conjugates were highly specific to osteoclastic cells and reduced mature osteoclast numbers significantly more than free BP. To study the uptake of HA-BP, we fluorescently derivatised the polymer-drug with fluorescein B isothiocyanate (FITC) and found that L-HA-BP could seamlessly enter osteoclastic cells. Alternatively, we tested polyvinyl alcohol (PVA) as a synthetic polymer delivery vehicle using similar chemistry to link BP and found that osteoclast numbers did not reduce in the same way. These findings could pave the way for biodegradable polymers to be used as vehicles for targeted delivery of anti-osteoporotic drugs. PMID:26222035

  1. Biodynamic Performance of Hyaluronic Acid versus Synovial fluid of the Knee for Osteoarthritic Therapy

    PubMed Central

    Corvelli, Michael; Che, Bernadette; Saeui, Christopher; Singh, Anirudha; Elisseeff, Jennifer

    2015-01-01

    Hyaluronic acid (HA), a natural biomaterial present in healthy joints but depleted in osteoarthritis (OA), has been employed clinically to provide symptomatic relief of joint pain. Joint movement combined with a reduced joint lubrication in osteoarthritic knees can result in increased wear and tear, chondrocyte apoptosis, and inflammation, leading to cascading cartilage deterioration. Therefore, development of an appropriate cartilage model and evaluation for its friction properties with potential lubricants in different conditions is necessary, which can closely resemble a mechanically induced OA cartilage. Additionally, the comparison of different models with and without endogenous lubricating surface zone proteins, such as PRG4 promotes a well-rounded understanding of cartilage lubrication. In this study, we present our findings on the lubricating effects of HA on different articular cartilage model surfaces in comparison to synovial fluid, a physiological lubricating biomaterial. The mechanical testings data demonstrated that HA reduced average static and kinetic friction coefficient values of the cartilage samples by 75% and 70%, respectively. Furthermore, HA mimicked the friction characteristics of freshly harvested natural synovial fluid throughout all tested and modeled OA conditions with no statistically significant difference. These characteristics led us to exclusively identify HA as an effective boundary layer lubricant in the technology that we develop to treat OA [Singh et al. 2104]. PMID:25858258

  2. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  3. Mobility of lysozyme in poly(l-lysine)/hyaluronic acid multilayer films.

    PubMed

    Velk, Natalia; Uhlig, Katja; Vikulina, Anna; Duschl, Claus; Volodkin, Dmitry

    2016-11-01

    The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. PMID:27552029

  4. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS.

    PubMed

    Yang, Biao; Guo, Xueping; Zang, Hengchang; Liu, Jianjian

    2015-10-20

    Determination of modification degree in BDDE-modified hyaluronic acid (HA) hydrogel is of particular interest. In this paper, three crosslinking parameters (degree of total modification, t-MOD; degree of cross-link modification, c-MOD; degree of pendent modification, p-MOD) are defined and determined by quantification of the modified fragments in hydrogel digestion by size exclusion chromatography combined with mass spectrometry (SEC-MS). The digestion products of a novel hyaluronidase HAase-B produced by Bacillus sp. A50 are studied and only a few modified fragments are identified by (1)H NMR and MS. As a result, Three HA hydrogels prepared in lab have different t-MOD, c-MOD and p-MOD, but the ratio of c-MOD to p-MOD result in the almost same value of 75%. Hydrogel products from Q-Med have nearly same t-MOD about 0.8% and c-MOD about 0.1%, the ratio of c-MOD to p-MOD is about 13%. Hydrogels from ANTEIS S.A all have much higher t-MOD values, the ratio of c-MOD and p-MOD is about 8%.

  5. Prostate Hypofractionated Radiation Therapy: Injection of Hyaluronic Acid to Better Preserve The Rectal Wall

    SciTech Connect

    Chapet, Olivier; Udrescu, Corina; Devonec, Marian; Tanguy, Ronan; Sotton, Marie-Pierre; Enachescu, Ciprian; Colombel, Marc; Azria, David; Jalade, Patrice; Ruffion, Alain

    2013-05-01

    Purpose: The aim of this study was to evaluate the contribution of an injection of hyaluronic acid (HA) between the rectum and the prostate for reducing the dose to the rectal wall in a hypofractionated irradiation for prostate cancer. Methods and Materials: In a phase 2 study, 10 cc of HA was injected between the rectum and prostate. For 16 patients, the same intensity modulated radiation therapy plan (62 Gy in 20 fractions) was optimized on 2 computed tomography scans: CT1 (before injection) and CT2 (after injection). Rectal parameters were compared: dose to 2.5 cc (D2.5), 5 cc (D5), 10 cc (D10), 15 cc (D15), and 20 cc (D20) of rectal wall and volume of rectum covered by the 90% isodose line (V90), 80% (V80), 70% (V70), 60% (V60), and 50% (V50). Results: The mean V90, V80, V70, V60, and V50 values were reduced by 73.8% (P<.0001), 55.7% (P=.0003), 43.0% (P=.007), 34% (P=.002), and 25% (P=.036), respectively. The average values of D2.5, D5, D10, D15, and D20 were reduced by 8.5 Gy (P<.0001), 12.3 Gy (P<.0001), 8.4 Gy (P=.005), 3.7 Gy (P=.026), and 1.2 Gy (P=.25), respectively. Conclusions: The injection of HA significantly limited radiation doses to the rectal wall.

  6. Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells

    PubMed Central

    Hayward, Stephen L.; Wilson, Christina L.; Kidambi, Srivatsan

    2016-01-01

    Glioblastoma Multiforme (GBM) is a highly prevalent and deadly brain malignancy characterized by poor prognosis and restricted disease management potential. Despite the success of nanocarrier systems to improve drug/gene therapy for cancer, active targeting specificity remains a major hurdle for GBM. Additionally, since the brain is a multi-cell type organ, there is a critical need to develop an approach to distinguish between GBM cells and healthy brain cells for safe and successful treatment. In this report, we have incorporated hyaluronic acid (HA) as an active targeting ligand for GBM. To do so, we employed HA conjugated liposomes (HALNPs) to study the uptake pathway in key cells in the brain including primary astrocytes, microglia, and human GBM cells. We observed that the HALNPs specifically target GBM cells over other brain cells due to higher expression of CD44 in tumor cells. Furthermore, CD44 driven HALNP uptake into GBM cells resulted in lysosomal evasion and increased efficacy of Doxorubicin, a model anti-neoplastic agent, while the astrocytes and microglia cells exhibited extensive HALNP-lysosome co-localization and decreased antineoplastic potency. In summary, novel CD44 targeted lipid based nanocarriers appear to be proficient in mediating site-specific delivery of drugs via CD44 receptors in GBM cells, with an improved therapeutic margin and safety. PMID:27120809

  7. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits

    PubMed Central

    Chiang, En-Rung; Ma, Hsiao-Li; Wang, Jung-Pan; Liu, Chien-Lin; Chen, Tain-Hsiung; Hung, Shih-Chieh

    2016-01-01

    Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo. PMID:26915044

  8. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis.

    PubMed

    Lajavardi, Laure; Camelo, Serge; Agnely, Florence; Luo, Wei; Goldenberg, Brigitte; Naud, Marie-Christine; Behar-Cohen, Francine; de Kozak, Yvonne; Bochot, Amélie

    2009-10-01

    We evaluated the benefits of a novel formulation of vasoactive intestinal peptide (VIP) based on the incorporation of VIP-loaded rhodamine-conjugated liposomes (VIP-Rh-Lip) within hyaluronic acid (HA) gel (Gel-VIP-Rh-Lip) for the treatment of endotoxin-induced uveitis (EIU) in comparison with VIP-Rh-Lip alone. In vitro release study and rheological analysis showed that interactions between HA chains and liposomes resulted in increased viscosity and reinforced elasticity of the gel. In vivo a single intravitreal injection of Gel-VIP-Rh-Lip was performed in rats 7 days prior to uveitis induction by subcutaneous lipopolysaccharide injection. The maximal ocular inflammation occurs within 16-24 h in controls (VIP-Rh-Lip, unloaded-Rh-Lip). Whereas intraocular injection of VIP-Rh-Lip had no effect on EIU severity compared with controls, Gel-VIP-Rh-Lip reduced significantly the clinical score and number of inflammatory cells infiltrating the eye. The fate of liposomes, VIP and HA in the eyes, regional and inguinal lymph nodes and spleen was analyzed by immunostaining and fluorescence microscopy. Retention of liposomes by HA gel was observed in vitro and in vivo. Inflammation severity seemed to impact on system stability resulting in the delayed release of VIP. Thus, HA gel containing VIP-Rh-Lip is an efficient strategy to obtain a sustained delivery of VIP in ocular and lymph node tissues.

  9. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent.

    PubMed

    Hou, Lin; Zhang, Huijuan; Wang, Yating; Wang, Lili; Yang, Xiaomin; Zhang, Zhenzhong

    2015-01-01

    A tumor-targeting carrier, hyaluronic acid (HA)-functionalized single-walled carbon nanotubes (SWCNTs), was explored to deliver magnetic resonance imaging (MRI) contrast agents (CAs) targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd)/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.

  10. Heterologous Production of Hyaluronic Acid in an ε-Poly-l-Lysine Producer, Streptomyces albulus

    PubMed Central

    Yoshimura, Tomohiro; Shibata, Nobuyuki; Hamano, Yoshimitsu

    2015-01-01

    Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo. PMID:25795665

  11. DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach

    PubMed Central

    Segura, Tatiana; Chung, Peter H.; Shea, Lonnie D.

    2008-01-01

    Efficient and controlled gene delivery from biodegradable materials can be employed to stimulate cellular processes that lead to tissue regeneration. In this report, a substrate-mediated approach was developed to deliver DNA from hyaluronic acid-collagen hydrogels. The hydrogels were formed by crosslinking HA with poly(ethylene glycol) diglycidyl ether. Poly(ethylene imine)(PEI)/DNA complexes were immobilized to the substrate using either biotin/neutravidin or non-specific adsorption. Complexes were formed in the presence or absence of salt to regulate complex size, and resulted in complexes with z-average diameters of 1221.7±152.3 and 139.4±1.3 nm, respectively. During 48-h incubation in PBS or hyaluronidase, DNA was released slowly from the hydrogel substrate (<30% of immobilized DNA), which was enhanced by incubation with conditioned media (≈50% of immobilized DNA). Transgene expression mediated by immobilized, large diameter complexes was 3 to 7-fold greater than for small diameter complexes. However, the percentage of cells expressing the transgene was greater for small diameter complexes (48.7%) than for large diameter complexes (22.3%). Spatially controlled gene transfer was achieved by topographically patterning the hydrogel to pattern cell adhesion. Biomaterial-based gene delivery can be applicable to numerous tissue engineering applications, or as a tool to examine tissue formation. PMID:15522759

  12. [Effect of agitation on hyaluronic acid produced by Streptococcus zooepidemicus by using computational fluid dynamics].

    PubMed

    Gu, Xiaohua; Duan, Xujie; Tan, Wensong; Zhang, Xu

    2009-11-01

    Agitation plays an important role in the hyaluronic acid (HA) fermentation process. However, views about the effect of agitation on HA production remain controversial. We investigated the effect of agitation on cell growth and HA synthesis during HA fermentation process by using Computational Fluid Dynamics (CFD) technology. The results showed that the biomass and HA yield changed a little with the increase of impeller speed, but the HA molecular weight firstly increased and then decreased. The results of phase agitation control strategy demonstrated that the influence of agitation on the HA molecular weight mainly exhibited at the stage of HA synthesis. Moreover, the CFD simulation results indicated that when impeller speed increased, the mixing time reduced while the shear rate increased significantly. The removal of anchor could moderate the contradiction between the mixing time and shear rate, and finally the HA molecular weight increased by 23.9%. The results of this work could provide guidelines for optimizing the HA fermentation, as well as the bioreactor design and scaling up. PMID:20222466

  13. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified.

  14. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.

    PubMed

    Nazeri, Niloofar; Avadi, Mohammad Reza; Faramarzi, Mohammad Ali; Safarian, Shahrokh; Tavoosidana, Gholamreza; Khoshayand, Mohammad Reza; Amani, Amir

    2013-11-01

    Nanoparticles of ultra low molecular weight chitosan (ULMWCS)/hyaluronic acid (HA) were prepared by ion gelation. Three independent variables, namely, ratio of concentration of ULMWCS to HA (CS/HA), pH of solution and stirring time were studied to identify their effects on size, polydispersity and zeta potential of prepared nanoparticles using a Box-Behnken design. Results showed that pH and CS/HA have a direct effect on size, while increase of stirring time decreases the size of nanoparticles. Additionally, it was shown that all the independent parameters have direct effects on zeta potential. Also, the minimum polydispersity index was observed at lowest values of CS/HA. The model also predicted that the optimum values are 4.15, 4.14 and 180 (min) for the CS/HA, solution pH and stirring time, respectively. The obtained preparation had a size of 200 nm, polydispersity index of 0.37, and zeta potential of 13.0 mV.

  15. Thiolated Carboxymethyl-Hyaluronic-Acid-Based Biomaterials Enhance Wound Healing in Rats, Dogs, and Horses

    PubMed Central

    Yang, Guanghui; Prestwich, Glenn D.; Mann, Brenda K.

    2011-01-01

    The progression of wound healing is a complicated but well-known process involving many factors, yet there are few products on the market that enhance and accelerate wound healing. This is particularly problematic in veterinary medicine where multiple species must be treated and large animals heal slower, oftentimes with complicating factors such as the development of exuberant granulation tissue. In this study a crosslinked-hyaluronic-acid (HA-) based biomaterial was used to treat wounds on multiple species: rats, dogs, and horses. The base molecule, thiolated carboxymethyl HA, was first found to increase keratinocyte proliferation in vitro. Crosslinked gels and films were then both found to enhance the rate of wound healing in rats and resulted in thicker epidermis than untreated controls. Crosslinked films were used to treat wounds on forelimbs of dogs and horses. Although wounds healed slower compared to rats, the films again enhanced wound healing compared to untreated controls, both in terms of wound closure and quality of tissue. This study indicates that these crosslinked HA-based biomaterials enhance wound healing across multiple species and therefore may prove particularly useful in veterinary medicine. Reduced wound closure times and better quality of healed tissue would decrease risk of infection and pain associated with open wounds. PMID:23738117

  16. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified. PMID:24060281

  17. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks

    PubMed Central

    Jha, Amit K.; Hule, Rohan A.; Jiao, Tong; Teller, Sean S.; Clifton, Rodney J.; Duncan, Randall L.; Pochan, Darrin J.; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1−10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  18. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks

    PubMed Central

    Xu, Xian; Jha, Amit K.; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2012-01-01

    Hyaluronic acid (HA) is one of nature's most versatile and fascinating macromolecules. Being an essential component of the natural extracellular matrix (ECM), HA plays an important role in a variety of biological processes. Inherently biocompatible, biodegradable and non-immunogenic, HA is an attractive starting material for the construction of hydrogels with desired morphology, stiffness and bioactivity. While the interconnected network extends to the macroscopic level in HA bulk gels, HA hydrogel particles (HGPs, microgels or nanogels) confine the network to microscopic dimensions. Taking advantage of various scaffold fabrication techniques, HA hydrogels with complex architecture, unique anisotropy, tunable viscoelasticity and desired biologic outcomes have been synthesized and characterized. Physical entrapment and covalent integration of hydrogel particles in a secondary HA network give rise to hybrid networks that are hierarchically structured and mechanically robust, capable of mediating cellular activities through the spatial and temporal presentation of biological cues. This review highlights recent efforts in converting a naturally occurring polysaccharide to drug releasing hydrogel particles, and finally, complex and instructive macroscopic networks. HA-based hydrogels are promising materials for tissue repair and regeneration. PMID:22419946

  19. Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns.

    PubMed

    Friedrich, Emily E; Sun, Liang Tso; Natesan, Shanmugasundaram; Zamora, David O; Christy, Robert J; Washburn, Newell R

    2014-05-01

    Biomaterials capable of neutralizing specific cytokines could form the basis for treating a broad range of conditions characterized by intense, local inflammation. Severe burns, spanning partial- to full-thickness of the dermis, can result in complications due to acute inflammation that contributes to burn progression, and early mediation may be a key factor in rescuing thermally injured tissue from secondary necrosis to improve healing outcomes. In this work, we examined the effects on burn progression and influence on the inflammatory microenvironment of topical application of anti-tumor necrosis factor-α (anti-TNF-α) alone, mixed with hyaluronic acid (HA) or conjugated to HA. We found that non-conjugated anti-TNF-α decreased macrophage infiltration to a greater extent than that conjugated to HA; however, there was little effect on the degree of progression or IL-1β levels. A simple transport model is proposed to analyze the results, which predicts qualitative and quantitative differences between untreated burn sites and those treated with the conjugates. Our results indicate that conjugation of anti-TNF-α to high molecular weight HA provides sustained, local modulation of the post-injury inflammatory responses compared to direct administration of non-conjugated antibodies.

  20. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan-Physicochemical study and structural analysis.

    PubMed

    Lalevée, G; Sudre, G; Montembault, A; Meadows, J; Malaise, S; Crépet, A; David, L; Delair, T

    2016-12-10

    Polyelectrolyte complexes (PECs) were prepared from Chitosan (CS) and Hyaluronic Acid (HYA) homogeneous mixtures of aqueous solutions. The method consisted of preparing a homogeneous mixture of the two polysaccharides via charge screening at high salt concentrations. Then, the mixture was dialyzed, leading to the controlled self-assembly of the two polyelectrolytes. Critical parameters like the chitosan degree of acetylation (DA) and molar mass (Mw), the residual salt concentration and the molar charge ratio r=nNH3(+) (CS)/nCOO(-) (HYA) accounted for the transition from homogeneous aqueous solutions to colloidal suspensions (r=0.1) or gel coacervates (r=0.5). The influence of the DA and Mw of CS was evaluated by visual observations, light scattering and rheological measurements. For low values of r, Small Angle X-ray Scattering (SAXS) experiments revealed that the HYA nanostructure was weakly affected by the presence of PECs. On the contrary, the structure was impacted when increasing r, revealing a heterogeneous aggregate morphology with ladder-like chain interactions. PMID:27577900

  1. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis.

    PubMed

    Holubova, Lucie; Knotek, Petr; Palarcik, Jiri; Cadkova, Michaela; Belina, Petr; Vlcek, Milan; Korecka, Lucie; Bilkova, Zuzana

    2014-11-01

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were -50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were -38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed. PMID:25280714

  2. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels

    PubMed Central

    Duan, Bin; Hockaday, Laura A.; Kapetanovic, Edi; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three dimensional (3D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative templates for tissue engineering. However, the role of stiffness and adhesivity of hydrogels in VIC behavior remains poorly understood. This study reports synthesis of oxidized and methacrylated hyaluronic acid (Me-HA and MOHA) and subsequent development of hybrid hydrogels based on modified HA and methacrylated gelatin (Me-Gel) for VIC encapsulation. The mechanical stiffness and swelling ratio of the hydrogels were tunable with molecular weight of HA and concentration/composition of precursor solution. The encapsulated VIC in pure HA hydrogels with lower mechanical stiffness showed more spreading morphology comparing to stiffer counterparts and dramatically upregulated alpha smooth muscle actin expression indicating more activated myofibroblast properties. The addition of Me-Gel in Me-HA facilitated cell spreading, proliferation and VIC migration from encapsulated spheroids and better maintained VIC fibroblastic phenotype. The VIC phenotype transition during migration from encapsulated spheroids in both Me-HA and Me-HA/Me-Gel hydrogel matrix was also observed. These findings are important for the rational design of hydrogels for controlling VIC morphology, and for regulating VIC phenotype and function. The Me-HA/Me-Gel hybrid hydrogels accommodated with VIC are promising as valve tissue engineering scaffolds and 3D model for understanding valvular pathobiology. PMID:23648571

  3. Science of Hyaluronic Acid Beyond Filling: Fibroblasts and Their Response to the Extracellular Matrix.

    PubMed

    Landau, Marina; Fagien, Steven

    2015-11-01

    Loss of viscoelasticity is one of the primarily signs of skin aging, followed by appearance of visible wrinkles. Hyaluronic acid (HA)-based fillers are widely used to fill wrinkles and compensate for volume loss. Recent clinical observations demonstrate persistence of the filling effect longer than the biological availability of the filler. Stimulation of new collagen by cross-linked HA and up-regulation of elastin have been suggested as possible explanation to this observation and have been supported experimentally. Cross-linked HA substitutes for fragmented collagen in restoring extracellular matrix required for normal activity of fibroblasts, such as collagen and elastin production. To restore extracellular matrix efficiently, serial monthly treatments are required. Boosting of facial and nonfacial skin through fibroblast activation is a new indication for HA-based products. Injectable HA has also been recently registered in Europe as agents specific for the improvement of skin quality (Restylane Skinboosters). Further explanation of the possible mechanisms supported by long-term clinical examples is presented herein. PMID:26441098

  4. CD44-mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility

    PubMed Central

    Kim, Yushan; Kumar, Sanjay

    2014-01-01

    The high molecular weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain extracellular matrix (ECM). Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of RGD/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals up-regulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell adhesion to HA on short time scales (0.5h post-incubation) even if RGD is present, whereas maximal adhesion on longer time scales (3h) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell adhesive structures formed during migration on bare HA matrices are more short-lived than cellular protrusions formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues, temporally precedes integrin-based adhesion maturation, and facilitates invasion. PMID:24962319

  5. Transcription of the Streptococcus pyogenes hyaluronic acid capsule biosynthesis operon is regulated by previously unknown upstream elements.

    PubMed

    Falaleeva, Marina; Zurek, Oliwia W; Watkins, Robert L; Reed, Robert W; Ali, Hadeel; Sumby, Paul; Voyich, Jovanka M; Korotkova, Natalia

    2014-12-01

    The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence.

  6. Recreating the Tumor Microenvironment in a Bilayer, Hyaluronic Acid Hydrogel Construct for the Growth of Prostate Cancer Spheroids

    PubMed Central

    Xu, Xian; Gurski, Lisa A.; Zhang, Chu; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2012-01-01

    Cancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed and characterized. HA hydrogels were prepared by mixing solutions of HA precursors functionalized with acrylate groups (HA-AC) and reactive thiols (HA-SH) under physiological conditions. The resultant viscoelastic gels have an average elastic modulus of 234 ± 30 Pa and can be degraded readily by hyaluronidase. The orthogonal and cytocompatible nature of the crosslinking chemistry permits facile incorporation of cytokine-releasing particles and PCa cells. In our bilayer hydrogel construct, the top layer contains heparin (HP)-decorated, HA-based hydrogel particles (HGPs) capable of releasing heparin-binding epidermal growth factor-like growth factor (HB-EGF) in a sustained manner at a rate of 2.5wt%/day cumulatively. LNCaP cells embedded in the bottom layer receive the growth factor signals from the top, and in response form enlarging tumoroids with an average diameter of 85 μm by day 7. Cells in 3D hydrogels assemble into spherical tumoroids, form close cellular contacts through E-cadherin, and show cortical organization of F-actin, whereas those plated as 2D monolayers adopt a spread-out morphology. Compared to cells cultured on 2D, the engineered tumoroids significantly increased the expression of two pro-angiogenic factors, vascular endothelial growth factor-165 (VEGF165) and interleukin-8 (IL-8), both at mRNA and protein levels. Overall, the HA model system provides a useful platform for the study of tumor cell responses to growth factors and for screening of anticancer drugs targeting these pathways. PMID:22999468

  7. Transcription of the Streptococcus pyogenes Hyaluronic Acid Capsule Biosynthesis Operon Is Regulated by Previously Unknown Upstream Elements

    PubMed Central

    Falaleeva, Marina; Zurek, Oliwia W.; Watkins, Robert L.; Reed, Robert W.; Ali, Hadeel; Sumby, Paul; Voyich, Jovanka M.

    2014-01-01

    The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence. PMID:25287924

  8. Hyaluronic acid production and hyaluronidase activity in the newt iris during lens regeneration

    SciTech Connect

    Kulyk, W.M.; Zalik, S.E.; Dimitrov, E.

    1987-09-01

    The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of (/sup 3/H)glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.

  9. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field.

  10. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field. PMID:26106949

  11. Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin.

    PubMed

    Motokawa, Keiko; Hahn, Sei Kwang; Nakamura, Teruo; Miyamoto, Hajime; Shimoboji, Tsuyoshi

    2006-09-01

    A novel sustained release formulation of erythropoietin (EPO) was developed using hyaluronic acid (HA) hydrogels. For the preparation of HA hydrogels, adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and analyzed with (1)H NMR. The degree of HA-ADH modification was about 69%. EPO was in situ encapsulated into HA-ADH hydrogels through a selective cross-linking reaction of bis(sulfosuccinimidyl) suberate (BS(3)) to hydrazide group (pK(a) = 3.0) of HA-ADH rather than to amine group (pK(a) > 9) of EPO. The denaturation of EPO during HA-ADH hydrogel synthesis was drastically reduced with decreasing pH from 7.4 to 4.8. The specific reactivity of BS(3) to hydrazide at pH = 4.8 might be due to its low pK(a) compared with that of amine. In vitro release of EPO in phosphate buffered saline at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 4 days from HA-ADH hydrogels. When the hydrogels were dried at 37 degrees C for a day, however, longer release of EPO up to 3 weeks could be demonstrated. According to in vivo release test of EPO from HA-ADH hydrogels in SD rats, elevated EPO concentration higher than 0.1 ng/mL could be maintained from 7 days up to 18 days depending on the preparation methods of HA-ADH hydrogels. There was no adverse effect during and after HA-ADH hydrogel implantation. PMID:16721757

  12. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier

    2015-10-01

    Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments

  13. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. PMID:25940300

  14. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells.

  15. Development of an artificial dermis composed of hyaluronic acid and collagen.

    PubMed

    Mineo, Akina; Suzuki, Ryusuke; Kuroyanagi, Yoshimitsu

    2013-01-01

    This study aimed to investigate the efficacy of an artificial dermis composed of hyaluronic acid (HA) and collagen (Col) with or without epidermal growth factor (EGF), both in in vitro and in vivo. The cross-linked high molecular weight HA spongy sheet was prepared by freeze-drying. The spongy sheet was immersed in a mixed solution of high molecular weight HA, low molecular weight HA, and heat-denatured Col, and then lyophilized to obtain a two-layered spongy sheet. Cross-linking among Col molecules was induced by ultraviolet irradiation to prepare the artificial dermis (Type I). In a similar manner, a two-layered artificial dermis containing EGF (Type II) was prepared using a similar mixed solution containing EGF. The in vitro experiments demonstrated that EGF released from the Type II artificial dermis stimulates fibroblasts to produce increased amounts of vascular endothelial growth factor and hepatocyte growth factor. The therapeutic efficacy of artificial dermis was evaluated in animal tests using Sprague Dawley (SD) rats. The dorsal skin of the SD rat was shaved and then exposed to boiling water for 3 s to induce a deep dermal burn. The necrotic tissue was then excised 3 days later. Each artificial dermis was applied to the skin defect for 7 days and assessed for its ability to generate a wound bed. The in vivo experiments demonstrated that the Type II artificial dermis promotes angiogenesis to a greater extent at an early stage (within 3 days), and also suppresses the inflammatory reaction more successfully compared with the Type I artificial dermis. In further animal tests, an autologous skin graft was performed by excising a piece of skin from the abdominal region and then grafting it onto the wound bed prepared using each artificial dermis for 7 days. Although the Type II artificial dermis had the highest potential to promote angiogenesis, in this animal study, each artificial dermis induced excellent wound bed formation acceptable for autologous skin

  16. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis

    PubMed Central

    Ayhan, Egemen; Kesmezacar, Hayrettin; Akgun, Isik

    2014-01-01

    Osteoarthritis (OA) is a complex “whole joint” disease pursued by inflammatory mediators, rather than purely a process of “wear and tear”. Besides cartilage degradation, synovitis, subchondral bone remodeling, degeneration of ligaments and menisci, and hypertrophy of the joint capsule take parts in the pathogenesis. Pain is the hallmark symptom of OA, but the extent to which structural pathology in OA contributes to the pain experience is still not well known. For the knee OA, intraarticular (IA) injection (corticosteroids, viscosupplements, blood-derived products) is preferred as the last nonoperative modality, if the other conservative treatment modalities are ineffective. IA corticosteroid injections provide short term reduction in OA pain and can be considered as an adjunct to core treatment for the relief of moderate to severe pain in people with OA. IA hyaluronic acid (HA) injections might have efficacy and might provide pain reduction in mild OA of knee up to 24 wk. But for HA injections, the cost-effectiveness is an important concern that patients must be informed about the efficacy of these preparations. Although more high-quality evidence is needed, recent studies indicate that IA platelet rich plasma injections are promising for relieving pain, improving knee function and quality of life, especially in younger patients, and in mild OA cases. The current literature and our experience indicate that IA injections are safe and have positive effects for patient satisfaction. But, there is no data that any of the IA injections will cause osteophytes to regress or cartilage and meniscus to regenerate in patients with substantial and irreversible bone and cartilage damage. PMID:25035839

  17. Hyaluronic acid auto-crosslinked polymer (ACP): Reaction monitoring, process investigation and hyaluronidase stability.

    PubMed

    Pluda, Stefano; Pavan, Mauro; Galesso, Devis; Guarise, Cristian

    2016-10-01

    Hyaluronic Acid (HA) is a non-sulphated glycosaminoglycan that, despite its high molecular weight, is soluble in water and is not resistant to enzymatic degradation, the latter of which hinders its wider application as a biomedical material. Auto-crosslinked polymer (ACP) gels of HA are fully biocompatible hydrogels that exhibit improved viscoelastic properties and prolonged in vivo residence times compared to the native polymer. Crosslinking is achieved through a base-catalysed reaction consisting of the activation of HA carboxyl groups by 2-chloro-1-methylpyridinium iodide (CMPI) and subsequent nucleophilic acyl substitution by the hydroxyl groups of HA in organic solvent. In this study, a number of ACP hydrogels have been obtained via reactions using varying ratios of CMPI to HA. The crosslinking reaction was monitored by rheological measurements in organic solvents during CMPI addition to the reaction mixture. The ACP intermediates, powders and hydrogels were characterized, helping to elucidate the crosslinking process. A two-step mechanism was proposed to explain the observed trends in viscosity and particle size. Syntheses were carried out by varying the reaction temperature, respectively at 0 °C, 25 °C and 45 °C in N-Methyl-2-Pyrrolidone (NMP), as well as the solvent respectively in NMP, DMSO and DMF at 25 °C. Interestingly, varying these parameters did not substantially affect the degree of crosslinking but likely did influence the intra/inter-molecular crosslinking ratio and, therefore, the viscoelastic properties. A wide range of crosslinking densities was confirmed through ESEM analysis. Finally, a comparative hyaluronidase degradation assay revealed that the ACPs exhibited a higher resistance toward enzymatic cleavage at low elastic modulus compared to other more chemically resistant, crosslinked HAs. These observations demonstrated the importance of crosslinking density of matrix structures on substrate availability. PMID:27442913

  18. Influence of 3D Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis

    PubMed Central

    Chung, Cindy; Burdick, Jason A.

    2009-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells whose plasticity and self-renewal capacity have generated significant interest for applications in tissue engineering. The objective of this study was to investigate MSC chondrogenesis in photocrosslinked hyaluronic acid (HA) hydrogels. Since HA is a native component of cartilage and MSCs may interact with HA via surface receptors, these hydrogels could influence stem cell differentiation. Both in vitro and in vivo cultures of MSC-laden HA hydrogels permitted chondrogenesis, measured by the early gene expression and production of cartilage specific matrix proteins. For in vivo culture, MSCs were encapsulated with and without TGF-β3, or pre-cultured for 2 weeks in chondrogenic media prior to implantation. All groups exhibited up-regulation of type II collagen, aggrecan, and sox 9 compared to MSCs at the time of encapsulation, and the addition of TGF-β3 enhanced expression of these genes. To assess the influence of scaffold chemistry on chondrogenesis, HA hydrogels were compared to relatively inert poly(ethylene glycol) (PEG) hydrogels, and showed enhanced expression of cartilage specific markers. Differences between HA and PEG hydrogels in vivo were most noticeable for MSCs and polymer alone, indicating that hydrogel chemistry influences the commitment of MSCs to undergo chondrogenesis (e.g., ~43-fold up-regulation of type II collagen of MSCs in HA over PEG hydrogels). Although this study only investigated early markers towards tissue regeneration, these results emphasize the importance of material cues in MSC differentiation microenvironments, potentially through material/cell receptor interactions. PMID:19193129

  19. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shu Jun; Chung, Joo Eun; Yano, Hirohisa; Kurisawa, Motoichi

    2013-03-28

    We report an injectable hydrogel system that incorporates interferon-α2a (IFN-α2a) for liver cancer therapy. IFN-α2a was incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the oxidative coupling of Tyr moieties with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). IFN-α2a-incorporated HA-Tyr hydrogels of varying stiffness were formed by changing the H2O2 concentration. The incorporation of IFN-α2a did not affect the rheological properties of the hydrogels. The activity of IFN-α2a was furthermore well-maintained in the hydrogels with lower stiffness. Through the caspase-3/7 pathway in vitro, IFN-α2a released from HA-Tyr hydrogels inhibited the proliferation of liver cancer cells and induced apoptosis. In the study of the pharmacokinetics, a higher concentration of IFN-α2a was shown in the plasma of mice treated with IFN-α2a-incorporated hydrogels after 4h post injection, with a much higher amount of IFN-α2a delivered at the tumor tissue comparing to that of injecting an IFN-α2a solution. The tumor regression study revealed that IFN-α2a-incorporated HA-Tyr hydrogels effectively inhibited tumor growth, while the injection of an IFN-α2a solution did not demonstrate antitumor efficacy. Histological studies confirmed that tumor tissues in mice treated with IFN-α2a-incorporated HA-Tyr hydrogels showed lower cell density, with more apoptotic and less proliferating cells compared with tissues treated with an IFN-α2a solution. In addition, the IFN-α2a-incorporated hydrogel treatment greatly inhibited the angiogenesis of tumor tissues. PMID:23328125

  20. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs.

  1. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor.

    PubMed

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng; Zeng, Huilan; Li, Zhizhong; Wang, Yuechun; Liu, Gexiu; Xu, Bin; Lin, Yongliang; Zhang, Peng; Wei, Xing

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin-Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing.

  2. Hyaluronic acid is radioprotective in the intestine through a TLR4 and COX-2-mediated mechanism.

    PubMed

    Riehl, Terrence E; Foster, Lynne; Stenson, William F

    2012-02-01

    The intestinal epithelium is sensitive to radiation injury. Damage to the intestinal epithelium is dose limiting in radiation therapy of abdominal cancers. There is a need for agents that can be given before radiation therapy to protect the intestinal epithelium. C57BL6 mice were subjected to 12 Gy of total body radiation. Some mice received intraperitoneal hyaluronic acid (HA) before radiation. Mice were killed 6 h after radiation to assess radiation-induced apoptosis in the intestine; other mice were killed at 84 h to assess crypt survival. Total body radiation (12 Gy) resulted in increased expression of HA synthases and HA in the intestine and increased plasma HA (5-fold). Intraperitoneal injection of HA (30 mg/kg) before radiation resulted in a 1.8-fold increase in intestinal crypt survival and a decrease in radiation-induced apoptosis. The radioprotective effects of HA were not seen in Toll-like receptor 4 (TLR4)- or cyclooxygenase-2 (COX-2)-deficient mice. Intraperitoneal injection of HA induced a 1.5-fold increase in intestinal COX-2 expression, a 1.5-fold increase in intestinal PGE₂, and the migration of COX-2-expressing mesenchymal stem cells from the lamina propria in the villi to the lamina propria near the crypt. We conclude that 1) radiation induces increased HA expression through inducing HA synthases, 2) intraperitoneal HA given before radiation reduces radiation-induced apoptosis and increases crypt survival, and 3) these radioprotective effects are mediated through TLR4, COX-2, and the migration of COX-2-expressing mesenchymal stem cells.

  3. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer.

    PubMed

    Choi, Ki Young; Jeon, Eun Jung; Yoon, Hong Yeol; Lee, Beom Suk; Na, Jin Hee; Min, Kyung Hyun; Kim, Sang Yoon; Myung, Seung-Jae; Lee, Seulki; Chen, Xiaoyuan; Kwon, Ick Chan; Choi, Kuiwon; Jeong, Seo Young; Kim, Kwangmeyung; Park, Jae Hyung

    2012-09-01

    Colon cancer is the second leading cause of cancer-related death in the United States. The considerable mortality from colon cancer is due to metastasis to other organs, mainly the liver. In the management of colon cancer, early detection and targeted therapy are crucial. In this study, we aimed to establish a versatile theranostic system for early tumor detection and targeted tumor therapy by using poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) which can selectively accumulate in tumor tissue. For the diagnostic application, a near-infrared fluorescence (NIRF) imaging dye (Cy 5.5) was chemically conjugated onto the HA backbone of P-HA-NPs. After intravenous injection of Cy5.5-P-HA-NPs into the tumor-bearing mice, small-sized colon tumors as well as liver-implanted colon tumors were effectively visualized using the NIRF imaging technique. For targeted therapy, we physically encapsulated the anticancer drug, irinotecan (IRT), into the hydrophobic cores of P-HA-NPs. Owing to their notable tumor targeting capability, IRT-P-HA-NPs exhibited an excellent antitumor activity while showing a reduction in undesirable systemic toxicity. Importantly, we demonstrated the theranostic application using Cy5.5-P-HA-NPs and IRT-P-HA-NPs in orthotopic colon cancer models. Following the systemic administration of Cy5.5-P-HA-NPs, neoplasia was clearly visualized, and the tumor growth was effectively suppressed by intravenous injection of IRT-P-HA-NPs. It should be emphasized that the therapeutic responses could be simultaneously monitored by Cy5.5-P-HA-NPs. Our results suggest that P-HA-NPs can be used as a versatile theranostic system for the early detection, targeted therapy, and therapeutic monitoring of colon cancer.

  4. Clinical Evaluation of Hyaluronic Acid Sponge with Zinc versus Placebo for Scar Reduction after Breast Surgery

    PubMed Central

    Mahedia, Monali; Shah, Nilay

    2016-01-01

    Background: Scar formation is a major source of dissatisfaction among patients and surgeons. Individually, hyaluronan, or hyaluronic acid (HA), and zinc have been shown to reduce scarring. The authors evaluated the safety and efficacy of an HA sponge with zinc compared with placebo when applied to bilateral breast surgery scars; specifically, they evaluated whether the use of this product modulates inflammation and immediate scarring in treated patients after bilateral breast surgery. Methods: This double-blind, randomized, prospective study was approved by the local institutional review board. Bilateral breast surgery patients with right and left incision lines were randomly assigned to receive HA sponge with zinc or placebo within 2 to 4 days after their procedure. Participants were followed up at 6 weeks, 12 weeks, and 1 year and evaluated at 12 weeks. Three blinded evaluators reviewed photographs of the incision lines and assessed the scars using a visual analog scale, new scale, and a patient satisfaction survey. Results: Nineteen bilateral breast surgery patients were enrolled in the study. Statistical analysis was performed on 14 patients who completed the follow-up. The mean visual analog scale score was lower for the side receiving the HA sponge with zinc (2.6) than for the side receiving placebo (3.0), indicating a better outcome (t test; P = 0.08). The HA sponge with zinc was found to have significant positive findings on a patient satisfaction survey (P = 0.01). Conclusions: This is a preliminary study that shows zinc hyaluronan was associated with high patient satisfaction in achieving a better scar after bilateral breast surgery, irrespective of skin color. It seems to be safe and effective for early scars. PMID:27536470

  5. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy.

    PubMed

    Thomas, Reju George; Moon, Myeong Ju; Lee, Hyegyeong; Sasikala, Arathyram Ramachandra Kurup; Kim, Cheol Sang; Park, In-Kyu; Jeong, Yong Yeon

    2015-10-20

    Recently, superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared for magnetic resonance (MR) imaging and hyperthermia therapy. Here, we have developed hyaluronic acid (HA) coated SPIONs primarily for use in a hyperthermia application with an MR diagnostic feature with hydrodynamic size measurement of 176nm for HA-PEG10-SPIONs and 149nm for HA-SPIONs. HA-coated SPIONs (HA-SPIONs) were prepared to target CD44-expressed cancer where the carrier was conjugated to PEG for analyzing longer circulation in blood as well as for biocompatibility (HA-PEG10 SPIONs). Characterization was conducted with TEM (shape), DLS (size), ELS (surface charge), TGA (content of polymer) and MRI (T2-relaxation time). The heating ability of both the HA-SPIONs and HA-PEG10-SPIONs was studied by AMF and SAR calculation. Cellular level tests were conducted using SCC7 and NIH3T3 cell lines to confirm cell viability and cell specific uptake. HA-SPIONs and HA-PEG10-SPIONs were injected to xenograft mice bearing the SCC7 cell line for MRI cancer diagnosis. We found that HA-SPION-injected mice tumors showed nearly 40% MR T2 contrast compared to the 20% MR T2 contrast of the HA-PEG10-SPION group over a 3h time period. Finally, in vitro hyperthermia studies were conducted in the SCC7 cell line that showed less than 40% cell viability for both HA-SPIONs and HA-PEG10-SPIONs in AMF treated cells. In conclusion, HA-SPIONs were targeted specifically to the CD44, and the hyperthermia effect of HA-SPIONs and HA-PEG10-SPIONs was found to be significant for future studies. PMID:26256205

  6. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot devicea

    PubMed Central

    Haward, S. J.; Jaishankar, A.; Oliveira, M. S. N.; Alves, M. A.; McKinley, G. H.

    2013-01-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers. PMID:24738010

  7. Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy.

    PubMed

    Wang, Guohao; Zhang, Fan; Tian, Rui; Zhang, Liwen; Fu, Guifeng; Yang, Lily; Zhu, Lei

    2016-03-01

    Phototherapy is a light-triggered treatment for tumor ablation and growth inhibition via photodynamic therapy (PDT) and photothermal therapy (PTT). Despite extensive studies in this area, a major challenge is the lack of selective and effective phototherapy agents that can specifically accumulate in tumors to reach a therapeutic concentration. Although recent attempts have produced photosensitizers complexed with photothermal nanomaterials, the tedious preparation steps and poor tumor efficiency of therapy still hampers the broad utilization of these nanocarriers. Herein, we developed a CD44 targeted photoacoustic (PA) nanophototherapy agent by conjugating Indocyanine Green (ICG) to hyaluronic acid nanoparticles (HANPs) encapsulated with single-walled carbon nanotubes (SWCNTs), resulting in a theranostic nanocomplex of ICG-HANP/SWCNTs (IHANPT). We fully characterized its physical features as well as PA imaging and photothermal and photodynamic therapy properties in vitro and in vivo. Systemic delivery of IHANPT theranostic nanoparticles led to the accumulation of the targeted nanoparticles in tumors in a human cancer xenograft model in nude mice. PA imaging confirmed targeted delivery of the IHANPT nanoparticles into tumors (T/M ratio = 5.19 ± 0.3). The effect of phototherapy was demonstrated by low-power laser irradiation (808 nm, 0.8 W/cm(2)) to induce efficient photodynamic effect from ICG dye. The photothermal effect from the ICG and SWCNTs rapidly raised the tumor temperature to 55.4 ± 1.8 °C. As the result, significant tumor growth inhibition and marked induction of tumor cell death and necrosis were observed in the tumors in the tumors. There were no apparent systemic and local toxic effects found in the mice. The dynamic thermal stability of IHANPT was studied to ensure that PTT does not affect ICG-dependent PDT in phototherapy. Therefore, our results highlight imaging property and therapeutic effect of the novel IHANPT theranostic nanoparticle for CD44

  8. Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor.

    PubMed

    Kondo, Shinya; Kuroyanagi, Yoshimitsu

    2012-01-01

    This study was designed to investigate the effect of a wound dressing composed of hyaluronic acid (HA) and collagen (Col) sponge containing epidermal growth factor (EGF) on various parameters of wound healing in vitro and in vivo. High-molecular-weight (HMW) HA solution, hydrolyzed low-molecular-weight (LMW) HA solution and heat-denatured Col solution were mixed, followed by freeze-drying to obtain a spongy sheet. Cross-linkage between Col molecules was induced by UV irradiation to the spongy sheet (Type-I dressing). In a similar manner, a spongy sheet containing EGF was prepared (Type-II dressing). The efficacy of these products was firstly evaluated in vitro. Fibroblast proliferation was assessed in culture medium in the presence or absence of a piece of each wound dressing. EGF stimulated cell proliferation after UV irradiation and dry sterilization at 110°C for 1 h. In the second experiment, fibroblasts-embedded Col gels were elevated to the air-liquid interface to create a wound surface model, on which wound dressings were placed and cultured for 1 week. Cell proliferation and the production of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were investigated. With Type-II dressings, the amounts of VEGF and HGF released from fibroblasts in the Col gel were significantly increased compared with Type-I dressing. Next, the efficacy of these products was evaluated in vivo using Sprague-Dawley (SD) rats. Wound conditions after 1 and 2 weeks of treatment with the wound dressings were evaluated based on the gross and histological appearances. Type-II dressings promoted a decrease in wound size, re-epithelialization and granulation tissue formation associated with angiogenesis. These findings indicate that the combination of HA, Col and EGF promotes wound healing by stimulating fibroblast function.

  9. Development of a wound dressing composed of a hyaluronic acid sponge containing arginine.

    PubMed

    Matsumoto, Yasuhiro; Arai, Kiwako; Momose, Hitomi; Kuroyanagi, Yoshimitsu

    2009-01-01

    Spongy sheets composed of cross-linked high-molecular-weight (HMW) hyaluronic acid (HA) were prepared by freeze-drying an aqueous HMW-HA solution containing cross-linking agent (Group I). The Group I sheet was immersed into an aqueous low-molecular-weight (LMW) HA solution with or without L-arginine (Arg) and was then freeze-dried to prepare several types of spongy sheets (Groups II-V). The amount of Arg was 1.0 g, 0.5 g, 0.2 g and 0 g in Groups III, IV, V and II, respectively. In the first experiment, each spongy sheet was applied to a full-thickness skin defect with a diameter of 35 mm in the abdominal region of SD rats, with intact skin in the central area measuring 15 mm in diameter. Commercially available polyurethane film dressing was applied over each spongy sheet as a covering material. The control group was covered with polyurethane film dressing alone. All spongy sheets promoted epithelization, as well as angiogenesis, as compared with controls. These findings indicate that HA and Arg are essential for wound healing. Re-epithelizaion was particularly active in Groups IV and V. In the second experiment, each spongy sheet was applied to a full-thickness burn injury measuring 35 mm in diameter in the abdominal region of SD rats, after necrotic skin was surgically removed. Groups II-V showed decreased wound size when compared with Group I and controls. The present findings indicate that the release of LMW-HA and Arg from a cross-linked HMW-HA spongy sheet effectively stimulates wound healing.

  10. Glans Penis Augmentation Using Hyaluronic Acid Gel as an Injectable Filler.

    PubMed

    Moon, Du Geon; Kwak, Tae Il; Kim, Je Jong

    2015-08-01

    Glans penis augmentation (GPA) has received little attention from experts despite the existence of a subset of patients who may be dissatisfied with a small glans or poor tumescence of the glans during erection. Recently, GPA using an injectable filler or implantation of a graft or filler has been developed. Despite a demanding injection technique and inevitable uneven undulation of the glandular surface, GPA using injectable hyaluronic acid (HA) gel is a novel and useful therapy and an effective and safe procedure for soft tissue enhancement. For long-term presence of implants, timed supplementation can be used similar to that for fascial plasty. In complications such as mucosal necrosis of the glans penis, most cases occur from the use of non-HA gel or an unpurified form and misunderstanding of the management protocol for immediate side effects. Currently, GPA using injectable HA gel is not recommended in the International Society for Sexual Medicine guideline due to possible sensory loss. In a 5-year long-term follow-up of GPA by subcutaneous injection of HA gel, the residual volume of implants decreased by 15% of the maximal glandular circumference, but was still effective for alleviating the hypersensitivity of the glans penis in premature ejaculation patients. For efficacy in premature ejaculation, selection of appropriate candidates is the most important factor for success. GPA does not harm erectile function and is less invasive and irreversible compared to dorsal neurectomy. To refine the procedure, more interest and well-designed studies are required for the establishment of the procedure. PMID:26331121

  11. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy.

    PubMed

    Thomas, Reju George; Moon, Myeong Ju; Lee, Hyegyeong; Sasikala, Arathyram Ramachandra Kurup; Kim, Cheol Sang; Park, In-Kyu; Jeong, Yong Yeon

    2015-10-20

    Recently, superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared for magnetic resonance (MR) imaging and hyperthermia therapy. Here, we have developed hyaluronic acid (HA) coated SPIONs primarily for use in a hyperthermia application with an MR diagnostic feature with hydrodynamic size measurement of 176nm for HA-PEG10-SPIONs and 149nm for HA-SPIONs. HA-coated SPIONs (HA-SPIONs) were prepared to target CD44-expressed cancer where the carrier was conjugated to PEG for analyzing longer circulation in blood as well as for biocompatibility (HA-PEG10 SPIONs). Characterization was conducted with TEM (shape), DLS (size), ELS (surface charge), TGA (content of polymer) and MRI (T2-relaxation time). The heating ability of both the HA-SPIONs and HA-PEG10-SPIONs was studied by AMF and SAR calculation. Cellular level tests were conducted using SCC7 and NIH3T3 cell lines to confirm cell viability and cell specific uptake. HA-SPIONs and HA-PEG10-SPIONs were injected to xenograft mice bearing the SCC7 cell line for MRI cancer diagnosis. We found that HA-SPION-injected mice tumors showed nearly 40% MR T2 contrast compared to the 20% MR T2 contrast of the HA-PEG10-SPION group over a 3h time period. Finally, in vitro hyperthermia studies were conducted in the SCC7 cell line that showed less than 40% cell viability for both HA-SPIONs and HA-PEG10-SPIONs in AMF treated cells. In conclusion, HA-SPIONs were targeted specifically to the CD44, and the hyperthermia effect of HA-SPIONs and HA-PEG10-SPIONs was found to be significant for future studies.

  12. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine

    PubMed Central

    Abdelkader, Hamdy; Longman, Michael R; Alany, Raid G; Pierscionek, Barbara

    2016-01-01

    This study reports on L-carnosine phytosomes as an alternative for the prodrug N-acetyl-L-carnosine as a novel delivery system to the lens. L-carnosine was loaded into lipid-based phytosomes and hyaluronic acid (HA)-dispersed phytosomes. L-carnosine-phospholipid complexes (PC) of different molar ratios, 1:1 and 1:2, were prepared by the solvent evaporation method. These complexes were characterized with thermal and spectral analyses. PC were dispersed in either phosphate buffered saline pH 7.4 or HA (0.1% w/v) in phosphate buffered saline to form phytosomes PC1:1, PC1:2, and PC1:2 HA, respectively. These phytosomal formulations were studied for size, zeta potential, morphology, contact angle, spreading coefficient, viscosity, ex vivo transcorneal permeation, and cytotoxicity using primary human corneal cells. L-carnosine-phospholipid formed a complex at a 1:2 molar ratio and phytosomes were in the size range of 380–450 nm, polydispersity index of 0.12–0.2. The viscosity of PC1:2 HA increased by 2.4 to 5-fold compared with HA solution and PC 1:2, respectively; significantly lower surface tension, contact angle, and greater spreading ability for phytosomes were also recorded. Ex vivo transcorneal permeation parameters showed significantly controlled corneal permeation of L-carnosine with the novel carrier systems without any significant impact on primary human corneal cell viability. Ex vivo porcine lenses incubated in high sugar media without and with L-carnosine showed concentration-dependent marked inhibition of lens brunescence indicative of the potential for delaying changes that underlie cataractogenesis that may be linked to diabetic processes. PMID:27366062

  13. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    SciTech Connect

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  14. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination.

    PubMed

    Verheul, Rolf J; Slütter, Bram; Bal, Suzanne M; Bouwstra, Joke A; Jiskoot, Wim; Hennink, Wim E

    2011-11-30

    The physical stability of polyelectrolyte nanocomplexes composed of trimethyl chitosan (TMC) and hyaluronic acid (HA) is limited in physiological conditions. This may minimize the favorable adjuvant effects associated with particulate systems for nasal and intradermal immunization. Therefore, covalently stabilized nanoparticles loaded with ovalbumin (OVA) were prepared with thiolated TMC and thiolated HA via ionic gelation followed by spontaneous disulfide formation after incubation at pH 7.4 and 37°C. Also, maleimide PEG was coupled to the remaining thiol-moieties on the particles to shield their surface charge. OVA-loaded TMC/HA nanoparticles had a size of around 250-350nm, a positive zeta potential and OVA loading efficiencies up to 60%. Reacting the thiolated particles with maleimide PEG resulted in a slight reduction of zeta potential (from +7 to +4mV) and a minor increase in particle size. Stabilized TMC-S-S-HA particles (PEGylated or not) showed superior stability in saline solutions compared to non-stabilized particles (composed of nonthiolated polymers) but readily disintegrated upon incubation in a saline buffer containing 10mM dithiothreitol. In both the nasal and intradermal immunization study, OVA loaded stabilized TMC-S-S-HA particles demonstrated superior immunogenicity compared to non-stabilized particles (indicated by higher IgG titers). Intranasal, PEGylation completely abolished the beneficial effects of stabilization and it induced no enhanced immune responses against OVA after intradermal administration. In conclusion, stabilization of the TMC/HA particulate system greatly enhances the immunogenicity of OVA in nasal and intradermal vaccination.

  15. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  16. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  17. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.

    PubMed

    Khaing, Zin Z; Milman, Brian D; Vanscoy, Jennifer E; Seidlits, Stephanie K; Grill, Raymond J; Schmidt, Christine E

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  18. Impaired wound healing in diabetes: the rationale for clinical use of hyaluronic acid plus silver sulfadiazine.

    PubMed

    Prosdocimi, M; Bevilacqua, C

    2012-12-01

    Diabetes-related chronic cutaneous lesions are a serious and common problem, as well as a major cause for hospital admissions, although no general consensus has been reached on the best available treatment for this frequent pathological condition. The primary objective of this review is to analyze the most recent evidence supporting the clinical use of a formulation containing hyaluronic acid (HA) and silver sulfadiazine (SSD) in the diabetic patient. This formulation has been widely used in cutaneous lesions of various etiology, both acute and chronic. The mechanisms underlying tissue repair are altered in the diabetic patient with respect to a healthy individual, namely for a diminished response of the keratinocytes and a reduced capacity of the endothelial cells to form new vessels (neoangiogenesis). Since HA favours the tissue repair process through various mechanisms, among these an increased angiogenic response and an activation of the keratinocytes, its application in diabetic lesions is a rational choice. SSD has been widely used in acute cutaneous lesions, particularly in burns, where it is considered the "gold standard" by which other treatments are measured. The efficacy of SSD in terms of antibacterial activity spectrum on various types of microorganisms, with a favourable safety profile, supports the potential use of SSD in diabetic lesions, where the presence of infection caused by bacteria resistant to most available antibiotics, but not to SSD, is rather frequent. In conclusion, the combined use of HA and SSD in the diabetic patient proves a rational choice and is potentially capable of improving the general clinical situation, on the basis of the synergic effect to control infection and accelerate the tissue repair process.

  19. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces.

    PubMed

    Chang, Debby P; Abu-Lail, Nehal I; Guilak, Farshid; Jay, Gregory D; Zauscher, Stefan

    2008-02-19

    Glycoproteins, such as lubricin, and hyaluronic acid (HA) play a prominent role in the boundary lubrication mechanism in diarthrodial joints. Although many studies have tried to elucidate the lubrication mechanisms of articular cartilage, the molecular details of how lubricin and HA interact with cartilage surfaces and mediate their interaction still remain poorly understood. Here we used model substrates, functionalized with self-assembled monolayers terminating in hydroxyl or methyl groups, (1) to determine the effect of surface chemistry on lubricin and HA adsorption using surface plasmon resonance (SPR) and (2) to study normal force interactions between these surfaces as a function of lubricin and HA concentration using colloidal probe microscopy. We found that lubricin is amphiphilic and adsorbed strongly onto both methyl- and hydroxyl-terminated surfaces. On hydrophobic surfaces, lubricin likely adopts a compact, looplike conformation in which its hydrophobic domains at the N and C termini serve as surface anchors. On hydrophilic surfaces, lubricin likely adsorbs anywhere along its hydrophilic central domain and adopts, with increasing solution concentration, an extended tail-like conformation. Overall, lubricin develops strong repulsive interactions when compressing two surfaces into contact. Furthermore, upon surface separation, adhesion occurs between the surfaces as a result of molecular bridging and chain disentanglement. This behavior is in contrast to that of HA, which does not adsorb appreciably on either of the model surfaces and does not develop significant repulsive interactions. Adhesive forces, particularly between the hydrophobic surfaces, are large and not appreciably affected by HA. For a mixture of lubricin and HA, we observed slightly larger adsorptions and repulsions than those found for lubricin alone. Our experiments suggest that this interaction depends on unspecific physical rather than chemical interactions between lubricin and HA. We

  20. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers. PMID:26572480

  1. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.

    PubMed

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2014-02-15

    Gamma-ray irradiation of novel hydrogels was used to develop a biocompatible hydrogel system for skin tissue engineering. These novel hydrogels are composed of natural polymers including hyaluronic acid (HA) and chondroitin sulfate (CS), and the synthetic polymer, poly(vinyl alcohol) (PVA). The γ-ray irradiation method has advantages, such as relatively simple manipulation without need of any extra reagents for polymerization and cross-linking. We synthesized HA and CS derivatives with polymerizable residues. The HA/CS/PVA hydrogels with various compositions were prepared by using γ-ray irradiation technique and their physicochemical properties were investigated to evaluate the feasibility of their use as artificial skin substitutes. HA/CS/PVA hydrogels showed an 85-88% degree of gelation under 15 kGy radiation. All HA/CS/PVA hydrogels exhibited more than 90% water content and reached an equilibrium swelling state within 24h. Hydrogels with higher concentrations of hyaluronidase solution and HA/CS content had proportionally higher enzymatic degradation rates. The drug release behaviors from HA/CS/PVA hydrogels were influenced by the composition of the hydrogel and drug properties. Exposure of human keratinocyte (HaCaT) culture to the extracts of HA/CS/PVA hydrogels did not significantly affect the cell viability. All HaCaT cell cultures exposed to the extracts of HA/CS/PVA hydrogels exhibited greater than 92% cell viability. The HaCaT growth in HA/CS/PVA hydrogels gradually increased as a function of culture time. After 7 days, the HaCaT cells in all HA/CA/PVA hydrogels exhibited more than 80% viability compared to the control group HaCaT culture on a culture plate. PMID:24507324

  2. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.

    PubMed

    Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O

    2015-01-01

    Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.

  3. Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts

    NASA Astrophysics Data System (ADS)

    Lewis, Nicole R.

    Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.

  4. Hyaluronic Acid: From Biochemical Characteristics to its Clinical Translation in Assessment of Liver Fibrosis

    PubMed Central

    Rostami, Sahar; Parsian, Hadi

    2013-01-01

    Context: Hyaluronic acid (HA) is a high molecular weight polysaccharide that is distributed in all bodily tissues and fluids. The liver is the most important organ involved in the synthesis and degradation of HA. Research has shown that liver cell injury can affect serum HA levels. In this review, authors aimed to describe the biochemical and physiological roles of this glycosaminoglycan and its changes in various liver diseases. Evidence Acquisition: Liver fibrosis and in more severe form, cirrhosis are results of an imbalance between fibrogenesis and fibrinolysis. Liver biopsy is the gold standard to assess liver necro inflammatory injuries. This method is invasive and has some major side effects; therefore it is an unfavorable method for both physicians and patients. Now, a wide variety of noninvasive methods have been introduced based on evaluating serum level of different markers. They are safe, readily available, and more favorable. Serum HA levels are used by some researchers to assess stages of liver fibrosis. Results: There are several scientific studies indicating HA as a biomarker for high score fibrosis and cirrhosis in various liver diseases alone or in algorithm models. It seems from various algorithm models that the use of HA as a major constituent has more diagnostic reliability and accuracy than the use of HA alone. Conclusions: Use of HA in an algorithm model, is an extra and valuable tool for assessing liver necro inflammatory injuries- in parallel with liver biopsy- but more comprehensive studies are needed to approve the use of HA as an appropriate clinical tool. PMID:24403913

  5. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer

    PubMed Central

    Choi, Ki Young; Jeon, Eun Jung; Yoon, Hong Yeol; Lee, Beom Suk; Na, Jin Hee; Min, Kyung Hyun; Kim, Sang Yoon; Myung, Seung-Jae; Lee, Seulki; Chen, Xiaoyuan; Kwon, Ick Chan; Choi, Kuiwon; Jeong, Seo Young; Kim, Kwangmeyung; Park, Jae Hyung

    2013-01-01

    Colon cancer is the second leading cause of cancer-related death in the United States. The considerable mortality from colon cancer is due to metastasis to other organs, mainly the liver. In the management of colon cancer, early detection and targeted therapy are crucial. In this study, we aimed to establish a versatile theranostic system for early tumor detection and targeted tumor therapy by using poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) which can selectively accumulate in tumor tissue. For the diagnostic application, a near-infrared fluorescence (NIRF) imaging dye (Cy 5.5) was chemically conjugated onto the HA backbone of P-HA-NPs. After intravenous injection of Cy5.5-P-HA-NPs into the tumor-bearing mice, small-sized colon tumors as well as liver-implanted colon tumors were effectively visualized using the NIRF imaging technique. For targeted therapy, we physically encapsulated the anticancer drug, irinotecan (IRT), into the hydrophobic cores of P-HA-NPs. Owing to their notable tumor targeting capability, IRT-P-HA-NPs exhibited an excellent antitumor activity while showing a reduction in undesirable systemic toxicity. Importantly, we demonstrated the theranostic application using Cy5.5-P-HA-NPs and IRT-P-HA-NPs in orthotopic colon cancer models. Following the systemic administration of Cy5.5-P-HA-NPs, neoplasia was clearly visualized, and the tumor growth was effectively suppressed by intravenous injection of IRT-P-HA-NPs. It should be emphasized that the therapeutic responses could be simultaneously monitored by Cy5.5-P-HA-NPs. Our results suggest that P-HA-NPs can be used as a versatile theranostic system for the early detection, targeted therapy, and therapeutic monitoring of colon cancer. PMID:22687759

  6. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

    PubMed

    Haward, S J; Jaishankar, A; Oliveira, M S N; Alves, M A; McKinley, G H

    2013-07-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.

  7. Evidence for field cancerisation treatment of actinic keratoses with topical diclofenac in hyaluronic acid.

    PubMed

    Ulrich, Martina; Pellacani, Giovanni; Ferrandiz, Carlos; Lear, John T

    2014-01-01

    Actinic keratosis (AK) is a common skin disease seen in daily practice. It is associated with a risk of progression to invasive squamous cell carcinoma and can be regarded as a marker of increased risk for non-melanoma skin cancer. The use of a field-directed treatment approach reflects the need to initiate early treatment over an affected area to prevent tumour development and local recurrence. Candidate field-directed treatments require a mechanism of action compatible with an effect on field cancerisation, immediate and long-term efficacy against visible lesions and efficacy against subclinical AK. Applicability to large treatment areas, tolerability compatible with long-term use, utility in organ transplant patients and, ideally, evidence of extended long-term activity may also be desirable. We review the evidence of a role for topical diclofenac sodium 3% administered in a 2.5% hyaluronic acid gel (diclofenac/HA) as field-directed treatment. Diclofenac/HA directly targets AK pathophysiology through multiple mechanisms, including induction of apoptosis, inhibition of angiogenesis and reduced inflammation. Clearance of visible field cancerisation is safely and rapidly achieved with a 90-day treatment course in patients with affected areas of up to 50 cm(2) and is associated with a ≥75% reduction in target lesion number score in 85% and 91% of patients, respectively, at 30 days and 1 year post-treatment. Following treatment of AK in high-risk transplant patients, 45% remained free of lesions in the treatment area at 2 years post-treatment. We conclude that diclofenac/HA fulfils most criteria necessary to be considered an appropriate candidate for a field-directed treatment in AK.

  8. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    PubMed

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer.

  9. Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs

    PubMed Central

    Levett, Peter A.; Hutmacher, Dietmar W.; Malda, Jos; Klein, Travis J.

    2014-01-01

    There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications. PMID:25438040

  10. Glans Penis Augmentation Using Hyaluronic Acid Gel as an Injectable Filler

    PubMed Central

    Kwak, Tae Il; Kim, Je Jong

    2015-01-01

    Glans penis augmentation (GPA) has received little attention from experts despite the existence of a subset of patients who may be dissatisfied with a small glans or poor tumescence of the glans during erection. Recently, GPA using an injectable filler or implantation of a graft or filler has been developed. Despite a demanding injection technique and inevitable uneven undulation of the glandular surface, GPA using injectable hyaluronic acid (HA) gel is a novel and useful therapy and an effective and safe procedure for soft tissue enhancement. For long-term presence of implants, timed supplementation can be used similar to that for fascial plasty. In complications such as mucosal necrosis of the glans penis, most cases occur from the use of non-HA gel or an unpurified form and misunderstanding of the management protocol for immediate side effects. Currently, GPA using injectable HA gel is not recommended in the International Society for Sexual Medicine guideline due to possible sensory loss. In a 5-year long-term follow-up of GPA by subcutaneous injection of HA gel, the residual volume of implants decreased by 15% of the maximal glandular circumference, but was still effective for alleviating the hypersensitivity of the glans penis in premature ejaculation patients. For efficacy in premature ejaculation, selection of appropriate candidates is the most important factor for success. GPA does not harm erectile function and is less invasive and irreversible compared to dorsal neurectomy. To refine the procedure, more interest and well-designed studies are required for the establishment of the procedure. PMID:26331121

  11. Non-Viral DNA Delivery from Porous Hyaluronic Acid Hydrogels in Mice

    PubMed Central

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2013-01-01

    The lack of vascularization within tissue-engineered constructs remains the primary cause of construct failure following implantation. Porous constructs have been successful in allowing for vessel infiltration without requiring extensive matrix degradation. We hypothesized that the rate and maturity of infiltrating vessels could be enhanced by complementing the open pore structure with the added delivery of DNA encoding for angiogenic growth factors. Both 100 and 60 μm porous and non-porous hyaluronic acid hydrogels loaded with pro-angiogenic (pVEGF) or reporter (pGFPluc) plasmid nanoparticles were used to study the effects of pore size and DNA delivery on angiogenesis in a mouse subcutaneous implant model. GFP-expressing transfected cells were found inside all control hydrogels over the course of the study, although transfection levels peaked by week 3 for 100 and 60 μm porous hydrogels. Transfection in non-porous hydrogels continued to increase over time corresponding with continued surface degradation. pVEGF transfection levels were not high enough to enhance angiogenesis by increasing vessel density, maturity, or size, although by 6 weeks for all pore size hydrogels more hydrogel implants were positive for vascularization when pVEGF polyplexes were incorporated compared to control hydrogels. Pore size was found to be the dominant factor in determining the angiogenic response with 60 μm porous hydrogels having more vessels/area present than 100 μm porous hydrogels at the initial onset of angiogenesis at 3 weeks. The results of this study show promise for the use of polyplex loaded porous hydrogels to transfect infiltrating cells in vivo and guide tissue regeneration and repair. PMID:24210142

  12. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.

    PubMed

    Khaing, Zin Z; Milman, Brian D; Vanscoy, Jennifer E; Seidlits, Stephanie K; Grill, Raymond J; Schmidt, Christine E

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI. PMID:21753237

  13. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.

    PubMed

    Pedron, Sara; Becka, Eftalda; Harley, Brendan A C

    2013-10-01

    Human glioblastoma multiforme (hGBM) is the most common, aggressive, and deadly form of brain cancer. A major obstacle to understanding the impact of extracellular cues on glioblastoma invasion is the absence of model matrix systems able to replicate compositional and structural elements of the glioma mass as well as the surrounding brain tissue. Contact with a primary extracellular matrix component in the brain, hyaluronan, is believed to play a pivotal role in glioma cell invasion and malignancy. In this study we report use of gelatin and poly(ethylene glycol) (PEG) based hydrogel platforms to evaluate the effect of extracellular (composition, mechanics, HA incorporation) and intracellular (epidermal growth factor receptor overexpression) factors on the malignant transformation of U87MG glioma cells. Three-dimensional culture platforms elicit significantly different responses of U87MG glioma cells versus standard 2D culture. Critically, grafting brain-mimetic hyaluronic acid (HA) into the hydrogel network was found to induce significant, dose-dependent alterations of markers of glioma malignancy versus non-grafted 3D gelatin or PEG hydrogels. Clustering of glioma cells was observed exclusively in HA containing gels and expression profiles of malignancy-associated genes were found to vary biphasically with incorporated HA content. We also found HA-induced expression of MMP-2 is blocked by +EGFR signaling, suggesting a connection between CD44 and EGFR in glioma malignancy. Together, this work describes an adaptable platform for manipulating the local extracellular microenvironment surrounding glioma cells and highlights the importance of developing such systems for investigating the etiology and early growth of glioblastoma multiforme tumors. PMID:23827186

  14. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts. PMID:26854786

  15. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts.

  16. Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption.

    PubMed

    Huang, Renliang; Liu, Xia; Ye, Huijun; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2015-11-10

    A versatile, convenient, and cost-effective method that can be used for grafting antifouling materials onto different surfaces is highly desirable in many applications. Here, we report the one-step fabrication of antifouling surfaces via the polymerization of dopamine and the simultaneous deposition of anionic hyaluronic acid (HA) on Au substrates. The water contact angle of the Au surfaces decreased from 84.9° to 24.8° after the attachment of a highly uniform polydopamine (PDA)/HA hybrid film. The results of surface plasmon resonance analysis showed that the Au-PDA/HA surfaces adsorbed proteins from solutions of bovine serum albumin, lysozyme, β-lactoglobulin, fibrinogen, and soybean milk in ultralow or low amounts (4.8-31.7 ng/cm(2)). The hydrophilicity and good antifouling performance of the PDA/HA surfaces is attributable to the HA chains that probably attached onto their upper surface via hydrogen bonding between PDA and HA. At the same time, the electrostatic repulsion between PDA and HA probably prevents the aggregation of PDA, resulting in the formation of a highly uniform PDA/HA hybrid film with the HA chains (with a stretched structure) on the upper surface. We also developed a simple method for removing this PDA/HA film and recycling the Au substrates by using an aqueous solution of NaOH as the hydrolyzing agent. The Au surface remained undamaged, and a PDA/HA film could be redeposited on the surface, with the surface exhibiting good antifouling performance even after 10 such cycles. Finally, it was found that this grafting method is applicable to other substrates, including epoxy resins, polystyrene, glass, and steel, owing to the strong adhesion of PDA with these substrates.

  17. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    PubMed

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana

    2011-10-01

    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  18. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs. PMID:25933531

  19. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy.

    PubMed

    Martens, Thomas F; Remaut, Katrien; Deschout, Hendrik; Engbersen, Johan F J; Hennink, Wim E; van Steenbergen, Mies J; Demeester, Jo; De Smedt, Stefaan C; Braeckmans, Kevin

    2015-03-28

    Retinal gene therapy could potentially affect the lives of millions of people suffering from blinding disorders. Yet, one of the major hurdles remains the delivery of therapeutic nucleic acids to the retinal target cells. Due to the different barriers that need to be overcome in case of topical or systemic administration, intravitreal injection is an attractive alternative administration route for large macromolecular therapeutics. Here it is essential that the therapeutics do not aggregate and remain mobile in the vitreous humor in order to reach the retina. In this study, we have evaluated the use of hyaluronic acid (HA) as an electrostatic coating for nonviral polymeric gene nanomedicines, p(CBA-ABOL)/pDNA complexes, to provide them with an anionic hydrophilic surface for improved intravitreal mobility. Uncoated polyplexes had a Z-averaged diameter of 108nm and a zeta potential of +29mV. We evaluated polyplexes coated with HA of different molecular weights (22kDa, 137kDa and 2700kDa) in terms of size, surface charge and complexation efficiency and noticed their zeta potentials became anionic at 4-fold molar excess of HA-monomers compared to cationic monomers, resulting in submicron ternary polyplexes. Next, we used a previously optimized ex vivo model based on excised bovine eyes and fluorescence single particle tracking (fSPT) microscopy to evaluate mobility in intact vitreous humor. It was confirmed that HA-coated polyplexes had good mobility in bovine vitreous humor, similar to polyplexes functionalized with polyethylene glycol (PEG), except for those coated with high molecular weight HA (2700kDa). However, contrary to PEGylated polyplexes, HA-coated polyplexes were efficiently taken up in vitro in ARPE-19 cells, despite their negative charge, indicating uptake via CD44-receptor mediated endocytosis. Furthermore, the HA-polyplexes were able to induce GFP expression in this in vitro cell line without apparent cytotoxicity, where coating with low molecular

  20. [Continuing medical education in aesthetic medicine: hands-on course with anatomic preparations for hand augmentation with injectable hyaluronic acids].

    PubMed

    Hartmann, Vanessa; Erdmann, Ricardo; Plaschke, Martina; Rzany, Berthold

    2008-09-01

    The Division of Evidence Based Medicine (dEBM), part of the Clinic for Dermatology, Venerology and Allergology, Charité - University Hospital Berlin, offers on a regular basis workshops focusing on different areas of aesthetic medicine. This year in cooperation with the Institute of Anatomy a joint course was designed and conducted. The course focused on the treatment with hyaluronic acids of different particle size for a new indication, hand augmentation. Fourteen physicians participated in this course. The evaluation of the course ranged between very good and good.

  1. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration.

    PubMed

    Chen, Yu-Chun; Su, Wen-Yu; Yang, Shu-Hua; Gefen, Amit; Lin, Feng-Huei

    2013-02-01

    Encapsulation of nucleus pulposus (NP) cells within in situ forming hydrogels is a novel biological treatment for early stage intervertebral disc degeneration. The procedure aims to prolong the life of the degenerating discs and to regenerate damaged tissue. In this study we developed an injectable oxidized hyaluronic acid-gelatin-adipic acid dihydrazide (oxi-HAG-ADH) hydrogel. High molecular weight (1900 kDa) hyaluronic acid was crosslinked with various concentrations of gelatin to synthesize the hydrogels and their viscoelastic properties were analyzed. Interactions between the hydrogels, NP cells, and the extracellular matrix (ECM) were also evaluated, as were the effects of the hydrogels on NP cell gene expression. The hydrogels possess several clinical advantages, including sterilizability, low viscosity for injection, and ease of use. The viscoelastic properties of the hydrogels were similar to native tissue, as reflected in the complex shear modulus (∼11-14 kPa for hydrogels, 11.3 kPa for native NP). Cultured NP cells not only attached to the hydrogels but also survived, proliferated, and maintained their round morphology. Importantly, we found that hydrogels increased NP cell expression of several crucial ECM-related genes, such as COL2A1, AGN, SOX-9, and HIF-1A. PMID:23041783

  2. Preparation of hyaluronic acid micro-hydrogel by biotin-avidin-specific bonding for doxorubicin-targeted delivery.

    PubMed

    Cui, Yuan; Li, Yanhui; Duan, Qian; Kakuchi, Toyoji

    2013-01-01

    Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin-avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA-biotin. When HA-biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by (1)H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy. PMID:23179277

  3. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.

    PubMed

    Kushchayev, Sergiy V; Giers, Morgan B; Hom Eng, Doris; Martirosyan, Nikolay L; Eschbacher, Jennifer M; Mortazavi, Martin M; Theodore, Nicholas; Panitch, Alyssa; Preul, Mark C

    2016-07-01

    OBJECTIVE Spinal cord injury occurs in 2 phases. The initial trauma is followed by inflammation that leads to fibrous scar tissue, glial scarring, and cavity formation. Scarring causes further axon death around and above the injury. A reduction in secondary injury could lead to functional improvement. In this study, hyaluronic acid (HA) hydrogels were implanted into the gap formed in the hemisected spinal cord of Sprague-Dawley rats in an attempt to attenuate damage and regenerate tissue. METHODS A T-10 hemisection spinal cord injury was created in adult male Sprague-Dawley rats; the rats were assigned to a sham, control (phosphate-buffered saline), or HA hydrogel-treated group. One cohort of 23 animals was followed for 12 weeks and underwent weekly behavioral assessments. At 12 weeks, retrograde tracing was performed by injecting Fluoro-Gold in the left L-2 gray matter. At 14 weeks, the animals were killed. The volume of the lesion and the number of cells labeled from retrograde tracing were calculated. Animals in a separate cohort were killed at 8 or 16 weeks and perfused for immunohistochemical analysis and transmission electron microscopy. Samples were stained using H & E, neurofilament stain (neurons and axons), silver stain (disrupted axons), glial fibrillary acidic protein stain (astrocytes), and Iba1 stain (mononuclear cells). RESULTS The lesions were significantly smaller in size and there were more retrograde-labeled cells in the red nuclei of the HA hydrogel-treated rats than in those of the controls; however, the behavioral assessments revealed no differences between the groups. The immunohistochemical analyses revealed decreased fibrous scarring and increased retention of organized intact axonal tissue in the HA hydrogel-treated group. There was a decreased presence of inflammatory cells in the HA hydrogel-treated group. No axonal or neuronal regeneration was observed. CONCLUSIONS The results of these experiments show that HA hydrogel had a

  4. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.

    PubMed

    Kushchayev, Sergiy V; Giers, Morgan B; Hom Eng, Doris; Martirosyan, Nikolay L; Eschbacher, Jennifer M; Mortazavi, Martin M; Theodore, Nicholas; Panitch, Alyssa; Preul, Mark C

    2016-07-01

    OBJECTIVE Spinal cord injury occurs in 2 phases. The initial trauma is followed by inflammation that leads to fibrous scar tissue, glial scarring, and cavity formation. Scarring causes further axon death around and above the injury. A reduction in secondary injury could lead to functional improvement. In this study, hyaluronic acid (HA) hydrogels were implanted into the gap formed in the hemisected spinal cord of Sprague-Dawley rats in an attempt to attenuate damage and regenerate tissue. METHODS A T-10 hemisection spinal cord injury was created in adult male Sprague-Dawley rats; the rats were assigned to a sham, control (phosphate-buffered saline), or HA hydrogel-treated group. One cohort of 23 animals was followed for 12 weeks and underwent weekly behavioral assessments. At 12 weeks, retrograde tracing was performed by injecting Fluoro-Gold in the left L-2 gray matter. At 14 weeks, the animals were killed. The volume of the lesion and the number of cells labeled from retrograde tracing were calculated. Animals in a separate cohort were killed at 8 or 16 weeks and perfused for immunohistochemical analysis and transmission electron microscopy. Samples were stained using H & E, neurofilament stain (neurons and axons), silver stain (disrupted axons), glial fibrillary acidic protein stain (astrocytes), and Iba1 stain (mononuclear cells). RESULTS The lesions were significantly smaller in size and there were more retrograde-labeled cells in the red nuclei of the HA hydrogel-treated rats than in those of the controls; however, the behavioral assessments revealed no differences between the groups. The immunohistochemical analyses revealed decreased fibrous scarring and increased retention of organized intact axonal tissue in the HA hydrogel-treated group. There was a decreased presence of inflammatory cells in the HA hydrogel-treated group. No axonal or neuronal regeneration was observed. CONCLUSIONS The results of these experiments show that HA hydrogel had a

  5. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer

    PubMed Central

    Cho, Eun Jung; Sun, Bo; Doh, Kyung-Oh; Wilson, Erin M.; Torregrosa-Allen, Sandra; Elzey, Bennett D.; Yeo, Yoon

    2014-01-01

    Intraperitoneal (IP) chemotherapy is a promising post-surgical therapy of solid carcinomas confined within the peritoneal cavity, with potential benefits in locoregional and systemic management of residual tumors. In this study, we intended to increase local retention of platinum in the peritoneal cavity over a prolonged period of time using a nanoparticle form of platinum and an in-situ crosslinkable hyaluronic acid gel. Hyaluronic acid was chosen as a carrier due to the biocompatibility and biodegradability. We confirmed a sustained release of platinum from the nanoparticles (PtNPs) and nanoparticle/gel hybrid (PtNP/gel), receptor-mediated endocytosis of PtNPs, and retention of the gel in the peritoneal cavity over 4 weeks--conditions desirable for a prolonged local delivery of platinum. However, PtNPs and PtNP/gel did not show a greater anti-tumor efficacy than CDDP solution administered at the same dose but rather caused a slight increase in tumor burdens at later time points, which suggests a potential involvement of empty carriers and degradation products in the growth of residual tumors. This study alerts that although several materials considered biocompatible and safe are used as drug carriers, they may have unwanted biological effects on the residual targets once the drug is exhausted; therefore, more attention should be paid to the selection of the drug carriers. PMID:25453960

  6. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications.

    PubMed

    Korurer, Esra; Kenar, Halime; Doger, Emek; Karaoz, Erdal

    2014-07-01

    Standard approaches to soft-tissue reconstruction include autologous adipose tissue transplantation, but most of the transferred adipose tissue is generally reabsorbed in a short time. To overcome this problem, long lasting implantable hydrogel materials that can support tissue regeneration must be produced. The purpose of this study was to evaluate the suitability of composite 3D natural origin scaffolds for reconstructive surgery applications through in vitro tests. The Young's modulus of the glutaraldehyde crosslinked hyaluronic acid/gelatin (HA/G) plasma gels, composed of human platelet-poor plasma, gelatin and human umbilical cord hyaluronic acid, was determined as 3.5 kPa, close to that of soft tissues. The composite HA/G plasma gels had higher porosity than plain plasma gels (72.5% vs. 63.86%). Human adipose tissue derived stem cells (AD-MSCs) were isolated from human lipoaspirates and characterized with flow cytometry, and osteogenic and adipogenic differentiation. Cell proliferation assay of AD-MSCs on the HA/G plasma gels revealed the nontoxic nature of these constructs. Adipogenic differentiation was distinctly better on HA/G plasma gels than on plain plasma gels. The results showed that the HA/G plasma gel with its suitable pore size, mechanical properties and excellent cell growth and adipogenesis supporting properties can serve as a useful scaffold for adipose tissue engineering applications.

  7. Short-term effect of the combination of hyaluronic acid, chondroitin sulfate, and keratin matrix on early symptomatic knee osteoarthritis

    PubMed Central

    Galluccio, Felice; Barskova, Tatiana; Cerinic, Marco Matucci

    2015-01-01

    Objective In the last years, symptomatic slow-acting drugs for osteoarthritis (SYSADOA) have been vastly studied and have generated considerable interest among clinicians. SYSADOA are generally used as a ground therapy with the main rationale to reduce the consumption of nonsteroidal anti-inflammatory drugs (NSAIDs) and thus limit the related adverse events. Material and Methods In this study, we evaluated the short-term effect of an oral combination of hyaluronic acid, chondroitin sulfate, and keratin matrix on early symptomatic knee osteoarthritis. Forty patients were treated for 1 month and were allowed to assume analgesics or NSAIDs if necessary. Results At 2 months, the mean reduction of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score was 36% (p<0.001), and the mean reduction of the WOMAC pains score was 40% (p<0.001). Only two patients reported a sporadic need to assume analgesics; no patient reported any side effect during the study period. Conclusion This data demonstrates that the oral combination of hyaluronic acid, chondroitin sulfate, and keratin matrix is safe, well tolerated, and shows a rapid action reducing pain and improving joint function and stiffness in early symptomatic knee osteoarthritis.

  8. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry.

  9. Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures.

    PubMed

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, S

    2007-05-01

    Conventional medications in articular disease are often effective for symptom relief, but they can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective as non-steroidal anti-inflammatory drugs at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favourable influence on the course of the disease. In this study, we assay the anti-inflammatory/chondroprotective effect of some lyophilised extracts obtained from Opuntia ficus indica (L.) cladodes and of hyaluronic acid (HA) on the production of key molecules released during chronic inflammatory events such as nitric oxide (NO), glycosaminoglycans (GAGs), prostaglandins (PGE(2)) and reactive oxygen species (ROS) in human chondrocyte culture, stimulated with proinflammatory cytokine interleukin-1 beta (IL-1 beta). Further the antioxidant effect of these extracts was evaluated in vitro employing the bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test). All the extracts tested in this study showed an interesting profile in active compounds. Particularly some of these extracts were characterized by polyphenolic and polysaccharidic species. In vitro results pointed out that the extracts of Opuntia ficus indica cladodes were able to contrast the harmful effects of IL-1 beta. Our data showed the protective effect of the extracts of Opuntia ficus indica cladodes in cartilage alteration, which appears greater than that elicited by hyaluronic acid (HA) commonly employed as visco-supplementation in the treatment of joint diseases.

  10. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer.

    PubMed

    Cho, Eun Jung; Sun, Bo; Doh, Kyung-Oh; Wilson, Erin M; Torregrosa-Allen, Sandra; Elzey, Bennett D; Yeo, Yoon

    2015-01-01

    Intraperitoneal (IP) chemotherapy is a promising post-surgical therapy of solid carcinomas confined within the peritoneal cavity, with potential benefits in locoregional and systemic management of residual tumors. In this study, we intended to increase local retention of platinum in the peritoneal cavity over a prolonged period of time using a nanoparticle form of platinum and an in-situ crosslinkable hyaluronic acid gel. Hyaluronic acid was chosen as a carrier due to the biocompatibility and biodegradability. We confirmed a sustained release of platinum from the nanoparticles (PtNPs) and nanoparticle/gel hybrid (PtNP/gel), receptor-mediated endocytosis of PtNPs, and retention of the gel in the peritoneal cavity over 4 weeks: conditions desirable for a prolonged local delivery of platinum. However, PtNPs and PtNP/gel did not show a greater anti-tumor efficacy than CDDP solution administered at the same dose but rather caused a slight increase in tumor burdens at later time points, which suggests a potential involvement of empty carriers and degradation products in the growth of residual tumors. This study alerts that although several materials considered biocompatible and safe are used as drug carriers, they may have unwanted biological effects on the residual targets once the drug is exhausted; therefore, more attention should be paid to the selection of drug carriers.

  11. The Effect of Surface Treatment Using Hyaluronic Acid and Lubricin on the Gliding Resistance of Human Extrasynovial Tendons In Vitro

    PubMed Central

    Taguchi, Manabu; Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D.; An, Kai-Nan; Amadio, Peter C.

    2009-01-01

    Purpose The purpose of this study was to investigate the effects of the tendon surface treatment using hyaluronic acid (HA) and lubricin on the gliding resistance of human extrasynovial palmaris longus (PL) tendon in vitro. Methods Thirty two fresh-frozen human fingers and sixteen ipsilateral PL tendons were used. Each PL tendon was divided into two pieces which were randomly assigned into four experimental groups. After the gliding resistance of the normal PL tendon segments were measured, the tendons were treated with either saline, carbodiimide derivatized gelatin and hyaluronic acid (cd-HA-gelatin), carbodiimide derivatized gelatin with lubricin added (cd-gelatin+lubricin), or cd-HA-gelatin+lubricin. After treatment, tendon gliding resistance was measured up to 1000 cycles of simulated flexion/extension motion. Results The gliding resistance of the PL tendons in the cd-HA-gelatin, cd-gelatin+lubricin and cd-HA-gelatin+lubricin groups was significantly lower than that of the saline treated control after 1000 cycles (p<0.05). The gliding resistance in these treatment groups decreased within the first 50 cycles and then increased at a much more gradual rate over the 1000 cycles, with the cd-HA-gelatin+lubricin group being most stable. Conclusion The results suggest that tendon surface treatment using HA and lubricin can improve the gliding of human PL tendon in vitro. If validated in vivo, tendon surface treatment has the potential to improve the gliding ability of tendon grafts clinically. PMID:19556078

  12. Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels

    PubMed Central

    Wu, Yijun; Yao, Jing; Zhou, Jianping; Dahmani, Fatima Zohra

    2013-01-01

    For nearly a decade, thermoresponsive ophthalmic in situ gels have been recognized as an interesting and promising ocular topical delivery vehicle for lipophilic drugs. In this study, a series of thermosensitive copolymers, hyaluronic acid-g-poly(N-isopropylacrylamide) (HA-g-PNIPAAm), was synthesized, by coupling carboxylic end-capped PNIPAAm to aminated hyaluronic acid through amide bond linkages, and was used as a potential carrier for the topical ocular administration of cyclosporine A (CyA). The lower critical solution temperature of HA-g-PNIPAAm59 in aqueous solutions was measured as 32.7°C, which was not significantly affected by the polymer concentration. Moreover, HA-g-PNIPAAm59 microgels showed a high drug loading efficiency (73.92%) and a controlled release profile that are necessary for biomedical application. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) observations showed that HA-g-PNIPAAm microgels were spherical in shape with homogeneous size. Based on the result of the eye irritation test, the HA-g-PNIPAAm microgels formulation was shown to be safe and nonirritant for rabbit eyes. In addition, HA-g-PNIPAAm microgels achieved significantly higher CyA concentration levels in rabbit corneas (1455.8 ng/g of tissue) than both castor oil formulation and commercial CyA eye drops. Therefore, these newly described thermoresponsive HA-g-PNIPAAm microgels demonstrated attractive properties to serve as pharmaceutical delivery vehicles for a variety of ophthalmic applications. PMID:24092975

  13. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Yeung, B; Marecak, D

    1999-08-13

    An analytical approach has been described for the molecular weight characterization of enzymatically degraded hyaluronic acid (HA). The approach involved the combined use of aqueous gel filtration chromatography (GFC) with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Microfractions were collected across an eluting peak from the chromatography system, followed by mass spectrometric analysis of these narrow fractions. The molecular mass determined by MALDI-MS and the signal obtained from the chromatography established a calibration curve for other hyaluronic acid samples analyzed by this GFC system. Results of one HA sample were obtained from both the calibration curve and direct fraction-by-fraction MALDI-MS analysis, and comparison of these results showed reasonable agreement. In contrast, molecular weights resulted from external calibration using dextran and pullullan standards showed drastically different numbers. Therefore, the GFC-MALDI-MS approach is a reliable method for the molecular weight characterization of polydisperse polysaccharides for which suitable calibration standards are unavailable for conventional GFC analysis. PMID:10481993

  14. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    NASA Astrophysics Data System (ADS)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  15. Serum hyaluronic acid predicts protein-energy malnutrition in chronic hepatitis C

    PubMed Central

    Nishikawa, Hiroki; Enomoto, Hirayuki; Yoh, Kazunori; Iwata, Yoshinori; Hasegawa, Kunihiro; Nakano, Chikage; Takata, Ryo; Kishino, Kyohei; Shimono, Yoshihiro; Sakai, Yoshiyuki; Nishimura, Takashi; Aizawa, Nobuhiro; Ikeda, Naoto; Takashima, Tomoyuki; Ishii, Akio; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-01-01

    Abstract Serum hyaluronic acid (HA) is a well-established marker of fibrosis in patients with chronic liver disease (CLD). However, the relationship between serum HA level and protein-energy malnutrition (PEM) in patients with CLD is an unknown. We aimed to examine the relationship between serum HA level and PEM in patients with chronic hepatitis C (CHC) compared with the relationships of other serum markers of fibrosis. A total of 298 CHC subjects were analyzed. We defined patients with serum albumin level of ≤3.5 g/dL and nonprotein respiratory quotient <0.85 using indirect calorimetry as having PEM. We investigated the effect of serum HA level on the presence of PEM. Receiver operating characteristic curve (ROC) analysis was performed for calculating the area under the ROC (AUROC) for serum HA level, platelet count, aspartate aminotransferase (AST) to platelet ratio index, FIB-4 index, AST to alanine aminotransferase ratio, and Forns index for the presence of PEM. The median serum HA level in this study was 148.0 ng/mL (range: 9.0–6340.0 ng/mL). In terms of the degree of liver function (chronic hepatitis, Child-Pugh A, B, and C), the analyzed patients were well stratified according to serum HA level (overall significance, P < 0.0001). The median value (range) of serum HA level in patients with PEM (n = 61) was 389.0 ng/mL (43.6–6340.0 ng/mL) and that in patients without PEM (n = 237) was 103.0 ng/mL (9.0–783.0 ng/mL) (P < 0.0001). Among 6 fibrosis markers, serum HA level yielded the highest AUROC with a level of 0.849 at an optimal cut-off value of 151.0 ng/mL (sensitivity 93.4%; specificity 62.0%; P < 0.0001). In the multivariate analysis, serum HA level was found to be a significant prognostic factor related to the presence of PEM (P = 0.0001). In conclusion, serum HA level can be a useful predictor of PEM in patients with CHC. PMID:27311000

  16. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions

    PubMed Central

    Olivares, Carla N.; Alaniz, Laura D.; Menger, Michael D.; Barañao, Rosa I.; Laschke, Matthias W.; Meresman, Gabriela F.

    2016-01-01

    Background The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis. Objective To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis. Materials and Methods The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry. Main Results Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions. Conclusions The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this

  17. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Miltyk, Wojciech; Galicka, Elżbieta; Przylipiak, Jerzy; Zaręba, Ilona; Surazynski, Arkadiusz

    2015-01-01

    Introduction The aim of the study was to evaluate the effect of ethanol on collagen biosynthesis in cultured human skin fibroblasts, and the role of hyaluronic acid (HA) in this process. Regarding the mechanism of ethanol action on human skin fibroblasts we investigated: expression of β1 integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), nuclear factor kappa B (NF-κB) transcription factor, cytotoxicity assay and apoptosis, metalloproteinase activity, as well as the influence of HA on these processes. Materials and methods Collagen biosynthesis, activity of prolidase, DNA biosynthesis, and cytotoxicity were measured in confluent human skin fibroblast cultures that have been treated with 25, 50, and 100 mM ethanol and with ethanol and 500 µg/mL HA. Western blot analysis and zymography were performed to evaluate expression of collagen type I, β1 integrin receptor, IGF-IR, NF-κB protein, phospho-Akt protein, kinase MAPK, caspase 9 activity, and matrix metalloproteinases (MMP-9 and MMP-2). Results Ethanol in a dose-dependent manner lead to the impairment of collagen biosynthesis in fibroblast cultures through decreasing prolidase activity and expression of β1 integrin and IGF-IR. This was accompanied by an increased cytotoxicity, apoptosis and lowered expression of the signaling pathway proteins induced by β1 integrin and IGF-IR, that is, MAPK (ERK1/2) kinases. The lowered amount of synthesized collagen and prolidase activity disturbance may also be due to the activation of NF-κB transcription factor, which inhibits collagen gene expression. It suggests that the decrease in fibroblast collagen production may be caused by the disturbance in its biosynthesis but not degradation. The application of HA has a protective effect on disturbances caused by the examined substances. It seems that regulatory mechanism of ethanol-induced collagen aberration take

  18. Relationship of circulating hyaluronic acid levels to disease control in asthma and asthmatic pregnancy.

    PubMed

    Eszes, Noémi; Toldi, Gergely; Bohács, Anikó; Ivancsó, István; Müller, Veronika; Rigó, János; Losonczy, György; Vásárhelyi, Barna; Tamási, Lilla

    2014-01-01

    Uncontrolled asthma is a risk factor for pregnancy-related complications. Hyaluronic acid (HA), a potential peripheral blood marker of tissue fibrosis in various diseases, promotes eosinophil survival and plays a role in asthmatic airway inflammation as well as in physiological processes necessary to maintain normal pregnancy; however the level of circulating HA in asthma and asthmatic pregnancy is unknown. We investigated HA levels in asthmatic patients (N = 52; asthmatic pregnant (AP) N = 16; asthmatic non-pregnant (ANP) N = 36) and tested their relationship to asthma control. Serum HA level was lower in AP than in ANP patients (27 [24.7-31.55] vs. 37.4 [30.1-66.55] ng/mL, p = 0.006); the difference attenuated to a trend after its adjustment for patients' age (p = 0.056). HA levels and airway resistance were positively (r = 0.467, p = 0.004), HA levels and Asthma Control Test (ACT) total score inversely (r = -0.437, p = 0.01) associated in ANP patients; these relationships remained significant even after their adjustments for age. The potential value of HA in the determination of asthma control was analyzed using ROC analysis which revealed that HA values discriminate patients with ACT total score ≥20 (controlled patients) and <20 (uncontrolled patients) with a 0.826 efficacy (AUC, 95% CI: 0.69-0.97, p = 0.001) when 37.4 ng/mL is used as cut-off value in ANP group, and with 0.78 efficacy (AUC, 95% CI: 0.65-0.92, p = 0.0009) in the whole asthmatic cohort. In conclusion circulating HA might be a marker of asthma control, as it correlates with airway resistance and has good sensitivity in the detection of impaired asthma control. Decrease of HA level in pregnancy may be the consequence of pregnancy induced immune tolerance.

  19. Generation of Vascular Graft Biomaterials via the Modification of Polyurethane with Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Ruiz, Amaliris

    Cardiovascular disease is the leading cause of mortality in the United States, necessitating surgical interventions such as small diameter (I.D. <6 mm) bypass grafting. Although the use of autologous veins as small diameter grafts produces favorable results, their limited availability provides a significant obstacle. Meanwhile, several synthetic materials have demonstrated success as large-diameter vascular grafts, but exhibit poor patency and high failure rates in small-diameter applications. Based on these limitations and the clinical issues associated with them, it is clear that there is a significant need to develop new materials for cardiovascular and blood-contacting applications that could be used to fabricate small-diameter vascular grafts. Thus, in this thesis we have designed and characterized a new polymer that is composed of both synthetic and natural elements with the goal of generating a material that is appropriate for use in cardiovascular applications. Specifically, we describe the modification of polyurethane (PU), a synthetic polymer with many favorable physical characteristics, with hyaluronic acid (HA), a native glycosaminoglycan that possesses anti-thrombotic properties as well as the ability to modulate endothelial cell proliferation in a molecular weight-dependent manner. The goal of the present work was to assess in detail the impact of 1) HA molecular weight, 2) HA quantity, and 3) the method of HA incorporation (bulk vs. surface-grafted) on the vascular-specific performance of polyurethane-HA (PU-HA) materials, under static conditions and upon exposure to physiological shear stresses. The initial findings presented in this thesis indicate that these PU-HA materials possess many of the physical and biological properties that are necessary for implementation in vascular applications. These materials were able to simultaneously address the three major design criteria in vascular graft fabrication: hemocompatibility, endothelialization, and

  20. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

    PubMed

    Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-06-01

    Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.

  1. Topical treatment of partial thickness burns by silver sulfadiazine plus hyaluronic acid compared to silver sulfadiazine alone: a double-blind, clinical study.

    PubMed

    Koller, J

    2004-01-01

    Since its introduction into clinical practice in 1967 by Charles Fox Jr., silver sulfadiazine has been the gold standard for topical burn therapy. The addition to it of hyaluronic acid, which forms a substantial part of the human tissue intercellular matrix, is aimed at overcoming one of its very few disadvantages, i.e. prolongation of the wound re-epithelialization process. Since both hyaluronic acid and silver sulfadiazine have been used in therapy for decades and their efficacy is well documented, a topical treatment combining these two agents was formulated. The aim of the study was to investigate the efficacy and tolerability of a cream containing a hyaluronic acid/silver sulfadiazine fixed combination, compared with silver sulfadiazine cream alone, for the treatment of superficial and deep second-degree burns in a prospective, double-blind, controlled clinical study. The findings of the study confirmed that the association of the two compounds in a new topical treatment significantly reduced the healing time and significantly accelerated the reduction of local edema occurring shortly after injury. Furthermore, this new hyaluronic acid and silver sulfadiazine formulation has proven to have favorable antibacterial, anti-edematous and local analgesic effects, together with a clear stimulatory activity on the re-epithelialization process. This product may, therefore, significantly enrich the assortment of topical medications available for the treatment of burns and skin defects of other origin.

  2. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    ERIC Educational Resources Information Center

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.

    2014-01-01

    Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…

  3. Hyaluronic acid as an internal phase additive to obtain ofloxacin/PLGA microsphere by double emulsion method.

    PubMed

    Wu, Gang; Chen, Long; Li, Hong; Wang, Ying-jun

    2014-01-01

    Hyaluronic acid (HA) was used as an internal phase additive to improve the loading efficiency of ofloxacin, a hydrophilic drug encapsulated by hydrophobic polylactic-co-glycolic acid (PLGA) materials, through a double emulsion (water-in-oil-in-water) solvent extraction/evaporation method. Results from laser distribution analysis show that polyelectrolyte additives have low impact on the average particle size and distribution of the microspheres. The negatively charged HA increases the drug loading efficiency as well as the amount of HA in microspheres. Burst release can be observed in the groups with the polyelectrolyte additives. The release rate decreases with the amount of HA inside the microspheres in all negatively charged polyelectrolyte-added microsphere groups.

  4. Topical Hyaluronic Acid vs. Standard of Care for the Prevention of Radiation Dermatitis After Adjuvant Radiotherapy for Breast Cancer: Single-Blind Randomized Phase III Clinical Trial

    SciTech Connect

    Pinnix, Chelsea; Perkins, George H.; Strom, Eric A.; Tereffe, Welela; Woodward, Wendy; Oh, Julia L.; Arriaga, Lisa; Munsell, Mark F.; Kelly, Patrick; Hoffman, Karen E.; Smith, Benjamin D.; Buchholz, Thomas A.; Yu, T. Kuan

    2012-07-15

    Purpose: To determine the efficacy of an emulsion containing hyaluronic acid to reduce the development of {>=}Grade 2 radiation dermatitis after adjuvant breast radiation compared with best supportive care. Methods and Materials: Women with breast cancer who had undergone lumpectomy and were to receive whole-breast radiotherapy to 50 Gy with a 10- to 16-Gy surgical bed boost were enrolled in a prospective randomized trial to compare the effectiveness of a hyaluronic acid-based gel (RadiaPlex) and a petrolatum-based gel (Aquaphor) for preventing the development of dermatitis. Each patient was randomly assigned to use hyaluronic acid gel on the medial half or the lateral half of the irradiated breast and to use the control gel on the other half. Dermatitis was graded weekly according to the Common Terminology Criteria v3.0 by the treating physician, who was blinded as to which gel was used on which area of the breast. The primary endpoint was development of {>=}Grade 2 dermatitis. Results: The study closed early on the basis of a recommendation from the Data and Safety Monitoring Board after 74 of the planned 92 patients were enrolled. Breast skin treated with the hyaluronic acid gel developed a significantly higher rate of {>=}Grade 2 dermatitis than did skin treated with petrolatum gel: 61.5% (40/65) vs. 47.7% (31/65) (p = 0.027). Only 1ne patient developed Grade 3 dermatitis using either gel. A higher proportion of patients had worse dermatitis in the breast segment treated with hyaluronic acid gel than in that treated with petrolatum gel at the end of radiotherapy (42% vs. 14%, p = 0.003). Conclusion: We found no benefit from the use of a topical hyaluronic acid-based gel for reducing the development of {>=}Grade 2 dermatitis after adjuvant radiotherapy for breast cancer. Additional studies are needed to determine the efficacy of hyaluronic acid-based gel in controlling radiation dermatitis symptoms after they develop.

  5. Efficacy and Safety of a Low Molecular Weight Hyaluronic Acid Topical Gel in the Treatment of Facial Seborrheic Dermatitis Final Report

    PubMed Central

    Rowland Powell, Callie

    2014-01-01

    Objective: Hyaluronic acid sodium salt gel 0.2% is a topical device effective in reducing skin inflammation. Facial seborrheic dermatitis, characterized by erythema and or flaking/scaling in areas of high sebaceous activity, affects up to five percent of the United States population. Despite ongoing study, the cause of the condition is yet unknown, but has been associated with yeast colonization and resultant immune derived inflammation. First-line management typically is with keratolytics, topical steroids, and topical antifungals as well as the targeted immunosuppressant agents pimecrolimus and tacrolimus. The objective of this study was to evaluate the efficacy and safety of a novel topical antiinflammatory containing low molecular weight hyaluronic acid. Design and setting: Prospective, observational, non-blinded safety and efficacy study in an outpatient setting. Participants: Individuals 18 to 75 years of age with facial seborrheic dermatitis. Measurements: Outcome measures included scale, erythema, pruritus, and the provider global assessment, all measured on a five-point scale. Subjects were assessed at baseline, Week 2, Week 4, and Week 8. Results: Final data with 13 of 17 subjects are presented. Hyaluronic acid sodium salt gel 0.2% was shown through visual grading assessments to improve the provider global assessment by 65.48 percent from baseline to Week 4. Reductions in scale, erythema, and pruritus were 76.9, 64.3, and 50 percent, respectively, at Week 4. At Week 8, the provider global assessment was improved from baseline in 92.3 percent of subjects. Conclusion: Treatment with topical low molecular weight hyaluronic acid resulted in improvement in the measured endpoints. Final data reveal continued improvement from that seen in the interim data shown previously. Topical low molecular weight hyaluronic acid is another option that may be considered for the treatment of facial seborrheic dermatitis in the adult population. Compliance and tolerance were

  6. Platelet Rich Plasma and Hyaluronic Acid Blend for the Treatment of Osteoarthritis: Rheological and Biological Evaluation

    PubMed Central

    Russo, Fabrizio; D’Este, Matteo; Vadalà, Gianluca; Cattani, Caterina; Papalia, Rocco; Alini, Mauro; Denaro, Vincenzo

    2016-01-01

    Introduction Osteoarthritis (OA) is the most common musculoskeletal disease. Current treatments for OA are mainly symptomatic and inadequate since none results in restoration of fully functional cartilage. Hyaluronic Acid (HA) intra-articular injections are widely accepted for the treatment of pain associated to OA. The goal of HA viscosupplementation is to reduce pain and improve viscoelasticity of synovial fluid. Platelet-rich plasma (PRP) has been also employed to treat OA to possibly induce cartilage regeneration. The combination of HA and PRP could supply many advantages for tissue repair. Indeed, it conjugates HA viscosupplementation with PRP regenerative properties. The aim of this study was to evaluate the rheological and biological properties of different HA compositions in combination with PRP in order to identify (i) the viscoelastic features of the HA-PRP blends, (ii) their biological effect on osteoarthritic chondrocytes and (iii) HA formulations suitable for use in combination with PRP. Materials and Methods HA/PRP blends have been obtained mixing human PRP and three different HA at different concentrations: 1) Sinovial, 0.8% (SN); 2) Sinovial Forte 1.6% (SF); 3) Sinovial HL 3.2% (HL); 4) Hyalubrix 1.5% (HX). Combinations of phosphate buffered saline (PBS) and the four HA types were used as control. Rheological measurements were performed on an Anton PaarMCR-302 rheometer. Amplitude sweep, frequency sweep and rotational measurements were performed and viscoelastic properties were evaluated. The rheological data were validated performing the tests in presence of Bovine Serum Albumin (BSA) up to ultra-physiological concentration (7%). Primary osteoarthritic chondrocytes were cultured in vitro with the HA and PRP blends in the culture medium for one week. Cell viability, proliferation and glycosaminoglycan (GAG) content were assessed. Results PRP addition to HA leads to a decrease of viscoelastic shear moduli and increase of the crossover point, due to a

  7. Stoichiometric C6-oxidation of hyaluronic acid by oxoammonium salt TEMPO⁺Cl⁻ in an aqueous alkaline medium.

    PubMed

    Ponedel'kina, Irina Yu; Khaibrakhmanova, Elvira A; Tyumkina, Tatyana V; Romadova, Irina V; Odinokov, Victor N

    2015-10-01

    This paper reports the selective oxidation of hyaluronic acid (HA) by stoichiometric quantity of 2,2,6,6-tetramethylpiperidine-1-oxoammonium chloride (TEMPO(+)) in aqueous alkaline medium. High efficiency of the HA oxidation and quantitative yield of carboxy-HA per starting TEMPO(+), as well as unusual behavior of the oxidation system generating an oxygen upon alkali-induced oxoammonium chloride decomposition are demonstrated. The scheme for HA oxidation involving both TEMPO(+) and oxygen produced upon the TEMPO(+)Cl(-) decomposition and/or air oxygen is proposed. For comparison, the data on stoichiometric oxidation of such substrates as dermatan sulfate, water-soluble potato starch, methyl 2-acetamido-2-deoxy-β-d-glucopyranoside and ethanol are presented.

  8. Regenerative surgery of the complications with Morton's neuroma surgery: use of platelet rich plasma and hyaluronic acid.

    PubMed

    De Angelis, Barbara; Lucarini, Lucilla; Orlandi, Fabrizio; Agovino, Annarita; Migner, Alessia; Cervelli, Valerio; Izzo, Valentina; Curcio, Cristiano

    2013-08-01

    Morton's neuroma is an entrapment neuropathy of the plantar digital nerve. We treated five patients with wound dehiscence and tendon exposure, after Morton's neuroma surgery excision using a dorsal approach. In this article we describe our technique. From July 2010 to August 2011, at the Department of Plastic and Reconstructive Surgery, University of Rome 'Tor Vergata', five patients (four females and one male), with ages ranging between 35 and 52 years, were treated with a combination of PRP (platelet rich plasma) and HA (hyaluronic acid). Thirty days following surgery, all patients showed a complete healing of the wound. The use of this technique for the treatment of postoperative wound dehiscence and tendon exposure has proven as satisfactory.

  9. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials.

    PubMed

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C18) functionalized with different amounts of the RGD peptide. PMID:27287118

  10. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    NASA Astrophysics Data System (ADS)

    Wei, Y. T.; Tian, W. M.; Yu, X.; Cui, F. Z.; Hou, S. P.; Xu, Q. Y.; Lee, In-Seop

    2007-09-01

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  11. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials.

    PubMed

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C18) functionalized with different amounts of the RGD peptide.

  12. [USE OF HYALURONIC ACID ALONE AND COMBINED WITH ARGENTIC SULPHADIAZINE IN REACTIVE PERFORATING COLLAGENOSIS. A CASE REPORT].

    PubMed

    Cano Cerro, Miguel Mauricio; Jiménez Fornés, Eva María; Fabrich Lloret, María José; Gans Cuenca, Ovidio; Redón Martínez, Mara; Sales Molió, Elena

    2016-04-01

    The dermatosis known since reactive perforating collagenosis (RPC) is an injury that is characterized by the transepidermal elimination of the collagen. Two forms of presentation exist: the inherited one and the acquired one. The acquired form appears in the adult age, principally in diabetics with renal chronic insufficiency. The hyaluronic acid is a glycosaminoglycan of high place molecular weight that is synthesized in the system vacuolar of the fibroblasts and other cells, since they are the keratinocytes, with help of the factors of growth and in other cytokines. The argentic sulphadiazine is a hackneyed medicament of antiinfectious action that is in use for anticipating and treating the infections in wounds and burns of degree the II and IIIrd. His action realizes it on bacteria and fungi.

  13. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment

    PubMed Central

    Fakhari, Amir; Berkland, Cory

    2013-01-01

    Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers, and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix (ECM) and is involved in cellular signaling. Degradation of HA is a step-wise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity, and elasticity. This review addresses the distribution, turnover, and tissue-specific properties of HA. This information is used as context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler, and in osteoarthritis treatment. PMID:23507088

  14. Foreign body granulomatous reaction to silica, silicone, and hyaluronic acid in a patient with interferon-induced sarcoidosis.

    PubMed

    Novoa, R; Barnadas, M A; Torras, X; Curell, R; Alomar, A

    2013-12-01

    We report the case of a patient who developed sarcoid granulomas 11 months after starting treatment with pegylated interferon alfa and ribavirin for chronic hepatitis C. The sites of the lesions were related to 3 different foreign bodies: silica in old scars on the skin, hyaluronic acid that had been injected into facial tissues, and silicone in an axillary lymph node draining the area of a breast implant. Systemic sarcoidosis was diagnosed on the basis of a history of dry cough and fever and blood tests that revealed elevated angiotensin converting enzyme and liver enzymes. Interruption of the antiviral therapy led to normalization of liver function tests and disappearance of the skin lesions and lymphadenopathies. Dermatologists and cosmetic surgeons should be aware of the risk of sarcoid lesions related to cosmetic implants in patients who may require treatment with interferon in the future.

  15. Fine tuning and measurement of mechanical properties of crosslinked hyaluronic acid hydrogels as biomimetic scaffold coating in regenerative medicine.

    PubMed

    Credi, Caterina; Biella, Serena; De Marco, Carmela; Levi, Marinella; Suriano, Raffaella; Turri, Stefano

    2014-01-01

    Chemically crosslinked hyaluronic acid hydrogels are synthesized with a homogeneous crosslinking process using divinyl sulfone (DVS) as crosslinking agent. Testing different conditions, in terms of both DVS content and curing time, we aim to keep control over the crosslinking process in order to prepare biocompatible hydrogels with mechanical properties closely approximating those of extracellular matrix (ECM) of natural stem cells niches (0.1÷50kPa). The hydrogels properties are evaluated through a reliable methodology based on three independent techniques: dynamic rheological analysis, used as benchmark method; swelling experiments following the Flory-Rehner theory and atomic force microscope (AFM) nanoindentation experiments. Our results demonstrate that controlling crosslinking parameters it is possible to design hydrogels with desired elastic moduli values. HA hydrogels can be ideal coating materials to be implemented in regenerative medicine and particularly in the engineering of ECM niches in vitro.

  16. Evaluation of an onion extract, Centella asiatica, and hyaluronic acid cream in the appearance of striae rubra.

    PubMed

    Draelos, Zoe Diana; Gold, Michael H; Kaur, Mandeep; Olayinka, Babajide; Grundy, Starr L; Pappert, Eric J; Hardas, Bhushan

    2010-01-01

    This study evaluated the effect of an onion extract cream with Centella asiatica and hyaluronic acid in improving the appearance of striae rubra (SR). Women participants with bilateral, outer aspect of the thigh SR were randomized to apply a quarter-sized amount of the onion extract cream twice daily for 12 weeks to the randomized left or right, outer aspect of the thigh. No treatment was administered to the contralateral side. Participants were evaluated at weeks 2, 4, 8, and 12. Primary efficacy endpoints included color, texture, softness, and overall appearance of SR by the participant and investigator at week 12. The treated thigh demonstrated a statistically significant difference in the mean change in participant and investigator evaluations in overall appearance, texture, color, and softness compared with the untreated thigh at week 12. No adverse events occurred during the study. The onion extract cream was well tolerated and significantly improved the appearance of SR in women. PMID:20527138

  17. Hyaluronic acid fillers with cohesive polydensified matrix for soft-tissue augmentation and rejuvenation: a literature review

    PubMed Central

    Prasetyo, Adri D; Prager, Welf; Rubin, Mark G; Moretti, Ernesto A; Nikolis, Andreas

    2016-01-01

    Background Cohesive monophasic polydensified fillers show unique viscoelastic properties and variable density of hyaluronic acid, allowing for a homogeneous tissue integration and distribution of the material. Objective The aim of this paper was to review the clinical data regarding the performance, tolerability, and safety of the Belotero® fillers for soft-tissue augmentation and rejuvenation. Methods A literature search was performed up until May 31, 2015 to identify all relevant articles on Belotero® fillers (Basic/Balance, Hydro, Soft, Intense, Volume) and equivalent products (Esthélis®, Mesolis®, Fortélis®, Modélis®). Results This comprehensive review included 26 papers. Findings from three randomized controlled trials showed a greater reduction in nasolabial fold severity with Belotero® Basic/Balance than with collagen (at 8, 12, 16, and 24 weeks, n=118) and Restylane® (at 4 weeks, n=40), and higher patient satisfaction with Belotero® Intense than with Perlane® (at 2 weeks, n=20). With Belotero® Basic/Balance, an improvement of at least 1 point on the severity scale can be expected in ~80% of patients 1–6 months after injection, with an effect still visible at 8–12 months. Positive findings were also reported with Belotero® Volume (no reduction in hyaluronic acid volume at 12 months, as demonstrated by magnetic resonance imaging), Soft (improvement in the esthetic outcomes when used in a sequential approach), and Hydro (improvement in skin appearance in all patients). The most common adverse effects were mild-to-moderate erythema, edema, and hematoma, most of which were temporary. There were no reports of Tyndall effect, nodules, granulomas, or tissue necrosis. Conclusion Clinical evidence indicates sustainable esthetic effects, good safety profile, and long-term tolerability of the Belotero® fillers, particularly Belotero® Basic/Balance and Intense.

  18. Hyaluronic acid fillers with cohesive polydensified matrix for soft-tissue augmentation and rejuvenation: a literature review

    PubMed Central

    Prasetyo, Adri D; Prager, Welf; Rubin, Mark G; Moretti, Ernesto A; Nikolis, Andreas

    2016-01-01

    Background Cohesive monophasic polydensified fillers show unique viscoelastic properties and variable density of hyaluronic acid, allowing for a homogeneous tissue integration and distribution of the material. Objective The aim of this paper was to review the clinical data regarding the performance, tolerability, and safety of the Belotero® fillers for soft-tissue augmentation and rejuvenation. Methods A literature search was performed up until May 31, 2015 to identify all relevant articles on Belotero® fillers (Basic/Balance, Hydro, Soft, Intense, Volume) and equivalent products (Esthélis®, Mesolis®, Fortélis®, Modélis®). Results This comprehensive review included 26 papers. Findings from three randomized controlled trials showed a greater reduction in nasolabial fold severity with Belotero® Basic/Balance than with collagen (at 8, 12, 16, and 24 weeks, n=118) and Restylane® (at 4 weeks, n=40), and higher patient satisfaction with Belotero® Intense than with Perlane® (at 2 weeks, n=20). With Belotero® Basic/Balance, an improvement of at least 1 point on the severity scale can be expected in ~80% of patients 1–6 months after injection, with an effect still visible at 8–12 months. Positive findings were also reported with Belotero® Volume (no reduction in hyaluronic acid volume at 12 months, as demonstrated by magnetic resonance imaging), Soft (improvement in the esthetic outcomes when used in a sequential approach), and Hydro (improvement in skin appearance in all patients). The most common adverse effects were mild-to-moderate erythema, edema, and hematoma, most of which were temporary. There were no reports of Tyndall effect, nodules, granulomas, or tissue necrosis. Conclusion Clinical evidence indicates sustainable esthetic effects, good safety profile, and long-term tolerability of the Belotero® fillers, particularly Belotero® Basic/Balance and Intense. PMID:27660479

  19. Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium

    PubMed Central

    Purcell, Brendan P.; Elser, Jeremy A.; Mu, Anbin; Margulies, Kenneth B.; Burdick, Jason A.

    2012-01-01

    Poor cell engraftment in the myocardium is a limiting factor towards the use of bone marrow-derived cells (BMCs) to treat myocardial infarction (MI). In order to enhance the engraftment of circulating BMCs in the myocardium following MI, we have developed in situ forming hyaluronic acid (HA) hydrogels with degradable crosslinks to sustain the release of recombinant stromal cell-derived factor-1 alpha (rSDF-1α) and HA to the injured myocardium. Both rSDF-1α and the crosslinkable HA macromer stimulate BMC chemotaxis up to 4-fold in vitro through CXCR4 and CD44 receptor signaling, respectively. Moreover, the HA macromer binds rSDF-1α with a dissociation constant of 36 ± 5 µM through electrostatic interaction. When formed into hydrogels via photoinitiated crosslinking, release of encapsulated rSDF-1α and crosslinked HA was sustained for 7 days, and these molecules significantly increased BMC chemotaxis in vitro. When applied to the heart following experimental MI in mice, the HA gel containing rSDF-1α significantly increased the number of systemically infused BMCs in the heart by ~8.5 fold after 7 days, likely through both systemic and local effects of released molecules. We conclude that sustained release of rSDF-1α and HA from our engineered HA hydrogels enhances BMC homing to the remodeling myocardium better than delivery of rSDF-1α alone. PMID:22835643

  20. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells).

    PubMed

    Kumar, C Senthil; Raja, M D; Sundar, D Sathish; Gover Antoniraj, M; Ruckmani, K

    2015-09-01

    In this study, green synthesis of gold nanoparticles (AuNPs) was achieved using the extract of eggplant as a reducing agent. Hyaluronic acid (HA) serves as a capping and targeting agent. Metformin (MET) was successfully loaded on HA capped AuNPs (H-AuNPs) and this formulation binds easily on the surface of the liver cancer cells. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, HR-TEM, particle size analyser and zeta potential measurement. Toxicity studies of H-AuNPs in zebra fish confirmed the in vivo safety of the AuNPs. The in vitro cytotoxicity results showed that the amount of MET-H-AuNPs enough to achieve 50% inhibition (IC50) was much lower than free MET. Flow cytometry analysis showed the significant reduction in G2/M phase after treatment with MET-H-AuNPs, and molecular level apoptosis were studied using western blotting. The novelty of this study is the successful synthesis of AuNPs with a higher MET loading and this formulation exhibited better targeted delivery as well as increased regression activity than free MET in HepG2 cells. PMID:26005140

  1. Rheological and molecular weight comparisons of approved hyaluronic acid products - preliminary standards for establishing class III medical device equivalence.

    PubMed

    Braithwaite, Gavin J C; Daley, Michael J; Toledo-Velasquez, David

    2016-01-01

    Hyaluronic acid of various molecular weights has been in use for the treatment of osteoarthritis knee pain for decades. Worldwide, these products are regulated as either as drugs or devices and in some countries as both. In the US, this class of products is regulated as Class III medical devices, which places specific regulatory requirements on developers of these materials under a Pre-Market Approval process, typically requiring data from prospective randomized controlled clinical studies. In 1984 pharmaceutical manufacturers became able to file an Abbreviated New Drug Application for approval of a generic drug, thus establishing standards for demonstrating equivalence to an existing chemical entity. Recently, the first biosimilar, or 'generic biologic', was approved. Biosimilars are biological products that are approved by the FDA because they are 'highly similar' to a reference product, and have been shown to have no clinically meaningful differences from the reference product. For devices, Class II medical devices have a pathway for declaring equivalence to an existing product by filing a 510 k application for FDA clearance. However, until recently no equivalent regulatory pathway was available to Class III devices. In this paper, we consider the critical mechanical performance parameters for intra-articular hyaluronic products to demonstrate indistinguishable characteristics. Analogous to the aforementioned pathways that allow for a demonstration of equivalence, we examine these parameters for an existing, marketed device and compare molecular weight and rheological properties of multiple batches of a similar product. We propose that this establishes a scientific rationale for establishing Class III medical device equivalence.

  2. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions. PMID:24060369

  3. The effect of an arginine-glycine-aspartic acid peptide and hyaluronate synthetic matrix on epithelialization of meshed skin graft interstices.

    PubMed

    Cooper, M L; Hansbrough, J F; Polarek, J W

    1996-01-01

    Keratinocytes and fibroblasts interact with proteins of the extracellular matrix such as fibronectin and vitronectin through RGD (arginine-glycine-aspartic acid) cell-attachment sequences. This study evaluated the ability of a provisional synthetic matrix composed of an RGD peptide and hyaluronic acid to accelerate the epithelialization of the interstices of meshed, human, split-thickness skin when placed on full-thickness wounds of athymic mice. Full-thickness skin defects, sparing the panniculus carnosus, were created on athymic mice and 3:1 meshed, human skin was placed on them. The grafts had four central, isolated interstices, which epithelialized by migration of human keratinocytes. Conditions were either the addition to the wound of the synthetic matrix or a matrix of hyaluronic acid alone. The time to closure of the graft interstices was decreased (p < 0.02) in the wounds treated with the RGD peptide-hyaluronic acid provisional matrix. The resultant epithelium of the closed interstices was significantly thicker 8 days after surgery for the RGD-treated wounds. Basement membrane proteins (laminin and type IV collagen) were also found to be present at the dermoepidermal junction earlier in the RGD-treated wounds. These results imply that use of the RGD peptide conjugate to effect cell-matrix interactions may have clinical significance in the field of wound healing.

  4. Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2013-02-01

    Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions.

  5. [Effectiveness and safety of intra-articular use of hyaluronic acid (Suplasyn I-Shot) in the treatment of knee osteoarthritis].

    PubMed

    Krzysztof, Miśkowiec; Artur, Gadek; Alicja, Jurecka; Justyna, Sówka; Jakub, Slusarski; Henryk, Liszka; Jerzy, Wordliczek

    2016-01-01

    Osteoarthritis (OA) is one of the leading causes of disability in the elderly. The changes in the lubricating properties of synovial fluid lead to significant pain and loss of function. Viscosupplementation, in which hyaluronic acid (HA) is injected into the knee joint, has evolved into an important part of our current therapeutic regimen in addressing the patient with knee pain due to OA. Intra-articular HA has proven to be an effective, safe, and tolerable treatment for symptomatic knee OA. In an effort to limit cardiovascular, gastrointestinal and renal safety concerns with COX-2 selective and nonselective NSAIDs and maximize HA efficacy, it is even proposed using HA earlier in the treatment paradigm for knee OA and also as part of a comprehensive treatment strategy. Our study reconfirmed effectiveness and safety of intra-articular use of hyaluronic acid (Suplasyn) in the treatment of knee osteoarthritis. PMID:27526423

  6. Effects of immobilization of hyaluronic acid and carboxymethyl chitosan onto a -NH2 functionalized titanium surfaces on MG 63 cell proliferations.

    PubMed

    Kim, Byung Hoon

    2011-08-01

    The purpose of this study is the development of bioactive functionalized titanium surface by immobilizing hyaluronic acid (HA) and carboxymethyl chitosan (CMCH) onto -NH2 functionalized titanium surfaces to improve biological and chemical properties of titanium. The in vitro biological evaluation showed that introducing the CMCH and HA to the Ti/NH2 enhanced initial cell proliferation compared to untreated Ti surface. PMID:22103125

  7. Randomized, evaluator-blind, split-face comparison study of single cross-linked versus double cross-linked hyaluronic acid in the treatment of glabellar lines.

    PubMed

    Kono, Taro; Kinney, Brian M; Groff, William Frederick; Chan, Henry H; Ercocen, Ali Riza; Nozaki, Motohiro

    2008-06-01

    BACKGROUND At present, various hyaluronic acids are being used to rejuvenate facial skin. There is no comparative study of single cross-linked hyaluronic acid (SCHA) versus double cross-linked hyaluronic acid (DCHA). The objective of our study is to compare the effectiveness and complications of SCHA versus DCHA in the treatment of glabellar lines. METHODS Ten female patients were enrolled in this randomized, evaluator-blind study. One side (left vs. right) of each patient's glabellar lines was treated with SCHA and the other side was treated with DCHA. Two independent blinded observers reviewed the clinical photographs at 3, 6, 9, and 12 months after the treatment and assessed for degree of improvement as well as complications. RESULTS The two products were equally effective in producing an optimal cosmetic result, although at 6, 9, and 12 months posttreatment, a higher proportion of patients showed over 50% improvement with DCHA than with SCHA. At 12 months posttreatment, DCHA was considered superior in 70% of patients, whereas SCHA was superior in 10% of patients. CONCLUSIONS Both SCHA and DCHA are equally effective in producing an optimal cosmetic result. DCHA provides a more durable esthetic improvement when compared to SCHA in the treatment of glabellar lines.

  8. A pilot study comparing the efficacy of radiofrequency and microwave diathermy in combination with intra-articular injection of hyaluronic acid in knee osteoarthritis.

    PubMed

    Takahashi, Kenji; Hashimoto, Sanshiro; Kurosaki, Hiromasa; Kato, Kazuo; Majima, Tokifumi; Shindo, Yasuhiro; Watanabe, Hiroshi; Mochizuki, Yusuke; Takai, Shinro

    2016-01-01

    [Purpose] This study aimed to compare the efficacy of radiofrequency diathermy with that of microwave diathermy in combination with intra-articular injection of hyaluronic acid into the knee of patients with osteoarthritis (OA). [Subjects] A total of 17 patients with knee OA were enrolled. The participants were randomly divided into two groups: a radiofrequency diathermy group (RF group, 9 subjects), and a microwave diathermy group (MW group, 8 subjects). [Methods] Subjects received radiofrequency or microwave thermal therapy 3 times at 1-week intervals. Intra-articular injection of hyaluronic acid was administered 10 min before every thermal therapy session. The outcome was evaluated using the Japan Orthopaedic Association (JOA) and the Lequesne Index (LI) at baseline, at weeks 1 (1 week after the first thermal therapy) and 3 (1 week after the last thermal therapy). [Results] The JOA scale increased significantly after three sessions of thermal therapy in the RF group, while no significant increase was observed in the MW group. LI decreased significantly after 3 weeks in the RF group. In the MW group, there was no significant difference in LI between the two time points. [Conclusion] This study revealed that symptom relief in patients with knee OA was greater with radiofrequency diathermy than with microwave diathermy with concurrent use of hyaluronic acid injection, presumably due to the different heating characteristics of the two methods. PMID:27065540

  9. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.

    PubMed

    Kim, Jungju; Kim, In Sook; Cho, Tae Hyung; Lee, Kyu Back; Hwang, Soon Jung; Tae, Giyoong; Noh, Insup; Lee, Sang Hoon; Park, Yongdoo; Sun, Kyung

    2007-04-01

    Acrylated hyaluronic acid (HA) was used as a scaffold for bone morphogenic protein-2 (BMP-2) and human mesenchymal stem cells (hMSCs) for rat calvarial defect regeneration. HA was acrylated by two-step reactions: (1) introduction of an amine group using adipic acid dihydrazide (ADH); (2) acrylation by N-acryloxysuccinimide. Tetrathiolated poly(ethylene) glycol (PEG-SH(4)) was used as a cross-linker by a Michael-type addition reaction and the hydrogel was formed within 10min under physiological conditions. This hydrogel is degraded completely by 100U/ml hyaluronidase in vitro. hMSCs and/or BMP-2 was added during gelation. Cellular viability in vitro was increased up to 55% in the hydrogels with BMP-2 compared with the control. For in vivo calvarial defect regeneration, five different samples (i.e., control, hydrogel, hydrogel with BMP-2, hydrogel with MSCs, and hydrogel with BMP-2 and MSCs) were implanted for 4 weeks. The histological results demonstrated that the hydrogels with BMP-2 and MSCs had the highest expression of osteocalcin and mature bone formation with vascular markers, such as CD31 and vascular endothelial growth factors, compared with the other samples. This study demonstrated that HA base hydrogel can be used for cell and growth factor carriers for tissue regeneration. PMID:17208295

  10. Bioimaging for targeted delivery of hyaluronic Acid derivatives to the livers in cirrhotic mice using quantum dots.

    PubMed

    Kim, Ki Su; Hur, Wonhee; Park, Sang-Jun; Hong, Sung Woo; Choi, Jung Eun; Goh, Eun Ji; Yoon, Seung Kew; Hahn, Sei Kwang

    2010-06-22

    Liver fibrosis or cirrhosis is one of the representative liver diseases with a high morbidity and mortality worldwide. Over the past decades, many kinds of antifibrotic compounds have been investigated in vitro and in vivo for the treatment of liver cirrhosis. In this work, real-time bioimaging of hyaluronic acid (HA) derivatives was carried out using quantum dots (QDots) to assess the possibility of HA derivatives as target-specific drug delivery carriers for the treatment of liver diseases. HA-QDot conjugates with an HA modification degree of about 22 mol % was synthesized by amide bond formation between carboxyl groups of QDots and amine groups of adipic acid dihydrazide modified HA (HA-ADH). According to in vitro cell culture tests, HA-QDot conjugates were taken up more to the cells causing chronic liver diseases such as hepatic stellate cells (HSC-T6) and hepatoma cells (HepG2) than normal hepatocytes (FL83B). After tail-vein injection, HA-QDot conjugates were target-specific, being delivered to the cirrhotic liver with a slow clearance longer than 8 days. Furthermore, immunofluorescence and flow cytometric analyses of dissected liver tissues revealed the target-specific delivery of HA derivatives to liver sinusoidal endothelial cells (LSEC) and HSC. The results were thought to reflect the feasibility of HA derivatives as novel drug delivery carriers for the treatment of various chronic liver diseases including hepatitis, liver cirrhosis, and liver cancer. PMID:20518553

  11. Hyaluronic Acid: Perspectives in Upper Aero-Digestive Tract. A Systematic Review

    PubMed Central

    Casale, Manuele; Moffa, Antonio; Sabatino, Lorenzo; Pace, Annalisa; Oliveto, Giuseppe; Vitali, Massimiliano; Baptista, Peter; Salvinelli, Fabrizio

    2015-01-01

    Background To date, topical therapies guarantee a better delivery of high concentrations of pharmacologic agents to the mucosa of the upper aerodigestive tract (UADT). The use of topical drugs, which are able to reduce mucosal inflammation and to improve healing tissues, can represent a relevant therapeutic advance. Topical sodium hyaluronate (SH) has recently been recognized as adjuvant treatment in the chronic inflammatory disease of the UADT. Aims The aim of our work was to review the published literature regarding all the potential therapeutic effects of SH in the chronic inflammatory disease of UADT. Methods Relevant published studies were searched in Pubmed, Google Scholar, Ovid using keywords (“sodium hyaluronate” and “upper airways”) or Medical Subject Headings. Results At the end of our selection process, sixteen publications have been included. Six of them in the post-operative period of nasal-sinus surgery, 2 of them in pediatric patients affected by recurrent upper respiratory tract infections, 4 of them in reducing symptoms and preventing exacerbations of chronic upper airways in adult population, 4 of them in patients with chronic inflammatory disease of UADT, including gastro-esophageal reflux disease (GERD). Conclusions Topical administration of SH plays a pivotkey role in the postoperative phase of patients undergoing FESS and nasal surgery, and positive results are generally observed in all the patients suffering from UADT chronic inflammatory disease. PMID:26120837

  12. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  13. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid

    PubMed Central

    Teng, Wei; Wang, Qinmei; Chen, Ying; Huang, Hongzhang

    2014-01-01

    To explore a spatiotemporally controllable gene delivery system with high efficiency and safety, polyelectrolyte multilayer (PEM) films were constructed on titanium or quartz substrates via layer-by-layer self-assembly technique by using plasmid deoxyribonucleic acid-loaded lipopolysaccharide–amine nanopolymersomes (pNPs) as polycations and hyaluronic acid (HA) as polyanions. pNPs were chosen because they have high transfection efficiency (>95%) in mesenchymal stem cells (MSCs) and induce significant angiogenesis in zebrafish in conventional bolus transfection. The assembly process of PEM films was confirmed by analyses of quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, infrared, contact angle, and zeta potential along with atomic force microscopy observation. Quartz crystal microbalance with dissipation analysis reveals that this film grows in an exponential mode, pNPs are the main contributor to the film mass, and the film mass can be modulated in a relatively wide range (1.0–29 μg/cm2) by adjusting the deposition layer number. Atomic force microscopy observation shows that the assembly leads to the formation of a patterned film with three-dimensional tree-like nanostructure, where the branches are composed of beaded chains (pNP beads are strung on HA molecular chains), and the incorporated pNPs keep structure intact. In vitro release experiment shows that plasmid deoxyribonucleic acid can be gradually released from films over 14 days, and the released plasmid deoxyribonucleic acid exists in a complex form. In vitro cell experiments demonstrate that PEM films can enhance the adhesion and proliferation of MSCs and efficiently transfect MSCs in situ in vitro for at least 4 days. Our results suggest that a (pNPs/HA)n system can mediate efficient transfection in stem cells in a spatially and temporally controllable pattern, highlighting its huge potential in local gene therapy. PMID:25378927

  14. Non-surgical treatment of deep wounds triggered by harmful physical and chemical agents: a successful combined use of collagenase and hyaluronic acid.

    PubMed

    Onesti, Maria G; Fino, Pasquale; Ponzo, Ida; Ruggieri, Martina; Scuderi, Nicolò

    2016-02-01

    Some chronic ulcers often occur with slough, not progressing through the normal stages of wound healing. Treatment is long and other therapies need to be performed in addition to surgery. Patients not eligible for surgery because of ASA class (American Society of Anesthesiologists class) appear to benefit from chemical therapy with collagenase or hydrocolloids in order to prepare the wound bed, promoting the healing process. We describe four cases of traumatic, upper limb deep wounds caused by different physical and chemical agents, emphasising the effectiveness of treatment based on topical application of collagenase and hyaluronic acid (HA) before standardised surgical procedures. We performed careful disinfection of lesions combined with application of topical cream containing hyaluronic acid, bacterial fermented sodium hyaluronate (0·2%w/w) salt, and bacterial collagenase obtained from non-pathogenic Vibrio alginolyticus (>2·0 nkat1/g). In one patient a dermo-epidermal graft was used to cover the wide loss of substance. In two patients application of a HA-based dermal substitute was done. We obtained successful results in terms of wound healing, with satisfactory aesthetic result and optimal recovery of the affected limb functionality. Topical application of collagenase and HA, alone or before standardised surgical procedures allows faster wound healing. PMID:24698215

  15. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  16. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line.

    PubMed

    Sato, Eiichi; Ando, Takashi; Ichikawa, Jiro; Okita, Genki; Sato, Nobutaka; Wako, Masanori; Ohba, Tetsuro; Ochiai, Satoshi; Hagino, Tetsuo; Jacobson, Richard; Haro, Hirotaka

    2014-12-01

    Osteoarthritis (OA) is a group of common, chronic, and painful inflammatory joint diseases. One important finding in OA patients is a remarkable decrease in the molecular weight of hyaluronic acid (HA) in the synovial fluid of affected joints. Therapeutic HA is available to patients in most parts of the world as a viscosupplementation product for the treatment of OA. Previous clinical reports show that high molecular weight HA (HMWHA) more effectively relieves pain than low molecular weight HA (LMWHA). However, the mechanism behind this finding remains unclear. In this study, we investigated whether a LMWHA (Low-0.9 MDa) and two types of HMWHA (High-1.9 MDa and 6 MDa) differentially affected chondroregulatory action. We tested this using ATDC5 cell, a murine chondrocytic cell line widely used in culture systems to study chondrogenic differentiation. We found that HMWHA, especially hylan G-F 20 (High-6 MDa), significantly induced aggrecan and proteoglycan accumulation, nodule formation, and mRNA expression of chondrogenic differentiation markers in a time- and dose-dependent manner. In addition, we showed that HMWHA prevented TNF-α induced inhibition of chondrogenic differentiation, with no effect on cell proliferation or viability. These results reveal that HMWHA significantly promotes chondrogenic differentiation of ATDC5 cells in vitro, and suggest that HMWHA plays a significant chondroregulatory role in vivo.

  17. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels.

    PubMed

    Rodell, Christopher B; Kaminski, Adam L; Burdick, Jason A

    2013-11-11

    Shear-thinning hydrogels afford direct injection or catheter delivery to tissues without potential premature gel formation and delivery failure or the use of triggers such as chemical initiators or heat. However, many shear-thinning hydrogels require long reassembly times or exhibit rapid erosion. We developed a shear-thinning hyaluronic acid (HA) hydrogel based on the guest-host interactions of adamantane modified HA (guest macromer, Ad-HA) and β-cyclodextrin modified HA (host macromer, CD-HA). The ability of the guest and host molecules to interact with their counterpart following conjugation to HA was confirmed by (1)H NMR spectroscopy and was similar to that of the native complex. Mixing of Ad-HA and CD-HA resulted in rapid formation of a hydrogel composed of guest-host bonds. The hydrogel physical properties, including mechanics and flow characteristics, were dependent on cross-link density and network structure, which were controlled through macromer concentration, the extent of guest macromer modification, and the molar ratio of guest and host functional groups. The guest-host assembly mechanism permitted both shear-thinning behavior for ease of injection and near-instantaneous reassembly for material retention at the target sight. The hydrogel erosion and release of a model biomolecule were also dependent on design parameters and were sustained for over 60 days. These hydrogels show potential as a minimally invasive injectable hydrogel for biomedical applications.

  18. Use of Platelet Rich Plasma and Hyaluronic Acid in the Treatment of Complications of Achilles Tendon Reconstruction

    PubMed Central

    Gentile, Pietro; De Angelis, Barbara; Agovino, Annarita; Orlandi, Fabrizio; Migner, Alessandra; Di Pasquali, Camilla; Cervelli, Valerio

    2016-01-01

    BACKGROUND The platelet-rich plasma (PRP) and hyaluronic acid (HA) constitute a system of tissue growth that can regenerate damaged tissue. This study was performed to evaluate the effect of PRP and HA in treatment of complications of Achilles tendon reconstruction. METHODS We selected ten patients affected by Achilles tendon injuries resulting from post-surgical complications subsequent to tenorrhaphy and have treated them with autologous PRP in combination with HA to evaluate the improvement of lesions with wound closure. RESULTS The treatment with PRP and HA for post-surgical complications of Achilles tendon was effective in healing and regeneration of soft and hard tissues. The healing time was shortened, and the treated area preserved a satisfying strength in plantar flexion and extension of the ankle, denoting to a decisive improvement in texture and a more rapid healing and a good cutaneous elasticity, with a significant reduction of the costs of hospitalization and the pain already the immediate postoperatively. The functional rehabilitation in terms of deambulation and joint mobility was complete. CONCLUSION The treatment we proposed allowed an easier and more rapid wound closure with excellent aesthetic improvement. Furthermore, the minimally invasive technique is well tolerated by patients. PMID:27579267

  19. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications.

    PubMed

    Ji, Yuan; Ghosh, Kaustabh; Li, Bingquan; Sokolov, Jonathan C; Clark, Richard A F; Rafailovich, Miriam H

    2006-10-20

    A facile fabrication of a cross-linked hyaluronic acid (HA) hydrogel nanofibers by a reactive electrospinning method is described. A thiolated HA derivative, 3,3'-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), and poly(ethylene glycol) diacrylate (PEGDA) are selected as the cross-linking system. The cross-linking reaction occurs simultaneously during the electrospinning process using a dual-syringe mixing technique. Poly(ethylene oxide) (PEO) is added into the spinning solution as a viscosity modifier to facilitate the fiber formation and is selectively removed with water after the electrospinning process. The nanofibrous structure of the electrospun HA scaffold is well preserved after hydration with an average fiber diameter of 110 nm. A cell morphology study on fibronectin (FN)-adsorbed HA nanofibrous scaffolds shows that the NIH 3T3 fibroblasts migrate into the scaffold through the nanofibrous network, and demonstrate an elaborate three-dimensional dendritic morphology within the scaffold, which reflects the dimensions of the electrospun HA nanofibers. These results suggest the application of electrospun HA nanofibrous scaffolds as a potential material for wound healing and tissue regeneration. [image: see text] Laser scanning confocal microscopy demonstrates that the NIH3T3 fibroblast develops an extended 3D dendritic morphology within the fibronectin-adsorbed electrospun HA nanofibrous scaffold. PMID:17022092

  20. Hyaluronic acid depolymerization by ascorbate-redox effects on solid state cultivation of Streptococcus zooepidemicus in cashew apple fruit bagasse.

    PubMed

    de Macedo, André Casimiro; Santana, Maria Helena Andrade

    2012-05-01

    The cashew fruit (Anacardium occidentale L.) has been used as a promising agricultural resource for the production of low-molecular weight (M(W)) hyaluronic acid (HA) (10(4)-10(5) Da). The cashew juice is a rich source of vitamin C containing, 1.2-2.0 g L(-1). This work explores the effects of the initial concentration of the ascorbate on the solid fermentation of the juice-moisturized bagasse from the cashew apple fruit. The results show that the M(W) reduction of HA is proportional to the initial ascorbate concentration. The presence of ascorbate did not influence the Streptococcus zooepidemicus metabolism. However, the HA productivity was increased from 0.18 to 0.28 mg g(-1) h(-1) when the ascorbate concentration ranged from 1.7 to 10 mg mL(-1). These findings contribute to the controlled production of HA in a low M(W) range, which is important in cell signalization, angiogenesis and nanoparticles production.

  1. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery.

    PubMed

    Lai, Jui-Yang

    2016-02-01

    In this study, the effects of hyaluronic acid (HA) concentrations (0.05-1.25wt.%) on the properties of porous carriers for corneal endothelial tissue engineering were investigated. The pore size and porosity gradually increased with decreasing solid content. However, at relatively low HA concentration (i.e., 0.05wt.%), the material samples contained small interior pores and a dense surface skin layer, probably due to no gas bubble effect on the stirring processing of porous microstructures of freeze-dried polysaccharide hydrogels. The carriers prepared from 0.25wt.% HA solution had the highest freezable water content and oxygen and glucose permeability among the samples evaluated. Results of cell viability assays and quantitative real-time reverse transcription polymerase chain reaction analyses showed that the HA concentration-related alteration of porous microstructure dictates the compatibility of biopolymer carriers with corneal endothelial cell (CEC) cultures. In vivo studies demonstrated that the CEC sheet/HA carrier construct implants are therapeutically efficacious in the reconstruction of endothelial scrape-wounded corneas. It is concluded that the polysaccharide concentration is the major factor for affecting the processing of carriers and their structure and function. Porous hydrogels prepared from 0.25wt.% HA solution are capable of delivering bioengineered CEC sheets to the posterior surface of cornea. PMID:26652391

  2. Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery.

    PubMed

    Liu, Ya; Wang, Fang-Qin; Shah, Zeana; Cheng, Xiao-Jie; Kong, Ming; Feng, Chao; Chen, Xi-Guang

    2016-09-01

    Here we described nano-polyplexes (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) as novel potential carriers for oral gene vaccines delivery. Aerolysin gene (aerA) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-HA/aerA (OHA) NPs. OHA NPs performed the optimal parameters, i.e. smallest (154.5±9.4nm), positive charged (+7.9±0.5mV) and monodispersed system with the N/P ratio of 5 and OCMCS/HA weight ratio of 4. Upon the introduction of HA, OHA NPs was beneficial for the DNA release in intestinal environments in comparison to OA NPs. The mean fluorescence intensity detected in Caco-2 cells incubated with OHA NPs was about 2.5-fold higher than that of OA NPs; however, it decreased significantly in the presence of excess free HA. The OHA NPs and OA NPs decreased the transepithelial electric resistance (TEER) of Caco-2 monolayers obviously and induced increasing the apparent permeability coefficient (Papp) of DNA by 5.45-6.09 folds compared with free DNA. Significantly higher (P<0.05) antigen-specific antibodies were detected in serum after orally immunized with OHA NPs than that immunized with OA NPs and DNA alone in carps. These results enable the OHA NPs might resolve challenges arising from gastrointestinal damage to gene antigens, and offer an approach applicable for oral vaccination. PMID:27236511

  3. Mucoadhesive properties of tamarind-seed polysaccharide/hyaluronic acid mixtures: A nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Vanni, Letizia; Sansò, Marco

    2013-01-16

    Mixtures of tamarind-seed polysaccharide (TSP) and hyaluronic acid (HA), which are employed as artificial tears for ophthalmic applications in the eye dry syndrome, were investigated by NMR spectroscopy by analyzing the effect of TSP/HA ratio and total concentration on their capability to form stable aggregates with enhanced mucoadhesive properties over those of the separate polysaccharides. The effect of TSP, HA or TSP/HA mixtures on the affinity of diclofenac sodium salt (DS) to mucin (BSM) was ascertained by means of proton selective relaxation rate measurements and assumed as the basis to compare polysaccharides mucoadhesive properties. The NMR relaxation parameters of pure DS (2mM), binary DS/BSM (5mg/mL or 10mg/mL) and ternary DS/BSM/polysaccharide systems (polysaccharide=TSP, HA or variable ratios TSP/HA mixtures) were compared in aqueous medium. The experimental data demonstrate that the minimum concentration of 1.5mg/mL of each polysaccharide is needed to have formation of a stable TSP/HA aggregate endowed with NMR detectable mucoadhesive properties and inside which reciprocal synergistic interaction occurs.

  4. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering.

    PubMed

    Hemmrich, Karsten; von Heimburg, Dennis; Rendchen, Raoul; Di Bartolo, Chiara; Milella, Eva; Pallua, Norbert

    2005-12-01

    The reconstruction of soft tissue defects following extensive deep burns or tumor resections remains an unresolved problem in plastic and reconstructive surgery since adequate implant materials are still not available. Preadipocytes, immature precursor cells found between mature adipocytes in adipose tissue, are a potential material for soft tissue engineering since they can proliferate and differentiate into adipose tissue after transplantation. In previous studies, we identified hyaluronan benzyl ester (HYAFF 11) sponges to be promising carrier matrices. This study now evaluates, in vitro and in vivo, a new sponge architecture with pores of 400 microm either made of plain HYAFF 11 or HYAFF 11 coated with the extracellular matrix glycosaminoglycan hyaluronic acid. Human preadipocytes were isolated, seeded onto carriers and implanted into nude athymic mice. Explants harvested after 3, 8, and 12 weeks were examined for macroscopical appearance, thickness, weight, pore structure, histology, and immunohistochemistry. Compared to previous studies, we found better penetration of cells into both types of scaffolds, with more extensive formation of new vessels throughout the construct but with only minor adipose tissue. Our encouraging results contribute towards a better seeded and vascularised scaffold but also show that the enhancement of adipogenic conversion of preadipocytes remains a major task for further in vivo experiments.

  5. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    PubMed

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering.

  6. Development of anti-adhesive spongy sheet composed of hyaluronic acid and collagen containing epidermal growth factor.

    PubMed

    Kuroyanagi, Misato; Yamamoto, Akiko; Shimizu, Nahoko; Toi, Ayako; Inomata, Tomonori; Takeda, Akira; Kuroyanagi, Yoshimitsu

    2014-01-01

    Anti-adhesive products need to be designed while considering the concept of wound healing. Two main events must proceed simultaneously: facilitating wound healing in surgically excised tissue, as well as preventing injured tissue from adhering to the surrounding tissue. The present study aimed to develop an anti-adhesive spongy sheet composed of hyaluronic acid and collagen (Col) containing epidermal growth factor, and to investigate the potential of this spongy sheet using an in vitro wound surface model (placing a spongy sheet on a fibroblast-incorporating Col gel sheet) and an in vitro inter-tissue model (placing a spongy sheet between two fibroblast-incorporating Col gel sheets). These in vitro experiments demonstrated that this spongy sheet effectively stimulates fibroblasts to release an increased amount of vascular endothelial growth factor and hepatocyte growth factor, which are essential for wound healing to proceed succesfully. In addition, anti-adhesive performance of this spongy sheet was evaluated in animal experiments using Sprague Dawley rats. Under anesthesia, a 1 cm × 2 cm segment of peritoneum was superficially excised from walls, and the cecum was then abraded by scraping with a scalpel blade over a 1 cm × 2 cm area. A piece of spongy sheet was placed on the peritoneal defect. Both defects were placed in contact, and the incision was closed by suturing. Peritoneal condition was evaluated after one week. This spongy sheet was capable of facilitating the wound healing of surgically excised tissue and preventing surgically excised tissue from adhering to surrounding tissues.

  7. Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth.

    PubMed

    Orellana, Sandra L; Giacaman, Annesi; Pavicic, Francisca; Vidal, Alejandra; Moreno-Villoslada, Ignacio; Concha, Miguel

    2016-10-01

    The study of biomaterials by electrical charge scaling to explore the role of net charge on biocompatibility and suitability for tissue regeneration has been limited as has the search for products that could improve this first-rate variable. In the present study, we prepared sponges composed of chitosan/alginate (CS/ALG) with or without hyaluronic acid (HA) by mixing polymer stock solutions of different net electric charge ratios (n(+/) n(-) ), and then lyophilizing them to obtain porous materials. The electric charge ratios n(+/) n(-) studied were 0.3, 0.8, 1.0, and 2.5 for CS/ALG and 0.3, 1.0, 1.9, and 3.7 for CS/ALG/HA sponges. Under these conditions a role for net electric charge balance over sponge microstructure rearrangement, protection to dissolution, cellular proliferation, and cell-cell interactions was apparent, effects that were enhanced by copolymer modification with HA. Mass balance, electric charge, and specific products that influence both such as HA, have a potential in biomaterials for wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2537-2543, 2016.

  8. A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration

    PubMed Central

    Nguyen, Thuy Ba Linh

    2014-01-01

    A novel bone substitute was fabricated to enhance bone healing by combining ceramic and polymer materials. In this study, Hyaluronic acid (HyA)–Gelatin (Gel) hydrogel was loaded into a biphasic calcium phosphate (BCP) ceramic, and the resulting scaffold, with unique micro- and macroporous orientation, was evaluated for bone regeneration applications. The fabricated scaffold showed high interconnected porosity, with an average compressive strength of 2.8±0.15 MPa, which is usually recommended for cancellous bone substitution. In vitro cytocompatibility studies were conducted using bone marrow mesenchymal stem cells. The HyA-Gel–loaded BCP scaffold resulted in a significant increase in cell proliferation at 3 (p<0.05) and 7 days (p<0.001) and high alkaline phosphatase activities at 14 and 21 days. Furthermore, the in vivo studies showed that the implanted HyA-Gel–loaded BCP scaffold begins to degrade within 3 months after implantation. Histological sections also confirmed a rapid new bone formation and a high rate of collagen mineralization. A bone matrix formation was confirmed by positive immunohistochemistry staining of osteopontin, osteocalcin, and collagen type I. In vivo expression of extracellular matrix proteins demonstrated that this novel bone substitute holds great promise for use in stimulating new bone regeneration. PMID:24517159

  9. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    PubMed

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control.

  10. Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering.

    PubMed

    Enrione, Javier; Díaz-Calderón, Paulo; Weinstein-Oppenheimer, Caroline R; Sánchez, Elizabeth; Fuentes, Miguel A; Brown, Donald I; Herrera, Hugo; Acevedo, Cristian A

    2013-12-01

    Cell culture on biopolymeric scaffolds has provided treatments for tissue engineering. Biopolymeric mixtures based on gelatin (Ge), chitosan (Ch) and hyaluronic acid (Ha) have been used to make scaffolds for wound healing. Thermal and physical properties of scaffolds prepared with Ge, Ch and Ha were characterized. Thermal characterization was made by using differential scanning calorimetry (DSC), and physical characterization by gas pycnometry and scanning electron microscopy. The effects of Ge content and cross-linking on thermophysical properties were evaluated by means of a factorial experiment design (central composite face centered). Gelatin content was the main factor that affects the thermophysical properties (microstructure and thermal transitions) of the scaffold. The effect of Ge content of the scaffolds for tissue engineering was studied by seeding skin cells on the biopolymers. The cell attachment was not significantly modified at different Ge contents; however, the cell growth rate increased linearly with the decrease of the Ge content. This relationship together with the thermophysical characterization may be used to design scaffolds for tissue engineering.

  11. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    PubMed

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  12. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues.

    PubMed

    Jaipaew, Jirayut; Wangkulangkul, Piyanun; Meesane, Jirut; Raungrut, Pritsana; Puttawibul, Puttisak

    2016-07-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. PMID:27127042

  13. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    PubMed

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. PMID:27178954

  14. Effects of Hyaluronic Acid and γ–Globulin Concentrations on the Frictional Response of Human Osteoarthritic Articular Cartilage

    PubMed Central

    Son, Kyeong-Min; Thompson, Mark S.; Park, Sungchan; Chang, Jun-Dong; Nam, Ju-Suk; Park, Seonghun; Lee, Sang-Soo

    2014-01-01

    Synovial fluid plays an important role in lubricating synovial joints. Its main constituents are hyaluronic acid (HA) and γ–globulin, acting as boundary lubricants for articular cartilage. The aim of the study was to demonstrate the concentration-dependent effect of HA and γ–globulin on the boundary-lubricating ability of human osteoarthritis (OA) cartilage. Normal, early and advance stage articular cartilage samples were obtained from human femoral heads and in presence of either HA or γ–globulin, cartilage frictional coefficient (µ) was measured by atomic force microscopy (AFM). In advanced stage OA, the cartilage superficial layer was observed to be completely removed and the damaged cartilage surface showed a higher µ value (∼0.409) than the normal cartilage surface (∼0.119) in PBS. Adsorbed HA and γ–globulin molecules significantly improved the frictional behavior of advanced OA cartilage, while they were ineffective for normal and early OA cartilage. In advanced-stage OA, the concentration-dependent frictional response of articular cartilage was observed with γ–globulin, but not with HA. Our result suggested that HA and γ–globulin may play a significant role in improving frictional behavior of advanced OA cartilage. During early-stage OA, though HA and γ–globulin had no effect on improving frictional behavior of cartilage, however, they might contribute to disease modifying effects of synovial fluid as observed in clinical settings. PMID:25426992

  15. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery.

    PubMed

    Alemdar, Neslihan

    2016-10-20

    In this study, a novel pH-sensitive composite film with enhanced thermal and mechanical properties was prepared by the incorporation of bone ash at varying concentrations from 0 to 10v.% into gelatin/sodium alginate/hyaluronic acid (Gel/SA/HyA) polymeric structure for colon-specific drug delivery system. Films were characterized by FT-IR, SEM, and XRD analyses. Thermal and mechanical performances of films were determined by DSC, TGA and universal mechanical tester, respectively. Results proved that thermal stability and mechanical properties of bone ash-reinforced composite films improved significantly with respect to that of neat Gel/SA/HyA film. Cytotoxicity assay for composite films was carried out by using L929 cells. Water uptake capacity of films was determined by swelling test. Herein, release experiments of 5-Fluorouracil (5-FU) were performed in two different solutions (pH 2.1 and 7.4). The results assured that Gel/SA/HyA film containing BA could be considered as a potential biomaterial for controlled drug delivery systems. PMID:27474650

  16. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction.

    PubMed

    Dorsey, Shauna M; McGarvey, Jeremy R; Wang, Hua; Nikou, Amir; Arama, Leron; Koomalsingh, Kevin J; Kondo, Norihiro; Gorman, Joseph H; Pilla, James J; Gorman, Robert C; Wenk, Jonathan F; Burdick, Jason A

    2015-11-01

    Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling techniques now allow for serial, non-invasive estimation of infarct material properties. Specifically, cine magnetic resonance imaging (MRI) assesses global LV structure and function, late-gadolinium enhancement (LGE) MRI enables visualization of infarcted tissue to quantify infarct expansion, and spatial modulation of magnetization (SPAMM) tagging provides passive wall motion assessment as a measure of tissue strain, which can all be used to evaluate infarct properties when combined with finite element (FE) models. In this work, we investigated the temporal effects of degradable hyaluronic acid (HA) hydrogels on global LV remodeling, infarct thinning and expansion, and infarct stiffness in a porcine infarct model for 12 weeks post-MI using MRI and FE modeling. Hydrogel treatment led to decreased LV volumes, improved ejection fraction, and increased wall thickness when compared to controls. FE model simulations demonstrated that hydrogel therapy increased infarct stiffness for 12 weeks post-MI. Thus, evaluation of myocardial tissue properties through MRI and FE modeling provides insight into the influence of injectable hydrogel therapies on myocardial structure and function post-MI.

  17. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  18. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  19. A new highly viscoelastic hyaluronic acid gel: rheological properties, biocompatibility and clinical investigation in esthetic and restorative surgery.

    PubMed

    Iannitti, Tommaso; Bingöl, Ali Ö; Rottigni, Valentina; Palmieri, Beniamino

    2013-11-18

    Nowadays there is an increased demand for safe and effective volume enhancing fillers to achieve soft tissue augmentation in order to overcome tissue defects and aging-associated skin changes. In the present study we characterized the rheological and biological properties of Variofill(®), a new highly viscoelastic hyaluronic acid gel, by investigating the local effects following subcutaneous implantation in the rat to detect the host-tissue reactions and biodegradation over 18 months. We also investigated, for the first time, the application of Variofill(®) in esthetic and restorative surgery in two medical case reports. In the first case report we successfully performed Variofill(®) treatment to improve facial scars in a patient previously involved in a car crash. In the second case report we carried out a novel procedure involving a high-dose (1000 ml) injection of Variofill(®) into the dermis and subcutis of the abdominal quadrants in order to allow a classic reconstructive procedure of the abdominal wall in a patient presenting a wide incisional hernia.

  20. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus.

    PubMed

    Liu, Long; Du, Guocheng; Chen, Jian; Zhu, Yang; Wang, Miao; Sun, Jun

    2009-01-01

    Microbial production of low molecular weight hyaluronic acid (HA) by the addition of hydrogen peroxide and ascorbate during the batch culture of Streptococcus zooepidemicus was investigated. Hydrogen peroxide (1.0 mmol/g HA) and ascorbate (0.5 mmol/g HA) were added at 8h and 12h to degrade HA. With the redox depolymerization of HA, the HA molecular weight decreased from 1,300 kDa for the control to 80 kDa, and the average broth viscosity during 8-16 h decreased from 360 mPa s for the control to 290 mPa s. The average oxygen mass transfer coefficient K(L)a increased from 10h(-1) for the control to 35 h(-1) and the average dissolved oxygen level increased from 1% of air saturation in the control to 10%. HA production increased from 5.0 g/L for the control to 6.5 g/L, and contributed to the increased redox potential and energy charge. This novel process not only significantly enhanced production of low molecular weight HA, but also improved purification efficiency due to a decreased broth viscosity. Low molecular weight HA finds applications in biomedical and healthcare fields.

  1. Hyaluronic Acid-Modified Multifunctional Q-Graphene for Targeted Killing of Drug-Resistant Lung Cancer Cells.

    PubMed

    Luo, Yanan; Cai, Xiaoli; Li, He; Lin, Yuehe; Du, Dan

    2016-02-17

    Considering the urgent need to explore multifunctional drug delivery system for overcoming multidrug resistance, we prepared a new nanocarbon material Q-Graphene as a nanocarrier for killing drug-resistant lung cancer cells. Attributing to the introduction of hyaluronic acid and rhodamine B isothiocyanate (RBITC), the Q-Graphene-based drug delivery system was endowed with dual function of targeted drug delivery and fluorescence imaging. Additionally, doxorubicin (DOX) as a model drug was loaded on the surface of Q-Graphene via π-π stacking. Interestingly, the fluorescence of DOX was quenched by Q-Graphene due to its strong electron-accepting capability, and a significant recovery of fluorescence was observed, while DOX was released from Q-Graphene. Because of the RBITC labeling and the effect of fluorescence quenching/restoring of Q-Graphene, the uptake of nanoparticles and intracellular DOX release can be tracked. Overall, a highly promising multifunctional nanoplatform was developed for tracking and monitoring targeted drug delivery for efficiently killing drug-resistant cancer cells. PMID:26785717

  2. Optimization and effect of dairy industrial waste as media components in the production of hyaluronic acid by Streptococcus thermophilus.

    PubMed

    Mohan, Naresh; Balakrishnan, Rengesh; Sivaprakasam, Senthilkumar

    2016-08-17

    Hyaluronic acid (HA) production using a dairy industrial waste is a more cost-efficient strategy than using an expensive synthetic medium. In this study, we investigated the production of HA using Streptococcus thermophilus under shake flask conditions using dairy industrial waste as nutritional supplements, namely whey permeate (WP) and whey protein hydrolysate (WPH). Preliminary screening using Plackett-Burman design exhibited WP, WPH, initial pH, and inoculum size as significant factors influencing HA titer. Response surface methodology design of four factors was formulated at three levels for enhanced production of HA. Shake flask HA fermentation by S. thermophilus was performed under global optimized process conditions and the optimal HA titer (342.93 mg L(-1)) corroborates with Box-Behnken design prediction. The molecular weight of HA was elucidated as 9.22-9.46 kDa. The ultralow-molecular weight HA reported in this study has a potential role in drug and gene delivery applications. PMID:26681350

  3. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed.

    PubMed

    Lai, Zee-Wei; Rahim, Raha Abdul; Ariff, Arbakariya B; Mohamad, Rosfarizan

    2012-09-01

    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used.

  4. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed.

    PubMed

    Lai, Zee-Wei; Rahim, Raha Abdul; Ariff, Arbakariya B; Mohamad, Rosfarizan

    2012-09-01

    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used. PMID:22608992

  5. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel.

    PubMed

    Little, Christopher J; Kulyk, William M; Chen, Xiongbiao

    2014-01-01

    Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA) and/or chondroitin sulphate (CS) supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG) production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D) fibrin-alginate hydrogels. PMID:25238548

  6. Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration.

    PubMed

    Dinescu, Sorina; Gălăţeanu, Bianca; Albu, Mădălina; Lungu, Adriana; Radu, Eugen; Hermenean, Anca; Costache, Marieta

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS) scaffolds improved with HA (5% or 10%) and CS (5% or 10%) were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications. PMID:24308001

  7. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate.

    PubMed

    Levett, Peter A; Melchels, Ferry P W; Schrobback, Karsten; Hutmacher, Dietmar W; Malda, Jos; Klein, Travis J

    2014-01-01

    The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in Gel-MA-based hydrogels, and show that with the incorporation of small quantities of photocrosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesized extracellular matrix (ECM) throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 114 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications. PMID:24140603

  8. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. PMID:26569044

  9. Design and Characterization of Micro-Porous Hyaluronic Acid Hydrogels for in vitro Gene Transfer to mMSCs

    PubMed Central

    Tokatlian, Talar; Cam, Cynthia; Siegman, Shayne N.; Lei, Yuguo; Segura, Tatiana

    2013-01-01

    The effective and sustained delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration and therapeutic angiogenesis. One promising approach is to use porous hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the affected sites. We have designed and characterized micro-porous (µ-pore) hyaluronic acid hydrogels which allow for effective cell seeding in vitro post scaffold fabrication and allow for cell spreading and proliferation without requiring high levels of degradation. These factors, coupled with high loading efficiency of DNA polyplexes using a previously developed caged nanoparticle encapsulation (CnE) technique, then allowed for long-term sustained transfection and transgene expression of incorporated mMSCs. In this study, we examined the effect of pore size on gene transfer efficiency and the kinetics of transgene expression. For all investigated pore sizes (30, 60, and 100 µm), encapsulated DNA polyplexes were released steadily starting by day 4 for up to 10 days. Likewise, transgene expression was sustained over this period, although significant differences between different pore sizes were not observed. Cell viability was also shown to remain high over time, even in the presence of high concentrations of DNA polyplexes. The knowledge acquired through this in vitro model can be utilized to design and better predict scaffold-mediated gene delivery for local gene therapy in an in vivo model where host cells infiltrate the scaffold over time. PMID:22820309

  10. Porous Hyaluronic Acid Hydrogels for Localized Non-Viral DNA Delivery in a Diabetic Wound Healing Model

    PubMed Central

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2015-01-01

    The treatment of impaired wounds requires the use of biomaterials that can provide mechanical and biological queues to the surrounding environment to promote angiogenesis, granulation tissue formation, and wound closure. Porous hydrogels have previously been shown to promote angiogenesis even in the absence of pro-angiogenic factors. We hypothesized that the added delivery of non-viral DNA encoding for pro-angiogenic growth factors could further enhance this effect. Here, 100 and 60 μm porous and non-porous (n-pore) hyaluronic acid-MMP hydrogels with encapsulated reporter (pGFPluc) or pro-angiogenic (pVEGF) plasmids were used to investigate scaffold-mediated gene delivery for local gene therapy in a diabetic wound healing mouse model. Porous hydrogels allowed for significantly faster wound closure compared to n-pore hydrogels, which did not degrade and essentially provided a mechanical barrier to closure. Interestingly, the delivery of pDNA/PEI polyplexes positively promoted granulation tissue formation even when the DNA did not encode for an angiogenic protein. And although transfected cells were present throughout the granulation tissue surrounding all hydrogels at 2 weeks, pVEGF delivery did not further enhance the angiogenic response. Despite this, the presence of transfected cells shows promise for the use of polyplex-loaded porous hydrogels for local gene delivery in the treatment of diabetic wounds. PMID:25694196

  11. Intra-articular Hyaluronic Acid in Treating Knee Osteoarthritis: a PRISMA-Compliant Systematic Review of Overlapping Meta-analysis.

    PubMed

    Xing, Dan; Wang, Bin; Liu, Qiang; Ke, Yan; Xu, Yuankun; Li, Zhichang; Lin, Jianhao

    2016-09-12

    Numerous meta-analyses have been conducted aiming to compare hyaluronic acid (HA) and placebo in treating knee osteoarthritis (OA). Nevertheless, the conclusions of these meta-analyses are not in consistency. The purpose of the present study was to perform a systematic review of overlapping meta-analyses investigating the efficacy and safety of HA for Knee OA and to provide treatment recommendations through the best evidence. A systematic review was conducted based on the PRISMA guidelines. The meta-analyses and/or systematic reviews that compared HA and placebo for knee OA were identified. AMSTAR instrument was used to evaluate the methodological quality of individual study. The information of heterogeneity within each variable was fetched for the individual studies. Which meta-analyses can provide best evidence was determined according to Jadad algorithm. Twelve meta-analyses met the eligibility requirements. The Jadad decision making tool suggests that the highest quality review should be selected. As a result, a high-quality Cochrane review was included. The present systematic review of overlapping meta-analyses demonstrates that HA is an effective intervention in treating knee OA without increased risk of adverse events. Therefore, the present conclusions may help decision makers interpret and choose among discordant meta-analyses.

  12. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine.

    PubMed

    Anirudhan, T S; Nair, Syam S; Nair, Anoop S

    2016-11-01

    A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. PMID:27516320

  13. Efficacy of a crosslinked hyaluronic acid-based hydrogel as a tear film supplement: a masked controlled study.

    PubMed

    Williams, David L; Mann, Brenda K

    2014-01-01

    Keratoconjunctivitis sicca (KCS), or dry eye, is a significant medical problem in both humans and dogs. Treating KCS often requires the daily application of more than one type of eye drop in order to both stimulate tear prodcution and provide a tear supplement to increase hydration and lubrication. A previous study demonstrated the potential for a crosslinked hyaluronic acid-based hydrogel (xCMHA-S) to reduce the clinical signs associated with KCS in dogs while using a reduced dosing regimen of only twice-daily administration. The present study extended those results by comparing the use of the xCMHA-S to a standard HA-containing tear supplement in a masked, randomized clinical study in dogs with a clinical diagnosis of KCS. The xCMHA-S was found to significantly improve ocular surface health (conjunctival hyperaemia, ocular irritation, and ocular discharge) to a greater degree than the alternative tear supplement (P = 0.0003). Further, owners reported the xCMHA-S treatment as being more highly effective than the alternative tear supplement (P = 0.0024). These results further demonstrate the efficacy of the xCMHA-S in reducing the clinical signs associated with KCS, thereby improving patient health and owner happiness.

  14. Efficacy of a Crosslinked Hyaluronic Acid-Based Hydrogel as a Tear Film Supplement: A Masked Controlled Study

    PubMed Central

    Williams, David L.; Mann, Brenda K.

    2014-01-01

    Keratoconjunctivitis sicca (KCS), or dry eye, is a significant medical problem in both humans and dogs. Treating KCS often requires the daily application of more than one type of eye drop in order to both stimulate tear prodcution and provide a tear supplement to increase hydration and lubrication. A previous study demonstrated the potential for a crosslinked hyaluronic acid-based hydrogel (xCMHA-S) to reduce the clinical signs associated with KCS in dogs while using a reduced dosing regimen of only twice-daily administration. The present study extended those results by comparing the use of the xCMHA-S to a standard HA-containing tear supplement in a masked, randomized clinical study in dogs with a clinical diagnosis of KCS. The xCMHA-S was found to significantly improve ocular surface health (conjunctival hyperaemia, ocular irritation, and ocular discharge) to a greater degree than the alternative tear supplement (P = 0.0003). Further, owners reported the xCMHA-S treatment as being more highly effective than the alternative tear supplement (P = 0.0024). These results further demonstrate the efficacy of the xCMHA-S in reducing the clinical signs associated with KCS, thereby improving patient health and owner happiness. PMID:24914681

  15. Intra-articular Hyaluronic Acid in Treating Knee Osteoarthritis: a PRISMA-Compliant Systematic Review of Overlapping Meta-analysis

    PubMed Central

    Xing, Dan; Wang, Bin; Liu, Qiang; Ke, Yan; Xu, Yuankun; Li, Zhichang; Lin, Jianhao

    2016-01-01

    Numerous meta-analyses have been conducted aiming to compare hyaluronic acid (HA) and placebo in treating knee osteoarthritis (OA). Nevertheless, the conclusions of these meta-analyses are not in consistency. The purpose of the present study was to perform a systematic review of overlapping meta-analyses investigating the efficacy and safety of HA for Knee OA and to provide treatment recommendations through the best evidence. A systematic review was conducted based on the PRISMA guidelines. The meta-analyses and/or systematic reviews that compared HA and placebo for knee OA were identified. AMSTAR instrument was used to evaluate the methodological quality of individual study. The information of heterogeneity within each variable was fetched for the individual studies. Which meta-analyses can provide best evidence was determined according to Jadad algorithm. Twelve meta-analyses met the eligibility requirements. The Jadad decision making tool suggests that the highest quality review should be selected. As a result, a high-quality Cochrane review was included. The present systematic review of overlapping meta-analyses demonstrates that HA is an effective intervention in treating knee OA without increased risk of adverse events. Therefore, the present conclusions may help decision makers interpret and choose among discordant meta-analyses. PMID:27616273

  16. Mucoadhesive properties of tamarind-seed polysaccharide/hyaluronic acid mixtures: A nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Vanni, Letizia; Sansò, Marco

    2013-01-16

    Mixtures of tamarind-seed polysaccharide (TSP) and hyaluronic acid (HA), which are employed as artificial tears for ophthalmic applications in the eye dry syndrome, were investigated by NMR spectroscopy by analyzing the effect of TSP/HA ratio and total concentration on their capability to form stable aggregates with enhanced mucoadhesive properties over those of the separate polysaccharides. The effect of TSP, HA or TSP/HA mixtures on the affinity of diclofenac sodium salt (DS) to mucin (BSM) was ascertained by means of proton selective relaxation rate measurements and assumed as the basis to compare polysaccharides mucoadhesive properties. The NMR relaxation parameters of pure DS (2mM), binary DS/BSM (5mg/mL or 10mg/mL) and ternary DS/BSM/polysaccharide systems (polysaccharide=TSP, HA or variable ratios TSP/HA mixtures) were compared in aqueous medium. The experimental data demonstrate that the minimum concentration of 1.5mg/mL of each polysaccharide is needed to have formation of a stable TSP/HA aggregate endowed with NMR detectable mucoadhesive properties and inside which reciprocal synergistic interaction occurs. PMID:23121946

  17. Intra-articular Hyaluronic Acid in Treating Knee Osteoarthritis: a PRISMA-Compliant Systematic Review of Overlapping Meta-analysis.

    PubMed

    Xing, Dan; Wang, Bin; Liu, Qiang; Ke, Yan; Xu, Yuankun; Li, Zhichang; Lin, Jianhao

    2016-01-01

    Numerous meta-analyses have been conducted aiming to compare hyaluronic acid (HA) and placebo in treating knee osteoarthritis (OA). Nevertheless, the conclusions of these meta-analyses are not in consistency. The purpose of the present study was to perform a systematic review of overlapping meta-analyses investigating the efficacy and safety of HA for Knee OA and to provide treatment recommendations through the best evidence. A systematic review was conducted based on the PRISMA guidelines. The meta-analyses and/or systematic reviews that compared HA and placebo for knee OA were identified. AMSTAR instrument was used to evaluate the methodological quality of individual study. The information of heterogeneity within each variable was fetched for the individual studies. Which meta-analyses can provide best evidence was determined according to Jadad algorithm. Twelve meta-analyses met the eligibility requirements. The Jadad decision making tool suggests that the highest quality review should be selected. As a result, a high-quality Cochrane review was included. The present systematic review of overlapping meta-analyses demonstrates that HA is an effective intervention in treating knee OA without increased risk of adverse events. Therefore, the present conclusions may help decision makers interpret and choose among discordant meta-analyses. PMID:27616273

  18. Calcium binding to an aquatic fulvic acid

    NASA Astrophysics Data System (ADS)

    Paxéus, Nicklas; Wedborg, Margareta

    The degree of binding of calcium to aquatic fulvic acid from the Göta River was estimated from potentiometric titrations. A pH-glass electrode and a calcium-selective electrode were used to monitor the free concentrations of the competing, central ions. The ionic strength and the temperature were maintained constant at 0.1 M and 25°C. The total concentration of fulvic acid was maintained at approximately 1 g 1-1, while the total calcium concentration was varied within the range 0-10-3 M. Two types of titrations were carried out: (1) back titration with hydrochloric acid from basic solution, roughly within the pH range 10.5-2.5; (2) titration with calcium chloride at a constant total hydrogen ion concentration. The model applied for the calcium binding was an extension of our previous model for the acid-base behaviour.

  19. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  20. Hyaluronic Acid-Based Hydrogels Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically Stressed Tissues

    PubMed Central