Chai, Jeng-Da
2017-01-28
We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H 2 and N 2 , twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.
NASA Astrophysics Data System (ADS)
Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto
Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Zaffran, Jeremie; Caspary Toroker, Maytal
2016-08-09
NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Casida, Mark E; Huix-Rotllant, Miquel
2016-01-01
In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.
Derian, R; Tokár, K; Somogyi, B; Gali, Á; Štich, I
2017-12-12
We present a time-dependent density functional theory (TDDFT) study of the optical gaps of light-emitting nanomaterials, namely, pristine and heavily B- and P-codoped silicon crystalline nanoparticles. Twenty DFT exchange-correlation functionals sampled from the best currently available inventory such as hybrids and range-separated hybrids are benchmarked against ultra-accurate quantum Monte Carlo results on small model Si nanocrystals. Overall, the range-separated hybrids are found to perform best. The quality of the DFT gaps is correlated with the deviation from Koopmans' theorem as a possible quality guide. In addition to providing a generic test of the ability of TDDFT to describe optical properties of silicon crystalline nanoparticles, the results also open up a route to benchmark-quality DFT studies of nanoparticle sizes approaching those studied experimentally.
Ivády, Viktor; Gali, Adam; Abrikosov, Igor A
2017-11-15
Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT + V w method (Ivády et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT + V w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA + U, and therefore allowing for a demonstration of the advantages of the proposed scheme.
Self-Interaction Error in Density Functional Theory: An Appraisal.
Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G
2018-05-03
Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.
Electron correlation and the self-interaction error of density functional theory
NASA Astrophysics Data System (ADS)
Polo, Victor; Kraka, Elfi; Cremer, Dieter
The self-interaction error (SIE) of commonly used DFT functionals has been systematically investigated by comparing the electron density distribution ρ( r ) generated by self-interaction corrected DFT (SIC-DFT) with a series of reference densities obtained by DFT or wavefunction theory (WFT) methods that cover typical electron correlation effects. Although the SIE of GGA functionals is considerably smaller than that of LDA functionals, it has significant consequences for the coverage of electron correlation effects at the DFT level of theory. The exchange SIE mimics long range (non-dynamic) pair correlation effects, and is responsible for the fact that the electron density of DFT exchange-only calculations resembles often that of MP4, MP2 or even CCSD(T) calculations. Changes in the electron density caused by SICDFT exchange are comparable with those that are associated with HF exchange. Correlation functionals contract the density towards the bond and the valence region, thus taking negative charge out of the van der Waals region where these effects are exaggerated by the influence of the SIE of the correlation functional. Hence, SIC-DFT leads in total to a relatively strong redistribution of negative charge from van der Waals, non-bonding, and valence regions of heavy atoms to the bond regions. These changes, although much stronger, resemble those obtained when comparing the densities of hybrid functionals such as B3LYP with the corresponding GGA functional BLYP. Hence, the balanced mixing of local and non-local exchange and correlation effects as it is achieved by hybrid functionals mimics SIC-DFT and can be considered as an economic way to include some SIC into standard DFT. However, the investigation shows also that the SIC-DFT description of molecules is unreliable because the standard functionals used were optimized for DFT including the SIE.
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
NASA Astrophysics Data System (ADS)
Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi
2018-03-01
Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.
NASA Astrophysics Data System (ADS)
Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter
2000-09-01
For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.
Density-functional theory applied to d- and f-electron systems
NASA Astrophysics Data System (ADS)
Wu, Xueyuan
Density functional theory (DFT) has been applied to study the electronic and geometric structures of prototype d- and f-electron systems. For the d-electron system, all electron DFT with gradient corrections to the exchange and correlation functionals has been used to investigate the properties of small neutral and cationic vanadium clusters. Results are in good agreement with available experimental and other theoretical data. For the f-electron system, a hybrid DFT, namely, B3LYP (Becke's 3-parameter hybrid functional using the correlation functional of Lee, Yang and Parr) with relativistic effective core potentials and cluster models has been applied to investigate the nature of chemical bonding of both the bulk and the surfaces of plutonium monoxide and dioxide. Using periodic models, the electronic and geometric structures of PuO2 and its (110) surface, as well as water adsorption on this surface have also been investigated using DFT in both local density approximation (LDA) and generalized gradient approximation (GGA) formalisms.
Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2012-03-08
The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; ...
2017-07-20
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
NASA Astrophysics Data System (ADS)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel
2017-11-01
We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
NASA Astrophysics Data System (ADS)
Cremer, Dieter
The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Holland, Jason P; Green, Jennifer C
2010-04-15
The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.
Normal mode and experimental analysis of TNT Raman spectrum
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng
2017-04-01
In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.
Verma, Prakash; Bartlett, Rodney J
2014-05-14
This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.
NASA Astrophysics Data System (ADS)
Kumar, Raju Suresh; Almansour, Abdulrahman I.; Arumugam, Natarajan; Soliman, Saied M.; Kumar, Raju Ranjith; Altaf, Mohammad; Ghabbour, Hazem A.; Krishnamoorthy, Bellie Sundaram
2018-01-01
Highly functionalized spirooxindole-pyrrolidine hybrids have been synthesized stereoselectively through a [3 + 2] cycloaddition strategy in an ionic liquid, 1-butyl-3-methylimidazolium bromide ([bmim]Br). The structure of these spiro heterocyclic hybrids was elucidated using one and two dimensional NMR spectroscopy, single crystal X-ray crystallographic studies and Density Functional Theory (DFT) calculations. The calculated geometric parameters are in good agreement with the experimental data obtained from the X-ray structures. The Natural Bond Orbital (NBO) calculations on these molecules confirm the electron rich carbonyl oxygen and electron deficient NH groups. The 1H and 13C NMR chemical shifts calculated using GIAO method are in good agreement with the experimental data. The DFT computed polarizability values also suggest the possible NLO activity of these molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valsson, Omar; Filippi, Claudia, E-mail: c.filippi@utwente.nl; Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr
2015-04-14
The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate themore » performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.« less
Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.
Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo
2009-09-08
Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.
Nature of the insulating ground state of the 5d postperovskite CaIrO 3
Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; ...
2015-08-26
In this study, the insulating ground state of the 5d transition metal oxide CaIrO 3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t 2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir 4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t 2g states to open an insulating gap.more » These results indicate that CaIrO 3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less
NASA Astrophysics Data System (ADS)
Topsakal, Mehmet; Umemoto, Koichiro; Wentzcovitch, Renata
2014-03-01
The lanthanide series of the periodic table comprises fifteen members ranging from La to Lu - the rare-earth (Re) elements. They exhibit unique (and mostly unexplored) chemical properties depending on the fillings of 4f-orbitals. Due to strong electronic correlation, 4f valence electrons are incorrectly described by standard DFT functionals. In order to cope with these inefficiencies, the DFT+U method is often employed where Hubbard-type U is introduced into the standard DFT. Another approach is to use hybrid functionals. Both improve the treatment of strongly correlated electrons. However, DFT+U suffers from ambiguity of U while hybrid functionals suffer from extremely demanding computational costs. Here we provide Vanderbilt type ultrasoft pseudopotentials for Re elements with suggested U values allowing efficient plane-wave calculations. Hubbard U values are determined according to HSE06 calculations on Re-nitrides (ReN). Generated pseudopotentials were further tested on some Re-cobaltite (Re-CoO3) perovskites. Alternative pseudopotentials with f-electrons kept frozen in the core of pseudopotential are also provided and possible outcomes are addressed. We believe that these new pseudopotentials with suggested U values will allow further studies on rare-earth materials.
A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul
2016-03-01
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de
2016-03-21
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). Formore » the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.« less
Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials
NASA Astrophysics Data System (ADS)
Dimakis, Nicholas
2007-02-01
A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.
NASA Astrophysics Data System (ADS)
Godfrey-Kittle, Andrew; Cafiero, Mauricio
We present density functional theory (DFT) interaction energies for the sandwich and T-shaped conformers of substituted benzene dimers. The DFT functionals studied include TPSS, HCTH407, B3LYP, and X3LYP. We also include Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory calculations (MP2), as well as calculations using a new functional, P3LYP, which includes PBE and HF exchange and LYP correlation. Although DFT methods do not explicitly account for the dispersion interactions important in the benzene-dimer interactions, we find that our new method, P3LYP, as well as HCTH407 and TPSS, match MP2 and CCSD(T) calculations much better than the hybrid methods B3LYP and X3LYP methods do.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less
Optimization of a hybrid exchange-correlation functional for silicon carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Takuji; Zhang, Yanwen; Weber, William J
2013-01-01
A hybrid exchange-correlation functional is optimized in order to accurately describe the nature of silicon carbides (SiC) in the framework of ab-initio calculations based on density functional theory (DFT), especially with an aim toward future applications in defect studies. It is shown that the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the screening parameter of 0.15 -1 outperforms conventional exchange-correlation functionals and other popular hybrid functionals regarding description of band structures in SiC. High transferability is proven through assessment over various SiC polytypes, silicon and diamond. Excellent performance is also confirmed for other fundamental material properties including elastic constants and phonon frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko
Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.
Kanematsu, Yusuke; Tachikawa, Masanori
2014-04-28
We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyeyemi, Victor B.; Keith, John A.; Pavone, Michele
2012-01-11
Density functional theory (DFT) is often used to determine the electronic and geometric structures of molecules. While studying alkynyl radicals, we discovered that DFT exchange-correlation (XC) functionals containing less than ~22% Hartree–Fock (HF) exchange led to qualitatively different structures than those predicted from ab initio HF and post-HF calculations or DFT XCs containing 25% or more HF exchange. We attribute this discrepancy to rehybridization at the radical center due to electron delocalization across the triple bonds of the alkynyl groups, which itself is an artifact of self-interaction and delocalization errors. Inclusion of sufficient exact exchange reduces these errors and suppressesmore » this erroneous delocalization; we find that a threshold amount is needed for accurate structure determinations. Finally, below this threshold, significant errors in predicted alkyne thermochemistry emerge as a consequence.« less
Curvature and frontier orbital energies in density functional theory
NASA Astrophysics Data System (ADS)
Kronik, Leeor; Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Baer, Roi
2013-03-01
Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump'' by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of DFT. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.
Vikramaditya, Talapunur; Lin, Shiang-Tai
2017-06-05
Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Solvent effects on the properties of hyperbranched polythiophenes.
Torras, Juan; Zanuy, David; Aradilla, David; Alemán, Carlos
2016-09-21
The structural and electronic properties of all-thiophene dendrimers and dendrons in solution have been evaluated using very different theoretical approaches based on quantum mechanical (QM) and hybrid QM/molecular mechanics (MM) methodologies: (i) calculations on minimum energy conformations using an implicit solvation model in combination with density functional theory (DFT) or time-dependent DFT (TD-DFT) methods; (ii) hybrid QM/MM calculations, in which the solute and solvent molecules are represented at the DFT level as point charges, respectively, on snapshots extracted from classical molecular dynamics (MD) simulations using explicit solvent molecules, and (iii) QM/MM-MD trajectories in which the solute is described at the DFT or TD-DFT level and the explicit solvent molecules are represented using classical force-fields. Calculations have been performed in dichloromethane, tetrahydrofuran and dimethylformamide. A comparison of the results obtained using the different approaches with the available experimental data indicates that the incorporation of effects associated with both the conformational dynamics of the dendrimer and the explicit solvent molecules is strictly necessary to satisfactorily reproduce the properties of the investigated systems. Accordingly, QM/MM-MD simulations are able to capture such effects providing a reliable description of electronic properties-conformational flexibility relationships in all-Th dendrimers.
Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3
NASA Astrophysics Data System (ADS)
Gebhardt, Julian; Rappe, Andrew M.
2017-11-01
BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.
Improved treatment of exact exchange in Quantum ESPRESSO
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre; ...
2017-01-18
Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre
Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less
The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods
NASA Technical Reports Server (NTRS)
Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)
1997-01-01
The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen
2011-10-01
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less
Probing the 5 f electrons in Am-I by hybrid density functional theory
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Ray, Asok K.
2009-11-01
The ground states of the actinides and their compounds continue to be matters of considerable controversies. Experimentally, Americium-I (Am-I) is a non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground state is predicted. We show that hybrid density functional theory, which admixes a fraction, λ, of exact Hartree-Fock (HF) exchange with approximate DFT exchange, can correctly reproduce the ground state properties of Am. In particular, for λ=0.40, we obtain a non-magnetic ground state with equilibrium atomic volume, bulk modulus, 5 f electron population, and the density of electronic states all in good agreement with experimental data. We argue that the exact HF exchange corrects the overestimation of the approximate DFT exchange interaction.
Nuclear shielding constants by density functional theory with gauge including atomic orbitals
NASA Astrophysics Data System (ADS)
Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.
2000-08-01
Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.
Reprint of "Theoretical description of metal/oxide interfacial properties: The case of MgO/Ag(001)"
NASA Astrophysics Data System (ADS)
Prada, Stefano; Giordano, Livia; Pacchioni, Gianfranco; Goniakowski, Jacek
2017-02-01
We compare the performances of different DFT functionals applied to ultra-thin MgO(100) films supported on the Ag(100) surface, a prototypical system of a weakly interacting oxide/metal interface, extensively studied in the past. Beyond semi-local DFT-GGA approximation, we also use the hybrid DFT-HSE approach to improve the description of the oxide electronic structure. Moreover, to better account for the interfacial adhesion, we include the van de Waals interactions by means of either the semi-empirical force fields by Grimme (DFT-D2 and DFT-D2*) or the self-consistent density functional optB88-vdW. We compare and discuss the results on the structural, electronic, and adhesion characteristics of the interface as obtained for pristine and oxygen-deficient Ag-supported MgO films in the 1-4 ML thickness range.
Theoretical description of metal/oxide interfacial properties: The case of MgO/Ag(001)
NASA Astrophysics Data System (ADS)
Prada, Stefano; Giordano, Livia; Pacchioni, Gianfranco; Goniakowski, Jacek
2016-12-01
We compare the performances of different DFT functionals applied to ultra-thin MgO(100) films supported on the Ag(100) surface, a prototypical system of a weakly interacting oxide/metal interface, extensively studied in the past. Beyond semi-local DFT-GGA approximation, we also use the hybrid DFT-HSE approach to improve the description of the oxide electronic structure. Moreover, to better account for the interfacial adhesion, we include the van de Waals interactions by means of either the semi-empirical force fields by Grimme (DFT-D2 and DFT-D2*) or the self-consistent density functional optB88-vdW. We compare and discuss the results on the structural, electronic, and adhesion characteristics of the interface as obtained for pristine and oxygen-deficient Ag-supported MgO films in the 1-4 ML thickness range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursic, B.S.
1996-12-31
The results of the computational study of the structures, energies, dipole moments and IR spectra for a singlet and a triplet nitromethane are presented. Five different hybrids (BHandH, BHandHLYP, B3LYP, B3P86 and B3PW91), local (SVWN), and nonlocal (BLYP) DFT methods are used with various sizes of the gaussian type of basis set. The obtained results are compared to the HF, MP2, and MCSCF ab initio calculations, as well as, to the experimental results. Becke`s three functional based hybrid DFT methods outperform the following: the ab initio (HF, MP2 and MCSCF), the Becke`s half-and-half based DFT methods, and the local (SVWNmore » or LSDA) and nonlocal (BLYP) DFT methods. The computed nitromethane geometry, the dipole moment, the energy difference, and the IR frequency are in extraordinary agreement with the experimental results. Thus, we are recommending the B3LYP and the B3PW91 as the methods of choice when the computational study of small {open_quotes}difficult{close_quotes} molecules is considered.« less
Multiconfigurational short-range density-functional theory for open-shell systems
NASA Astrophysics Data System (ADS)
Hedegârd, Erik Donovan; Toulouse, Julien; Jensen, Hans Jørgen Aagaard
2018-06-01
Many chemical systems cannot be described by quantum chemistry methods based on a single-reference wave function. Accurate predictions of energetic and spectroscopic properties require a delicate balance between describing the most important configurations (static correlation) and obtaining dynamical correlation efficiently. The former is most naturally done through a multiconfigurational (MC) wave function, whereas the latter can be done by, e.g., perturbation theory. We have employed a different strategy, namely, a hybrid between multiconfigurational wave functions and density-functional theory (DFT) based on range separation. The method is denoted by MC short-range DFT (MC-srDFT) and is more efficient than perturbative approaches as it capitalizes on the efficient treatment of the (short-range) dynamical correlation by DFT approximations. In turn, the method also improves DFT with standard approximations through the ability of multiconfigurational wave functions to recover large parts of the static correlation. Until now, our implementation was restricted to closed-shell systems, and to lift this restriction, we present here the generalization of MC-srDFT to open-shell cases. The additional terms required to treat open-shell systems are derived and implemented in the DALTON program. This new method for open-shell systems is illustrated on dioxygen and [Fe(H2O)6]3+.
NASA Astrophysics Data System (ADS)
Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.
2017-06-01
We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
NASA Astrophysics Data System (ADS)
Lee, Ji-Hwan; Tak, Youngjoo; Lee, Taehun; Soon, Aloysius
Ceria (CeO2-x) is widely studied as a choice electrolyte material for intermediate-temperature (~ 800 K) solid oxide fuel cells. At this temperature, maintaining its chemical stability and thermal-mechanical integrity of this oxide are of utmost importance. To understand their thermal-elastic properties, we firstly test the influence of various approximations to the density-functional theory (DFT) xc functionals on specific thermal-elastic properties of both CeO2 and Ce2O3. Namely, we consider the local-density approximation (LDA), the generalized gradient approximation (GGA-PBE) with and without additional Hubbard U as applied to the 4 f electron of Ce, as well as the recently popularized hybrid functional due to Heyd-Scuseria-Ernzehof (HSE06). Next, we then couple this to a volume-dependent Debye-Grüneisen model to determine the thermodynamic quantities of ceria at arbitrary temperatures. We find an explicit description of the strong correlation (e.g. via the DFT + U and hybrid functional approach) is necessary to have a good agreement with experimental values, in contrast to the mean-field treatment in standard xc approximations (such as LDA or GGA-PBE). We acknowledge support from Samsung Research Funding Center of Samsung Electronics (SRFC-MA1501-03).
Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.
Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J
2018-05-14
We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Cornaton, Yann
2018-05-01
This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.
Sancho-García, J C
2011-09-13
Highly accurate coupled-cluster (CC) calculations with large basis sets have been performed to study the binding energy of the (CH)12, (CH)16, (CH)20, and (CH)24 polyhedral hydrocarbons in two, cage-like and planar, forms. We also considered the effect of other minor contributions: core-correlation, relativistic corrections, and extrapolations to the limit of the full CC expansion. Thus, chemically accurate values could be obtained for these complicated systems. These nearly exact results are used to evaluate next the performance of main approximations (i.e., pure, hybrid, and double-hybrid methods) within density functional theory (DFT) in a systematic fashion. Some commonly used functionals, including the B3LYP model, are affected by large errors, and only those having reduced self-interaction error (SIE), which includes the last family of conjectured expressions (double hybrids), are able to achieve reasonable low deviations of 1-2 kcal/mol especially when an estimate for dispersion interactions is also added.
Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc
NASA Astrophysics Data System (ADS)
Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel
2012-12-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
NASA Astrophysics Data System (ADS)
Wu, Wei; Fisher, A. J.; Harrison, N. M.
2011-07-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method
Ma, Jie; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...
2016-06-30
We apply a recently developed Wannier-Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. These results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.
Concentration-dependent Cu(II) binding to prion protein
NASA Astrophysics Data System (ADS)
Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry
2008-03-01
The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.
Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?
Garrec, J; Sautet, P; Fleurat-Lessard, P
2011-07-07
The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.
First-principles calculations on the four phases of BaTiO3.
Evarestov, Robert A; Bandura, Andrei V
2012-04-30
The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO(3) crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange-correlation density functional theory (DFT) functionals for four stable phases of BaTiO(3). A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO(3). The comparative phonon symmetry analysis in BaTiO(3) four phases has been made basing on the site symmetry and irreducible representation indexes for the first time. Copyright © 2012 Wiley Periodicals, Inc.
Bauzá, Antonio; Alkorta, Ibon; Frontera, Antonio; Elguero, José
2013-11-12
In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul
2015-03-01
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
Localized-overlap approach to calculations of intermolecular interactions
NASA Astrophysics Data System (ADS)
Rob, Fazle
Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.
Xu, Zhongnan; Joshi, Yogesh V; Raman, Sumathy; Kitchin, John R
2015-04-14
We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.
Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2015-11-10
Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.
Exact density functional and wave function embedding schemes based on orbital localization
NASA Astrophysics Data System (ADS)
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
Electron binding energy of uranium-ligand and uranyl-ligand anions
NASA Astrophysics Data System (ADS)
Wang, Lei; Horowitz, Steven; Marston, Brad
2012-02-01
Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.
Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias
2013-10-21
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
Compton profiles and electronic properties of TiB{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatt011@gmail.com; Suthar, K. K.; Ahuja, B. L.
In this paper, we report the experimental Compton profile (CP) of TiB{sub 2} using high energy {sup 137}Cs γ-rays Compton spectrometer. To interpret the experimental momentum density, we have calculated the CPs using Hartree-Fock (HF), density functional theory (DFT) and hybridization of DFT and HF within linear combination of atomic orbitals. The theoretical profile with generalized gradient approximation is found to be relatively in better agreement with the experimental profile. A sharp valley in density of states and hence the pseudogap near the Fermi energy is attributed to hybridization of Ti-3d and B-2p states and almost reverse trend of energymore » bands below and above the Fermi energy.« less
Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor
2015-04-08
A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.
2015-01-01
A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626
Quantum Simulations of Solvated Biomolecules Using Hybrid Methods
NASA Astrophysics Data System (ADS)
Hodak, Miroslav
2009-03-01
One of the most important challenges in quantum simulations on biomolecules is efficient and accurate inclusion of the solvent, because the solvent atoms usually outnumber those in the biomolecule of interest. We have developed a hybrid method that allows for explicit quantum-mechanical treatment of the solvent at low computational cost. In this method, Kohn-Sham (KS) density functional theory (DFT) is combined with an orbital-free (OF) DFT. Kohn-Sham (KS) DFT is used to describe the biomolecule and its first solvation shells, while the orbital-free (OF) DFT is employed for the rest of the solvent. The OF part is fully O(N) and capable of handling 10^5 solvent molecules on current parallel supercomputers, while taking only ˜ 10 % of the total time. The compatibility between the KS and OF DFT methods enables seamless integration between the two. In particular, the flow of solvent molecules across the KS/OF interface is allowed and the total energy is conserved. As the first large-scale applications, the hybrid method has been used to investigate the binding of copper ions to proteins involved in prion (PrP) and Parkinson's diseases. Our results for the PrP, which causes mad cow disease when misfolded, resolve a contradiction found in experiments, in which a stronger binding mode is replaced by a weaker one when concentration of copper ions is increased, and show how it can act as a copper buffer. Furthermore, incorporation of copper stabilizes the structure of the full-length PrP, suggesting its protective role in prion diseases. For alpha-synuclein, a Parkinson's disease (PD) protein, we show that Cu binding modifies the protein structurally, making it more susceptible to misfolding -- an initial step in the onset of PD. In collaboration with W. Lu, F. Rose and J. Bernholc.
NASA Astrophysics Data System (ADS)
Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M.
1999-06-01
We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.
Electronic structure properties of UO2 as a Mott insulator
NASA Astrophysics Data System (ADS)
Sheykhi, Samira; Payami, Mahmoud
2018-06-01
In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Kumar, Kishor; Bhatt, Samir; Jani, A. R.; Ahuja, B. L.
2015-12-01
We present the first-ever experimental Compton profiles (CPs) of ZrSSe2 and ZrS1.5Se1.5 using 100 mCi 241Am Compton spectrometer. To analyze the experimental momentum densities, we have computed for the first-time the CPs, energy bands and density of states using linear combination of atomic orbitals (LCAO) method. To model the exchange and correlation effects within LCAO approach, we have considered Hartree-Fock (HF), density functional theory (DFT) with revised functional of Perdew-Becke-Ernzerhof (PBEsol) and hybridization of HF and DFT. Going beyond computation of electronic properties using LCAO method, we have also derived electronic and optical properties using the modified Becke-Johnson (mBJ) potential within full potential linearized augmented plane wave (FP-LAPW) method. There is notable decrease in the energy band gap on replacing S by Se atoms in ZrSSe2 to obtain ZrS1.5Se1.5 composition, which is mainly attributed to readjustment of Zr-4d, S-3p and Se-4p states. It is seen that the CPs based on hybridization of HF and DFT show a better agreement with the experimental profiles than those based on individual HF and DFT-GGA-PBEsol schemes. The optical properties computed using FP-LAPW-mBJ method unambiguously depict feasibility of using both the sulphoselenides in photovoltaics and also utility of ZrS1.5Se1.5 in the field of non-linear optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less
Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam
2018-02-07
We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites
NASA Astrophysics Data System (ADS)
Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard
Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.
Determination and interpretation of the optical constants for solar cell materials
NASA Astrophysics Data System (ADS)
Fujiwara, Hiroyuki; Fujimoto, Shohei; Tamakoshi, Masato; Kato, Masato; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Tampo, Hitoshi; Chikamatsu, Masayuki; Shibata, Hajime
2017-11-01
Solar cell materials in thin film form often exhibit quite rough surface, which makes the accurate determination of the optical constants using spectroscopic ellipsometry (SE) quite difficult. In this study, we investigate the effect of the rough surface on the SE analysis and establish an analysis procedure, which is quite helpful for the correction of the underestimated roughness contribution. As examples, the roughness analyses for CuInSe2 and CH3NH3PbI3 hybrid-perovskite thin films are presented. Moreover, to interpret the dielectric functions of emerging solar cell materials, such as CH3NH3PbI3 and Cu2ZnSnSe4, the optical transition analyses are performed based on density functional theory (DFT). The excellent agreement observed between the experimental and DFT results allows the detailed assignment of the transition peaks, confirming the importance of DFT for revealing fundamental optical characteristics.
Egger, David A.; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...
2015-03-05
We report a key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways:more » first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.« less
NASA Astrophysics Data System (ADS)
Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo
2013-08-01
One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.
Hydrogen and dihydrogen bonding of transition metal hydrides
NASA Astrophysics Data System (ADS)
Jacobsen, Heiko
2008-04-01
Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.
Using Density Functional Theory (DFT) for the Calculation of Atomization Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.
Theoretical Analysis of Optical Absorption and Emission in Mixed Noble Metal Nanoclusters.
Day, Paul N; Pachter, Ruth; Nguyen, Kiet A
2018-04-26
In this work, we studied theoretically two hybrid gold-silver clusters, which were reported to have dual-band emission, using density functional theory (DFT) and linear and quadratic response time-dependent DFT (TDDFT). Hybrid functionals were found to successfully predict absorption and emission, although explanation of the NIR emission from the larger cluster (cluster 1) requires significant vibrational excitation in the final state. For the smaller cluster (cluster 2), the Δ H(0-0) value calculated for the T1 → S0 transition, using the PBE0 functional, is in good agreement with the measured NIR emission, and the calculated T2 → S0 value is in fair agreement with the measured visible emission. The calculated T1 → S0 phosphorescence Δ H(0-0) for cluster 1 is close to the measured visible emission energy. In order for the calculated phosphorescence for cluster 1 to agree with the intense NIR emission reported experimentally, the vibrational energy of the final state (S0) is required to be about 0.7 eV greater than the zero-point vibrational energy.
NASA Astrophysics Data System (ADS)
Spezia, Riccardo; Knecht, Stefan; Mennucci, Benedetta
Carotenoids can play multiple roles in biological photoreceptors thanks to their rich photophysics. In the present work, we have investigated six of the most common carbonyl containing carotenoids: Echinenone, Canthaxanthin, Astaxanthin, Fucoxanthin, Capsanthin and Capsorubin. Their excitation properties are investigated by means of a hybrid density functional theory (DFT) and multireference configuration interaction (MRCI) approach to elucidate the role of the carbonyl group: the bright transition is of {\\pi}{\\pi}* character, as expected, but the presence of a C=O moiety reduces the energy of n{\\pi}* transitions which may become closer to the {\\pi}{\\pi}* transition, in particular as the conjugation chain decreases. This can be related to the presence of a low-lying charge transfer state typical of short carbonyl- containing carotenoids. The DFT/MRCI results are finally used to benchmark single- reference time-dependent DFT-based methods: among the investigated functionals, the meta- GGA (and in particular M11L and MN12L) functionals show to perform the best for all six investigated systems.
NASA Astrophysics Data System (ADS)
Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias
2007-11-01
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.
Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias
2007-11-14
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.
NASA Astrophysics Data System (ADS)
Demissie, Taye B.
2017-11-01
The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.
Using DFT Methods to Study Activators in Optical Materials
Du, Mao-Hua
2015-08-17
Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less
Hahn, David K; RaghuVeer, Krishans; Ortiz, J V
2014-05-15
Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
Study of electronic structure and Compton profiles of transition metal diborides
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.
2017-08-01
We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.
Raeber, Alexandra E; Wong, Bryan M
2015-05-12
We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.
Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo
2016-02-24
A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424-7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20-30%) extent of Hartree-Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO-LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed.
The one-electron oxidation of a dithiolate molecule: the importance of chemical intuition.
Bushnell, Eric A C; Burns, Thomas D; Boyd, Russell J
2014-05-14
A series of nine commonly used density functional methods were assessed to accurately predict the oxidation potential of the (C2H2S2(-2)/C2H2S2(•-)) redox couple. It was found that due to their greater tendency for charge delocalization the GGA functionals predict a structure where the radical electron is delocalized within the alkene backbone of C2H2S2(•-), whereas the hybrid functionals and the reference QCISD/cc-pVTZ predict that the radical electron remains localized on the sulfurs. However, chemical intuition suggests that the results obtained with the GGA functionals should be correct. Indeed, with the use of the geometries obtained at the HCTH/6-311++G(3df,3pd) level of theory both the QCISD and hybrid DFT methods yield a molecule with a delocalized electron. Notably, this new molecule lies at least 53 kJ mol(-1) lower in energy than the previously optimized one that had a localized radical. Using these new structures the calculated oxidation potential was found to be 2.71-2.97 V for the nine DFT functionals tested. The M06-L functional provided the best agreement with the QCISD/cc-pVTZ reference oxidation potential of 3.28 V.
Triplet Tuning - a New ``BLACK-BOX'' Computational Scheme for Photochemically Active Molecules
NASA Astrophysics Data System (ADS)
Lin, Zhou; Van Voorhis, Troy
2017-06-01
Density functional theory (DFT) is an efficient computational tool that plays an indispensable role in the design and screening of π-conjugated organic molecules with photochemical significance. However, due to intrinsic problems in DFT such as self-interaction error, the accurate prediction of energy levels is still a challenging task. Functionals can be parameterized to correct these problems, but the parameters that make a well-behaved functional are system-dependent rather than universal in most cases. To alleviate both problems, optimally tuned range-separated hybrid functionals were introduced, in which the range-separation parameter, ω, can be adjusted to impose Koopman's theorem, ɛ_{HOMO} = -I. These functionals turned out to be good estimators for asymptotic properties like ɛ_{HOMO} and ɛ_{LUMO}. In the present study, we propose a ``black-box'' procedure that allows an automatic construction of molecule-specific range-separated hybrid functionals following the idea of such optimal tuning. However, instead of focusing on ɛ_{HOMO} and ɛ_{LUMO}, we target more local, photochemistry-relevant energy levels such as the lowest triplet state, T_1. In practice, we minimize the difference between two E_{{T}_1}'s that are obtained from two DFT-based approaches, Δ-SCF and linear-response TDDFT. We achieve this minimization using a non-empirical adjustment of two parameters in the range-separated hybrid functional - ω, and the percentage of Hartree-Fock contribution in the short-range exchange, c_{HF}. We apply this triplet tuning scheme to a variety of organic molecules with important photochemical applications, including laser dyes, photovoltaics, and light-emitting diodes, and achieved good agreements with the spectroscopic measurements for E_{{T}_1}'s and related local properties. A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2015). O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory Comput. 8, 1515 (2012). Z. Lin and T. A. Van Voorhis, in preparation for submission to J. Chem. Theory Comput.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features ofmore » the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.« less
Energy level alignment at hybridized organic-metal interfaces from a GW projection approach
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying
Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.
Formation of periodic γ-turns in α/β-hybrid peptides: DFT and NMR experimental evidence.
Chandrasekhar, Srivari; Rao, Kakita Veera Mohana; Seenaiah, Mallikanti; Naresh, Police; Devi, Ambure Sharada; Jagadeesh, Bharatam
2014-02-01
Hybrid peptidic oligomers comprising natural and unnatural amino acid residues that can exhibit biomolecular folding and hydrogen-bonding mimicry have attracted considerable interest in recent years. While a variety of hybrid peptidic helices have been reported in the literature, other secondary structural patterns such as γ-turns and ribbons have not been well explored so far. The present work reports the design of novel periodic γ-turns in the oligomers of 1:1 natural-α/unnatural trans-β-norborenene (TNAA) amino acid residues. Through DFT, NMR, and MD studies, it is convincingly shown that, in the mixed conformational pool, the heterogeneous backbone of the hybrid peptides preferentially adopt periodic 8-membered (pseudo γ-turn)/7-membered (inverse γ-turn) hydrogen bonds in both polar and non-polar solvent media. It is observed that the stereochemistry and local conformational preference of the β-amino acid building blocks have a profound influence on accessing the specific secondary fold. These findings may be of significant relevance for the development of molecular scaffolds that facilitate desired positioning of functional side-chains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Describing long-range charge-separation processes with subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less
NASA Astrophysics Data System (ADS)
Morbec, Juliana M.; Kratzer, Peter
2017-01-01
Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.
NASA Astrophysics Data System (ADS)
Grimme, Stefan
2013-06-01
Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500-1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA ("s" for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2-0.6. The mean absolute deviations from reference data are only 0.2-0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10-11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.
A comparative density functional study on electrical properties of layered penta-graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg
We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
NASA Astrophysics Data System (ADS)
Hafizi, Roohollah; Hashemifar, S. Javad; Alaei, Mojtaba; Jangrouei, MohammadReza; Akbarzadeh, Hadi
2016-12-01
In this paper, we employ an evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS2)n nano-clusters (n = 1 - 9), within three different exchange-correlation functionals. Our results suggest that n = 5 and 8 are possible candidates for the low temperature magic sizes of WS2 nano-clusters while at temperatures above 500 Kelvin, n = 7 exhibits a comparable relative stability with n = 8. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals, hybrid B3LYP functional, many body based DFT+GW approach, ΔSCF method, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in a real time domain is applied to determine the full absorption spectra and optical gap of the lowest energy isomers of the WS2 nano-clusters.
Unraveling the Planar-Globular Transition in Gold Nanoclusters through Evolutionary Search
Kinaci, Alper; Narayanan, Badri; Sen, Fatih G.; ...
2016-11-28
Au nanoclusters are of technological relevance for catalysis, photonics, sensors, and of fundamental scientific interest owing to planar to globular structural transformation at an anomalously high number of atoms i.e. in the range 12-14. The nature and causes of this transition remain a mystery. In order to unravel this conundrum, high throughput density functional theory (DFT) calculations, coupled with a global structural optimization scheme based on a modified genetic algorithm (GA) are conducted. Furthermore, more than 20,000 Au 12, Au 13, and Au 14 nanoclusters are evaluated. With any DFT functional, globular and planar structures coexist across the size rangemore » of interest. Contrary to what was previously believed, the planar-globular transition is gradual at room temperature rather than a sharp transition. The effects of anionicity, s-d band hybridization and long range interactions on the dimensional transition are quantified by using the structures adjacent to minima. Anionicity marginally changes the relative stability of the clusters. The degree of s-d hybridization is varied via changing the Hubbard U value which corroborate that s-d hybridization alone does not stabilize planar structures. van der Waals interactions, on the other hand, stabilize globular structures. Our results elucidate the balance between the different reasons of the dimensional transition in gold nanoclusters.« less
NASA Astrophysics Data System (ADS)
de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.
2015-07-01
In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).
DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES
The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...
Benchmarking the Bethe–Salpeter Formalism on a Standard Organic Molecular Set
2015-01-01
We perform benchmark calculations of the Bethe–Salpeter vertical excitation energies for the set of 28 molecules constituting the well-known Thiel’s set, complemented by a series of small molecules representative of the dye chemistry field. We show that Bethe–Salpeter calculations based on a molecular orbital energy spectrum obtained with non-self-consistent G0W0 calculations starting from semilocal DFT functionals dramatically underestimate the transition energies. Starting from the popular PBE0 hybrid functional significantly improves the results even though this leads to an average −0.59 eV redshift compared to reference calculations for Thiel’s set. It is shown, however, that a simple self-consistent scheme at the GW level, with an update of the quasiparticle energies, not only leads to a much better agreement with reference values, but also significantly reduces the impact of the starting DFT functional. On average, the Bethe–Salpeter scheme based on self-consistent GW calculations comes close to the best time-dependent DFT calculations with the PBE0 functional with a 0.98 correlation coefficient and a 0.18 (0.25) eV mean absolute deviation compared to TD-PBE0 (theoretical best estimates) with a tendency to be red-shifted. We also observe that TD-DFT and the standard adiabatic Bethe–Salpeter implementation may differ significantly for states implying a large multiple excitation character. PMID:26207104
NASA Astrophysics Data System (ADS)
Alipour, Mojtaba; Karimi, Niloofar
2017-06-01
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive category of materials that have witnessed a booming development in recent years. In the present contribution, we scrutinize the accountability of parameterized and parameter-free single-hybrid (SH) and double-hybrid (DH) functionals through the two formalisms, full time-dependent density functional theory (TD-DFT) and Tamm-Dancoff approximation (TDA), for the estimation of photophysical properties like absorption energy, emission energy, zero-zero transition energy, and singlet-triplet energy splitting of TADF molecules. According to our detailed analyses on the performance of SHs based on TD-DFT and TDA, the TDA-based parameter-free SH functionals, PBE0 and TPSS0, with one-third of exact-like exchange turned out to be the best performers in comparison to other functionals from various rungs to reproduce the experimental data of the benchmarked set. Such affordable SH approximations can thus be employed to predict and design the TADF molecules with low singlet-triplet energy gaps for OLED applications. From another perspective, considering this point that both the nonlocal exchange and correlation are essential for a more reliable description of large charge-transfer excited states, applicability of the functionals incorporating these terms, namely, parameterized and parameter-free DHs, has also been evaluated. Perusing the role of exact-like exchange, perturbative-like correlation, solvent effects, and other related factors, we find that the parameterized functionals B2π-PLYP and B2GP-PLYP and the parameter-free models PBE-CIDH and PBE-QIDH have respectable performance with respect to others. Lastly, besides the recommendation of reliable computational protocols for the purpose, hopefully this study can pave the way toward further developments of other SHs and DHs for theoretical explorations in the field of OLEDs technology.
Ben Ahmed, A; Feki, H; Abid, Y
2014-12-10
A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.
2017-11-01
We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.
E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.
Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias
2008-06-01
We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.
Carbon phosphide monolayers with superior carrier mobility
NASA Astrophysics Data System (ADS)
Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.
2016-04-01
Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics. Electronic supplementary information (ESI) available: Fig. S1 cohesive energy and structure of the CP monolayer with various stoichiometric compositions obtained using CALYPSO, Fig. S2 history of CALYPSO steps and structure of the CP monolayer, Fig. S3 phonon dispersion with DFT-D2 functional, Fig. S4 band structure for β-CP using the DFT-PBE and DFT-D2 functional forms, Fig. S5 strain energy curves, Fig. S6 projected band structure for α-CP, Fig. S7 projected band structure for β-CP, Fig. S8 projected band structure for γ-CP, Fig. S9 band structures obtained with the GGA-PBE and HSE06 functional; Table S1 lattice parameters with the DFT-D2 functional form; Video S1 AIMD simulation of α-CP at 300 K, Video S2 AIMD simulation of β-CP at 300 K, Video S3 AIMD simulation of γ-CP at 300 K. See DOI: 10.1039/c6nr00498a
NASA Astrophysics Data System (ADS)
Hendrickson, Heidi Phillips
A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.
Charge-transfer channel in quantum dot-graphene hybrid materials
NASA Astrophysics Data System (ADS)
Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao
2018-04-01
The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.
Charge-transfer channel in quantum dot-graphene hybrid materials.
Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao
2018-04-06
The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd 13 Se 13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.
Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G
2012-06-13
Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.
The nature of three-body interactions in DFT: Exchange and polarization effects
NASA Astrophysics Data System (ADS)
Hapka, Michał; Rajchel, Łukasz; Modrzejewski, Marcin; Schäffer, Rainer; Chałasiński, Grzegorz; Szcześniak, Małgorzata M.
2017-08-01
We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar2-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range.
BN-C Hybrid Nanoribbons as Gas Sensors
NASA Astrophysics Data System (ADS)
Darvishi Gilan, Mahdi; Chegel, Raad
2018-02-01
The effects of carbon monoxide (CO) and ammonia (NH3) molecules adsorption on the various composites of boron nitride and graphene BN-C hybrid nanoribbons are investigated using the non-equilibrium Green's function (NEGF) technique based on density functional theory (DFT). The effects of adsorption with possible random configurations on the average of the density of states (DOS), transmission coefficient, and the current-voltage ( I- V) characteristics are calculated. The results indicate that, by embedding armchair graphene nanoribbon (AGNR) with boron nitride nanoribbon (BNNR), the various electronic properties can be observed after gas molecule adsorption. The electronic structure and gap of hybrids system is modified due to gas adsorption, and the systems act like the n-type semiconductor by NH3 molecule adsorption. The hybrid structures due to their tunable band gap are better candidates for gas detecting compared to the pristine BNNRs and AGNRs.
Functionalization of ( n, 0) CNTs ( n = 3-16) by uracil: DFT studies
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmoud; Harismah, Kun; Jafari, Elham; Gülseren, Oğuz; Rad, Ali Shokuhi
2018-01-01
Density functional theory (DFT) calculations were performed to investigate stabilities and properties for uracil (U)-functionalized carbon nanotubes (CNTs). To this aim, the optimized molecular properties were evaluated for ( n, 0) models of CNTs ( n = 3-16) in the original and U-functionalized forms. The results indicated that the dipole moments and energy gaps were independent of tubular diameters whereas the binding energies showed that the U-functionalization could be better achieved for n = 8-11 curvatures of ( n, 0) CNTs. Further studies based on the evaluated atomic-scale properties, including quadrupole coupling constants ( C Q ), indicated that the electronic properties of atoms could detect the effects of diameters variations of ( n, 0) CNTs, in which the effects were very much significant for the atoms around the U-functionalization regions. Finally, the achieved results of singular U, original CNTs, and CNT-U hybrids were compared to each other to demonstrate the stabilities and properties for the U-functionalized ( n, 0) CNTs.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jie; Wang, Lin-Wang, E-mail: lwwang@lbl.gov; Liu, Zhen-Fei
2016-06-27
We apply a recently developed Wannier–Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. Our results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Arghyadeep; Makhal, Subhash Chandra; Ganguly, Aniruddha; Guchhait, Nikhil
2018-03-01
Two anthracene based receptors ADAMN and ANOPD were synthesized and characterized. The response of both towards F- ion has been monitored by UV-Vis and 1H NMR spectroscopy as well as naked eye color change. Interestingly, change in acceptor unit endows ADAMN to behave as a INHIBIT logic gate with F- and H+ as inputs whereas ANOPD remains totally silent towards F-. The reason for this differential behavior has been explored by DFT calculations. The practical utility of the logic gate response of ADAMN was explored by successful paper strip experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
The impact of electron correlations on the energetics and stability of silicon nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsko, N. L.; Baturin, V. S.; Lepeshkin, S. V.
2016-08-21
The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributions can change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si{sub 10}H{sub 2n} (0 ≤ n ≤ 11), where passivation changes the structure from compact to loosely packed and branched. Our calculations performed with DFT, hybrid functionals, and Hartree-Fock methods, as well as bymore » the GW approximation, confirm a considerable sensitivity of isomer energy ordering to many-electron effects.« less
Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT
NASA Astrophysics Data System (ADS)
Selli, Daniele; Fazio, Gianluca; Di Valentin, Cristiana
2017-10-01
TiO2 nanoparticles (NPs) are nowadays considered fundamental building blocks for many technological applications. Morphology is found to play a key role with spherical NPs presenting higher binding properties and chemical activity. From the experimental point of view, the characterization of these nano-objects is extremely complex, opening a large room for computational investigations. In this work, TiO2 spherical NPs of different sizes (from 300 to 4000 atoms) have been studied with a two-scale computational approach. Global optimization to obtain stable and equilibrated nanospheres was performed with a self-consistent charge density functional tight-binding (SCC-DFTB) simulated annealing process, causing a considerable atomic rearrangement within the nanospheres. Those SCC-DFTB relaxed structures have been then optimized at the DFT(B3LYP) level of theory. We present a systematic and comparative SCC-DFTB vs DFT(B3LYP) study of the structural properties, with particular emphasis on the surface-to-bulk sites ratio, coordination distribution of surface sites, and surface energy. From the electronic point of view, we compare HOMO-LUMO and Kohn-Sham gaps, total and projected density of states. Overall, the comparisons between DFTB and hybrid density functional theory show that DFTB provides a rather accurate geometrical and electronic description of these nanospheres of realistic size (up to a diameter of 4.4 nm) at an extremely reduced computational cost. This opens for new challenges in simulations of very large systems and more extended molecular dynamics.
NASA Astrophysics Data System (ADS)
Zeng, Xianfei; Xu, Yaohui; Chen, Xiumin; Ma, Wenhui; Zhou, Yang
2017-11-01
An inorganic/organic hybrid magnetic Fe3O4@SiO2 network functionalized with rhodamine derivatives was devised as a nanosensor for selective detection and removal of Hg2+ in this work. The inorganic/organic hybrid composites showed naked-eye color change in water/methanol media. The distinct color change on the surface of functionalized composite network was observed by separating and drying from aqueous solution after adsorbing Hg2+. The fluorescence spectra indicated that the functionalized nanosensor was highly sensitive and selective to Hg2+ in aqueous solution. Density functional theory (DFT) calculation was performed, which revealed a mechanism of fluorescence generated from Hg2+ induced desulfurization of rhodamine derivatives via forming new five-membered ring structure. The as-obtained composites not only had an excellent adsorption capability for Hg2+, but also showed a strong magnetic sensitivity, which allowed one to separate the functionalized magnetic nanocomposites from the solution.
NASA Astrophysics Data System (ADS)
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method
NASA Astrophysics Data System (ADS)
Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.
2018-05-01
Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.
Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite
NASA Astrophysics Data System (ADS)
Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration
Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.
Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies
NASA Astrophysics Data System (ADS)
Kouchaki, Alireza; Gülseren, Oğuz; Hadipour, Nasser; Mirzaei, Mahmoud
2016-06-01
Decorations of silicon carbide (SiC) fullerene-like nanoparticles by fluorouracil (FU) and its tautomers are investigated through density functional theory (DFT) calculations. Two models of fullerene-like particles including Si12C8 and Si8C12 are constructed to be counterparts of decorated hybrid structures, FU@Si12C8 and FU@Si8C12, respectively. The initial models including original FU and tautomeric structures and SiC nanoparticles are individually optimized and then combined for further optimizations in the hybrid forms. Covalent bonds are observed for FU@Si12C8 hybrids, whereas non-covalent interactions are seen for FU@Si8C12 ones. The obtained properties indicated that Si12C8 model could be considered as a better counterpart for interactions with FU structures than Si8C12 model. The results also showed significant effects of interactions on the properties of atoms close to the interacting regions in nanoparticles. Finally, the tautomeric structures show different behaviors in interactions with SiC nanoparticles, in which the SiC nanoparticles could be employed to detect the situations of tautomeric processes for FU structures.
NASA Astrophysics Data System (ADS)
El-Kelany, Kh. E.; Ravoux, C.; Desmarais, J. K.; Cortona, P.; Pan, Y.; Tse, J. S.; Erba, A.
2018-06-01
Lanthanide sesquioxides are strongly correlated materials characterized by highly localized unpaired electrons in the f band. Theoretical descriptions based on standard density functional theory (DFT) formulations are known to be unable to correctly describe their peculiar electronic and magnetic features. In this study, electronic and magnetic properties of the first four lanthanide sesquioxides in the series are characterized through a reliable description of spin localization as ensured by hybrid functionals of the DFT, which include a fraction of nonlocal Fock exchange. Because of the high localization of the f electrons, multiple metastable electronic configurations are possible for their ground state depending on the specific partial occupation of the f orbitals: the most stable configuration is here found and characterized for all systems. Magnetic ordering is explicitly investigated, and the higher stability of an antiferromagnetic configuration with respect to the ferromagnetic one is predicted. The critical role of the fraction of exchange on the description of their electronic properties (notably, on spin localization and on the electronic band gap) is addressed. In particular, a recently proposed theoretical approach based on a self-consistent definition—through the material dielectric response—of the optimal fraction of exchange in hybrid functionals is applied to these strongly correlated materials.
NASA Astrophysics Data System (ADS)
El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.
2016-10-01
In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.
Theoretical Modeling of (99)Tc NMR Chemical Shifts.
Hall, Gabriel B; Andersen, Amity; Washton, Nancy M; Chatterjee, Sayandev; Levitskaia, Tatiana G
2016-09-06
Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions.
NASA Astrophysics Data System (ADS)
Singh, Ashok Kumar; Singh, Ravindra Kumar
2016-10-01
A new coumarin derivative 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol (COMSB) was synthesized and characterized with the help of 1H,13C NMR, FT-IR, FT-Raman and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. The UV-Vis spectrum studied by TD-DFT theory, with a hybrid exchange-correlation functional using Coulomb-attenuating method (CAM-B3LYP) in solvent phase gives similar pattern of bands, at energies and is consistent with that of experimental findings. The detailed analysis of vibrational (IR and Raman) spectra and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. Intra-molecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Computed first static hyperpolarizability (β0 = 8.583 × 10-30 esu) indicates non-linear optical (NLO) response of the molecule. Molecular docking studies show that the title molecule may act as potential acetylcholine esterase (AChE) inhibitor.
NASA Astrophysics Data System (ADS)
Viñes, Francesc; Bernechea, María; Konstantatos, Gerasimos; Illas, Francesc
2016-12-01
Recent experiments motivated by solar light harvesting applications have brought a renewed interest in AgBi S2 as an environmentally friendly material with appealing photovoltaic properties. The lack of detailed knowledge on its bulk structural and electronic structure however inhibits further development of this material. Here we have investigated by first-principles quantum mechanical methods models of the two most commonly reported AgBi S2 crystal structures, the room temperature matildite structure, and the metastable schapbachite. Density functional theory (DFT) based calculations using the Perdew-Burke-Ernzerhof exchange-correlation (xc) functional reveal that matildite can be 0.37 eV per AgBi S2 stoichiometry unit more stable than a schapbachite structure in bulk, and that the latter, in its ordered form, may display a metallic electronic structure, precluding its use for solar light harvesting. This points out the fact that AgBi S2 nanocrystals used in solar cells should present a structure based on matildite. Matildite is found to be an indirect gap semiconductor, with an estimated band gap of ˜1.5 eV according to DFT based calculations using the more accurate hybrid xc functionals. These reveal that hole effective mass is twice that of electron effective mass, with concomitant consequences for the generated exciton. Hybrid DFT calculations also show that matildite has a high dielectric constant pertinent to that of an ionic semiconductor and slightly higher than that of PbS, a material that has been extensively used in solar cells in its nanocrystalline form. The calculated Bohr exciton radius of 4.6 nm and the estimated absorption coefficient of 105c m-1 within the solar light spectrum are well in line with those experimentally reported in the literature.
Antony, Jens; Grimme, Stefan; Liakos, Dimitrios G; Neese, Frank
2011-10-20
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.
Density functional theory: Foundations reviewed
NASA Astrophysics Data System (ADS)
Kryachko, Eugene S.; Ludeña, Eduardo V.
2014-11-01
Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg-Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb's comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn-Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn-Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn-Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem-geared functionals. These problems are discussed by making reference to ab initio DFT as well as to the local-scaling-transformation version of DFT, LS-DFT. In addition, we examine the question of the accuracy of approximate exchange-correlation functionals in the light of their non-observance of the variational principle. Why do approximate functionals yield reasonable (and accurate) descriptions of many molecular and condensed matter properties? Are the conditions imposed on exchange and correlation functionals sufficiently adequate to produce accurate semi-empirical functionals? In this respect, we consider the question of whether the results reflect a true approach to chemical accuracy or are just the outcome of a virtuoso-like performance which cannot be systematically improved. We discuss the issue of the accuracy of the contemporary DFT results by contrasting them to those obtained by the alternative RDMT and NOFT. We discuss the possibility of improving DFT functionals by applying in a systematic way the N-representability conditions on the 2-RDM. In this respect, we emphasize the possibility of constructing 2-matrices in the context of the local scaling transformation version of DFT to which the N-representability condition of RDM theory may be applied. We end up our revision of HKS-DFT by considering some of the problems related to spin symmetry and discuss some current issues dealing with a proper treatment of open-shell systems. We are particularly concerned, as in the rest of this paper, mostly with foundational issues arising in the construction of functionals. We dedicate the whole Section 4 to the local-scaling transformation version of density functional theory, LS-DFT. The reason is that in this theory some of the fundamental problems that appear in HKS-DFT, have been solved. For example, in LS-DFT the functionals are, in principle, designed to fulfill v- and N-representability conditions from the outset. This is possible because LS-DFT is based on density transformation (local-scaling of coordinates proceeds through density transformation) and so, because these functionals are constructed from prototype N-particle wavefunctions, the ensuing density functionals already have built-in N-representability conditions. This theory is presented in great detail with the purpose of illustrating an alternative way to HKS-DFT which could be used to improve the construction of HKS-DFT functionals. Let us clearly indicate, however, that although appealing from a theoretical point of view, the actual application of LS-DFT to large systems has not taken place mostly because of technical difficulties. Thus, our aim in introducing this theory is to foster a better understanding of its foundations with the hope that it may promote a cross-hybridization with the already existing approaches. Also, to complete our previous discussion on symmetry, in particular, spin-symmetry, we discuss this issue from the perspective of LS-DFT. Finally, in Section 6, we discuss dispersion molecular forces emphasizing their relevance to DFT approaches.
Curnan, Matthew T.; Kitchin, John R.
2015-08-12
Prediction of transition metal oxide BO 2 (B = Ti, V, etc.) polymorph energetic properties is critical to tunable material design and identifying thermodynamically accessible structures. Determining procedures capable of synthesizing particular polymorphs minimally requires prior knowledge of their relative energetic favorability. Information concerning TiO 2 polymorph relative energetic favorability has been ascertained from experimental research. In this study, the consistency of first-principles predictions and experimental results involving the relative energetic ordering of stable (rutile), metastable (anatase and brookite), and unstable (columbite) TiO 2 polymorphs is assessed via density functional theory (DFT). Considering the issues involving electron–electron interaction and chargemore » delocalization in TiO 2 calculations, relative energetic ordering predictions are evaluated over trends varying Ti Hubbard U 3d or exact exchange fraction parameter values. Energetic trends formed from varying U 3d predict experimentally consistent energetic ordering over U 3d intervals when using GGA-based functionals, regardless of pseudopotential selection. Given pertinent linear response calculated Hubbard U values, these results enable TiO 2 polymorph energetic ordering prediction. Here, the hybrid functional calculations involving rutile–anatase relative energetics, though demonstrating experimentally consistent energetic ordering over exact exchange fraction ranges, are not accompanied by predicted fractions, for a first-principles methodology capable of calculating exact exchange fractions precisely predicting TiO 2 polymorph energetic ordering is not available.« less
Niu, Shuqiang; Huang, Dao-Ling; Dau, Phuong D; Liu, Hong-Tao; Wang, Lai-Sheng; Ichiye, Toshiko
2014-03-11
Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH 3 ) 2 ] 1-/0 , [Cu(NCS) 2 ] 1-/0 , [FeCl 4 ] 1-/0 , and [Fe(SCH 3 ) 4 ] 1-/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree-Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC- ω PBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.
Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy
2015-01-01
Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2]1–/0, [Cu(NCS)2]1–/0, [FeCl4]1–/0, and [Fe(SCH3)4]1–/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree–Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes. PMID:24803858
Superoxide dismutase activity of Cu-bound prion protein
NASA Astrophysics Data System (ADS)
Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry
2009-03-01
Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.
Copper attachment to a non-octarepeat site in prion protein
NASA Astrophysics Data System (ADS)
Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Prion protein, PrP, plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The PrP is known to efficiently bind copper ions and this ability has been linked to its function. PrP contains up to six binding sites, four of which are located in the so-called octarepeat region and are now well known. The binding sites outside this region are still largely undetermined, despite evidence of their relevance to prion diseases. Using a hybrid DFT/DFT, which combines Kohn-Sham DFT with orbital-free DFT to achieve accurate and efficient description of solvent effects in ab initio calculations, we have investigated copper attachment to the sequence GGGTH, which represents the copper binding site located at His96. We have considered both NNNN and NNNO types of copper coordination, as suggested by experiments. Our calculations have determined the geometry of copper attachment site and its energetics. Comparison to the already known binding sites provides insight into the process of copper uptake in PrP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.
2015-11-14
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less
Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de
2016-02-07
We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less
Stereochemical and conformational study on fenoterol by ECD spectroscopy and TD-DFT calculations.
Tedesco, Daniele; Zanasi, Riccardo; Wainer, Irving W; Bertucci, Carlo
2014-03-01
Fenoterol and its derivatives are selective β2-adrenergic receptor (β2-AR) agonists whose stereoselective biological activities have been extensively investigated in the past decade; a complete stereochemical characterization of fenoterol derivatives is therefore crucial for a better understanding of the effects of stereochemistry on β2-AR binding. In the present project, the relationship between chiroptical properties and absolute stereochemistry of the stereoisomers of fenoterol (1) was investigated by experimental ECD spectroscopy and time-dependent density functional theory (TD-DFT). DFT geometry optimizations were carried out at the RI-B97D/TZVP/IEFPCM(MeOH) level and subsequent TD-DFT calculations were performed using the PBE0 hybrid functional. Despite the large pool of equilibrium conformers found for the investigated compounds and the known limitations of the level of theory employed, the computational protocol was able to reproduce the experimental ECD spectra of the stereoisomers of 1. The main contribution to the overall chiroptical properties was found to arise from the absolute configuration of the chiral center in α-position to the resorcinol moiety. Based on this evidence, a thorough conformational analysis was performed on the optimized DFT conformers, which revealed the occurrence of a different equilibrium between conformational patterns for the diastereomers of fenoterol: the (R,R')/(S,S') enantiomeric pair showed a higher population of folded conformations than the (R,S')/(S,R') pair. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Mardirossian, Narbe; Head-Gordon, Martin
2014-03-25
The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored in this paper by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the trainingmore » and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. Finally, the range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.« less
NASA Astrophysics Data System (ADS)
de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.
2005-06-01
We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
NASA Astrophysics Data System (ADS)
Kang, Yoon-Gu; Kim, Sun-Woo; Cho, Jun-Hyung
2017-12-01
Low-dimensional electron systems often show a delicate interplay between electron-phonon and electron-electron interactions, giving rise to interesting quantum phases such as the charge density wave (CDW) and magnetism. Using the density-functional theory (DFT) calculations with the semilocal and hybrid exchange-correlation functionals as well as the exact-exchange plus correlation in the random-phase approximation (EX + cRPA), we systematically investigate the ground state of the metallic atom wires containing dangling-bond (DB) electrons, fabricated by partially hydrogenating the GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) surfaces. We find that the CDW or antiferromagnetic (AFM) order has an electronic energy gain due to a band-gap opening, thereby being more stabilized compared to the metallic state. Our semilocal DFT calculation predicts that both DB wires in GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) have the same CDW ground state, whereas the hybrid DFT and EX + cRPA calculations predict the AFM ground state for the former DB wire and the CDW ground state for the latter one. It is revealed that more localized Ga DB electrons in GaN(10 1 ¯0 ) prefer the AFM order, while less localized Zn DB electrons in ZnO(10 1 ¯0 ) the CDW formation. Our findings demonstrate that the drastically different ground states are competing in the DB wires created on the two representative compound semiconductor surfaces.
A Screened Hybrid DFT Study of Actinide Oxides, Nitrides, and Carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiaodong; Martin, Richard L.; Scuseria, Gustavo E.
2013-06-27
A systematic study of the structural, electronic, and magnetic properties of actinide oxides, nitrides, and carbides (AnX1–2 with X = C, N, O) is performed using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional. Our computed results show that the screened hybrid HSE functional gives a good description of the electronic and structural properties of actinide dioxides (strongly correlated insulators) when compared with available experimental data. However, there are still some problems reproducing the electronic properties of actinide nitrides and carbides (strongly correlated metals). In addition, in order to compare with the results by HSE, the structures, electronic, and magnetic properties of thesemore » actinide compounds are also investigated in the PBE and PBE+U approximation. Interestingly, the density of states of UN obtained with PBE compares well with the experimental photoemission spectra, in contrast to the hybrid approximation. This is presumably related to the need of additional screening in the Hartree–Fock exchange term of the metallic phases.« less
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Guishan; Irle, Stephan; Morokuma, Keiji
2005-07-20
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The performance of both non-iterative (NCC) and self-consistent charge (SCC) versions of the density functional tight binding (DFTB) method, as well as AM1 and PM3 methods, has been compared with the B3LYP method, a hybrid density functional theory (DFT) method, for equilibrium geometries and relative energies of various isomers of C20–C86 fullerenes. Both NCC- and SCCDFTB methods compare very favorablymore » with B3LYP both in geometries and isomer relative energies, while AM1 and PM3 do noticeably worse.« less
Franck Condon shift assessment in 2D MoS2.
Gupta, Sunny; Shirodkar, Sharmila N; Kaplan, Daniel; Swaminathan, Venkataraman; Yakobson, Boris I
2018-01-19
Optical spectroscopy (OS) techniques are often coupled with first-principles density functional theoretical (DFT) calculations for determining the precise influence of defects on the electronic and structural properties of two dimensional (2D) TMDs. Such calculations are carried out presuming there is little or no effect of vibrational transitions on the observed electronic spectrum. However, if the effect of change in vibrational energy [Franck Condon (FC) shift] associated with such a transition is large, it could possibly lead to a different origin for the observed peak. One such instance is the attribution of the 0.75 eV cathodoluminescence peak by Fabbri et. al. [Nat. Commun. 7, 13044 (2016)]. to an optical transition from an S vacancy level in the band gap, under the assumption that the FC shift is negligible. Here, by first principles constrained DFT calculations using hybrid HSE06 functional we show that this combined prediction of OS and DFT calculations is valid for 2D MoS2 since the FC shift associated with electronic transitions from a sulfur vacancy is, indeed, small ~28 meV. Based on our calculations we conclude that it is reasonable to make a direct connection between DFT calculations and optical spectroscopy techniques in this material, hence, establishing a one to one relation between defect related emission bands and electronic transitions from the defect levels. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kessentini, A.; Dammak, T.; Belhouchet, M.
2017-12-01
In his work we investigate a new halogenotin (IV) organic inorganic material. The structure, determined by single-crystal X-ray diffraction at 293 K of 3,3‧-diammoniumdiphenylsulfone hexachloridostannate monohydrate abbreviated 3,3‧(DDS)SnCl6, can be viewed as inorganic layers built from (SnCl6)2- octahedra and H2O molecules, between which, the organic entities [C12H14N2O2S]2+ are inserted. Experimental room-temperature X-ray studies were supported by theoretical methods using density functional theory (DFT). The detailed examination of the vibrational spectra of our material was correlated by DFT calculation using the unit cell parameters obtained from the experiment data. The optical properties in the UV-visible region have been explored by the UV-visible absorption. This material shows a single absorption band centred at 325 nm (318 eV). The energy difference between Occupied, HOMO and Lowest Unoccupied, LUMO orbital which is called energy gap can be used to predict the strength and stability of metal complexes, as well as in determining molecular electrical transport properties. For the calculation of excitation energies in the optical studies we used Time-Dependent Density Functional Theory (TD-DFT). In addition, Mulliken population method and molecular electrostatic potential (MEP) of the title material have been theoretically studied by GAUSSIAN 03 package.
Franck Condon shift assessment in 2D MoS2
NASA Astrophysics Data System (ADS)
Gupta, Sunny; Shirodkar, Sharmila N.; Kaplan, Daniel; Swaminathan, Venkataraman; Yakobson, Boris I.
2018-03-01
Optical spectroscopy (OS) techniques are often coupled with first-principles density functional theoretical (DFT) calculations for determining the precise influence of defects on the electronic and structural properties of two-dimensional (2D) transition metal dichalcogenides. Such calculations are carried out presuming there is little or no effect of vibrational transitions on the observed electronic spectrum. However, if the effect of change in vibrational energy (Franck Condon (FC) shift) associated with such a transition is large, it could possibly lead to a different origin for the observed peak. One such instance is the attribution of the 0.75 eV cathodoluminescence peak by Fabbri et al (2016 Nat. Commun. 7 13044) to an optical transition from an S vacancy level in the band gap, under the assumption that the FC shift is negligible. Here, by first principles constrained DFT calculations using hybrid HSE06 functional we show that this combined prediction of OS and DFT calculations is valid for 2D MoS2 since the FC shift associated with electronic transitions from a sulfur vacancy is indeed small ~28 meV. Based on our calculations we conclude that it is reasonable to make a direct connection between DFT calculations and optical spectroscopy techniques in this material, hence, establishing a one to one relation between defect related emission bands and electronic transitions from the defect levels.
Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.
First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less
Electron momentum density and band structure calculations of α- and β-GeTe
NASA Astrophysics Data System (ADS)
Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.
2011-12-01
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.
Bende, Attila; Muntean, Cristina M
2014-03-01
The theoretical IR and Raman spectra of the guanine-cytosine DNA base pairs in Watson-Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H⁺ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.
A minimal model for the structural energetics of VO2
NASA Astrophysics Data System (ADS)
Kim, Chanul; Marianetti, Chris; The Marianetti Group Team
Resolving the structural, magnetic, and electronic structure of VO2 from the first-principles of quantum mechanics is still a forefront problem despite decades of attention. Hybrid functionals have been shown to qualitatively ruin the structural energetics. While density functional theory (DFT) combined with cluster extensions of dynamical mean-field theory (DMFT) have demonstrated promising results in terms of the electronic properties, structural phase stability has not yet been addressed. In order to capture the basic physics of the structural transition, we propose a minimal model of VO2 based on the one dimensional Peierls-Hubbard model and parameterize this based on DFT calculations of VO2. The total energy versus dimerization in the minimal mode is then solved numerically exactly using density matrix renormalization group (DMRG) and compared to the Hartree-Fock solution. We demonstrate that the Hartree-Fock solution exhibits the same pathologies as DFT+U, and spin density functional theory for that matter, while the DMRG solution is consistent with experimental observation. Our results demonstrate the critical role of non-locality in the total energy, and this will need to be accounted for to obtain a complete description of VO2 from first-principles. The authors acknowledge support from FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Vibrationally resolved photoelectron spectra of lower diamondoids: A time-dependent approach
NASA Astrophysics Data System (ADS)
Xiong, Tao; Włodarczyk, Radosław; Gallandi, Lukas; Körzdörfer, Thomas; Saalfrank, Peter
2018-01-01
Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ˜0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].
XAFS Debye-Waller Factors Temperature-Dependent Expressions for Fe+2-Porphyrin Complexes
NASA Astrophysics Data System (ADS)
Dimakis, Nicholas; Bunker, Grant
2007-02-01
We present an efficient and accurate method for directly calculating single and multiple scattering X-ray absorption fine structure (XAFS) thermal Debye-Waller factors for Fe+2 -porphiryn complexes. The number of multiple scattering Debye-Waller factors on metal porphyrin centers exceeds the number of available parameters that XAFS experimental data can support during fitting with simulated spectra. Using the Density Functional Theory (DFT) under the hybrid functional of X3LYP, phonon normal mode spectrum properties are used to express the mean square variation of the half-scattering path length for a Fe+2 -porphiryn complex as a function of temperature for the most important single and multiple scattering paths of the complex thus virtually eliminating them from the fitting procedure. Modeled calculations are compared with corresponding values obtained from DFT-built and optimized Fe+2 -porphyrin bis-histidine structure as well as from experimental XAFS spectra previously reported. An excellent agreement between calculated and reference Debye-Waller factors for Fe+2-porphyrins is obtained.
Screened Hybrid and DFT + U Studies of the Structural, Electronic, and Optical Properties of U3O8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiaodong; Martin, Richard L.; Scuseria, Gustavo E.
2012-11-26
A systematic comparison of the structures and electronic and optical properties of U3O8 in the c2mm, P¯62m, and P21/m structures (the α, β, and γ phases, respectively) is performed using density functional theory + U (PBE + U) and the Heyd–Scuseria–Ernzerhof screened hybrid functional (HSE). The relationship between the semiconducting C2mm phase of U3O8 and the high temperature, metallic P¯62m phase is explored in more detail. Our calculated results show that the HSE functional gives a better description of the electronic and optical properties when compared with available experimental data for the α and β phases, but neither approach doesmore » particularly well for the high pressure γ phase.« less
Dash, Bibek
2018-04-26
The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.
Oxygen holes and hybridization in the bismuthates
NASA Astrophysics Data System (ADS)
Khazraie, Arash; Foyevtsova, Kateryna; Elfimov, Ilya; Sawatzky, George A.
2018-02-01
Motivated by the recently renewed interest in the superconducting bismuth perovskites, we investigate the electronic structure of the parent compounds A BiO3 (A = Sr, Ba) using ab initio methods and tight-binding (TB) modeling. We use the density functional theory (DFT) in the local density approximation (LDA) to understand the role of various interactions in shaping the A BiO3 band structure near the Fermi level. It is established that interatomic hybridization involving Bi-6 s and O-2 p orbitals plays the most important role. Based on our DFT calculations, we derive a minimal TB model and demonstrate that it can describe the properties of the band structure as a function of lattice distortions, such as the opening of a charge gap with the onset of the breathing distortion and the associated condensation of holes onto a1 g-symmetric molecular orbitals formed by the O-2 pσ orbitals on collapsed octahedra. We also derive a single band model involving the hopping of an extended molecular orbital involving both Bi-6 s and a linear combination of six O-2 p orbitals which provides a very good description of the dispersion and band gaps of the low energy scale bands straddling the chemical potential.
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia N.; Chaika, Alexander N.; Walls, Brian; Murphy, Barry E.; Walshe, Killian; Martin, David P.; Richards, Billy D. O.; Jose, Gin; Fleischer, Karsten; Aristov, Victor Yu; Molodtsova, Olga V.; Shvets, Igor V.; Krasnikov, Sergey A.
2018-07-01
Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.
Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials
NASA Astrophysics Data System (ADS)
Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang
2018-06-01
A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Combined hybrid functional and DFT+U calculations for metal chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr
2014-07-28
In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE)more » hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.« less
Toivonen, Teemu L J; Hukka, Terttu I
2007-06-07
The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.
Plane-Wave DFT Methods for Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.
A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.
Carnimeo, Ivan; Cappelli, Chiara
2015-01-01
A polarizable quantum mechanics (QM)/ molecular mechanics (MM) approach recently developed for Hartree–Fock (HF) and Kohn–Sham (KS) methods has been extended to energies and analytical gradients for MP2, double hybrid functionals, and TD‐DFT models, thus allowing the computation of equilibrium structures for excited electronic states together with more accurate results for ground electronic states. After a detailed presentation of the theoretical background and of some implementation details, a number of test cases are analyzed to show that the polarizable embedding model based on fluctuating charges (FQ) is remarkably more accurate than the corresponding electronic embedding based on a fixed charge (FX) description. In particular, a set of electronegativities and hardnesses has been optimized for interactions between QM and FQ regions together with new repulsion–dispersion parameters. After validation of both the numerical implementation and of the new parameters, absorption electronic spectra have been computed for representative model systems including vibronic effects. The results show remarkable agreement with full QM computations and significant improvement with respect to the corresponding FX results. The last part of the article provides some hints about computation of solvatochromic effects on absorption spectra in aqueous solution as a function of the number of FQ water molecules and on the use of FX external shells to improve the convergence of the results. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26399473
Tugsuz, Tugba
2010-12-30
Extensive DFT calculations on the standard electrode potentials of imidazole (Im), tetrathiafulvalene (TTF), and 2-, 4-, and 5-TTF-Im were carried out. Geometries and Gibbs free energies of H-bonded dimer, anion, protonated cation, and neutral structures of Im, mono- and dication, and neutral structures of TTF in gas and acetonitrile solvent were computed by using 10 hybrid density functionals (B3LYP, TPSSH, PBEH1PBE, M06, M062X, X3LYP, BMK, B1B95, M05, M052X) combined with the TZVP basis set. CPCM and SMD solvation models were applied to predict the Gibbs free energies of molecules in acetonitrile solvent. Frequency calculations were carried out for all structures, and none of them has been found to exhibit any imaginary frequency. Finally, the BMK hybrid functional was selected for computation of the standard electrode potential of TTF-Im, because it gives the most accurate values in both Im and TTF, differing by 0.05 V from the experimental ones. Moreover, frequencies from the BMK functional are reasonably close to the experimental ones. The standard electrode potentials of 2-, 4-, and 5-TTF-Im predicted for two-electron oxidation are 0.946, 0.870, and 0.839 V in CPCM and 0.927, 0.866, and 0.824 V in SMD. For one-electron oxidation these are 0.491, 0.421, and 0.400 V in CPCM and 0.476, 0.377, and 0.360 V in SMD, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulian, Gianfranco; Valdrè, Giovanni, E-mail: giovanni.valdre@unibo.it; Tosoni, Sergio
2013-11-28
The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, andmore » phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.« less
Spin–orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyong
We have implemented the unrestricted DFT approach with one-electron spin–orbit operators in the massively parallel NWChem program. Also implemented is the analytic gradient in the DFT approach with spin–orbit interactions. The current capabilities include single-point calculations and geometry optimization. Vibrational frequencies can be calculated numerically from the analytically calculated gradients. The implementation is based on the spin–orbit interaction operator derived from the effective core potential approach. The exchange functionals used in the implementation are functionals derived for non-spin–orbit calculations, including GGA as well as hybrid functionals. Spin–orbit Hartree–Fock calculations can also be carried out. We have applied the spin–orbit DFTmore » methods to the Uranyl aqua complexes. We have optimized the structures and calculated the vibrational frequencies of both (UO2 2+)aq and (UO2 +)aq with and without spin–orbit effects. The effects of the spin–orbit interaction on the structures and frequencies of these two complexes are discussed. We also carried out calculations for Th2, and several low-lying electronic states are calculated. Our results indicate that, for open-shell systems, there are significant effects due to the spin–orbit effects and the electronic configurations with and without spin–orbit interactions could change due to the occupation of orbitals of larger spin–orbit interactions.« less
NASA Astrophysics Data System (ADS)
Lin, Lin
The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.
DFT investigations of the hydrogenation effect on silicene/graphene hybrids.
Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O
2012-12-05
We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.
Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo
2014-09-09
We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.
Yu, Haoyu; Truhlar, Donald G
2015-07-14
Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive element, electron affinity of the electronegative bonding partner (EA), atomic excitation energy (EE) to prepare the valence states of the interacting partners, and interaction energy (IE) of the valence-prepared states. Adding Hartree-Fock exchange helps to obtain better results for atomic excitation energy, and this leads to improvements in getting the right answer for the right reason. The following functionals are singled out for reasonably good performance on all three of bond distance, BDE, and dipole moment: B97-1, B97-3, MPW1B95, M05, M06, M06-2X, M08-SO, N12-SX, O3LYP, TPSS, τ-HCTHhyb, and GAM; all but two (TPSS and GAM) of these functionals are hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X. G.; Ning, C. G.; Zhang, S. F.
The measurements of electron density distributions and binding-energy spectrum of the complete valence shell of cyclopentene (C{sub 5}H{sub 8}) using a binary (e,2e) electron momentum spectrometer are reported. The experimental momentum profiles of the valence orbitals are compared with the theoretical distributions calculated using Hartree-Fock and density-functional-theory (DFT) methods with various basis sets. The agreement between theory and experiment for the shape and intensity of the orbital electron momentum distributions is generally good. The DFT calculations employing B3LYP hybrid functional with a saturated and diffuse AUG-CC-PVTZ basis set provide the better descriptions of the experimental data. Some ''turn up'' effectsmore » in the low momentum region of the measured (e,2e) cross section compared with the calculations of 3a{sup ''}, 2a{sup ''}, and 3a{sup '} orbitals could be mainly attributed to distorted-wave effects. The pole strengths of the main ionization peaks from the orbitals in the inner valence are estimated.« less
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Wu, Li-Na; Zhang, Li-Juan
2018-05-01
This work presents a systematic density functional theory (DFT) study for geometrical and electronic structures, g factors and UV-vis spectra of three Cu(II) coordination polymers (CPs) [Cu(XL)(NO3)2]n (1), {[Cu(XL)(4,4‧-bpy)(NO3)2]•CH3CN}n (2) and {[Cu(XL)3](NO3)2·3.5H2O}n (3) based on the ligand N,N‧-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide bi(1,2,4-triazole) (XL) with the linker triazole coordinated with copper to construct the CPs. For three CPs with distinct ligands, the optimized molecular structures with PBE0 hybrid functional and the 6-311g basis set agree well with the corresponding XRD data. Meanwhile, the electronic properties are also analyzed for all the systems. The calculated g factors are found sensitive to the (Hartree-Fock) HF character due to the significant hybridization between copper and ligand orbitals. The calculated UV-visible spectra reveal that the main electronic transitions for CP 1 contain d-d and CT transitions, while those for CPs 2 and 3 largely belong to CT ones. The present CPs seem difficult to adsorb small molecules, e.g., CP 1 with H2O and NO2 exhibit unfavorable adsorption and deformation structures near the Cu2+ site.
Ab initio study of ceria films for resistive switching memory applications
NASA Astrophysics Data System (ADS)
Firdos, Mehreen; Hussain, Fayyaz; Imran, Muhammad; Ismail, Muhammad; Rana, A. M.; Arshad Javid, M.; Majid, Abdul; Arif Khalil, R. M.; Ullah, Hafeez
2017-10-01
The aim of this study is to investigate the charge distribution/relocation activities in relation to resistive switching (RS) memory behavior in the metal/insulator/metal (MIM) structure of Zr/CeO2/Pt hybrid layers. The Zr layer is truly expected to act not only as an oxygen ion extraction layer but also as an ion barrier by forming a ZrO2 interfacial layer. Such behavior of the Zr not only introduces a high concentration of oxygen vacancies to the active CeO2 layer but also enhances the resistance change capability. Such Zr contributions have been explored by determining the work function, charge distribution and electronic properties with the help of density functional theory (DFT) based on the generalized gradient approximation (GGA). In doped CeO2, the dopant (Zr) plays a significant role in the formation of defect states, such as oxygen vacancies, which are necessary for generating conducting filaments. The total density of state (DOS) analyses reveal that the existence of impurity states in the hybrid system considerably upgrade the performance of charge transfer/accumulation, consequently leading to enhanced RS behavior, as noticed in our earlier experimental results on Zr/CeO2/Pt devices. Hence it can be concluded that the present DFT studies can be implemented on CeO2-based RRAM devices, which have skyscraping potential for future nonvolatile memory (NVM) applications.
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.
Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S
2004-10-08
A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies.
NASA Astrophysics Data System (ADS)
Sroczyński, Dariusz; Malinowski, Zbigniew
2017-12-01
The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.
Tailor-made force fields for crystal-structure prediction.
Neumann, Marcus A
2008-08-14
A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.
NASA Astrophysics Data System (ADS)
Aguilera, Irene; Friedrich, Christoph; Bihlmayer, Gustav; Blügel, Stefan
2013-07-01
We present GW calculations of the topological insulators Bi2Se3, Bi2Te3, and Sb2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. Quasiparticle effects produce significant qualitative changes in the band structures of these materials when compared to density functional theory (DFT), especially at the Γ point, where band inversion takes place. There, the widely used perturbative one-shot GW approach can produce unphysical band dispersions, as the quasiparticle wave functions are forced to be identical to the noninteracting single-particle states. We show that a treatment beyond the perturbative approach, which incorporates the off-diagonal GW matrix elements and thus enables many-body hybridization to be effective in the quasiparticle wave functions, is crucial in these cases to describe the characteristics of the band inversion around the Γ point in an appropriate way. In addition, this beyond one-shot GW approach allows us to calculate the values of the Z2 topological invariants and compare them with those previously obtained within DFT.
In search of a viable reaction pathway in the chelation of a metallo-protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Misfolded metallo-proteins are potential causal agents in the onset of neuro-degenerative diseases, such as Alzheimer's and Parkinson's Diseases (PD). Experimental results involving metal chelation have shown significant promise in symptom reduction and misfolding reversal. We explore, through atomistic simulations, potential reaction pathways for the chelation of Cu^2+ from the metal binding site in our representation of a partially misfolded α-synuclein, the protein implicated in PD. Our ab initio simulations use Density Functional Theory (DFT) and nudged elastic band to obtain the minimized energy coordinates of this reaction. Our simulations include ab initio water at the interaction site and in its first solvation shells, while the remainder is fully solvated with orbital-free DFT water representation [1]. Our ongoing studies of viable chelation agents include nicotine, caffeine and other potential reagents, we will review the best case agents in this presentation. [4pt] [1] Hodak M, Lu W, Bernholc J. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems. J. Chem. Phys. 2008 Jan;128(1):014101-9.
NASA Astrophysics Data System (ADS)
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-04-01
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.
Du, Mao-Hua
2015-04-02
We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less
NASA Astrophysics Data System (ADS)
Akchurin, Igor O.; Yakhutina, Anna I.; Bochkov, Andrei Y.; Solovjova, Natalya P.; Medvedev, Michael G.; Traven, Valerii F.
2018-05-01
Novel push-pull fluorescent dyes - 7-(diethylamino)furo- and 7-(diethylamino)thieno[3,2-c]coumarins derivatives have been synthesized using formyl derivatives of furo- and thieno[3,2-c]coumarins as starting materials. Electron absorption and fluorescent spectra of the dyes have been recorded in different solvents. Structure and solvent effects on the dyes spectral characteristics were analyzed. The fusion of five-membered heterocycle to coumarin provides a definite increase of Stokes shifts in all solvents and results in higher quantum yields of fluorescence. The absorption and emission bands of thieno[3,2-c] coumarin derivatives are definitely shifted to the red region (3-30 nm) compared to similar derivatives of furo[3,2-c]coumarin. TD-DFT calculations of some of the studied compounds have shown that hybrid DFT functionals and adequate representation of molecular environment are essential for obtaining accurate UV-Vis absorption spectra for the dyes with extended π-system. The longest-wave electron transitions in the studied compounds were computationally shown to be of push-pull nature.
Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.
Arjunan, V; Rani, T; Mythili, C V; Mohan, S
2011-08-01
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.
Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D
2015-04-01
Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.
Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.
Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi
2016-01-19
We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.
NASA Astrophysics Data System (ADS)
Kouno, Takahisa; Ogata, Shuji; Shimada, Takaaki; Tamura, Tomoyuki; Kobayashi, Ryo
2016-05-01
A hybrid quantum-classical simulation of a 4,608-atom silica glass is performed at a temperature of 400 K with either a water monomer or dimer inserted in a void. The quantum region that includes the water and the surrounding atoms is treated by the density-functional theory (DFT). During a simulation, the silica glass is gradually compressed or expanded. No Si-O bond breaking occurs with a water monomer until the silica glass collapses. With a water dimer, we find that Si-O bond breaking occurs through three steps in 3 out of 24 compression cases: (i) H-transfer as 2H2O → OH- + H3O+ accompanied by the adsorption of OH- at a strained Si to make it five-coordinated, (ii) breaking of a Si-O bond that originates from the five-coordinated Si, and (iii) H-transfer from H3O+ to the O of the broken Si-O bond. A separate DFT calculation confirms that the barrier energy of the bond breaking with a water dimer under compression is smaller than that with a water monomer and that the barrier energy decreases significantly when the silica glass is compressed further.
DFT Study of PH3 Physisorption and Chemisorptions on Boron Nitride Nanotubes
NASA Astrophysics Data System (ADS)
Rakhshi, Mahdi; Mohsennia, Mohsen; Rasa, Hossein
2018-03-01
The adsorption of PH3 molecules on the NiB,N-doped(4,4) and (5,5) BNNTS surfaces has been investigated using density functional theory (DFT). The adsorption energies, geometric and electronic structures of the adsorbed systems were studied to judge the possible application of NiB,N-doped BNNTS in PH3 monitoring systems. Our calculated results showed that NiB,N-doped BNNTS had much higher adsorption energy and shorter binding distances than pure BNNTS owning to chemisorptions of the PH3 molecule. The obtained density of states (DOS) and frontier orbitals demonstrated that the orbital hybridization was obvious between the PH3 molecule and NiB,N-doped BNNTS. However, due to weak physisorption according to the total electron density maps, there was no evidence for hybridization between PH3 molecule and pure BNNTS. It was shown that after doping of Ni atom, the primary symmetry of BNNTS decreased which enhanced the chemical activity of BNNTS towards PH3 molecules. According to the obtained results, we highlight the high potential application of NiB,N-doped BNNTS in the design and fabrication of PH3 sensing devices.
NASA Astrophysics Data System (ADS)
He, Jiangang; Franchini, Cesare
2012-12-01
We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M = Sc-Cu) and discuss the role of the mixing parameter α [which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional] on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller-type instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t2g and eg orbitals, symbolize a critical and challenging case for theory. Our results indicate that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground-state properties with respect to α, we have constructed a set of “optimum” values of α from LaScO3 to LaCuO3: it is found that the optimum mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 and LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 and LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure. Finally, we show that by using this set of optimum mixing parameter, HSE predict dielectric constants in very good agreement with the experimental ones.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Han, Jie; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Functionalization of fullerenes via the [2+2] cycloaddition reaction with o-benzyne has been demonstrated in the laboratory. In contrast, [2+4) cycloaddition products are formed when benzyne reacts with planar polycyclic aromatic hydrocarbons. Using density functional theory (DFT) calculations with Becke's hybrid functional and small contracted gaussian basis sets, we are able to reproduce these product preferences. The objective of this work is to explore the functionalization of carbon nanotubes. We have studied o-benzyne cycloaddition products with a [14,0] single-walled nanotube. We find both the [2+2] and [2+4] adducts to be stable, with the latter product being somewhat favored.
The electronic structure of Au25 clusters: between discrete and continuous
NASA Astrophysics Data System (ADS)
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav
2016-08-01
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f
Communication: Correct charge transfer in CT complexes from the Becke'05 density functional
NASA Astrophysics Data System (ADS)
Becke, Axel D.; Dale, Stephen G.; Johnson, Erin R.
2018-06-01
It has been known for over twenty years that density functionals of the generalized-gradient approximation (GGA) type and exact-exchange-GGA hybrids with low exact-exchange mixing fraction yield enormous errors in the properties of charge-transfer (CT) complexes. Manifestations of this error have also plagued computations of CT excitation energies. GGAs transfer far too much charge in CT complexes. This error has therefore come to be called "delocalization" error. It remains, to this day, a vexing unsolved problem in density-functional theory (DFT). Here we report that a 100% exact-exchange-based density functional known as Becke'05 or "B05" [A. D. Becke, J. Chem. Phys. 119, 2972 (2003); 122, 064101 (2005)] predicts excellent charge transfers in classic CT complexes involving the electron donors NH3, C2H4, HCN, and C2H2 and electron acceptors F2 and Cl2. Our approach is variational, as in our recent "B05min" dipole moments paper [Dale et al., J. Chem. Phys. 147, 154103 (2017)]. Therefore B05 is not only an accurate DFT for thermochemistry but is promising as a solution to the delocalization problem as well.
DFT applied to the study of carbon-doped zinc-blende (cubic) GaN
NASA Astrophysics Data System (ADS)
Espitia R, M. J.; Ortega-López, C.; Rodríguez Martínez, J. A.
2016-08-01
Employing first principles within the framework of density functional theory, the structural properties, electronic structure, and magnetism of C-doped zincblende (cubic) GaN were investigated. The calculations were carried out using the pseudopotential method, employed exactly as implemented in Quantum ESPRESSO code. For GaC0.0625N0.9375 concentration, a metallic behavior was found. This metallic property comes from the hybridization and polarization of C-2p states and their neighboring N-2p and G-4p states.
Ziaei, Vafa; Bredow, Thomas
2016-11-07
In this work, we apply many-body perturbation theory (MBPT) on large critical charge transfer (CT) complexes to assess its performance on the S 1 excitation energy. Since the S 1 energy of CT compounds is heavily dependent on the Hartree-Fock (HF) exchange fraction in the reference density functional, MBPT opens a new way for reliable prediction of CT S 1 energy without explicit knowledge of suitable amount of HF-exchange, in contrary to the time-dependent density functional theory (TD-DFT), where depending on various functionals, large errors can arise. Thus, simply by starting from a (semi-)local reference functional and performing update of Kohn-Sham (KS) energies in the Green's function G while keeping dynamical screened interaction (W(ω)) frozen to the mean-field level, we obtain impressingly highly accurate S 1 energy at slightly higher computational cost in comparison to TD-DFT. However, this energy-only updating mechanism in G fails to work if the initial guess contains a fraction or 100% HF-exchange, and hence considerably inaccurate S 1 energy is predicted. Furthermore, eigenvalue updating both in G and W(ω) overshoots the S 1 energy due to enhanced underscreening of W(ω), independent of the (hybrid-)DFT starting orbitals. A full energy-update on top of HF orbitals even further overestimates the S 1 energy. An additional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW) deteriorates results, in stark contrast to the good results obtained from QSGW for periodic systems. For the sake of transferability, we further present data of small critical non-charge transfer systems, confirming the outcomes of the CT-systems.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
NASA Astrophysics Data System (ADS)
Amdani-Moten, Shafaq; Atta-Fynn, Raymond; Ray, Asok
2010-03-01
As our group have recently shown^+, hybrid density functional theory (HDFT) which replaces a fraction (40%) of approximate DFT exchange with exact Hartree-Fock exchange yield structural, magnetic, and electronic properties for Americium-I that are in excellent agreement with experimental data. As a natural progression, ab initio calculations for atomic adsorptions on the (0001) surface of non-magnetic americium have been performed using HDFT. The americium surface is modeled by a seven-layer slab using inversion symmetry consisting of one atom per layer and non-magnetic ABAC stacking arrangement of these layers. Top, bridge, hcp and fcc chemisorption sites have been investigated with energies optimized with respect to the adatom distance from the surface. Details of the chemisorptions processes as well as comparisons of different sites will be presented. ^+ R. Atta-Fynn and A. K. Ray, Chemical Physics Letters, 482, 223-227 (2009).
Experimental and theoretical studies of a pyrazole-thiazolidin-2,4-di-one hybrid
NASA Astrophysics Data System (ADS)
Mushtaque, Md.; Avecilla, Fernando; Haque, Ashanul; Perwez, Ahmad; Khan, Md. Shahzad; Rizvi, M. Moshahid Alam
2017-08-01
The present work describes synthesis, characterization and biological evaluations of a hybrid compound 10 composed of two intriguing scaffolds pyrazole and thiazolidin-2,4-di-one. The title compound was obtained via multi-step reaction and characterized by a number of techniques (viz. IR, UV-Visible, 1H-NMR, 13C-NMR and MS) including X-ray crystallography. The structural and photophysical data of compound 10 were well supported by theoretical calculations performed at density functional (DFT) level. In-vitro anticancer studies on different human cancer cell lines indicated moderate to low activity of the compounds. The molecular target of the compound was predicted through in-silico studies. Finding of the studies are presented herein.
Dong, Haifeng; Liu, Conghui; Ye, Haitao; Hu, Linping; Fugetsu, Bunshi; Dai, Wenhao; Cao, Yu; Qi, Xueqiang; Lu, Huiting; Zhang, Xueji
2015-01-01
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS2/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency. PMID:26639026
Optoelectronics and defect levels in hydroxyapatite by first-principles.
Avakyan, Leon A; Paramonova, Ekaterina V; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S; Bugaev, Lusegen A
2018-04-21
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Optoelectronics and defect levels in hydroxyapatite by first-principles
NASA Astrophysics Data System (ADS)
Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.
2018-04-01
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina
2018-01-01
The structures, relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of Pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semi-experimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg. for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt- and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol−1. Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm−1 are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC calculations. PMID:26575928
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
Role of Water in the Reversible Optoelectronic Degradation in Hybrid Perovskites at Low Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Genevieve N.; Stuckelberger, Michael; Nietzold, Tara
There is no doubt about the potential offered by the low-cost fabrication and high efficiency of hybrid organic–inorganic perovskite solar cells. However, the service lifetimes of these devices must be increased from months to years to capitalize on their potential. The archetypal hybrid perovskite for solar cells, methylammonium lead iodide (CH 3NH 3PbI 3, abbreviated MAPI), readily degrades in ambient atmosphere under standard operating conditions. Understanding the origin and effects of this degradation can pave the way to better engineer photovoltaic devices and the perovskite material itself. Herein we present the effects of varying pressure on the electrical performance ofmore » MAPI solar cells. Solar cell parameters, especially open circuit voltage, are significantly affected by the total ambient pressure and present an unexpected reversible behavior upon pressure cycling. We complement photoluminescence studies as a function of ambient atmosphere and temperature with first-principles density functional theory (DFT) calculations. The results suggest that the reversible intercalation of water in MAPI is a necessary component underlying this behavior.« less
Role of Water in the Reversible Optoelectronic Degradation in Hybrid Perovskites at Low Pressure
Hall, Genevieve N.; Stuckelberger, Michael; Nietzold, Tara; ...
2017-10-10
There is no doubt about the potential offered by the low-cost fabrication and high efficiency of hybrid organic–inorganic perovskite solar cells. However, the service lifetimes of these devices must be increased from months to years to capitalize on their potential. The archetypal hybrid perovskite for solar cells, methylammonium lead iodide (CH 3NH 3PbI 3, abbreviated MAPI), readily degrades in ambient atmosphere under standard operating conditions. Understanding the origin and effects of this degradation can pave the way to better engineer photovoltaic devices and the perovskite material itself. Herein we present the effects of varying pressure on the electrical performance ofmore » MAPI solar cells. Solar cell parameters, especially open circuit voltage, are significantly affected by the total ambient pressure and present an unexpected reversible behavior upon pressure cycling. We complement photoluminescence studies as a function of ambient atmosphere and temperature with first-principles density functional theory (DFT) calculations. The results suggest that the reversible intercalation of water in MAPI is a necessary component underlying this behavior.« less
Reimers, Jeffrey R; Sajid, A; Kobayashi, Rika; Ford, Michael J
2018-03-13
Defect states in 2-D materials present many possible uses but both experimental and computational characterization of their spectroscopic properties is difficult. We provide and compare results from 13 DFT and ab initio computational methods for up to 25 excited states of a paradigm system, the V N C B defect in hexagonal boron nitride (h-BN). Studied include: (i) potentially catastrophic effects for computational methods arising from the multireference nature of the closed-shell and open-shell states of the defect, which intrinsically involves broken chemical bonds, (ii) differing results from DFT and time-dependent DFT (TDDFT) calculations, (iii) comparison of cluster models to periodic-slab models of the defect, (iv) the starkly differing effects of nuclear relaxation on the various electronic states that control the widths of photoabsorption and photoemission spectra as broken bonds try to heal, (v) the effect of zero-point energy and entropy on free-energy differences, (vi) defect-localized and conduction/valence-band transition natures, and (vii) strategies needed to ensure that the lowest-energy state of a defect can be computationally identified. Averaged state-energy differences of 0.3 eV are found between CCSD(T) and MRCI energies, with thermal effects on free energies sometimes also being of this order. However, DFT-based methods can perform very poorly. Simple generalized-gradient functionals like PBE fail at the most basic level and should never be applied to defect states. Hybrid functionals like HSE06 work very well for excitations within the triplet manifold of the defect, with an accuracy equivalent to or perhaps exceeding the accuracy of the ab initio methods used. However, HSE06 underestimates triplet-state energies by on average of 0.7 eV compared to closed-shell singlet states, while open-shell singlet states are predicted to be too low in energy by 1.0 eV. This leads to misassignment of the ground state of the V N C B defect. Long-range corrected functionals like CAM-B3LYP are shown to work much better and to represent the current entry level for DFT calculations on defects. As significant differences between cluster and periodic-slab models are also found, the widespread implementation of such functionals in periodic codes is in urgent need.
Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory
NASA Astrophysics Data System (ADS)
Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre
2016-05-01
Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.
Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim
2009-01-21
The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.
Thermodynamically accessible titanium clusters TiN, N = 2-32.
Lazauskas, Tomas; Sokol, Alexey A; Buckeridge, John; Catlow, C Richard A; Escher, Susanne G E T; Farrow, Matthew R; Mora-Fonz, David; Blum, Volker W; Phaahla, Tshegofatso M; Chauke, Hasani R; Ngoepe, Phuti E; Woodley, Scott M
2018-05-10
We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster.
NASA Astrophysics Data System (ADS)
Kosar, Naveen; Mahmood, Tariq; Ayub, Khurshid
2017-12-01
Benchmark study has been carried out to find a cost effective and accurate method for bond dissociation energy (BDE) of carbon halogen (Csbnd X) bond. BDE of C-X bond plays a vital role in chemical reactions, particularly for kinetic barrier and thermochemistry etc. The compounds (1-16, Fig. 1) with Csbnd X bond used for current benchmark study are important reactants in organic, inorganic and bioorganic chemistry. Experimental data of Csbnd X bond dissociation energy is compared with theoretical results. The statistical analysis tools such as root mean square deviation (RMSD), standard deviation (SD), Pearson's correlation (R) and mean absolute error (MAE) are used for comparison. Overall, thirty-one density functionals from eight different classes of density functional theory (DFT) along with Pople and Dunning basis sets are evaluated. Among different classes of DFT, the dispersion corrected range separated hybrid GGA class along with 6-31G(d), 6-311G(d), aug-cc-pVDZ and aug-cc-pVTZ basis sets performed best for bond dissociation energy calculation of C-X bond. ωB97XD show the best performance with less deviations (RMSD, SD), mean absolute error (MAE) and a significant Pearson's correlation (R) when compared to experimental data. ωB97XD along with Pople basis set 6-311g(d) has RMSD, SD, R and MAE of 3.14 kcal mol-1, 3.05 kcal mol-1, 0.97 and -1.07 kcal mol-1, respectively.
NASA Astrophysics Data System (ADS)
Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit
2015-08-01
Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.
NASA Astrophysics Data System (ADS)
Goerigk, Lars; Grimme, Stefan
2010-05-01
We present an extension of our previously published benchmark set for low-lying valence transitions of large organic dyes [L. Goerigk et al., Phys. Chem. Chem. Phys. 11, 4611 (2009)]. The new set comprises in total 12 molecules, including two charged species and one with a clear charge-transfer transition. Our previous study on TD-DFT methods is repeated for the new test set with a larger basis set. Additionally, we want to shed light on different spin-scaled variants of the configuration interaction singles with perturbative doubles correction [CIS(D)] and the approximate coupled cluster singles and doubles method (CC2). Particularly for CIS(D) we want to clarify, which of the proposed versions can be recommended. Our results indicate that an unpublished SCS-CIS(D) variant, which is implemented into the TURBOMOLE program package, shows worse results than the original CIS(D) method, while other modified versions perform better. An SCS-CIS(D) version with a parameterization, that has already been used in an application by us recently [L. Goerigk and S. Grimme, ChemPhysChem 9, 2467 (2008)], yields the best results. Another SCS-CIS(D) version and the SOS-CIS(D) method [Y. M. Rhee and M. Head-Gordon, J. Phys. Chem. A 111, 5314 (2007)] perform very similar, though. For the electronic transitions considered herein, there is no improvement observed when going from the original CC2 to the SCS-CC2 method but further adjustment of the latter seems to be beneficial. Double-hybrid density functionals belong to best methods tested here. Particularly B2GP-PLYP provides uniformly good results for the complete set and is considered to be close to chemical accuracy within an ab initio theory of color. For conventional hybrid functionals, a Fock-exchange mixing parameter of about 0.4 seems to be optimum in TD-DFT treatments of large chromophores. A range-separated functional such as, e.g., CAM-B3LYP seems also to be promising.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2011-04-21
Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.
On the subsystem formulation of linear-response time-dependent DFT.
Pavanello, Michele
2013-05-28
A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.
Influence of water on the surface of graphene
NASA Astrophysics Data System (ADS)
Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob
2018-02-01
We have studied how water modifies the surface of graphene and in particular how the surface conductivity of graphene is affected. According to the literature, two types of interactions should be distinguished: physical, where a water molecule remains intact and is located at some distance from the mesh, and chemical, where a water molecule is imbricated in the graphene bond structure. We have developed theoretical models for both types of interactions using the density functional theory (DFT) with the B3LYP hybrid functional combined with the 6-31G(d) basis set. Our calculations show that the surface conductivity of graphene is reduced in the presence of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Pranab; Huda, Muhammad N., E-mail: huda@uta.edu; Al-Jassim, Mowafak M.
2015-12-07
A quaternary oxide, CuSnW{sub 2}O{sub 8} (CTTO), has been predicted by density functional theory (DFT) to be a suitable material for sustainable photovoltaic applications. CTTO possesses band gaps of 1.25 eV (indirect) and 1.37 eV (direct), which were evaluated using the hybrid functional (HSE06) as a post-DFT method. The hole mobility of CTTO was higher than that of silicon. Further, optical absorption calculations demonstrate that CTTO is a better absorber of sunlight than Cu{sub 2}ZnSnS{sub 4} and CuIn{sub x}Ga{sub 1−x}Se{sub 2} (x = 0.5). In addition, CTTO exhibits rigorous thermodynamic stability comparable to WO{sub 3}, as investigated by different thermodynamic approaches such as bondingmore » cohesion, fragmentation tendency, and chemical potential analysis. Chemical potential analysis further revealed that CTTO can be synthesized at flexible experimental growth conditions, although the co-existence of at least one secondary phase is likely. Finally, like other Cu-based compounds, the formation of Cu vacancies is highly probable, even at Cu-rich growth condition, which could introduce p-type activity in CTTO.« less
Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R
2015-04-15
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.
Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena
2013-04-09
(13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.
Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Tzeng, Nianfeng; Liu, Yucheng; Junk, Thomas
2017-09-01
A combined experimental-computational study was conducted on the Raman spectrum of TNT-d5 in the present study. It was found that among the 24 hybrid density functional theory (DFT) methods, O3LYP, tHCTHhyb, and B3LYP simulations yielded the strongest Raman bands which were closest to those measured from experiments. Simulations of hybrid DFT methods did not show that deuterium replacements alter orientations of 2- and 6-nitro with respect to phenyl ring, considering a larger size of the methyl group. However, the deuterium replacements apparently changed the reduced masses for all deuterium related vibrations. Although no difference of structural parameters was shown between TNT and its deuterated analogue, discrepancy was indicated in vibrational zero energy from our simulations. O3LYP simulation exhibited 24 deuterium involved vibrations, which were coupled into seven Raman bands of TNT-d5. This phenomenon can account for the experimental Raman band shifts or split of TNT-d5 when compared with the corresponding bands of TNT. The present study and its outcomes provide in-depth microchemical insights of Raman characteristics of TNT and may facilitate the design of nano-structures of SERS substrates for detection of TNT and its degradation products. All intensities displayed in this study were calculated from numerical simulations.
NASA Astrophysics Data System (ADS)
Rudysh, M. Ya.; Brik, M. G.; Stadnyk, V. Yo.; Brezvin, R. S.; Shchepanskyi, P. A.; Fedorchuk, A.; Khyzhun, O. Y.; Kityk, I. V.; Piasecki, M.
2018-01-01
In the present work complex experimental and theoretical studies of electronic and optical properties for β-lithium-ammonium sulfate crystals of good optical quality are performed using the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). Standard immersion and spectroscopic techniques accompanied by the theoretical quantum-chemical calculations in the density functional theory (DFT) framework were applied. Calculations of band structure and related properties were carried out within a framework of local density and generalized gradient approximations as well as hybrid B3LYP functionals. The energy levels features and their origin are established from the DFT calculations and they were ferified by XPS and XES measurements. Theoretical and experimental refractive indices dispersions along the principal crystallographic directions (nx, ny and nz) as well as birefringence dispersion (Δnx, Δny and Δnz) in the visible spectral range are obtained. It was found a closeness of nx and ny curves for the titled crystals. More precise birefringence examining predicts their intersection at λ ≈ 190 nm.
Stoffel, Ralf P; Deringer, Volker L; Simon, Ronnie E; Hermann, Raphaël P; Dronskowski, Richard
2015-03-04
We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated-including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.
First principles DFT study of dye-sensitized CdS quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam, E-mail: shyam387@gmail.com
2014-04-24
Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positionsmore » of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.« less
NASA Astrophysics Data System (ADS)
Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir
2017-08-01
Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.
The vibrational properties of the bee-killer imidacloprid insecticide: A molecular description
NASA Astrophysics Data System (ADS)
Moreira, Antônio A. G.; De Lima-Neto, Pedro; Caetano, Ewerton W. S.; Barroso-Neto, Ito L.; Freire, Valder N.
2017-10-01
The chemical imidacloprid belongs to the neonicotinoids insecticide class, widely used for insect pest control mainly for crop protection. However, imidacloprid is a non-selective agrochemical to the insects and it is able to kill the most important pollinators, the bees. The high toxicity of imidacloprid requires controlled release and continuous monitoring. For this purpose, high performance liquid chromatography (HPLC) is usually employed; infrared and Raman spectroscopy, however, are simple and viable techniques that can be adapted to portable devices for field application. In this communication, state-of-the-art quantum level simulations were used to predict the infrared and Raman spectra of the most stable conformer of imidacloprid. Four molecular geometries were investigated in vacuum and solvated within the Density Functional Theory (DFT) approach employing the hybrid meta functional M06-2X and the hybrid functional B3LYP. The M062X/PCM model proved to be the best to predict structural features, while the values of harmonic vibrational frequencies were predicted more accurately using the B3LYP functional.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
Ensemble density variational methods with self- and ghost-interaction-corrected functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorczak, Ewa; Pernal, Katarzyna, E-mail: pernalk@gmail.com
2014-05-14
Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introducedmore » by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.« less
NASA Astrophysics Data System (ADS)
Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi
2010-10-01
Mukherjee-type (Mk) state specific (SS) multi-reference (MR) coupled-cluster (CC) calculations of 1,n-didehydropolyene diradicals were carried out to elucidate singlet-triplet energy gaps via through-bond coupling between terminal radicals. Spin-unrestricted Hartree-Fock (UHF) based coupled-cluster (CC) computations of these diradicals were also performed. Comparison between symmetry-adapted MkMRCC and broken-symmetry (BS) UHF-CC computational results indicated that spin-contamination error of UHF-CC solutions was left at the SD level, although it had been thought that this error was negligible for the CC scheme in general. In order to eliminate the spin contamination error, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed eliminated the error to yield good agreement with MRCC in energy. The CCD with spin-unrestricted Brueckner's orbital (UB) was also employed for these polyene diradicals, showing that large spin-contamination errors at UHF solutions are dramatically improved, and therefore AP scheme for UBD removed easily the rest of spin-contaminations. Pure- and hybrid-density functional theory (DFT) calculations of the species were also performed. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid DFT. The AP DFT calculations yielded the singlet-triplet energy gaps that were in good agreement with those of MRCC, AP UHF-CC and AP UB-CC. Chemical indices such as the diradical character were calculated with all these methods. Implications of the present computational results are discussed in relation to previous RMRCC calculations of diradical species and BS calculations of large exchange coupled systems.
Winget, Paul; Schirra, Laura K; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Ndione, Paul F; Sigdel, Ajaya K; Ginley, David S; Berry, Joseph J; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Brédas, Jean-Luc; Monti, Oliver L A
2014-07-16
The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2012-01-28
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics
Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces
2014-01-01
Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic response effects enables reliable modeling of structure and stability for a broad class of organic molecules adsorbed on metal surfaces. This method was demonstrated to achieve quantitative accuracy for aromatic hydrocarbons (benzene, naphthalene, anthracene, and diindenoperylene), C60, and sulfur/oxygen-containing molecules (thiophene, NTCDA, and PTCDA) on close-packed and stepped metal surfaces, leading to an overall accuracy of 0.1 Å in adsorption heights and 0.1 eV in binding energies with respect to state-of-the-art experiments. An unexpected finding is that vdW interactions contribute more to the binding of strongly bound molecules on transition-metal surfaces than for molecules physisorbed on coinage metals. The accurate inclusion of vdW interactions also significantly improves tilting angles and adsorption heights for all the studied molecules, and can qualitatively change the potential-energy surface for adsorbed molecules with flexible functional groups. Activation barriers for molecular switches and reaction precursors are modified as well. PMID:24915492
2015-01-01
The 0–0 energies of 80 medium and large molecules have been computed with a large panel of theoretical formalisms. We have used an approach computationally tractable for large molecules, that is, the structural and vibrational parameters are obtained with TD-DFT, the solvent effects are accounted for with the PCM model, whereas the total and transition energies have been determined with TD-DFT and with five wave function approaches accounting for contributions from double excitations, namely, CIS(D), ADC(2), CC2, SCS-CC2, and SOS-CC2, as well as Green’s function based BSE/GW approach. Atomic basis sets including diffuse functions have been systematically applied, and several variations of the PCM have been evaluated. Using solvent corrections obtained with corrected linear-response approach, we found that three schemes, namely, ADC(2), CC2, and BSE/GW allow one to reach a mean absolute deviation smaller than 0.15 eV compared to the measurements, the two former yielding slightly better correlation with experiments than the latter. CIS(D), SCS-CC2, and SOS-CC2 provide significantly larger deviations, though the latter approach delivers highly consistent transition energies. In addition, we show that (i) ADC(2) and CC2 values are extremely close to each other but for systems absorbing at low energies; (ii) the linear-response PCM scheme tends to overestimate solvation effects; and that (iii) the average impact of nonequilibrium correction on 0–0 energies is negligible. PMID:26574326
grosse Holthaus, Svea; Köppen, Susan; Frauenheim, Thomas; Ciacchi, Lucio Colombi
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101̄0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to formmore » predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.« less
Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott
2018-05-10
Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.
Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J
2009-12-24
In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit
2015-08-28
Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The presentmore » study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.« less
NASA Astrophysics Data System (ADS)
Salimifard, M.; Rad, A. Shokuhi; Mahanpoor, K.
2017-10-01
Density functional theory (DFT) using MPW1PW91 and B3LYP hybrid functionals was utilized for quantum-based investigations of three major sulfur compounds (H2S, SO2, and SO3) adsorption onto fullerene-like Ga12N12 nanocluster. All chemicals showed high chemisorption with the order of SO3>SO2>>H2S. Results of charge analysis showed that during adsorption, transfer of charge is from H2S to nanocluster while reverse direction of charge transfer is found for SO2 and SO3 molecules. Partial dissociation is found for adsorbates especially for SO2 and SO3 molecules. Results of thermochemistry analysis show negative values for enthalpy and Gibbs free energy of adsorption, confirming exothermic spontaneous process. Analysis of frontier molecular orbital (FMO) showed important role of orbital hybridizing towards formation of new bonds upon adsorption. As a result, we introduce Ga12N12 nanocluster as a strong adsorbent for sulfur compounds.
Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B
2013-05-16
Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.
Quantum chemistry study on the open end of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Hou, Shimin; Shen, Ziyong; Zhao, Xingyu; Xue, Zengquan
2003-05-01
Geometrical and electronic structures of open-ended single-walled carbon nanotubes (SWCNTs) are calculated using density functional theory (DFT) with hybrid functional (B3LYP) approximation. Due to different distances between carbon atoms along the edge, reconstruction occurs at the open end of the (4,4) armchair SWCNT, i.e., triple bonds are formed in the carbon atom pairs at the mouth; however, for the (6,0) zigzag SWCNT, electrons in dangling bonds still remain at 'no-bonding' states. The ionization potential (IP) of both (4,4) and (6,0) SWCNTs is increased by their negative intrinsic dipole moments, and localized electronic states existed at both of their open ends.
Optical properties of C28 fullerene cage: A DFT study
NASA Astrophysics Data System (ADS)
Paul, Debolina; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal
2018-05-01
Density functional theory methodology have been used to study the optical properties of fullerene C28 with the application of average electric field. The static dielectric constant of C28 is recorded a low value of 1.4. It is observed that the fullerene shows a wide range of absorption in the UV region of the electromagnetic spectrum. The presence of the optical gap in the system as can be observed from the imaginary part of the dielectric function. The observation of small reflectivity suggests its possible uses in hybrid solar cell applications. In addition, due to strong absorption taking place in the UV region, the system could be used in the UV light protection devices.
Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study
NASA Astrophysics Data System (ADS)
Sredojević, Dušan N.; Kovač, Tijana; Džunuzović, Enis; Ðorđević, Vesna; Grgur, Branimir N.; Nedeljković, Jovan M.
2017-10-01
The charge transfer complex formation between TiO2 powder and variety of phenol derivatives (phenol, 4-nitrophenol, 4-bromophenol, 4-tert-butylphenol, hydroquinone) was achieved. The red-shift of optical absorption was observed upon surface modification of TiO2 powders with phenol derivatives. The influence of substituent functional groups in para position on the optical band gap and conduction band edge of inorganic/organic hybrids was studied using reflection spectroscopy and cyclic voltammetry. The experimental findings were supported by density functional theory calculations. The measured reflection spectra of surface-modified TiO2 powders with phenol derivatives were compared with calculated electronic excitation spectra of corresponding model systems.
NASA Astrophysics Data System (ADS)
Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.
2018-02-01
Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüder, Johann; Sanyal, Biplab; Eriksson, Olle
In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less
Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)
NASA Astrophysics Data System (ADS)
Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav
2016-04-01
We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene π and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of μ eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.
Mladenović, Milan; Mihailović, Mirjana; Bogojević, Desanka; Matić, Sanja; Nićiforović, Neda; Mihailović, Vladimir; Vuković, Nenad; Sukdolak, Slobodan; Solujić, Slavica
2011-01-01
The series of fifteen synthesized 4-hydroxycoumarin derivatives was subjected to antioxidant activity evaluation in vitro, through total antioxidant capacity, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), hydroxyl radical, lipid peroxide scavenging and chelating activity. The highest activity was detected during the radicals scavenging, with 2b, 6b, 2c, and 4c noticed as the most active. The antioxidant activity was further quantified by the quantitative structure-activity relationships (QSAR) studies. For this purpose, the structures were optimized using Paramethric Method 6 (PM6) semi-empirical and Density Functional Theory (DFT) B3LYP methods. Bond dissociation enthalpies of coumarin 4-OH, Natural Bond Orbital (NBO) gained hybridization of the oxygen, acidity of the hydrogen atom and various molecular descriptors obtained, were correlated with biological activity, after which we designed 20 new antioxidant structures, using the most favorable structural motifs, with much improved predicted activity in vitro. PMID:21686153
NASA Astrophysics Data System (ADS)
Ladetto, María F.; Márquez, María B.; Brandán, Silvia A.
2014-10-01
In this work, we have presented a structural and vibrational study on the properties in gas and aqueous solution phases of oxcarbazepine, a polymorphic anticonvulsant substance, combining the available IR and Raman spectra with Density Functional Theory (DFT) calculations. Two stable C1 and C2 forms for the title molecule were theoretically determined by using the hybrid B3LYP/6-31G* method. The integral equation formalism variant polarised continuum model (IEFPCM) was employed to study the solvent effects by means of the self-consistent reaction field (SCRF) method. The vibrational spectra for the two forms of oxcarbazepine were completely assigned together with two dimeric species also observed in the solid phase. The presences of the two C1 and C2 forms together with the two dimeric species are supported by the IR and Raman bands between 1424 and 125 cm-1. Here, the properties for both forms of oxcarbazepine are compared and discussed.
Density Functional Theory (dft) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-12-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-06-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard
2015-04-01
In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).
Quasiparticle Level Alignment for Photocatalytic Interfaces.
Migani, Annapaoala; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje; Rubio, Angel
2014-05-13
Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.
NASA Astrophysics Data System (ADS)
Gao, Feng; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2018-04-01
The feasibility of nanocomposites of cir-coronene graphene quantum dot (GQD) with phthalocyanine, tetrabenzoporphyrin, tetrabenzotriazaporphyrins, cis-tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles as a sensitizer of dye-sensitized solar cells (DSSC) are investigated. Based on the first principles density functional theory (DFT), the geometrical structures of the separate GQD and 10 macrocycles, and their hybridized nanocomposites are fully optimized. The energy stabilities of the obtained structures are confirmed by harmonic frequency analysis. The optical absorptions of the optimized structures are calculated with time-dependent DFT. The feasibility of the nanocomposites as the sensitizer of DSSC is examined by the charge spatial separation, the electron transfer, the molecular orbital energy levels of the nanocomposites and the electrolyte, and the conduction band minimum of TiO2 electrode. The results demonstrate that all the nanocomposites have enhanced absorptions in the visible light range, and their molecular orbital energies satisfy the requirement of sensitizers. However, only two of the ten considered nanocomposites demonstrate significantly charge spatial separation. The GQD-Cu-TBP is identified as the most favorable candidate sensitizer of DSSC by the most enhanced in optical absorption, obvious charge spatial separation, suitable LUMO energy levels and driving force for electron transfer, and low recombination rate of electron and hole.
Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Zhang, Hong-Xing; Cui, Tian
2014-03-01
In the current contribution, we present a critical study of the theoretical protocol used for the determination of the electronic spectra properties of luminescent cyclometalated iridium(III) complex, [Ir(III)(ppy)₂H₂dcbpy]⁺ (where, ppy = 2-phenylpyridine, H₂dcbpy = 2,2'-bipyridine-4,4'-dicarboxylic acid), considered as a representative example of the various problems related to the prediction of electronic spectra of transition metal complex. The choice of the exchange-correlation functional is crucial for the validity of the conclusions that would be drawn from the numerical results. The influence of the exchange-correlation on geometry parameter and absorption/emission band, the role of solvent effects on time-dependent density function theory (TD-DFT) calculations, as well as the importance of the chosen proper procedure to optimize triplet excited geometry, have been thus examined in detail. From the obtained results, some general conclusions and guidelines are presented: i) PBE0 functional is the most accurate in prediction of ground state geometry; ii) the well-established B3LYP, B3P86, PBE0, and X3LYP have similar accuracy in calculation of absorption spectrum; and iii) the hybrid approach TD-DFT//CIS gives out excellent agreement in the evaluation of triplet excitation energy.
2017-03-20
sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; ...
2015-03-30
The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹more » (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.« less
Potential energy surface and quantum dynamics study of rovibrational states for HO(3) (X (2)A'').
Braams, Bastiaan J; Yu, Hua-Gen
2008-06-07
An analytic potential energy surface has been constructed by fitting to about 28 thousand energy points for the electronic ground-state (X (2)A'') of HO(3). The energy points are calculated using a hybrid density functional HCTH and a large basis set aug-cc-pVTZ, i.e., a HCTH/aug-cc-pVTZ density functional theory (DFT) method. The DFT calculations show that the trans-HO(3) isomer is the global minimum with a potential well depth of 9.94 kcal mol(-1) with respect to the OH + O(2) asymptote. The equilibrium geometry of the cis-HO(3) conformer is located 1.08 kcal mol(-1) above that of the trans-HO(3) one with an isomerization barrier of 2.41 kcal mol(-1) from trans- to cis-HO(3). By using this surface, a rigorous quantum dynamics (QD) study has been carried out for computing the rovibrational energy levels of HO(3). The calculated results determine a dissociation energy of 6.15 kcal mol(-1), which is in excellent agreement with the experimental value of Lester et al. [J. Phys. Chem. A, 2007, 111, 4727.].
NASA Astrophysics Data System (ADS)
Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib
2015-04-01
Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases.
NASA Astrophysics Data System (ADS)
Pramodh, B.; Lokanath, N. K.; Naveen, S.; Naresh, P.; Ganguly, S.; Panda, J.
2018-06-01
In the present work, the crystal structure of a novel chalcone derivative, (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl) prop-2-en-1-one has been confirmed by X-ray diffraction studies. Hirshfeld surface analysis was carried out to explore the intermolecular interactions. From the Hirshfeld surface analysis it was observed that H⋯H (26.7%) and C⋯H (26.3%) are the major contributors to the intermolecular interactions which stabilizes the crystal structure. The coordinates were optimized using the density functional theory (DFT) calculations using B3LYP hybrid functions with 6-31G(d) basis set. The structural parameters obtained from XRD studies compliment with those calculated using DFT calculations. The HOMO and LUMO energy gap was found to be 4.1778 eV. The molecular electrostatic potential (MEP) was plotted to identify the possible reactions sites of the molecule. Further, non-linear optical (NLO) properties were investigated by calculating hyperpolarizabilities which indicate that the title compound would be a potential candidate for the NLO applications.
Srivastava, Ruby
2018-03-01
We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.
Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles
NASA Astrophysics Data System (ADS)
Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.
2017-07-01
The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].
NASA Astrophysics Data System (ADS)
Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing
2017-12-01
We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.
Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech
2017-05-15
The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.
Theory of copper impurities in ZnO
NASA Astrophysics Data System (ADS)
Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.
Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.
A new DFT approach to model small polarons in oxides with proper account for long-range polarization
NASA Astrophysics Data System (ADS)
Kokott, Sebastian; Levchenko, Sergey V.; Scheffler, Matthias; Theory Department Team
In this work, we address two important challenges in the DFT description of small polarons (excess charges localized within one unit cell): sensitivity to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. The polaron properties are obtained using a modified neutral potential-energy surface (PES). Using the hybrid HSE functional and considering the whole range 0 <= α <= 1 , we show that the modified PES model significantly reduces the dependence of the polaron level and binding energy in MgO and TiO2 on the XC functional. It does not eliminate the dependence on supercell size. Based on Pekar's model, we derive the proper long-range behavior of the polaron and a finite-size correction that allows to obtain the polaron properties in the dilute limit (tested for supercells containing up to 1,000 atoms). The developed approach reduces drastically the computational time for exploring the polaron PES, and gives a consistent description of polarons for the whole range of α. It allowed us to find a self-trapped hole in MgO that is noticeably more stable than reported previously. partially supported by UniCat (Deutsche Forschungsgemeinschaft).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (αmore » and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.« less
Towards an ab initio description of correlated materials
NASA Astrophysics Data System (ADS)
Yee, Chuck-Hou
Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls the superconducting transition temperatures across the cuprate families. In the second, we extend this idea towards first-principles design of cuprates by exploring a new family of copper oxysulfides.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung; ...
2017-10-25
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
The electronic structure of Au25 clusters: between discrete and continuous.
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E; Kumar, Challa S S R; Losovyj, Yaroslav
2016-08-21
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less
Bond additivity corrections for quantum chemistry methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. F. Melius; M. D. Allendorf
1999-04-01
In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method duemore » to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.« less
Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi
2018-06-01
Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chenkun; Lin, Haoran; Shi, Hongliang
The synthesis and characterization is reported of (C 9NH 20) 2SnBr 4, a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr 4 2-) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C 9NH 20 +). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. Furthermore, the unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals tomore » exhibit the intrinsic properties of individual SnBr 4 2- species, and 2) the seesaw structure then enables a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.« less
Wang, Dong; Wang, Haifeng; Hu, P
2015-01-21
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects
Panigrahi, Puspamitra; Araujo, C Moyses; Hussen, Tanveer; Ahuja, Rajeev
2014-01-01
We have employed first-principles calculations based on density functional theory (DFT) to investigate the underlying physics of unusual magnetism in Mn-doped MgO surface. We have studied two distinct scenarios. In the first one, two Mn atoms are substitutionally added to the surface, occupying the Mg sites. Both are stabilized in the Mn valence state carrying a local moment of 4.3 having a high-spin configuration. The magnetic interaction between the local moments display a very short-ranged characteristic, decaying very quickly with distance, and having antiferromagnetic ordering lower in energy. The energetics analysis also indicates that the Mn ions prefer to stay close to each other with an oxygen atom bridging the local interaction. In the second scenario, we started exploring the effect of native defects on the magnetism by crafting both Mg and O vacancies, which are p- and n-type defects, respectively. It is found that the electrons and holes affect the magnetic interaction between Mn ions in a totally different manner. The n-type defect leads to very similar magnetism, with the AFM configuration being energetically preferred. However, in the presence of Mg vacancy, the situation is quite different. The Mn atoms are further oxidized, giving rise to mixed Mn(d) ionic states. As a consequence, the Mn atoms couple ferromagnetically, when placed in the close configuration, and the obtained electronic structure is coherent with the double-exchange type of magnetic interaction. To guarantee the robustness of our results, we have benchmarked our calculations with three distinct theory levels, namely DFT-GGA, DFT-GGA+U and DFT-hybrid functionals. On the surface, the Mg vacancy displays lower formation energy occurring at higher concentrations. Therefore, our model systems can be the basis to explain a number of controversial results regarding transition metal doped oxides. PMID:27877684
Chagarov, E A; Porter, L; Kummel, A C
2016-02-28
The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation.
Hole localization in Fe2O3 from density functional theory and wave-function-based methods
NASA Astrophysics Data System (ADS)
Ansari, Narjes; Ulman, Kanchan; Camellone, Matteo Farnesi; Seriani, Nicola; Gebauer, Ralph; Piccinin, Simone
2017-08-01
Hematite (α -Fe2O3 ) is a promising photocatalyst material for water splitting, where photoinduced holes lead to the oxidation of water and the release of molecular oxygen. In this work, we investigate the properties of holes in hematite using density functional theory (DFT) calculations with hybrid functionals. We find that holes form small polarons and, depending on the fraction of exact exchange included in the PBE0 functional, the site where the holes localize changes from Fe to O. We find this result to be independent of the size and structure of the system: small Fe2O3 clusters with tetrahedral coordination, larger clusters with octahedral coordination, Fe2O3 (001) surfaces in contact with water, and bulk Fe2O3 display a very similar behavior in terms of hole localization as a function of the fraction of exact exchange. We then use wave-function-based methods such as coupled cluster with single and double excitations and Møller-Plesset second-order perturbation theory applied on a cluster model of Fe2O3 to shed light on which of the two solutions is correct. We find that these high-level quantum chemistry methods suggest holes in hematite are localized on oxygen atoms. We also explore the use of the DFT +U approach as a computationally convenient way to overcome the known limitations of generalized gradient approximation functionals and recover a gap in line with experiments and hole localization on oxygen in agreement with quantum chemistry methods.
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.
Roy, P; Nguyen, Thao P
2016-07-21
We perform density functional theory (DFT) quantum chemical calculations for the pentacene-PbSe hybrid interface at both molecular and crystal levels. At the interface, the parallel orientation of pentacene on the PbSe surface is found to be the most favorable, analogous to a pentacene-gold interface. The molecule-surface distance and the value of charge transfer from one pentacene molecule to the PbSe surface are estimated at around 4.15 Å and 0.12 e(-) respectively. We found that, standard-LDA/GGA-PBE/hybrid/meta-GGA xc-functionals incorrectly determine the band gaps of both pentacene and PbSe and leads to a failed prediction of the energy alignment in this system. So, we use a relativistic G0W0 functional and accurately model the electronic properties of pentacene and PbSe in both bulk material and near the interface. An energy shift of 0.23 eV, due to the difference in work function at the interface was supplemented after a detailed analysis of the electrostatic potential. The highest occupied molecular orbital level of pentacene is 0.01 eV above PbSe while the lowest unoccupied molecular orbital of pentacene lies 1.70 eV above PbSe, allowing both electrons and holes to transfer along the donor-acceptor junction. Our results provide additional insights into the electronic structure properties of the pentacene-PbSe heterojunction and establish it as a promising and efficient candidate for photovoltaic applications.
Hou, Aiqiang; Zhou, Xiaojun; Wang, Ting; Wang, Fan
2018-05-15
Achieving both bond dissociation energies (BDEs) and their trends for the R-X bonds with R = Me, Et, i-Pr, and t-Bu reliably is nontrivial. Density functional theory (DFT) methods with traditional exchange-correlation functionals usually have large error on both the BDEs and their trends. The M06-2X functional gives rise to reliable BDEs, but the relative BDEs are determined not as accurately. More demanding approaches such as some double-hybrid functionals, for example, G4 and CCSD(T), are generally required to achieve the BDEs and their trends reliably. The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is employed to calculated BDEs of these R-X bonds with X = H, CH 3 , OCH 3 , OH, and F in this work. The single Slater-Jastrow wave function is adopted as trial wave function, and pseudopotentials (PPs) developed for quantum Monte Carlo calculations are chosen. Error of these PPs is modest in wave function methods, while it is more pronounced in DFT calculations. Our results show that accuracy of BDEs with FN-DMC is similar to that of M06-2X and G4, and trends in BDEs are calculated more reliably than M06-2X. Both BDEs and trends in BDEs of these bonds are reproduced reasonably with FN-DMC. FN-DMC using PPs can thus be applied to BDEs and their trends of similar chemical bonds in larger molecules reliably and provide valuable information on properties of these molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, Eunji; Kim, Min-Cheol; Burke, Kieron
We investigate dissociation of diatomic molecules using standard density functional theory (DFT) and density-corrected density functional theory (DC-DFT) compared with CCSD(T) results as reference. The results show the difference between the HOMO values of dissociated atomic species often can be used as an indicator whether DFT would predict the correct dissociation limit. DFT predicts incorrect dissociation limits and charge distribution in molecules or molecular ions when the fragments have large HOMO differences, while DC-DFT and CCSD(T) do not. The criteria for large HOMO difference is about 2 ∼ 4 eV.
Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun
2017-06-28
A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).
Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan
2015-03-15
A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.
NASA Astrophysics Data System (ADS)
Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.
2018-01-01
In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.
Combined UMC- DFT prediction of electron-hole coupling in unit cells of pentacene crystals.
Leal, Luciano Almeida; de Souza Júnior, Rafael Timóteo; de Almeida Fonseca, Antonio Luciano; Ribeiro Junior, Luiz Antonio; Blawid, Stefan; da Silva Filho, Demetrio Antonio; da Cunha, Wiliam Ferreira
2017-05-01
Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.
Senn, Florian; Krykunov, Mykhaylo
2015-10-22
For the polyacenes series from naphthalene to hexacene, we present the vertical singlet excitation energies 1 (1)La and 1 (1)Lb, as well as the first triplet excitation energies obtained by the all-order constricted variational density functional theory with orbital relaxation (R-CV(∞)-DFT). R-CV(∞)-DFT is a further development of variational density functional theory (CV(∞)-DFT), which has already been successfully applied for the calculation of the vertical singlet excitation energies (1)La and (1)Lb for polyacenes,15 and we show that one obtains consistent excitation energies using the local density approximation as a functional for singlet as well as for triplet excitations when going beyond the linear response theory. Furthermore, we apply self-consistent field density functional theory (ΔSCF-DFT) and compare the obtained excitation energies for the first triplet excitations T1, where, due to the character of the transition, ΔSCF-DFT and R-CV(∞)-DFT become numerically equivalent, and for the singlet excitations 1 (1)La and 1 (1)Lb, where the two methods differ.
NASA Astrophysics Data System (ADS)
Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning
2018-07-01
Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.
Density functional theory study of ethylene partial oxidation on Ag 7 clusters
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2006-11-01
The partial oxidation reaction of ethylene on neutral and anionic Ag 7 clusters has been studied using the BPW91 hybrid DFT method with the Stuttgart RSC97 relativistic pseudopotential for the 28-electron ionic core of Ag. The atomic oxygen reaction mechanism is mainly addressed. Results show that the reaction occurs via a stable oxametallacycle intermediate ( AgOCH4p, p = 0 or -1), but it involves small reaction barriers along the reaction path. The ZPE-corrected barrier heights are obtained as 0.7-6.5 kcal/mole. In addition, the structure and anionic effects of Ag 7 clusters are also discussed.
Electronic and Piezoelectric properties of half-Heusler compounds: A first principles study
NASA Astrophysics Data System (ADS)
Rai, D. P.; Sandeep; Shankar, A.; Aly, Abeer E.; Patra, P. K.; Thapa, R. K.
2016-10-01
We have investigated the semiconducting and piezoelectric properties of bulk MNiSn (M=Ti, Zr, Hf) type a half-Heusler compound with cubic F-43m symmetry by means of density functional theory (DFT). For electron exchange correlation a generalized gradient approximation (GGA) was used. Special attention was paid to establish a most favourble ground state configuration on magnetic as well as non-magnetic ordering. With fully optimized structure the electronic and ferroelectric calculation was performed. The formation of band gap was discussed on the basis of d-d orbital hybridization. Further we have calculated the spontaneous polarization by means of structural deformation.
Investigating the Lewis acidity of aluminium fluoride surfaces
NASA Astrophysics Data System (ADS)
Bailey, C. L.; Mukhopadhyay, S.; Wander, A.; Harrison, N. M.
2008-03-01
The current study employs state of the art hybrid-exchange density functional theory (DFT) to investigate the Lewis acidic sites on the β-AlF3 (100) surface. It is shown that the strong Lewis base, NH3, binds to the surface with a binding energy of up to 1.9 eV. This demonstrates that the material is strongly Lewis acidic. We also consider the binding of the weak Lewis base CO to the surface. We calculate the shift in its stretch frequency compared to the gas phase molecule. Shifts are compared to experimental data and are shown to be typical of strong Lewis acidity.
Ziegler, Tom; Krykunov, Mykhaylo
2010-08-21
It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.
NASA Astrophysics Data System (ADS)
Schmitz, Matthias; Tavan, Paul
2004-12-01
Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382 (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)-(d)] and [(c)-(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to additionally remove the remaining errors, which GV still shares with PMA, we refer to Paper II of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004)].
Density functional theory across chemistry, physics and biology.
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-03-13
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.
"Ersatz" and "hybrid" NMR spectral estimates using the filter diagonalization method.
Ridge, Clark D; Shaka, A J
2009-03-12
The filter diagonalization method (FDM) is an efficient and elegant way to make a spectral estimate purely in terms of Lorentzian peaks. As NMR spectral peaks of liquids conform quite well to this model, the FDM spectral estimate can be accurate with far fewer time domain points than conventional discrete Fourier transform (DFT) processing. However, noise is not efficiently characterized by a finite number of Lorentzian peaks, or by any other analytical form, for that matter. As a result, noise can affect the FDM spectrum in different ways than it does the DFT spectrum, and the effect depends on the dimensionality of the spectrum. Regularization to suppress (or control) the influence of noise to give an "ersatz", or EFDM, spectrum is shown to sometimes miss weak features, prompting a more conservative implementation of filter diagonalization. The spectra obtained, called "hybrid" or HFDM spectra, are acquired by using regularized FDM to obtain an "infinite time" spectral estimate and then adding to it the difference between the DFT of the data and the finite time FDM estimate, over the same time interval. HFDM has a number of advantages compared to the EFDM spectra, where all features must be Lorentzian. They also show better resolution than DFT spectra. The HFDM spectrum is a reliable and robust way to try to extract more information from noisy, truncated data records and is less sensitive to the choice of regularization parameter. In multidimensional NMR of liquids, HFDM is a conservative way to handle the problems of noise, truncation, and spectral peaks that depart significantly from the model of a multidimensional Lorentzian peak.
NASA Astrophysics Data System (ADS)
Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu
2018-03-01
To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.
Theoretical Modeling of 99 Tc NMR Chemical Shifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.
Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchangemore » correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.« less
Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.
2018-05-01
We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.
Probing quasi-one-dimensional band structures by plasmon spectroscopy
NASA Astrophysics Data System (ADS)
Lichtenstein, T.; Mamiyev, Z.; Braun, C.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.; Pfnür, H.
2018-04-01
The plasmon dispersion is inherently related to the continuum of electron-hole pair excitations. Therefore, the comparison of this continuum, as derived from band structure calculations, with experimental data of plasmon dispersion, can yield direct information about the form of the occupied as well as the unoccupied band structure in the vicinity of the Fermi level. The relevance of this statement is illustrated by a detailed analysis of plasmon dispersions in quasi-one-dimensional systems combining experimental electron energy loss spectroscopy with quantitative density-functional theory (DFT) calculations. Si(557)-Au and Si(335)-Au with single atomic chains per terrace are compared with the Si(775)-Au system, which has a double Au chain on each terrace. We demonstrate that both hybridization between Si surface states and the Au chains as well as electronic correlations lead to increasing deviations from the nearly free electron picture that is suggested by a too simple interpretation of data of angular resolved photoemission (ARPES) of these systems, particularly for the double chain system. These deviations are consistently predicted by the DFT calculations. Thus also dimensional crossover can be explained.
Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials
NASA Astrophysics Data System (ADS)
Guilhon, I.; Koda, D. S.; Ferreira, L. G.; Marques, M.; Teles, L. K.
2018-01-01
At the same time that two-dimensional (2D) systems open possibilities for new physics and applications, they present a higher challenge for electronic structure calculations, especially concerning excitations. The achievement of a fast and accurate practical model that incorporates approximate quasiparticle corrections can further open an avenue for more reliable band structure calculations of complex systems such as interactions of 2D materials with substrates or molecules, as well as the formation of van der Waals heterostructures. In this work, we demonstrate that the performance of the fast and parameter-free DFT-1/2 method is comparable with state-of-the-art GW and superior to the HSE06 hybrid functional in the majority set of the 34 different 2D materials studied. Moreover, based on the knowledge of the method and chemical information of the material, we can predict the small number of cases in which the method is not so effective and also provide the best recipe for an optimized DFT-1/2 method based on the electronegativity difference of the bonding atoms.
DFT-MD simulations of shocked Xenon
NASA Astrophysics Data System (ADS)
Magyar, Rudolph J.; Mattsson, Thomas R.
2009-03-01
Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib
2015-04-15
Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases. Copyright © 2015 Elsevier B.V. All rights reserved.
de Tudela, Ricardo Pérez; Barragán, Patricia; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo
2011-03-31
Classical and path integral Monte Carlo (CMC, PIMC) "on the fly" calculations are carried out to investigate anharmonic quantum effects on the thermal equilibrium structure of the H5(+) cluster. The idea to follow in our computations is based on using a combination of the above-mentioned nuclear classical and quantum statistical methods, and first-principles density functional (DFT) electronic structure calculations. The interaction energies are computed within the DFT framework using the B3(H) hybrid functional, specially designed for hydrogen-only systems. The global minimum of the potential is predicted to be a nonplanar configuration of C(2v) symmetry, while the next three low-lying stationary points on the surface correspond to extremely low-energy barriers for the internal proton transfer and to the rotation of the H2 molecules, around the C2 axis of H5(+), connecting the symmetric C(2v) minima in the planar and nonplanar orientations. On the basis of full-dimensional converged PIMC calculations, results on the quantum vibrational zero-point energy (ZPE) and state of H5(+) are reported at a low temperature of 10 K, and the influence of the above-mentioned topological features of the surface on its probability distributions is clearly demonstrated.
Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study
NASA Astrophysics Data System (ADS)
Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Fang, Jiani; Li, Yi; Liu, Huijun
2018-06-01
This study explores the diffusion behavior of one Pt atom on graphene as well as the interaction mechanism between two types of gas molecule (SO2 and H2S) and Pt-graphene based on density functional theory (DFT) considering a dispersion correction about van der Walls force. Results suggest that one Pt atom shows high mobility with low activation energy and Pt doped graphene exhibits relatively stronger interaction with H2S than SO2 according to adsorption energy. SO2 accepts electrons from Pt-graphene while H2S losses electrons. Both two molecules introduce obvious hybridization with Pt-graphene in density of states. The charge density difference and Electron Localization Function (ELF) configurations indicate evident changes in the distribution of electrons about Pt-graphene and gas molecule before and after gas adsorption. H2S is easy to dissociate on Pt-graphene due to the much lower energy barrier compared to SO2. The work provides quantum chemistry methods to investigate the chemical interaction between Pt decorated graphene and two typical gases to shed light on practical application of Pt-graphene in adsorbing and detecting these two kinds of gases or other types of gases.
Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os
Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...
2015-03-31
The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less
Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet
2011-12-01
This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.
Play the heavy: An effective mass study for α-Fe{sub 2}O{sub 3} and corundum oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, Ofer; Caspary Toroker, Maytal, E-mail: maytalc@tx.technion.ac.il
2016-04-28
Iron(III) oxide (α-Fe{sub 2}O{sub 3}) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in α-Fe{sub 2}O{sub 3}, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in α-Fe{sub 2}O{sub 3} and other corundum oxides, including Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G{sub 0}W{sub 0}. We findmore » DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe{sub 2}O{sub 3} “play the heavy” since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe{sub 2}O{sub 3} could contribute to efficiency improvements in Fe{sub 2}O{sub 3} upon Al{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} coverage.« less
First-principle simulations of electronic structure in semicrystalline polyethylene
NASA Astrophysics Data System (ADS)
Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.
2017-05-01
In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.
López-Carballeira, Diego; Ruipérez, Fernando
2016-04-01
The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.
NASA Astrophysics Data System (ADS)
Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing
2018-05-01
Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.
NASA Astrophysics Data System (ADS)
Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III
Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron affinities, and B3LYP for vibrational frequencies. These theoretical results serve to resolve several disagreements between competing experiments. Several other experiments appear to have drawn incorrect conclusions. For example, CHCl2 is significantly pyramidal, unlike the experimental inferences, and clearly the experimental CCl2 - Cl dissociation energy is too large.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
NASA Astrophysics Data System (ADS)
Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel
2018-05-01
We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.
Liao, Meng-Sheng; Huang, Ming-Ju; Watts, John D.
2011-01-01
Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (Ebond) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O2). The results indicate that an accurate prediction of Ebond for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield Ebond values of ca.1.1, 1.2, and 0.4 eV for AB = CO, NO, and O2, respectively, which are in reasonable agreement with experimental data (0.78 – 0.85 eV for CO, 0.99 eV for NO, and 0.44 – 0.53 eV for O2). The other functionals show more or less deficiency for one or two of the systems. The performances of the various functionals in describing the spin-state energetics of the five-coordinate FeP(Im) complex were also examined. PMID:22228914
Density functional theory for open-shell singlet biradicals
NASA Astrophysics Data System (ADS)
Gräfenstein, Jürgen; Kraka, Elfi; Cremer, Dieter
1998-05-01
The description of open-shell singlet (OSS) σ- π biradicals by density functional theory (DFT) requires at least a two-configurational (TC) or, in general, a MC-DFT approach, which bears many unsolved problems. These can be avoided by reformulating the TC description in the spirit of restricted open shell theory for singlets (ROSS) and developing an exchange-correlation functional for ROSS-DFT. ROSS-DFT turns out to lead to reliable descriptions of geometry and vibrational frequencies for OSS biradicals. The relative energies of the OSS states obtained at the ROSS-B3LYP/6-311G(d,p) level are often better than the corresponding ROSS-MP2 results. However, in those cases where spin polarization in a conjugated π systems plays a role, DFT predicts the triplet state related to the OSS state 2-4 kcal/mol too stable.
Anomalous Insulator-Metal Transition in Boron Nitride-Graphene Hybrid Atomic Layers
2012-08-13
REPORT Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers 14 . ABSTRACT 16. SECURITY CLASSIFICATION OF: The study of...from the DFT calculation. The calculated transmission through a N terminated zigzag edged h-BN nanodomain embedded in graphene is shown in Fig. 14 , with...Energy ε − ε F (eV) 0 0.5 1 1.5 2 Tr an sm is si on FIG. 14 . (Color online) Transmission through a N terminated zigzag edged h-BN nanodomain embedded in
Validation of electronic structure methods for isomerization reactions of large organic molecules.
Luo, Sijie; Zhao, Yan; Truhlar, Donald G
2011-08-14
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.
Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong
2017-06-13
We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.
Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid
NASA Astrophysics Data System (ADS)
Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco
2003-04-01
DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.
Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study
NASA Astrophysics Data System (ADS)
Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad
2018-02-01
Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1997-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+(sub n), MNO+, and MCO+(sub 2). The DFT works well for frequencies and geometries, even in cases with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of the successes as well as failures of DFT will be given.
Fujisawa, Jun-ichi
2015-05-14
Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.
Naya, Shin-ichi; Niwa, Tadahiro; Negishi, Ryo; Kobayashi, Hisayoshi; Tada, Hiroaki
2014-12-08
Adsorption experiments and density functional theory (DFT) simulations indicated that Cu(acac)2 is chemisorbed on the monoclinic sheelite (ms)-BiVO4 surface to form an O2-bridged binuclear complex (OBBC/BiVO4) like hemocyanin. Multi-electron reduction of O2 is induced by the visible-light irradiation of the OBBC/BiVO4 in the same manner as a blue Cu enzyme. The drastic enhancement of the O2 reduction renders ms-BiVO4 to work as a good visible-light photocatalyst without any sacrificial reagents. As a model reaction, we show that this biomimetic hybrid photocatalyst exhibits a high level of activity for the aerobic oxidation of amines to aldehydes in aqueous solution and imines in THF solution at 25 °C giving selectivities above 99% under visible-light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
NASA Astrophysics Data System (ADS)
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
The extended Fourier transform for 2D spectral estimation.
Armstrong, G S; Mandelshtam, V A
2001-11-01
We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Chethan Prathap, K. N.; Lokanath, N. K.
2018-04-01
Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.
Empirical optimization of DFT + U and HSE for the band structure of ZnO.
Bashyal, Keshab; Pyles, Christopher K; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T
2018-02-14
ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn 3d electrons. Methods like DFT + U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT + U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT + U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.
Empirical optimization of DFT + U and HSE for the band structure of ZnO
NASA Astrophysics Data System (ADS)
Bashyal, Keshab; Pyles, Christopher K.; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T.
2018-02-01
ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn3d electrons. Methods like DFT + U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT + U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT + U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.
Course 4: Density Functional Theory, Methods, Techniques, and Applications
NASA Astrophysics Data System (ADS)
Chrétien, S.; Salahub, D. R.
Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; ...
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less
NASA Astrophysics Data System (ADS)
Lewis, D. K.; Matsubara, M.; Bellotti, E.; Sharifzadeh, S.
2017-12-01
Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and electronic function will be central to the design of new high-performance materials. In particular, it is necessary to quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with defects. We systematically investigate the sources of error associated with the GW approximation and the role of the underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the +1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state obtained from GW and DFT using the HSE approximate density functional and find excellent agreement. This systematic study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2011-11-14
We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics
Many-Body Spectral Functions from Steady State Density Functional Theory.
Jacob, David; Kurth, Stefan
2018-03-14
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.
Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas
2017-02-05
We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations
NASA Astrophysics Data System (ADS)
Azadi, Sam; Foulkes, Matthew
2015-03-01
We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.
Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar
2018-05-15
Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.
NASA Astrophysics Data System (ADS)
Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Parma, Monica Cropo; Barbosa, Luiz Claudio Almeida; de Moura Guimarães, Luciano; Aguiar, Alex Ramos
2017-05-01
The use of plants in folk medicine has a long and ancient history in the treatment of various diseases. Currently, a large proportion of commercial drugs are based on natural products or are synthetic compounds inspired on such natural substances. Therefore, in this communication to aid that research, structural and spectroscopic analysis of the natural pyrrolizidine alkaloid called monocrotaline was carried out. Pyrrolizidine alkaloids that are commonly found in the Boraginaceae and Asteraceae families are among the great diversity of secondary metabolites which are produced by plants to act as a defense mechanism against herbivores and microbes. In the present study, the natural product, monocrotaline, an alkaloid isolated from the leaves of Crotalaria paulina, with potential application in medicine, was characterized by infrared (IR) and Raman spectroscopy with the support of Density Functional Theory (DFT) calculations. IR and Raman spectra of monocrotaline were recorded at room temperature ranging from 4000 to 400 cm-1. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 + G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this structure. A perfect fit between the experimentally measured frequencies of the IR and Raman spectra and the calculated values were observed, and we have performed the complete identification of monocrotaline by these techniques.
Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J
2018-05-22
The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).
What correlation effects are covered by density functional theory?
NASA Astrophysics Data System (ADS)
He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter
The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.
Discrete Fourier Transform Analysis in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2009-01-01
Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S
2017-11-30
A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.
The electron affinity of Al13H cluster: high level ab initio study
NASA Astrophysics Data System (ADS)
Moc, Jerzy
2014-11-01
Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.
Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1 × 2)
NASA Astrophysics Data System (ADS)
Hiebel, F.; Montemore, M. M.; Kaxiras, E.; Friend, C. M.
2016-08-01
The Au(110) surface offers unique advantages for atomically-resolved model studies of catalytic oxidation processes on gold. We investigate the adsorption of oxygen on Au(110) using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) methods. We identify the typical (empty-states) STM contrast resulting from adsorbed oxygen as atomic-sized dark features of electronic origin. DFT-based image simulations confirm that chemisorbed oxygen is generally detected indirectly, from the binding-induced electronic structure modification of gold. STM images show that adsorption occurs without affecting the general structure of the pristine Au(110) missing-row reconstruction. The tendency to form one-dimensional structures is observed already at low coverage (< 0.05 ML), with oxygen adsorbing on alternate sides of the reconstruction ridges. Consistently, calculations yield preferred adsorption on the (111) facets of the reconstruction, on a 3-fold coordination site, with increased stability when adsorbed in chains. Gold atoms with two oxygen neighbors exhibit enhanced electronic hybridization with the O states. Finally, the species observed are reactive to CO oxidation at 200 K and desorption of CO2 leaves a clean and ordered gold surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele
A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps havemore » been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.« less
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-26
For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
Bonding and structure of copper nitrenes.
Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B
2008-11-03
Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.
NASA Astrophysics Data System (ADS)
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-01
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L 2, 3, C K, and Ge M 1, M 2, 3 emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-21
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L(2, 3), C K, and Ge M1, M(2, 3) emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.
Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches
NASA Astrophysics Data System (ADS)
Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.
2005-04-01
The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large variational ab initio calculations can produce reliable spectroscopic results for extremely complex systems where delicate electronic correlation effects have to be carefully dealt with. However, those functionals that were recently shown to perform best for a series of molecular properties [J. Chem. Phys. 121 3405 (2004)] are not the ones that produce the best transition energies for this complex case.
NASA Astrophysics Data System (ADS)
Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2008-02-01
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Pate, Brooks
2017-06-01
A study of the minimally exciting topic of agreement between experimental and measured rotational constants of molecules was performed on a set of large molecules with 16-18 heavy atoms (carbon and oxygen). The molecules are: nootkatone (C_{15}H_{22}O), cedrol (C_{15}H_{26}O), ambroxide (C_{16}H_{28}O), sclareolide (C_{16}H_{22}O_{2}), and dihydroartemisinic acid (C_{15}H_{24}O_{2}). For this set of molecules we obtained 13C-subsitution structures for six molecules (this includes two conformers of nootkatone). A comparison of theoretical structures and experimental substitution structures was performed in the spirit of the recent work of Grimme and Steinmetz.[1] Our analysis focused the center-of-mass distance of the carbon atoms in the molecules. Four different computational methods were studied: standard DFT (B3LYP), dispersion corrected DFT (B3LYP-D3BJ), hybrid DFT with dispersion correction (B2PLYP-D3), and MP2. A significant difference in these theories is how they handle medium range correlation of electrons that produce dispersion forces. For larger molecules, these dispersion forces produce an overall contraction of the molecule around the center-of-mass. DFT poorly treats this effect and produces structures that are too expanded. MP2 calculations overestimate the correction and produce structures that are too compact. Both dispersion corrected DFT methods produce structures in excellent agreement with experiment. The analysis shows that the difference in computational methods can be described by a linear error in the center-of-mass distance. This makes it possible to correct poorer performing calculations with a single scale factor. We also reexamine the issue of the "Costain error" in substitution structures and show that it is significantly larger in these systems than in the smaller molecules used by Costain to establish the error limits. [1] Stefan Grimme and Marc Steinmetz, "Effects of London dispersion correction in density functional theory on structures of organic molecules in the gas phase", Phys. Chem. Chem. Phys. 15, 16031-16042 (2013).
Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT
NASA Astrophysics Data System (ADS)
Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard
2015-03-01
We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2017-06-01
With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.
Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error.
Bao, Junwei Lucas; Wang, Ying; He, Xiao; Gagliardi, Laura; Truhlar, Donald G
2017-11-16
Delocalization error has been singled out by Yang and co-workers as the dominant error in Kohn-Sham density functional theory (KS-DFT) with conventional approximate functionals. In this Letter, by computing the vertical first ionization energy for well separated He clusters, we show that multiconfiguration pair-density functional theory (MC-PDFT) is free from delocalization error. To put MC-PDFT in perspective, we also compare it with some Kohn-Sham density functionals, including both traditional and modern functionals. Whereas large delocalization errors are almost universal in KS-DFT (the only exception being the very recent corrected functionals of Yang and co-workers), delocalization error is removed by MC-PDFT, which bodes well for its future as a step forward from KS-DFT.
NASA Astrophysics Data System (ADS)
Van Troeye, Benoit; van Setten, Michiel Jan; Giantomassi, Matteo; Torrent, Marc; Rignanese, Gian-Marco; Gonze, Xavier
2017-01-01
Using density functional theory (DFT) and density functional perturbation theory (DFPT), we investigate the stability and response functions of CsH2PO4 , a ferroelectric material at low temperature. This material cannot be described properly by the usual (semi)local approximations within DFT. The long-range e--e- correlation needs to be properly taken into account, using, for instance, Grimme's DFT-D methods, as investigated in this work. We find that DFT-D3(BJ) performs the best for the members of the dihydrogenated alkali phosphate family (KH2PO4 , RbH2PO4 , CsH2PO4 ), leading to experimental lattice parameters reproduced with an average deviation of 0.5%. With these DFT-D methods, the structural, dielectric, vibrational, and mechanical properties of CsH2PO4 are globally in excellent agreement with the available experiments (<2 % MAPE for Raman-active phonons). Our study suggests the possible existence of a new low-temperature phase of CsH2PO4 , not yet reported experimentally. Finally, we report the implementation of DFT-D contributions to elastic constants within DFPT.
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Baushlicher, Charles W., Jr.
1995-01-01
The structures and CO binding energies are computed for Fe(CO)n- using a hybrid density functional theory (DFT) approach. The structures and ground states can be explained in terms of maximizing the Fe to CO 2pi* donation and minimizing Fe-CO 5 sigma repulsion. The trends in the CO binding energies for Fe(CO)n- and the differences between the trends for Fe(CO)n- and Fe(CO)n are also explained. For Fe(CO)n-, the second, third, and fourth CO bonding energies are in good agreement with experiment, while the first is too small. The first CO binding is also too small using the coupled cluster singles and doubles approach including a perturbation estimate of the connected triple excitations.
Abu-Melha, Sraa
2018-02-15
A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61-78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp) were performed with the double numerica basis sets plus polarization functional (DNP) to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (E H -E L ) difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlahović, Filip; Perić, Marko; Zlatar, Matija, E-mail: matijaz@chem.bg.ac.rs
2015-06-07
Herein, we present the systematic, comparative computational study of the d − d transitions in a series of first row transition metal hexaaqua complexes, [M(H{sub 2}O){sub 6}]{sup n+} (M{sup 2+/3+} = V {sup 2+/3+}, Cr{sup 2+/3+}, Mn{sup 2+/3+}, Fe{sup 2+/3+}, Co{sup 2+/3+}, Ni{sup 2+}) by the means of Time-dependent Density Functional Theory (TD-DFT) and Ligand Field Density Functional Theory (LF-DFT). Influence of various exchange-correlation (XC) approximations have been studied, and results have been compared to the experimental transition energies, as well as, to the previous high-level ab initio calculations. TD-DFT gives satisfactory results in the cases of d{sup 2}, d{supmore » 4}, and low-spin d{sup 6} complexes, but fails in the cases when transitions depend only on the ligand field splitting, and for states with strong character of double excitation. LF-DFT, as a non-empirical approach to the ligand field theory, takes into account in a balanced way both dynamic and non-dynamic correlation effects and hence accurately describes the multiplets of transition metal complexes, even in difficult cases such as sextet-quartet splitting in d{sup 5} complexes. Use of the XC functionals designed for the accurate description of the spin-state splitting, e.g., OPBE, OPBE0, or SSB-D, is found to be crucial for proper prediction of the spin-forbidden excitations by LF-DFT. It is shown that LF-DFT is a valuable alternative to both TD-DFT and ab initio methods.« less
Hybrid Dion-Jacobson 2D Lead Iodide Perovskites.
Mao, Lingling; Ke, Weijun; Pedesseau, Laurent; Wu, Yilei; Katan, Claudine; Even, Jacky; Wasielewski, Michael R; Stoumpos, Constantinos C; Kanatzidis, Mercouri G
2018-03-14
The three-dimensional hybrid organic-inorganic perovskites have shown huge potential for use in solar cells and other optoelectronic devices. Although these materials are under intense investigation, derivative materials with lower dimensionality are emerging, offering higher tunability of physical properties and new capabilities. Here, we present two new series of hybrid two-dimensional (2D) perovskites that adopt the Dion-Jacobson (DJ) structure type, which are the first complete homologous series reported in halide perovskite chemistry. Lead iodide DJ perovskites adopt a general formula A'A n-1 Pb n I 3 n+1 (A' = 3-(aminomethyl)piperidinium (3AMP) or 4-(aminomethyl)piperidinium (4AMP), A = methylammonium (MA)). These materials have layered structures where the stacking of inorganic layers is unique as they lay exactly on top of another. With a slightly different position of the functional group in the templating cation 3AMP and 4AMP, the as-formed DJ perovskites show different optical properties, with the 3AMP series having smaller band gaps than the 4AMP series. Analysis on the crystal structures and density functional theory (DFT) calculations suggest that the origin of the systematic band gap shift is the strong but indirect influence of the organic cation on the inorganic framework. Fabrication of photovoltaic devices utilizing these materials as light absorbers reveals that (3AMP)(MA) 3 Pb 4 I 13 has the best power conversion efficiency (PCE) of 7.32%, which is much higher than that of the corresponding (4AMP)(MA) 3 Pb 4 I 13 .
Li, Ruifang; Zhao, Yan; Truhlar, Donald G
2011-02-28
Adequate polarization functions reduce the error of density functional theory (DFT) for the heat of reaction for CF(4) + SiCl(4) from ∼9-12 kcal mol(-1) to ∼2-4 kcal mol(-1), and using an improved density functional further reduces it to ∼1 kcal mol(-1). This reaction was previously identified as a stumbling block for DFT, but we show that the problem with the previous calculations was not DFT but rather inadequate basis sets to account for intramolecular charge polarization.
NASA Astrophysics Data System (ADS)
Kadioglu, Yelda; Santana, Juan A.; Özaydin, H. Duygu; Ersan, Fatih; Aktürk, O. Üzengi; Aktürk, Ethem; Reboredo, Fernando A.
2018-06-01
We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.
Magnetic 4d monoatomic rows on Ag vicinal surfaces
NASA Astrophysics Data System (ADS)
Bellini, V.; Papanikolaou, N.; Zeller, R.; Dederichs, P. H.
2001-09-01
The magnetic properties of 4d monoatomic rows on Ag substrates have been studied by ab initio calculations using the screened Korringa-Kohn-Rostoker (SKKR) Green's function method within density functional theory (DFT) in its local spin density approximation (LSDA). The rows were placed at step-edge (step decoration) and on terrace positions of different vicinal Ag surfaces, i.e., fcc (711), fcc (410), and fcc (221). The results for the magnetic moments are explained in terms of the different coordination numbers of the row atoms and the different hybridization between the rather extended 4d orbitals of the row atoms and the sp-like valence electrons of the Ag substrates. For the fcc (711) vicinal surface, we explore the possibility of antiferromagnetic coupling between the atoms in each row and discuss, by means of total energy calculations, the stability of the antiferromagnetic solutions with respect to the ferromagnetic ones.
NASA Astrophysics Data System (ADS)
Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.
2017-10-01
The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.
Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano
2011-10-05
The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.
NASA Astrophysics Data System (ADS)
Mahmood, Q.; Ashraf, A.; Hassan, M.
2018-02-01
We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.
Experimental and first principle studies on electronic structure of BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagdeo, Archna, E-mail: archnaj@rrcat.gov.in; Ghosh, Haranath, E-mail: archnaj@rrcat.gov.in; Chakrabarti, Aparna, E-mail: archnaj@rrcat.gov.in
2014-04-24
We have carried out photoemission experiments to obtain valence band spectra of various crystallographic symmetries of BaTiO{sub 3} system which arise as a function of temperature. We also present results of a detailed first principle study of these symmetries of BaTiO{sub 3} using generalized gradient approximation for the exchange-correlation potential. Here we present theoretical results of density of states obtained from DFT based simulations to compare with the experimental valence band spectra. Further, we also perform calculations using post density functional approaches like GGA + U method as well as non-local hybrid exchange-correlation potentials like PBE0, B3LYP, HSE in ordermore » to understand the extent of effect of correlation on band gaps of different available crystallographic symmetries (5 in number) of BaTiO{sub 3}.« less
DFT, FT-IR, FT-Raman and NMR studies of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles
NASA Astrophysics Data System (ADS)
Kınalı, Selin; Demirci, Serkan; Çalışır, Zühre; Kurt, Mustafa; Ataç, Ahmet
2011-05-01
We present a detailed analysis of the structural and vibrational spectra of some novel azo dyes. 2-(Substituted phenylazo)malononitriles were synthesized by the coupling reaction of the diazonium salts, which were prepared with the use of various aniline derivatives with malononitrile, and then 4-(substituted phenylazo)-3,5-diamino-1H-pyrazole azo dyes were obtained via the ring closure of the azo compounds with hydrazine monohydrate. The experimental and theoretical vibrational spectra of azo dyes were studied. The structural and spectroscopic analysis of the molecules were carried out by using Becke's three-parameters hybrid functional (B3LYP) and density functional harmonic calculations. The 1H nuclear magnetic resonance (NMR) chemical shifts of the azo dye molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method. The calculated vibrational wavenumbers and chemical shifts were compared with the experimental data of the molecules.
NASA Astrophysics Data System (ADS)
Liu, Xueping; Bereźniak, Tomasz; Panek, Jarosław Jan; Jezierska-Mazzarello, Aneta
2013-02-01
Zeatin, a cytokinin of the adenine family, originally isolated from Zea mays L., exhibits also bioeffects towards human cells: it is a potent acetylcholinesterase inhibitor and can potentially inhibit amyloid β-protein formation. The role of zeatin in neural disease treatment is yet to be established. This computational study describes a hierarchy of interactions between zeatin and a receptor, a protein from the nodulin family. DFT in hybrid and dispersion-corrected form as well as MP2 approaches were used to derive interaction energies. Docking procedure was employed to investigate the role of selected interaction for anchoring the ligand.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
De(side chain) model of epothilone: bioconformer interconversions DFT study.
Rusinska-Roszak, Danuta; Lozynski, Marek
2009-07-01
Using ab initio methods, we have studied conformations of the de(sidechain)de(dioxy)difluoroepothilone model to quantify the effect of stability change between the exo and endo conformers of the epoxy ring. The DFT minimization of the macrolactone ring reveals four low energy conformers, although MP2 predicted five stable structures. The model tested with DFT hybride functional (B3LYP/6-31+G(d,p)) exhibits the global minimum for one of the exo forms (C), experimentally observed in the solid state, but unexpectedly with the MP2 electron correlation method for the virtual endo form (W). Using the QST3 technique, several pathways were found for the conversion of the low energy conformers to the other low energy exo representatives, as well as within the endo analog subset. The potential energy relationships obtained for several exo forms suggest a high conformational mobility between three, experimentally observed, conformers. The high rotational barrier, however, excludes direct equilibrium with experimental EC-derived endo form S. The highest calculated transition state for the conversion of the most stable exo M interligand to the endo S form is approximately a 28 kcal/mol above the energy of the former. The two-step interconversion of the exo H conformer to the endo S requires at least 28 kcal/mol. Surprisingly, we found that the transition state energy of the H form to the virtual endo W has the acceptable value of about 9 kcal/mol and the next energy barrier for free interconversion of endo W to endo S is 13 kcal/mol.
NASA Astrophysics Data System (ADS)
Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua
2017-11-01
Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.
Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P
2013-02-13
Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.
NASA Astrophysics Data System (ADS)
Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta
2017-08-01
In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.
NASA Astrophysics Data System (ADS)
Karton, Amir; Martin, Jan M. L.
2012-10-01
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.
Electronic and optical properties of hexathiapentacene in the gas and crystal phases
NASA Astrophysics Data System (ADS)
Cardia, R.; Malloci, G.; Rignanese, G.-M.; Blase, X.; Molteni, E.; Cappellini, G.
2016-06-01
Using density functional theory (DFT) and its time-dependent (TD) extension, the electronic and optical properties of the hexathiapentacene (HTP) molecule, a derivative of pentacene (PNT) obtained by symmetric substitution of the six central H atoms with S atoms, are investigated for its gas and solid phases. For the molecular structure, all-electron calculations are performed using a Gaussian localized orbital basis set in conjunction with the Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional. Electron affinities, ionization energies, quasiparticle energy gaps, optical absorption spectra, and exciton binding energies are calculated and compared with the corresponding results for PNT, as well as with the available experimental data. The DFT and TDDFT results are also validated by performing many-body perturbation theory calculations within the G W and Bethe-Salpeter equation formalisms. The functionalization with S atoms induces an increase of both ionization energies and electron affinities, a sizable reduction of the fundamental electronic gap, and a redshift of the optical absorption onset. Notably, the intensity of the first absorption peak of HTP falling in the visible region is found to be nearly tripled with respect to the pure PNT molecule. For the crystal structures, pseudopotential calculations are adopted using a plane-wave basis set together with the Perdew-Burke-Ernzerhof exchange-correlation functional empirically corrected in order to take dispersive interactions into account. The electronic excitations are also obtained within a perturbative B3LYP scheme. A comparative analysis is carried out between the ground-state and excited-state properties of crystalline HTP and PNT linking to the findings obtained for the isolated molecules.
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
NASA Astrophysics Data System (ADS)
Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen
2012-08-01
The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.
Xu, Peng; Zhang, Cai-Rong; Wang, Wei; Gong, Ji-Jun; Liu, Zi-Jiang; Chen, Hong-Shan
2018-04-10
The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT), local excitations, and triplet excited states, several ab initio and density functional theory (DFT) methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE) complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT) with the Tamm-Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.
NASA Astrophysics Data System (ADS)
Culpitt, Tanner; Brorsen, Kurt R.; Hammes-Schiffer, Sharon
2017-06-01
Density functional theory (DFT) embedding approaches have generated considerable interest in the field of computational chemistry because they enable calculations on larger systems by treating subsystems at different levels of theory. To circumvent the calculation of the non-additive kinetic potential, various projector methods have been developed to ensure the orthogonality of molecular orbitals between subsystems. Herein the orthogonality constrained basis set expansion (OCBSE) procedure is implemented to enforce this subsystem orbital orthogonality without requiring a level shifting parameter. This scheme is a simple alternative to existing parameter-free projector-based schemes, such as the Huzinaga equation. The main advantage of the OCBSE procedure is that excellent convergence behavior is attained for DFT-in-DFT embedding without freezing any of the subsystem densities. For the three chemical systems studied, the level of accuracy is comparable to or higher than that obtained with the Huzinaga scheme with frozen subsystem densities. Allowing both the high-level and low-level DFT densities to respond to each other during DFT-in-DFT embedding calculations provides more flexibility and renders this approach more generally applicable to chemical systems. It could also be useful for future extensions to embedding approaches combining wavefunction theories and DFT.
Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom
ERIC Educational Resources Information Center
Baseden, Kyle A.; Tye, Jesse W.
2014-01-01
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
First-Principles Thermodynamics of Energetic Materials
2012-01-01
thermal and zero-point energy ( ZPE ) effects on the crystalline environment [8]. By including vdW, thermal, and ZPE effects into DFT (DFT+vdW+T...by their relation to experiment (triangles) pure DFT over-predicts, while DFT+vdW under-predicts the EOSs. Only when temperature and ZPE effects...crystals with ZPE effects still included. To get a sense of how the vdW damping function might affect the calculation of the dynamical matrix, the
Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities
NASA Astrophysics Data System (ADS)
Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G.
2012-12-01
Despite undisputed success of the density functional theory (DFT) in various branches of chemistry and physics, an application of the DFT for reliable predictions of nonlinear optical properties of molecules has been questioned a decade ago. As it was shown by Champagne, et al. [1, 2, 3] most conventional DFT schemes were unable to qualitatively predict the response of conjugated oligomers to a static electric field. Long-range corrected (LRC) functionals, like LC-BLYP or CAM-B3LYP, have been proposed to alleviate this deficiency. The reliability of LRC functionals for evaluating molecular (hyper)polarizabilities is studied for various groups of organic systems, with a special focus on vibrational corrections to the electric properties.
No need for external orthogonality in subsystem density-functional theory.
Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R
2016-08-03
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.
Extracting electron transfer coupling elements from constrained density functional theory
NASA Astrophysics Data System (ADS)
Wu, Qin; Van Voorhis, Troy
2006-10-01
Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manaa, M.R.; Fried, L.E.
1998-11-26
The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less
NASA Astrophysics Data System (ADS)
Kinaci, Alper; Trahey, Lynn; Thackeray, Michael M.; Kirklin, Scott; Wolverton, Christopher; Chan, Maria K. Y.; CenterElectrical Energy Storage Collaboration
2014-03-01
We recently introduced a vision for high energy all-in-one electrode/electrocatalyst materials that can be used in hybrid Li-ion/Li-O2 (Li-air) cells. Recent experiments using Li5FeO4 demonstrated substantially smaller voltage polarizations and hence higher energy efficiency compared to standard Li-O2 cells forming Li2O2. The mechanism by which the charge process activates the Li5FeO4, however, is not well understood. Here, we present first principles density functional theory (DFT) calculations to establish the thermodynamic conditions for the extraction of Li/Li +O from Li5FeO4. A step-by-step, history-dependent, removal process has been followed and the stability of the Li and Li +O deficient samples is investigated on the basis of the energies of the extraction reactions. Various stages of Li/Li +O removal are identified, and structural changes and electronic structure evolution, as well as computed XRD, XANES, and PDF characterizations are reported.
NASA Astrophysics Data System (ADS)
Meena, B. S.; Heda, N. L.; Ahuja, B. L.
2018-05-01
We have computed the Mulliken's populations (MP) and electron momentum densities (EMDs) for TMWO4 (TM=Co, Ni, Cu and Zn) using linear combination of atomic orbitals (LCAO) scheme. The latest hybridization of Hartree-Fock (HF) and density functional theory (DFT) under the framework of LCAO approximations (so called WC1LYP and B1WC) have been employed. The theoretical EMDs have been compared with the available experimental data which show that WC1LYP scheme gives slightly better agreement with the experimental data for all the reported tungstates. Such trend shows the applicability of Lee-Yang-Parr (LYP) correlation energies within hybrid approximations in predicting the electronic properties of these compounds. Further, the MP data show the charge transfer from Co/Ni/Cu/Zn and W to O atoms. In addition, we have plotted the total EMDs at the same normalized area which show almost similar type of localization of 3d electrons (in real space) of Cu and Zn, which is lower than that of Ni and Co atoms in their tungstates environment.
Experimental and theoretical study of the electronic structure of single-crystal BaBiO3
NASA Astrophysics Data System (ADS)
Balandeh, Shadi; Green, Robert J.; Foyevtsova, Kateryna; Chi, Shun; Foyevtsov, Oleksandr; Li, Fengmiao; Sawatzky, George A.
2017-10-01
High quality single crystals of BaBiO3 were grown by congruent melting technique and characterized with x-ray diffraction, x-ray photoemission, and transport property studies. The perovskite oxide BaBiO3 is a negative charge transfer gap high Tc oxide parent superconducting compound exhibiting self-doping of holes into the oxygen 2 p band. We study the low energy scale valence and conduction bands in detail from both a theoretical perspective as well as through x ray, absorption/emission, and photoelectron spectroscopies. X-ray spectroscopy verifies the results of density functional theory (DFT) regarding the overall band structure featuring strong O 2 p character of the empty antibonding combination of the hybridized Bi 6 s and O 2 p states. From the analysis of the core level line shapes we conclude that the dominant O 2 p -Bi 6 s hybridization energy scale determines the low energy scale electronic structure. This analysis provides further insight into the importance of self-doped oxygen 2 p states in this high Tc family of oxides.
Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.
Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q
2012-12-28
Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.
Semilocal density functional obeying a strongly tightened bound for exchange
Sun, Jianwei; Perdew, John P.; Ruzsinszky, Adrienn
2015-01-01
Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb–Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic “meta-GGA made very simple” (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew–Burke–Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules. PMID:25561554
Semilocal density functional obeying a strongly tightened bound for exchange.
Sun, Jianwei; Perdew, John P; Ruzsinszky, Adrienn
2015-01-20
Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin
In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less
Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin; ...
2017-01-26
In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less
Interplay between strong correlation and adsorption distances: Co on Cu(001)
NASA Astrophysics Data System (ADS)
Bahlke, Marc Philipp; Karolak, Michael; Herrmann, Carmen
2018-01-01
Adsorbed transition metal atoms can have partially filled d or f shells due to strong on-site Coulomb interaction. Capturing all effects originating from electron correlation in such strongly correlated systems is a challenge for electronic structure methods. It requires a sufficiently accurate description of the atomistic structure (in particular bond distances and angles), which is usually obtained from first-principles Kohn-Sham density functional theory (DFT), which due to the approximate nature of the exchange-correlation functional may provide an unreliable description of strongly correlated systems. To elucidate the consequences of this popular procedure, we apply a combination of DFT with the Anderson impurity model (AIM), as well as DFT + U for a calculation of the potential energy surface along the Co/Cu(001) adsorption coordinate, and compare the results with those obtained from DFT. The adsorption minimum is shifted towards larger distances by applying DFT+AIM, or the much cheaper DFT +U method, compared to the corresponding spin-polarized DFT results, by a magnitude comparable to variations between different approximate exchange-correlation functionals (0.08 to 0.12 Å). This shift originates from an increasing correlation energy at larger adsorption distances, which can be traced back to the Co 3 dx y and 3 dz2 orbitals being more correlated as the adsorption distance is increased. We can show that such considerations are important, as they may strongly affect electronic properties such as the Kondo temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense; Olsen, Jógvan Magnus Haugaard
2015-03-21
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linearmore » response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.« less
Triplet–triplet energy transfer in artificial and natural photosynthetic antennas
Ho, Junming; Kish, Elizabeth; Méndez-Hernández, Dalvin D.; WongCarter, Katherine; Pillai, Smitha; Kodis, Gerdenis; Niklas, Jens; Poluektov, Oleg G.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Batista, Victor S.
2017-01-01
In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads. PMID:28652359
Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio
2015-04-21
We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.
Rationale for switching to nonlocal functionals in density functional theory
NASA Astrophysics Data System (ADS)
Lazić, P.; Atodiresei, N.; Caciuc, V.; Brako, R.; Gumhalter, B.; Blügel, S.
2012-10-01
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Rationale for switching to nonlocal functionals in density functional theory.
Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S
2012-10-24
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Symmetry properties of the electron density and following from it limits on the KS-DFT applications
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.
2018-03-01
At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
ERIC Educational Resources Information Center
Garino, Claudio; Terenzi, Alessio; Barone, Giampaolo; Salassa, Luca
2016-01-01
Among computational methods, DFT (density functional theory) and TD-DFT (time-dependent DFT) are widely used in research to describe, "inter alia," the optical properties of transition metal complexes. Inorganic/physical chemistry courses for undergraduate students treat such methods, but quite often only from the theoretical point of…
Genova, Alessandro; Pavanello, Michele
2015-12-16
In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made n(k) times more complex by the need to sample the first Brillouin zone at n(k) points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis-a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT).
NASA Astrophysics Data System (ADS)
Brückner, Charlotte; Engels, Bernd
2017-01-01
Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.
Lousada, Cláudio M; Korzhavyi, Pavel A
2016-04-05
We investigated the performance of the density functional theory (DFT) functionals PBE, PBE0, M06, and M06-L for describing the molecular and dissociative adsorption of O2 onto pure and doped Al(111) surfaces. Adsorption of O2 was studied at the perfect Al(111) surface and compared with the case where an additional Al atom was present as an adatom. Additionally, we studied how these functionals perform when different dopants are present at the Al(111) surface in two distinct geometries: as an adatom or as a substitutional atom replacing an Al atom. The performance of the different functionals is greatly affected by the surface geometry. The inclusion of Hartree-Fock exchange in the functional leads to slight differences in adsorption energies for molecular adsorption of O2 . These differences become very pronounced for dissociative adsorption, with the hybrids PBE0 and M06 predicting more exergonic adsorption than PBE and M06-L. Furthermore, PBE0 and M06 predicted trends in adsorption energies for defective and perfect surfaces which are in line with the experimental knowledge of the effects of surface defects in adsorption energies. The predictions of the non-hybrids PBE and M06-L point in the opposite direction. The analysis of the contributions of the van der Waals (vdW) forces to the adsorption energies reveals that the PBE and PBE0 functionals have similar difficulties in describing vdW interactions for molecular adsorption of O2 while the M06 functional can give a description of these forces with an accuracy which is at least similar to that of the correction of the D3 type. © 2015 Wiley Periodicals, Inc.
Determination of structure and properties of molecular crystals from first principles.
Szalewicz, Krzysztof
2014-11-18
CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.
Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.
Miyahara, Tomoo; Nakatsuji, Hiroshi
2018-01-11
Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.
2015-10-01
In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.
NASA Astrophysics Data System (ADS)
Romano, Elida; Davies, Lilian; Brandán, Silvia Antonia
2017-04-01
The structural and vibrational properties of the α-adrenergic agonist clonidine hydrochloride agent and their anionic and dimeric species were studied combining the experimental FT-IR and Raman spectra in solid phase with ab-initio calculations based on the density functional theory (DFT). All the calculations were performed by using the hybrid B3LYP with the 6-31G* and 6-311++G** basis sets. The structural properties for those species were studied employing the Natural Bond Orbital (NBO), Atoms in Molecules theory (AIM) and frontier orbitals calculations. The complete assignments of the FTIR and Raman spectra were performed combining the DFT calculations with the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Very good concordances between the theoretical and experimental spectra were found. In addition, the force constants for those three species were computed and compared with the values reported for similar antihypertensive agents. The ionic nature of the H→Cl bond and the high value of the LP(1)N4 → LP*(1)H18 charge transfer could explain the high reactivity of clonidine hydrochloride in relation to other antihypertensive agent and the strong shifthing of the band assigned to the Nsbnd H stretching mode linked to the Hsbnd Cl bond toward lower wavenumbers.
NASA Astrophysics Data System (ADS)
Gerbi, Andrea; Buzio, Renato; Kawale, Shrikant; Bellingeri, Emilio; Martinelli, Alberto; Bernini, Cristina; Tresca, Cesare; Capone, Massimo; Profeta, Gianni; Ferdeghini, Carlo
2017-12-01
We investigate with scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations the surface structures and the electronic properties of Fe1+y Te thin films grown by pulsed laser deposition. Contrary to the regular arrangement of antiferromagnetic nanostripes previously reported on cleaved single-crystal samples, the surface of Fe1+y Te thin films displays a peculiar distribution of spatially inhomogeneous nanostripes. Both STM and DFT calculations show the bias-dependent nature of such features and support the interpretation of spin-polarized tunneling between the FeTe surface and an unintentionally magnetized tip. In addition, the spatial inhomogeneity is interpreted as a purely electronic effect related to changes in hybridization and Fe-Fe bond length driven by local variations in the concentration of excess interstitial Fe cations. Unexpectedly, the surface density of states measured by STS strongly evolves with temperature in close proximity to the antiferromagnetic-paramagnetic first-order transition, and reveals a large pseudogap of 180-250 meV at about 50-65 K. We believe that in this temperature range a phase transition takes place, and the system orders and locks into particular combinations of orbitals and spins because of the interplay between excess interstitial magnetic Fe and strongly correlated d-electrons.
Infrared spectra of MF2, MF2+, MF4-, MF3, and M2F6 molecules (M = Sc, Y, La) in solid argon.
Wang, Xuefeng; Andrews, Lester
2010-02-18
Reactions of laser-ablated Sc, Y and La atoms with F(2) in excess argon gave new absorptions in the M-F stretching region, which are assigned to metal fluoride neutral species MF(2) and MF(3) and ions MF(2)(+) and MF(4)(-). Dibridged MF(3) dimers, M(2)F(6), were also identified through terminal M-F and bridge M-F-M stretching modes. Density functional theory (DFT) calculations substantiated the experimental assignments. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to F ligands that increase from Sc to La, suggesting that strong participation of La 5d orbital hybridization drives the F-La-F bond angle below 120 degrees.
Electrical and optical properties of Si-doped Ga2O3
NASA Astrophysics Data System (ADS)
Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru
2017-05-01
The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.
Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4
NASA Astrophysics Data System (ADS)
Zhuang, Houlong L.; Zhou, Jia
2016-11-01
Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.
Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E
2017-06-07
DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.
Small-Animal Imaging Using Diffuse Fluorescence Tomography.
Davis, Scott C; Tichauer, Kenneth M
2016-01-01
Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2017-11-15
Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Extracting electron transfer coupling elements from constrained density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Qin; Van Voorhis, Troy
2006-10-28
Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (H{sub ab}) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculationsmore » on the Zn{sub 2}{sup +} and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives H{sub ab}{approx_equal}17 kcal/mol, which qualitatively disagrees with experimental results, the H{sub ab} calculated from constrained DFT is about 3 kcal/mol and the generated ground state has a barrier height of 1.70 kcal/mol, successfully predicting (Q-TTF-Q){sup -} to be a class II mixed-valence compound.« less
NASA Astrophysics Data System (ADS)
Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine
2017-07-01
A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.
NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study
NASA Astrophysics Data System (ADS)
Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong
2018-06-01
Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.
Localized-itinerant dichotomy and unconventional magnetism in SrRu2O6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Satoshi; Ochi, Masayuki; Arita, Ryotaro
Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRumore » $$_2$$O$$_6$$ has a relatively high N{\\'e}el temperature but small local moments, which seem to be at odds with the nominal valence of Ru$$^{5+}$$ in the $$t_{2g}^3$$ configuration. Here, we investigate the electronic and magnetic properties of SrRu$$_2$$O$$_6$$ using density functional theory (DFT) combined with dynamical mean field theory (DMFT). We find that the strong hybridization between Ru $d$ and O $p$ states results in a Ru valence that is closer to $+4$, leading to the small ordered moment, consistent with a DFT prediction. While the agreement with DFT might indicate that SrRu$$_2$$O$$_6$$ is in the weak coupling regime, our DMFT studies provide evidence from the mass enhancement and local moment formation that indicate correlation effects play a significant role. The local moment per Ru site is about a factor 2 larger than the ordered moment at low temperatures and remains finite in the whole temperature range investigated. Our theoretical N{\\'e}el temperature $$\\sim 700$$~K is in reasonable agreement with experimental observations. Due to a small lattice distortion, the degenerate $$t_{2g}$$ manifold is split and the quasiparticle weight is renormalized significantly in the $$a_{1g}$$ state, while correlation effects in $$e_g'$$ states are about a factor of 2--3 weaker. SrRu$$_2$$O$$_6$$ is a unique system in which localized and itinerant electrons coexist with the proximity to an orbitally-selective Mott transition within the $$t_{2g}$$ sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu
Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less
NASA Astrophysics Data System (ADS)
Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias
2018-03-01
We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig; Pavanello, Michele
2012-05-21
Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations.more » In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.« less
DFT treatment of transport through Anderson junction: exact results and approximations
NASA Astrophysics Data System (ADS)
Burke, Kieron
2012-02-01
Since the pioneering break-junction experiments of Reed and Tour measuring the conductance of dithiolated benzene between gold leads, many researchers in physics and chemistry have been calculating conductance for such systems using density functional theory (DFT). Off resonance, the predicted current is often 10-100 times larger than that measured. This error is often ascribed to the application of ground-state DFT to a non-equilibrium problem. I will argue that, in fact, this is largely due to errors in the density functional approximations in popular use, rather than necessarily errors in the methodology. A stark illustration of this principle is the ability of DFT to reproduce the exact transmission through an Anderson junction at zero-temperature and weak bias, including the Kondo plateau, but only if the exact ground-state density functional is used. In fact, this case can be used to reverse-engineer the exact functional for this problem. Popular approximations can also be tested, including both smooth and discontinuous functionals of the density, as well as symmetry-broken approaches. [4pt] [1] Kondo effect given exactly by density functional theory, J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, arXiv:1106.3104; [0pt] [2] Broadening of the Derivative Discontinuity in Density Functional Theory, F. Evers, and P. Schmitteckert, arXiv:1106.3658; [0pt] [3] DFT-based transport calculations, Friedel's sum rule and the Kondo effect, P. Tr"oster, P. Schmitteckert, and F. Evers, arXiv:1106.3669; [0pt] [4] Towards a description of the Kondo effect using time-dependent density functional theory, G. Stefanucci, and S. Kurth, arXiv:1106.3728.
Bonding between graphene and MoS 2 monolayers without and with Li intercalation
Ahmed, Towfiq; Modine, N. A.; Zhu, Jian-Xin
2015-07-27
We performed density functional theory (DFT) calculations for a bi-layered heterostructure combining a graphene layer with a MoS 2 layer with and without intercalated Li atoms. Our calculations demonstrate the importance of the van der Waals (vdW) interaction, which is crucial for forming stable bonding between the layers. Our DFT calculation correctly reproduces the linear dispersion, or Dirac cone, feature at the Fermi energy for the isolated graphene monolayer and the band gap for the MoS 2 monolayer. For the combined graphene/MoS 2 bi-layer, we observe interesting electronic structure and density of states (DOS) characteristics near the Fermi energy, showingmore » both the gap like features of the MoS 2 layer and in-gap states with linear dispersion contributed mostly by the graphene layer. Our calculated total DOS in this vdW heterostructure reveals that the graphene layer significantly contributes to pinning the Fermi energy at the center of the band gap of MoS 2. We also find that intercalating Li ions in between the layers of the graphene/MoS2 heterostructure enhances the binding energy through orbital hybridizations between cations (Li adatoms) and anions (graphene and MoS 2 monolayers). Moreover, we calculate the dielectric function of the Li intercalated graphene/MoS 2 heterostructure, the imaginary component of which can be directly compared with experimental measurements of optical conductivity in order to validate our theoretical prediction. We observe sharp features in the imaginary component of the dielectric function, which shows the presence of a Drude peak in the optical conductivity, and therefore metallicity in the lithiated graphene/MoS 2 heterostructure.« less
Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M
2013-02-07
The nature of electronically excited states of the super-reduced form of vitamin B(12) (i.e., cob(I)alamin or B(12s)), a ubiquitous B(12) intermediate, was investigated by performing quantum-chemical calculations within the time-dependent density functional theory (TD-DFT) framework and by establishing their correspondence to experimental data. Using response theory, the electronic absorption (Abs), circular dichroism (CD) and magnetic CD (MCD) spectra of cob(I)alamin were simulated and directly compared with experiment. Several issues have been taken into considerations while performing the TD-DFT calculations, such as strong dependence on the applied exchange-correlation (XC) functional or structural simplification imposed on the cob(I)alamin. In addition, the low-lying transitions were also validated by performing CASSCF/MC-XQDPT2 calculations. By comparing computational results with existing experimental data a new level of understanding of electronic excitations has been established at the molecular level. The present study extends and confirms conclusions reached for other cobalamins. In particular, the better performance of the BP86 functional, rather than hybrid-type, was observed in terms of the excitations associated with both Co d and corrin π localized transitions. In addition, the lowest energy band was associated with multiple metal-to-ligand charge transfer excitations as opposed to the commonly assumed view of a single π → π* transition followed by vibrational progression. Finally, the use of the full cob(I)alamin structure, instead of simplified molecular models, shed new light on the spectral analyses of cobalamin systems and revealed new challenges of this approach related to long-range charge transfer excitations involving side chains.
NASA Astrophysics Data System (ADS)
Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan
2015-12-01
Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.
Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim
2017-11-25
The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.
NASA Astrophysics Data System (ADS)
Ivanov, Petko
2016-03-01
The balances of interactions were studied by computational methods in the translational isomers of a solvent switchable fullerene-stoppered [2]rotaxane (1) manifesting unexpected behavior, namely that due to favorable dispersion interactions the fullerene stopper becomes the second station upon change of the solvent. For comparison, another system, a pH switchable molecular shuttle (2), was also examined as an example of prevailing electrostatic interactions. Tested for 1 were five global hybrid Generalized Gradient Approximation functionals (B3LYP, B3LYP-D3, B3LYP-D3BJ, PBEh1PBE and APFD), one long-range corrected, range-separated functional with D2 empirical dispersion correction, ωB97XD, the Zhao-Truhlar's hybrid meta-GGA functional M06 with double the amount of nonlocal exchange (2X), and a pure functional, B97, with the Grimme's D3BJ dispersion (B97D3). The molecular mechanics method qualitatively correctly reproduced the behavior of the [2]rotaxanes, whereas the DFT models, except for M06-2X to some extent, failed in the case of significant dispersion interactions with participation of the fulleropyrrolidine stopper (rotaxane 1). Unexpectedly, the benzylic amide macrocycle tends to adopt preferentially 'boat'-like conformation in most of the cases. Four hydrogen bonds interconnect the axle with the wheel for the translational isomer with the macroring at the succinamide station (station II), whereas the number of hydrogen bonds vary for the isomer with the macroring at the fulleropyrrolidine stopper (station I) depending of the computational model used. The B3LYP and the PBEh1PBE results show strong preference of station II in the gas phase and in the model solvent DMSO. After including empirical dispersion correction, the translational isomer with the macroring at station I has the lower energy with B3LYP, both in the gas phase and in DMSO. The same result, but with higher preference of station I, was estimated with APFD, ωB97XD and B97D3. Only M06-2X presented qualitatively correct behavior for the relative stability of the two translational isomers, namely, slight preference of station II for the isolated molecule and higher relative energy of the same isomer with the model solvent DMSO. The electrostatic interactions in 2 have the decisive contribution both when the macroring is positioned at the dipeptide residue for the neutral form, and at the N-benzylalanine fragment after protonation, and the observed behavior of the [2]rotaxane is correctly reproduced by the methods used.
Advanced Density Functional Theory Methods for Materials Science
NASA Astrophysics Data System (ADS)
Demers, Steven
In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description. Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems. Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via 'classical' molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a 'first principles' approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.
Self-consistent DFT +U method for real-space time-dependent density functional theory calculations
NASA Astrophysics Data System (ADS)
Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel
2017-12-01
We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria
2014-08-14
Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.
NASA Astrophysics Data System (ADS)
Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano
2018-05-01
Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.
2014-01-01
Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett.2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost. PMID:24839410
Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo
Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...
2015-04-28
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less
NASA Astrophysics Data System (ADS)
Banuppriya, Govindharasu; Sribalan, Rajendran; Padmini, Vediappen
2018-03-01
Curcumin-sulfonamide hybrids (4a-e) were synthesized and their in vitro antioxidant, anti-inflammatory and anticancer activities were studied. The synthesized compounds showed a very good potent activity towards antioxidant and anti-inflammatory studies rather than its parent as well as standard. These compounds have exhibited an excellent toxicity effect to the cancer cell lines such as A549 and AGS. The compounds 4a and 4c have showed good anticancer activity than curcumin. The molecular docking studies were also performed against various Epidermal Growth Factor Receptor (EGFR) enzymes. The DFT calculations were also done in order to support the docking results.
NASA Astrophysics Data System (ADS)
Cazorla, Claudio; Boronat, Jordi
2015-01-01
We present a first-principles computational study of solid 4He at T =0 K and pressures up to ˜160 GPa. Our computational strategy consists in using van der Waals density functional theory (DFT-vdW) to describe the electronic degrees of freedom in this material, and the diffusion Monte Carlo (DMC) method to solve the Schrödinger equation describing the behavior of the quantum nuclei. For this, we construct an analytical interaction function based on the pairwise Aziz potential that closely matches the volume variation of the cohesive energy calculated with DFT-vdW in dense helium. Interestingly, we find that the kinetic energy of solid 4He does not increase appreciably with compression for P ≥85 GPa. Also, we show that the Lindemann ratio in dense solid 4He amounts to 0.10 almost independently of pressure. The reliability of customary quasiharmonic DFT (QH DFT) approaches in describing quantum nuclear effects in solids is also studied. We find that QH DFT simulations, although provide a reasonable equation of state in agreement with experiments, are not able to reproduce correctly these critical effects in compressed 4He. In particular, we disclose huge discrepancies of at least ˜50 % in the calculated 4He kinetic energies using both the QH DFT and present DFT-DMC methods.
Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhigang
A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is tomore » develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow the ground-state properties of focus systems to be more precisely predicted using DFT. These new developments will then be applied to investigate a chosen set of complex nanostructures that have great potential for opening new routes in designing materials with improved transport, electronic, and optical properties for PV and other optoelectronic usages: (1) Hybrid interfaces between materials with distinct electronic and optical properties, such as organic molecules (conjugated polymers, e.g. P3HT) and inorganic semiconducting materials (Si and ZnO). Complicated interface structures, including interface bonding configurations, compositional and geometrical blending patterns, interfacial defects, and various sizes and shapes of inorganic nanomaterials, will be considered for the purpose of understanding the working mechanisms of present organic/nano PV systems and designing optimum interface structures for fast charge separation and injection. (2) Complex-structured semiconducting nanomaterials that could induce charge separation without pn- or hetero-junctions. The new methodology will allow the PI to investigate the performance of realistic semiconducting nanomaterials of internal (impurities, defects, etc.) and external (uneven surface, mechanical twisting and bending, surface chemistry, etc.) complexities on optical absorption and charge transport against charge trapping and recombination. Of particular interest is whether such structural complexity in a single material could even be beneficial for PV usage, for example, charge separation through morphology control. Successful completion of the proposed DFT methodology would have a far-reaching impact on our ability to study and exploit the nature of electronic excitations in complex materials, advancing the design of next-generation electronic and optoelectronic devices in all facets of renewable energy conversion and storage, including photovoltaics, thermoelectricity, photochemistry, etc.« less
NASA Astrophysics Data System (ADS)
Lacivita, Valentina; Rèrat, Michel; Orlando, Roberto; Ferrero, Mauro; Dovesi, Roberto
2012-03-01
The longitudinal polarizability, αxx, and second hyperpolarizability, γxxxx, of polyacetylene are evaluated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in the periodic CRYSTAL code and a split valence type basis set. Four different density functionals, namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown that very tight computational conditions must be used to obtain well converged results, especially for γxxxx, that is, very sensitive to the number of k points in reciprocal space when the band gap is small (as for LDA and PBE), and to the extension of summations of the exact exchange series (HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 k points are required to obtain well converged total energy and equilibrium geometry, and 1200 for well converged optical properties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as small as 1.4 eV and the exchange summation must extend to about 130 Å from the origin cell. Total energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers -(C2H2)m-, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that oligomers of that length provide an extremely poor representation of the infinite chain polarizability and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge differences are observed on αxx and γxxxx of the polymer when different functionals are used, that is in connection to the well-known density functional theory (DFT) overshoot, reported in the literature about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes even more dramatic (about 500 for αxx and 1010 for γxxxx). On the basis of previous systematic comparisons of results obtained with various approaches including DFT, HF, Moller-Plesset (MP2) and coupled cluster for finite chains, we can argue that, for the infinite chain, the present HF results are the most reliable.
NASA Astrophysics Data System (ADS)
Witte, Bastian B. L.
2017-10-01
The thermal and electrical conductivity, equation of state and the spectral opacity in warm dense matter (WDM) are essential properties for modeling, e.g., fusion experiments or the magnetic field generation in planets. In the last decade it has been shown that x-ray Thomson scattering (XRTS) is an effective tool to determine plasma parameters like temperature and density in the WDM regime. Recently, the electrical conductivity was extracted from XRTS experiments for the first time. The spectrally resolved scattering data of aluminum, isochorically heated by the Linac Coherent Light Source (LCLS), show strong dependence on electron correlations. Therefore, the damping of plasmons, the collective electron oscillations, has to be treated beyond perturbation theory. We present results for the dynamic transport properties in warm dense aluminum using density-functional-theory molecular dynamics (DFT-MD) simulations. The choice of the exchange-correlation (XC) functional, describing the interactions in the electronic subsystem, has significant impact on the ionization energy of bound electrons and the dynamic dielectric function. Our newly developed method for the calculation of XRTS signals including plasmon and bound-free transitions is based on transition matrix elements together with ionic contributions using uniquely DFT-MD simulations. The results show excellent agreement with the LCLS data if hybrid functionals are applied. The experimental finding of nonlinear plasmon damping is caused by the non-Drude conductivity in warm dense aluminum. Here, we show further validation by comparing with x-ray absorption data. These findings enable new insights into the impact of XC functionals on calculated properties of WDM and allow detailed predictions for future experiments at the unprecedented densities on the NIF. This work was performed in collaboration with P. Sperling, S.H. Glenzer, R. Redmer and was supported by the DFG via the Collaborative Research Center SFB 652 and the DOE Office of Science, Fusion Energy Science under Grant No. FWP 100182.
Gómez-Aguirre, L C; Pato-Doldán, B; Stroppa, A; Yáñez-Vilar, S; Bayarjargal, L; Winkler, B; Castro-García, S; Mira, J; Sánchez-Andújar, M; Señarís-Rodríguez, M A
2015-03-02
We report on the hybrid inorganic-organic ammonium compound [NH4][Cd(HCOO)3], which displays a most unusual framework structure: instead of the expected 4(9)·6(6) topology, it shows an ABX3 perovskite architecture with the peculiarity and uniqueness (among all the up-to-date reported hybrid metal formates) that the Cd ions are connected only by syn-anti formate bridges, instead of anti-anti ones. This change of the coordination mode of the formate ligand is thus another variable that can provide new possibilities for tuning the properties of these versatile functional metal-organic framework materials. The room-temperature crystal structure of [NH4][Cd(HCOO)3] is noncentrosymmetric (S.G.: Pna21) and displays a polar axis. DFT calculations and symmetry mode analysis show that the rather large polarization arising from the off-center shift of the ammonium cations in the cavities (4.33 μC/cm(2)) is partially canceled by the antiparallel polarization coming from the [Cd(HCOO)3](-) framework, thus resulting in a net polarization of 1.35 μC/cm(2). As shown by second harmonic generation studies, this net polarization can be greatly increased by applying pressure (Pmax = 14 GPa), an external stimulus that, in turn, induces the appearance of new structural phases, as confirmed by Raman spectroscopy.
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...
2016-09-09
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus
2016-10-11
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
2017-05-05
dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in previous studies...are characterized by many different geometries, which potentially can be optimized with respect to specific materials design criteria, i.e., molecular...SixOy molecular clusters using density functional theory (DFT). The size of the clusters considered, however, is relatively large compared to those
Andrade, Xavier; Aspuru-Guzik, Alán
2013-10-08
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podeszwa, Rafal; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Szalewicz, Krzysztof
2012-04-28
Density-functional theory (DFT) revolutionized the ability of computational quantum mechanics to describe properties of matter and is by far the most often used method. However, all the standard variants of DFT fail to predict intermolecular interaction energies. In recent years, a number of ways to go around this problem has been proposed. We show that some of these approaches can reproduce interaction energies with median errors of only about 5% in the complete range of intermolecular configurations. Such errors are comparable to typical uncertainties of wave-function-based methods in practical applications. Thus, these DFT methods are expected to find broad applicationsmore » in modelling of condensed phases and of biomolecules.« less
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.
2011-06-01
The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Govind, Niranjan; Aprà, Edoardo
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less
Multi-level molecular modelling for plasma medicine
NASA Astrophysics Data System (ADS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.
2016-02-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.
NASA Astrophysics Data System (ADS)
Yan, Shenlang; Long, Mengqiu; Zhang, Xiaojiao; He, Jun; Xu, Hui; Gao, Yongli
2014-09-01
Using nonequilibrium Green's functions (NEGFs) combined with the density functional theory (DFT), we study the electronic transport properties of a single molecule magnet Co(dmit)2, which is sandwiched between two monatomic chain electrodes, and the different electrode materials carbon, iron and gold, have been considered. The results show that the electrodes play a crucial role in the spin-dependent transport of the Co(dmit)2 molecular device, and some interesting phenomenon, such as perfect spin-filtering effect, rectifying and negative differential resistance (NDR) can be observed. We demonstrated that the magnetic Fe electrode can lead to high spin-flittering effect, and the different hybridization and alignment of energy levels between the molecule and the electrodes may be responsible for the rectification performance, and the distributions (delocalization or localization) of the frontier molecular orbitals under different bias result in the NDR behaviors. These characteristics could be used in the study of spin physics and the realization of nanospintronic devices.
Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2016-07-05
(29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431
NASA Astrophysics Data System (ADS)
Abosadiya, Hamza M.; Anouar, El Hassane; Abusaadiya, Salima M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2018-01-01
A simple efficient method for synthesis of some new 1,2,4-Triazole and Triazolidin derivatives namely, 5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1a), (2-chlorophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1b) and (2-iodophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1c) have been synthesized in high yields from the reaction of carbonoyl isothiocyanate with phenyl hydrazine. The final products were characterized by FT-IR, 1H and 13C NMR spectroscopic techniques. X-ray crystallographic studies showed that 1a crystallized in triclinic crystal system with space group Pī, while both 1b and 1c crystallized in orthorhombic crystal system with space group Pna21. The asymmetric unit of 1a consists two crystallographically independent molecules, while only one molecule in asymmetric unit for both 1b and 1c compounds. All molecules possess Csbnd H ….S intramolecular hydrogen bonds which formed a pseudo-six-membered ring. Experimental results have been confirmed by the state-of-art density functional theory (DFT) in gas and solvent phase by using five different hybrid functionals B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0 combined with 6-311++G(d, p) basis set. The experimental data are relatively well produced, and relatively good correlations are obtained between the predicted and experimental data.
Chattopadhyaya, M; Murugan, N Arul; Rinkevicius, Zilvinas
2016-09-15
We study the linear and nonlinear optical properties of a well-known acid-base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral ⇒ anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral ⇒ anionic and open neutral ⇒ dianionic, can contribute to the pH-dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; He, Yihui; Wessels, Bruce W.; Kanatzidis, Mercouri G.
Heavy metal chalcohalides Hg3Q2I2 (Q =S, Se and Te) have shown significant promise as X-ray and γ-ray detector materials. To assess the fundamental physical properties important for their performance as detectors, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and native defect properties. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Hg3Q2I2 have either indirect (Q =S, Se) or direct (Q =Te) band gaps within 1.9-2.25 range which is optimal for a detector material, and very small electron effective masses (0.19 m0 for Hg3Se2I2) which could result in a good carrier mobility-lifetime product μτ . We further investigated a large set of native defects in the most promising candidate material, Hg3Se2I2, to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are iodine vacancies, mercury vacancies, and selenium vacancies followed by antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Applicability of DFT model in reactive distillation
NASA Astrophysics Data System (ADS)
Staszak, Maciej
2017-11-01
The density functional theory (DFT) applicability to reactive distillation is discussed. Brief modeling techniques description of distillation and rectification with chemical reaction is provided as a background for quantum method usage description. The equilibrium and nonequilibrium distillation models are described for that purpose. The DFT quantum theory is concisely described. The usage of DFT in the modeling of reactive distillation is described in two parts. One of the fundamental and very important component of distillation modeling is vapor-liquid equilibrium description for which the DFT quantum approach can be used. The representative DFT models, namely COSMO-RS (Conductor like Screening Model for Real Solvents), COSMOSPACE (COSMO Surface Pair Activity Coefficient) and COSMO-SAC (SAC - segment activity coefficient) approaches are described. The second part treats the way in which the chemical reaction is described by means of quantum DFT method. The intrinsic reaction coordinate (IRC) method is described which is used to find minimum energy path of substrates to products transition. The DFT is one of the methods which can be used for that purpose. The literature data examples are provided which proves that IRC method is applicable for chemical reaction kinetics description.
Applications of large-scale density functional theory in biology
NASA Astrophysics Data System (ADS)
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Local and average structure of Mn- and La-substituted BiFeO3
NASA Astrophysics Data System (ADS)
Jiang, Bo; Selbach, Sverre M.
2017-06-01
The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Local and average structure of Mn- and La-substituted BiFeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bo; Selbach, Sverre M.
2017-06-01
The local and average structure of solid solutions of the multiferroic perovskite BiFeO 3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO 3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.« less
NASA Astrophysics Data System (ADS)
Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile
2014-09-01
In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.
Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid
NASA Astrophysics Data System (ADS)
Alver, Özgur; Kaya, Mehmet Fatih
2014-11-01
Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.
Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system
NASA Astrophysics Data System (ADS)
Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.
2016-03-01
We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.
Ooyama, Yousuke; Furue, Kensuke; Enoki, Toshiaki; Kanda, Masahiro; Adachi, Yohei; Ohshita, Joji
2016-11-09
A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO 2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO 2 surface, which makes it possible to inject an electron into the conduction band of the TiO 2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO 2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO 2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO 2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO 2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.