Investigating a hybrid perturbation-Galerkin technique using computer algebra
NASA Technical Reports Server (NTRS)
Andersen, Carl M.; Geer, James F.
1988-01-01
A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.
An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
Ivády, Viktor; Gali, Adam; Abrikosov, Igor A
2017-11-15
Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT + V w method (Ivády et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT + V w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA + U, and therefore allowing for a demonstration of the advantages of the proposed scheme.
A hybrid-perturbation-Galerkin technique which combines multiple expansions
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1989-01-01
A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
NASA Astrophysics Data System (ADS)
Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi
2018-03-01
Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.
A hybrid perturbation Galerkin technique with applications to slender body theory
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1989-01-01
A two-step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.
A hybrid perturbation Galerkin technique with applications to slender body theory
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1987-01-01
A two step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.
Mashayekhi, S; Razzaghi, M; Tripak, O
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Mashayekhi, S.; Razzaghi, M.; Tripak, O.
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638
Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin
2017-09-01
In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures
NASA Astrophysics Data System (ADS)
Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe
2016-06-01
Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.
Optimized Vertex Method and Hybrid Reliability
NASA Technical Reports Server (NTRS)
Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.
2002-01-01
A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
2004-01-01
The hybrid Finite Element Method(FEM)/Method of Moments(MoM) technique has become popular over the last few years due to its flexibility to handle arbitrarily shaped objects with complex materials. One of the disadvantages of this technique, however, is the computational cost involved in obtaining solutions over a frequency range as computations are repeated for each frequency. In this paper, the application of Model Based Parameter Estimation (MBPE) method[1] with the hybrid FEM/MoM technique is presented for fast computation of frequency response of cavity-backed apertures[2,3]. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency-derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. Using the rational function approximation, the electric field is calculated at different frequencies from which the frequency response is obtained.
NASA Astrophysics Data System (ADS)
Lin, Lin
The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.
Design and synthesis of organic-inorganic hybrid capsules for biotechnological applications.
Shi, Jiafu; Jiang, Yanjun; Wang, Xiaoli; Wu, Hong; Yang, Dong; Pan, Fusheng; Su, Yanlei; Jiang, Zhongyi
2014-08-07
Organic-inorganic hybrid capsules, which typically possess a hollow lumen and a hybrid wall, have emerged as a novel and promising class of hybrid materials and have attracted enormous attention. In comparison to polymeric capsules or inorganic capsules, the hybrid capsules combine the intrinsic physical/chemical properties of the organic and inorganic moieties, acquire more degrees of freedom to manipulate multiple interactions, create hierarchical structures and integrate multiple functionalities. Thus, the hybrid capsules exhibit superior mechanical strength (vs. polymeric capsules) and diverse functionalities (vs. inorganic capsules), which may give new opportunities to produce high-performance materials. Much effort has been devoted to exploring innovative and effective methods for the synthesis of hybrid capsules that exhibit desirable performance in target applications. This tutorial review firstly presents a brief description of the capsular structure and hybrid materials in nature, then classifies the hybrid capsules into molecule-hybrid capsules and nano-hybrid capsules based upon the size of the organic and inorganic moieties in the capsule wall, followed by a detailed discussion of the design and synthesis of the hybrid capsules. For each kind of hybrid capsule, the state-of-the-art synthesis methods are described in detail and a critical comment is embedded. The applications of these hybrid capsules in biotechnological areas (biocatalysis, drug delivery, etc.) have also been summarized. Hopefully, this review will offer a perspective and guidelines for the future research and development of hybrid capsules.
NASA Astrophysics Data System (ADS)
Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.
2017-06-01
We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.
Projected Hybrid Orbitals: A General QM/MM Method
2015-01-01
A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748
A hybrid perturbation-Galerkin method for differential equations containing a parameter
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1989-01-01
A two-step hybrid perturbation-Galerkin method to solve a variety of differential equations which involve a parameter is presented and discussed. The method consists of: (1) the use of a perturbation method to determine the asymptotic expansion of the solution about one or more values of the parameter; and (2) the use of some of the perturbation coefficient functions as trial functions in the classical Bubnov-Galerkin method. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is illustrated first with a simple linear two-point boundary value problem and is then applied to a nonlinear two-point boundary value problem in lubrication theory. The results obtained from the hybrid method are compared with approximate solutions obtained by purely numerical methods. Some general features of the method, as well as some special tips for its implementation, are discussed. A survey of some current research application areas is presented and its degree of applicability to broader problem areas is discussed.
Power Source Status Estimation and Drive Control Method for Autonomous Decentralized Hybrid Train
NASA Astrophysics Data System (ADS)
Furuya, Takemasa; Ogawa, Kenichi; Yamamoto, Takamitsu; Hasegawa, Hitoshi
A hybrid control system has two main functions: power sharing and equipment protection. In this paper, we discuss the design, construction and testing of a drive control method for an autonomous decentralized hybrid train with 100-kW-class fuel cells (FC) and 36-kWh lithium-ion batteries (Li-Batt). The main objectives of this study are to identify the operation status of the power sources on the basis of the input voltage of the traction inverter and to estimate the maximum traction power control basis of the power-source status. The proposed control method is useful in preventing overload operation of the onboard power sources in an autonomous decentralized hybrid system that has a flexible main circuit configuration and a few control signal lines. Further, with this method, the initial cost of a hybrid system can be reduced and the retrofit design of the hybrid system can be simplified. The effectiveness of the proposed method is experimentally confirmed by using a real-scale hybrid train system.
NASA Astrophysics Data System (ADS)
Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria
2018-01-01
The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.
Hybrid particles and associated methods
Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin
2015-02-10
Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Zaffran, Jeremie; Caspary Toroker, Maytal
2016-08-09
NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.
Bio-hybrid cell-based actuators for microsystems.
Carlsen, Rika Wright; Sitti, Metin
2014-10-15
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Information filtering via a scaling-based function.
Qiu, Tian; Zhang, Zi-Ke; Chen, Guang
2013-01-01
Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.
Metabolomic prediction of yield in hybrid rice.
Xu, Shizhong; Xu, Yang; Gong, Liang; Zhang, Qifa
2016-10-01
Rice (Oryza sativa) provides a staple food source for more than 50% of the world's population. An increase in yield can significantly contribute to global food security. Hybrid breeding can potentially help to meet this goal because hybrid rice often shows a considerable increase in yield when compared with pure-bred cultivars. We recently developed a marker-guided prediction method for hybrid yield and showed a substantial increase in yield through genomic hybrid breeding. We now have transcriptomic and metabolomic data as potential resources for prediction. Using six prediction methods, including least absolute shrinkage and selection operator (LASSO), best linear unbiased prediction (BLUP), stochastic search variable selection, partial least squares, and support vector machines using the radial basis function and polynomial kernel function, we found that the predictability of hybrid yield can be further increased using these omic data. LASSO and BLUP are the most efficient methods for yield prediction. For high heritability traits, genomic data remain the most efficient predictors. When metabolomic data are used, the predictability of hybrid yield is almost doubled compared with genomic prediction. Of the 21 945 potential hybrids derived from 210 recombinant inbred lines, selection of the top 10 hybrids predicted from metabolites would lead to a ~30% increase in yield. We hypothesize that each metabolite represents a biologically built-in genetic network for yield; thus, using metabolites for prediction is equivalent to using information integrated from these hidden genetic networks for yield prediction. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Generalization of dielectric-dependent hybrid functionals to finite systems
Brawand, Nicholas P.; Voros, Marton; Govoni, Marco; ...
2016-10-04
The accurate prediction of electronic and optical properties of molecules and solids is a persistent challenge for methods based on density functional theory. We propose a generalization of dielectric-dependent hybrid functionals to finite systems where the definition of the mixing fraction of exact and semilocal exchange is physically motivated, nonempirical, and system dependent. The proposed functional yields ionization potentials, and fundamental and optical gaps of many, diverse molecular systems in excellent agreement with experiments, including organic and inorganic molecules and semiconducting nanocrystals. As a result, we further demonstrate that this hybrid functional gives the correct alignment between energy levels ofmore » the exemplary TTF-TCNQ donor-acceptor system.« less
Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures.
Gu, Yifan; Wu, Yi-Nan; Li, Liangchun; Chen, Wei; Li, Fengting; Kitagawa, Susumu
2017-12-04
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows
NASA Astrophysics Data System (ADS)
Xiao, Xudong
Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep
2018-04-01
In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.
A hybrid perturbation-Galerkin technique for partial differential equations
NASA Technical Reports Server (NTRS)
Geer, James F.; Anderson, Carl M.
1990-01-01
A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less
Hybride magnetic nanostructure based on amino acids functionalized polypyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica
Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy,more » transmission electron microscopy (TEM) and magnetic measurements.« less
A hybrid filtering method based on a novel empirical mode decomposition for friction signals
NASA Astrophysics Data System (ADS)
Li, Chengwei; Zhan, Liwei
2015-12-01
During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods.
Thermodynamics of RNA structures by Wang–Landau sampling
Lou, Feng; Clote, Peter
2010-01-01
Motivation: Thermodynamics-based dynamic programming RNA secondary structure algorithms have been of immense importance in molecular biology, where applications range from the detection of novel selenoproteins using expressed sequence tag (EST) data, to the determination of microRNA genes and their targets. Dynamic programming algorithms have been developed to compute the minimum free energy secondary structure and partition function of a given RNA sequence, the minimum free-energy and partition function for the hybridization of two RNA molecules, etc. However, the applicability of dynamic programming methods depends on disallowing certain types of interactions (pseudoknots, zig-zags, etc.), as their inclusion renders structure prediction an nondeterministic polynomial time (NP)-complete problem. Nevertheless, such interactions have been observed in X-ray structures. Results: A non-Boltzmannian Monte Carlo algorithm was designed by Wang and Landau to estimate the density of states for complex systems, such as the Ising model, that exhibit a phase transition. In this article, we apply the Wang-Landau (WL) method to compute the density of states for secondary structures of a given RNA sequence, and for hybridizations of two RNA sequences. Our method is shown to be much faster than existent software, such as RNAsubopt. From density of states, we compute the partition function over all secondary structures and over all pseudoknot-free hybridizations. The advantage of the WL method is that by adding a function to evaluate the free energy of arbitary pseudoknotted structures and of arbitrary hybridizations, we can estimate thermodynamic parameters for situations known to be NP-complete. This extension to pseudoknots will be made in the sequel to this article; in contrast, the current article describes the WL algorithm applied to pseudoknot-free secondary structures and hybridizations. Availability: The WL RNA hybridization web server is under construction at http://bioinformatics.bc.edu/clotelab/. Contact: clote@bc.edu PMID:20529917
Parametric study of modern airship productivity
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Flaig, K.
1980-01-01
A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.
Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.
Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo
2017-07-15
In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.
Information Filtering via a Scaling-Based Function
Qiu, Tian; Zhang, Zi-Ke; Chen, Guang
2013-01-01
Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem. PMID:23696829
A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.
Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry
2008-11-01
A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.
NASA Astrophysics Data System (ADS)
Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M.
1999-06-01
We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.
Combined hybrid functional and DFT+U calculations for metal chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr
2014-07-28
In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE)more » hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.« less
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858
The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-06-01
The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems
NASA Astrophysics Data System (ADS)
Abtahi, Amir-Reza; Bijari, Afsane
2017-03-01
In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition, the proposed hybrid algorithm uses SA to make a balance between exploration and exploitation phases. The proposed hybrid algorithm is compared with several meta-heuristic methods, including genetic algorithm (GA), HS, and ICA on several well-known benchmark instances. The comprehensive experiments and statistical analysis on standard benchmark functions certify the superiority of the proposed method over the other algorithms. The efficacy of the proposed hybrid algorithm is promising and can be used in several real-life engineering and management problems.
New t-gap insertion-deletion-like metrics for DNA hybridization thermodynamic modeling.
D'yachkov, Arkadii G; Macula, Anthony J; Pogozelski, Wendy K; Renz, Thomas E; Rykov, Vyacheslav V; Torney, David C
2006-05-01
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
NASA Technical Reports Server (NTRS)
Reddy C. J.
1998-01-01
Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.
NASA Astrophysics Data System (ADS)
Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing
2017-10-01
The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanroose, W.; Broeckhove, J.; Arickx, F.
The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.
Bauzá, Antonio; Alkorta, Ibon; Frontera, Antonio; Elguero, José
2013-11-12
In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.
Mardirossian, Narbe; Head-Gordon, Martin
2014-03-25
The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored in this paper by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the trainingmore » and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. Finally, the range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.« less
A general range-separated double-hybrid density-functional theory
NASA Astrophysics Data System (ADS)
Kalai, Cairedine; Toulouse, Julien
2018-04-01
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
NASA Astrophysics Data System (ADS)
He, Jiangang; Franchini, Cesare
2017-11-01
In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization method and making use of the relation \
A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caflisch, R; Wang, C; Dimarco, G
2007-10-09
If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements in continuum algorithms), as well as the wide range of collision rates over the velocity distribution function. This paper considers Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka & Abe and Nanbu. It presents a hybrid method for accelerating the computation of Coulombmore » collisions. The hybrid method represents the velocity distribution function as a combination of a thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete particles). Collisions between particles from the thermal component preserve the Maxwellian; collisions between particles from the kinetic component are performed using the method of or Nanbu. Collisions between the kinetic and thermal components are performed by sampling a particle from the thermal component and selecting a particle from the kinetic component. Particles are also transferred between the two components according to thermalization and dethermalization probabilities, which are functions of phase space.« less
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.
1987-01-01
A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.
Kanematsu, Yusuke; Tachikawa, Masanori
2014-04-28
We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
Constructing biological pathway models with hybrid functional Petri nets.
Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru
2004-01-01
In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism.
Constructing biological pathway models with hybrid functional petri nets.
Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru
2011-01-01
In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism.
Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok
2014-01-01
Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.
An effective hybrid firefly algorithm with harmony search for global numerical optimization.
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu
2017-01-01
The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals
Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji
2017-01-01
The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135
Generation of Leishmania Hybrids by Whole Genomic DNA Transformation
Coelho, Adriano C.; Leprohon, Philippe; Ouellette, Marc
2012-01-01
Genetic exchange is a powerful tool to study gene function in microorganisms. Here, we tested the feasibility of generating Leishmania hybrids by electroporating genomic DNA of donor cells into recipient Leishmania parasites. The donor DNA was marked with a drug resistance marker facilitating the selection of DNA transfer into the recipient cells. The transferred DNA was integrated exclusively at homologous locus and was as large as 45 kb. The independent generation of L. infantum hybrids with L. major sequences was possible for several chromosomal regions. Interfering with the mismatch repair machinery by inactivating the MSH2 gene enabled an increased efficiency of recombination between divergent sequences, hence favouring the selection of hybrids between species. Hybrids were shown to acquire the phenotype derived from the donor cells, as demonstrated for the transfer of drug resistance genes from L. major into L. infantum. The described method is a first step allowing the generation of in vitro hybrids for testing gene functions in a natural genomic context in the parasite Leishmania. PMID:23029579
Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K
2013-02-14
A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.
Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A
2018-01-01
Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.
Hybrid LES/RANS simulation of a turbulent boundary layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Zhang, Qi; Haering, Sigfried; Oliver, Todd; Moser, Robert
2016-11-01
We report numerical investigations of a turbulent boundary layer over a rectangular cavity using a new hybrid RANS/LES model and the traditional Detached Eddy Simulation (DES). Our new hybrid method aims to address many of the shortcomings from the traditional DES. In the new method, RANS/LES blending controlled by a parameter that measures the ratio of the modeled subgrid kinetic energy to an estimate of the subgrid energy based on the resolved scales. The result is a hybrid method automatically resolves as much turbulence as can be supported by the grid and transitions appropriately from RANS to LES without the need for ad hoc delaying functions that are often required for DES. Further, the new model is designed to improve upon DES by accounting for the effects of grid anisotropy and inhomogeneity in the LES region. We present comparisons of the flow features inside the cavity and the pressure time history and spectra as computed using the new hybrid model and DES.
Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O
2016-11-02
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.
2016-01-01
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Galante, Vito N; Vicenti, Giovanni; Corina, Gianfranco; Mori, Claudio; Abate, Antonella; Picca, Girolamo; Conserva, Vito; Speciale, Domenico; Scialpi, Lorenzo; Tartaglia, Nicola; Caiaffa, Vincenzo; Moretti, Biagio
2016-10-01
To determine the efficacy of hybrid external fixation in the treatment of tibial pilon fractures. Retrospective, multicentre study. Adult patients with tibial pilon fractures treated with hybrid external fixation. Fracture reduction with ligamentotaxis and fixation with XCaliber hybrid external fixator. Fracture union, complications, functional outcome (Mazur Ankle Score). Union was obtained in 159 fractures at an average of 125days; there were three delayed unions and three non-unions. The most frequent complication was superficial pin-track infections (48), all of which responded to local wound care and antibiotics. There were no deep infections and no DVT. Only one fracture had loss of reduction that required frame revision. The overall functional scores were 91 (excellent) for AO/OTA type A fractures, 89 (good) for type B fractures, and 75 (satisfactory) for type C fractures. Hybrid external fixation is an effective method of stabilising tibial pilon fractures, particularly those with marked comminution. The minimally-invasive technique and stable fixation enable early mobilisation, with good functional results and minimal complications. Level IV Case series. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.
2001-01-01
A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental data.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2012-01-01
The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schroedinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220- term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have been calculated and compared with the results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states and the continuum in which these resonance are embedded.
Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko
2018-06-15
Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.
Hybrid optimization and Bayesian inference techniques for a non-smooth radiation detection problem
Stefanescu, Razvan; Schmidt, Kathleen; Hite, Jason; ...
2016-12-12
In this paper, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 × 180 m block of an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Owing to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms composed of mixed optimization techniques. For global optimization, we consider simulated annealing, particlemore » swarm, and genetic algorithm, which rely solely on objective function evaluations; that is, they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic implicit filtering method, which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques, combining global optimization and implicit filtering address, difficulties associated with the non-smooth response, and their performances, are shown to significantly decrease the computational time over the global optimization methods. To quantify uncertainties associated with the source location and intensity, we employ the delayed rejection adaptive Metropolis and DiffeRential Evolution Adaptive Metropolis algorithms. Finally, marginal densities of the source properties are obtained, and the means of the chains compare accurately with the estimates produced by the hybrid algorithms.« less
Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin
2009-02-01
Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.
Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng
2016-12-15
A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.
NASA Astrophysics Data System (ADS)
McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.
2006-02-01
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.
Validation of electronic structure methods for isomerization reactions of large organic molecules.
Luo, Sijie; Zhao, Yan; Truhlar, Donald G
2011-08-14
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.
Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2015-11-10
Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.
Stability analysis of hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang
2017-10-01
Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
Application of Genomic In Situ Hybridization in Horticultural Science
Ramzan, Fahad; Lim, Ki-Byung
2017-01-01
Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH) techniques in horticultural plants. PMID:28459054
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe
2017-10-30
In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods. PMID:24348137
Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional
NASA Astrophysics Data System (ADS)
Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin
2018-04-01
Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA + U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.
NASA Astrophysics Data System (ADS)
Tsoufis, Τheodoros; Douvalis, Alexios P.; Lekka, Christina E.; Trikalitis, Pantelis N.; Bakas, Thomas; Gournis, Dimitrios
2013-09-01
We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.
Engineering hybrid exosomes by membrane fusion with liposomes.
Sato, Yuko T; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari
2016-02-25
Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze-thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin
2017-06-01
In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller. Copyright © 2017 Elsevier B.V. All rights reserved.
Elements de conception d'un systeme geothermique hybride par optimisation financiere
NASA Astrophysics Data System (ADS)
Henault, Benjamin
The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.
Rebar graphene from functionalized boron nitride nanotubes.
Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M
2015-01-27
The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.
Gross, J-B; Gavanier, B; Belleville, R; Coudane, H; Mainard, D
2017-10-01
Proximal tibia fractures make up 1% of all fractures in adults. The fractures classified as Schatzker V and VI fractures can compromise knee structure and function. They are challenging to treat and often have complications. While plate fixation is the gold standard, the resulting infection rate has led us to favor external hybrid fixation. The aims of this study were to assess the radiographic and functional outcomes along with the complication rate when using this method and to compare them to historical plate fixation data. This was a retrospective study of 40 patients. The complications, quality of reduction, IKS, Lysholm and Rasmussen functional scores at the latest follow-up and factors affecting the functional outcome were evaluated. These parameters were compared to published results from plate fixation studies. The deep infection rate was 2.5%. The union rate was 80%. Satisfactory reduction was obtained in 70% of cases; however, 52% of patients had malunion. The mean IKS score was 73.74, the mean Rasmussen score was 22.85 and the mean Lysholm score was 75.53. Age, reduction at latest follow-up, mechanical axis and anteroposterior laxity had a significant effect on the functional outcome. Despite the malunion rate being higher than other studies, the functional outcomes were nearly identical based on the variables measured. There are several advantages associated with using a hybrid external fixator: shorter operative time, less bleeding, shorter hospital stays and lower infection rate. Hybrid external fixation is a reliable fracture fixation method that leads to satisfactory functional outcomes, while reducing the infection rate and allowing arthroplasty to be performed in the future if needed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Organic-inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control.
Park, Sung Soo; Ha, Chang-Sik
2006-01-01
Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Design, processing and testing of LSI arrays: Hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.
1979-01-01
Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.
NASA Astrophysics Data System (ADS)
Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul
2017-12-01
We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.
Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2012-02-01
Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.
Hybrid modeling in biochemical systems theory by means of functional petri nets.
Wu, Jialiang; Voit, Eberhard
2009-02-01
Many biological systems are genuinely hybrids consisting of interacting discrete and continuous components and processes that often operate at different time scales. It is therefore desirable to create modeling frameworks capable of combining differently structured processes and permitting their analysis over multiple time horizons. During the past 40 years, Biochemical Systems Theory (BST) has been a very successful approach to elucidating metabolic, gene regulatory, and signaling systems. However, its foundation in ordinary differential equations has precluded BST from directly addressing problems containing switches, delays, and stochastic effects. In this study, we extend BST to hybrid modeling within the framework of Hybrid Functional Petri Nets (HFPN). First, we show how the canonical GMA and S-system models in BST can be directly implemented in a standard Petri Net framework. In a second step we demonstrate how to account for different types of time delays as well as for discrete, stochastic, and switching effects. Using representative test cases, we validate the hybrid modeling approach through comparative analyses and simulations with other approaches and highlight the feasibility, quality, and efficiency of the hybrid method.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Xing, Jian
2017-10-01
In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.
NASA Astrophysics Data System (ADS)
Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng
2015-12-01
Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.
Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.
Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J
2018-05-14
We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
Wu, Dan; Tang, Xiaohong; Wang, Kai; Li, Xianqiang
2016-10-31
We present a novel coupled design method that both optimizes light absorption and predicts electrical performance of fully infiltrated inorganic semiconductor nanowires (NWs) based hybrid solar cells (HSC). This method provides a thorough insight of hybrid photovoltaic process as a function of geometrical parameters of NWs. An active layer consisting of GaAs NWs as acceptor and poly(3-hexylthiophene-2,5-diyl) (P3HT) as donor were used as a design example. Absorption spectra features were studied by the evolution of the leaky modes and Fabry-Perot resonance with wavelength focusing firstly on the GaAs/air layer before extending to GaAs/P3HT hybrid active layer. The highest absorption efficiency reached 39% for the hybrid active layer of 2 μm thickness under AM 1.5G illumination. Combined with the optical absorption analysis, our method further codesigns the energy harvesting to predict electrical performance of HSC considering exciton dissociation efficiencies within both inorganic NWs and a polymeric shell of 20 nm thickness. The validity of the simulation model was also proved by the well agreement of the simulation results with the published experimental work indicating an effective guidance for future high performance HSC design.
Delidding and resealing hybrid microelectronic packages
NASA Astrophysics Data System (ADS)
Luce, W. F.
1982-05-01
The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Epitaxial growth of hybrid nanostructures
NASA Astrophysics Data System (ADS)
Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua
2018-02-01
Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.
NASA Astrophysics Data System (ADS)
Kumar, Raju Suresh; Almansour, Abdulrahman I.; Arumugam, Natarajan; Soliman, Saied M.; Kumar, Raju Ranjith; Altaf, Mohammad; Ghabbour, Hazem A.; Krishnamoorthy, Bellie Sundaram
2018-01-01
Highly functionalized spirooxindole-pyrrolidine hybrids have been synthesized stereoselectively through a [3 + 2] cycloaddition strategy in an ionic liquid, 1-butyl-3-methylimidazolium bromide ([bmim]Br). The structure of these spiro heterocyclic hybrids was elucidated using one and two dimensional NMR spectroscopy, single crystal X-ray crystallographic studies and Density Functional Theory (DFT) calculations. The calculated geometric parameters are in good agreement with the experimental data obtained from the X-ray structures. The Natural Bond Orbital (NBO) calculations on these molecules confirm the electron rich carbonyl oxygen and electron deficient NH groups. The 1H and 13C NMR chemical shifts calculated using GIAO method are in good agreement with the experimental data. The DFT computed polarizability values also suggest the possible NLO activity of these molecules.
Silicone-containing aqueous polymer dispersions with hybrid particle structure.
Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna
2015-09-01
In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.
Dynamics and Control of Flexible Space Vehicles
NASA Technical Reports Server (NTRS)
Likins, P. W.
1970-01-01
The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.
NASA Astrophysics Data System (ADS)
Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter
2000-09-01
For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.
Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo
2016-02-24
A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424-7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20-30%) extent of Hartree-Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO-LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo
2017-03-01
We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
A Four-Stage Hybrid Model for Hydrological Time Series Forecasting
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782
A four-stage hybrid model for hydrological time series forecasting.
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.
Resolution of the Band Gap Prediction Problem for Materials Design
Crowley, Jason M.; Tahir-Kheli, Jamil; Goddard, William A.
2016-03-04
An important property with any new material is the band gap. Standard density functional theory methods grossly underestimate band gaps. This is known as the band gap problem. Here in this paper, we show that the hybrid B3PW91 density functional returns band gaps with a mean absolute deviation (MAD) from experiment of 0.22 eV over 64 insulators with gaps spanning a factor of 500 from 0.014 to 7 eV. The MAD is 0.28 eV over 70 compounds with gaps up to 14.2 eV, with a mean error of -0.03 eV. To benchmark the quality of the hybrid method, we comparedmore » the hybrid method to the rigorous GW many-body perturbation theory method. Surprisingly, the MAD for B3PW91 is about 1.5 times smaller than the MAD for GW. Furthermore, B3PW91 is 3-4 orders of magnitude faster computationally. Hence, B3PW91 is a practical tool for predicting band gaps of materials before they are synthesized and represents a solution to the band gap prediction problem.« less
Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam
2011-02-01
This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.
NASA Astrophysics Data System (ADS)
Baruah, Upama; Chowdhury, Devasish
2016-04-01
Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.
Rebar Graphene from Functionalized Boron Nitride Nanotubes
2015-01-01
The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451
NASA Astrophysics Data System (ADS)
Habibpour, Razieh; Kashi, Eslam; Vazirib, Raheleh
2018-03-01
The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.
Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S
2001-01-01
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432
Portraits of colloidal hybrid nanostructures: controlled synthesis and potential applications.
Nguyen, Thanh-Dinh
2013-03-01
Inorganic hybrid nanostructures containing two or more nanocomponents have been emerging in many areas of materials science in recent years. The particle-particle interactions in a hybrid particle system could significantly improve existing local electronic structure and induce tunable physiochemical responses. The current work reviews the diverse inorganic hybrid nanostructures formed by adhesion of the different single components via seed-mediated method. The hybrid nanomaterials have great potentials for real applications in many other fields. The nanohybrids have been used as efficient heterocatalysts for carbon monoxide conversion and photodegradation of organic contaminants. The enhanced catalytic activity of these hybrid nanocatalysts could be attributed the formation of oxygen vacancies and electron transfer across the structural junction in a hybrid system as a result of the interfacial particle-particle interactions. The synergistic combination of up-converting and semiconducting properties in an up-converting semiconducting hybrid particle results in appearance of sub-band-gap photoconductivity. This behavior has a great significance for the design of photovoltaic devices for effective solar energy conversion. The functionalization and subsequent bioconjugation of the hybrid nanostructures to afford the multifunctional nanomedical platforms for simultaneous diagnosis and therapy are reviewed. The conjugated multifunctional hybrid nanostructures exhibit high biocompatibility and highly selective binding with functional groups-fabricated alive organs through delivering them to the tumor sites. The clever combinations of multifunctional features and antibody conjugation within these vehicles make them to generally offer new opportunities for clinical diagnostics and therapeutics. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids
Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong
2015-01-01
Organic–inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis. PMID:28788017
NASA Astrophysics Data System (ADS)
Pan'kov, A. A.
1997-05-01
The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.
Kasper, Joseph M; Williams-Young, David B; Vecharynski, Eugene; Yang, Chao; Li, Xiaosong
2018-04-10
The time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results.
Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan
2014-01-01
Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359
Silk/nano-material hybrid: properties and functions
NASA Astrophysics Data System (ADS)
Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.
2014-03-01
Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
Surface passivation for tight-binding calculations of covalent solids.
Bernstein, N
2007-07-04
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Surface passivation for tight-binding calculations of covalent solids
NASA Astrophysics Data System (ADS)
Bernstein, N.
2007-07-01
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
NASA Astrophysics Data System (ADS)
Bhatia, A. K.
2012-09-01
The P-wave hybrid theory of electron-hydrogen elastic scattering [Bhatia, Phys. Rev. A10.1103/PhysRevA.85.052708 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schrödinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-range-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A10.1103/PhysRevA.69.032714 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have also been calculated and compared with the results obtained using the Feshbach projection operator formalism [Bhatia and Temkin, Phys. Rev. A10.1103/PhysRevA.11.2018 11, 2018 (1975)] and also with the results of other calculations. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states, and the continuum in which these resonances are embedded.
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke
2013-01-01
Background Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Method Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Results Primary outcome: Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). Secondary outcomes: A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p’s < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p’s < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Conclusions Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery. PMID:23336711
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
NASA Astrophysics Data System (ADS)
Liu, Shukui; Papanikolaou, Apostolos D.
2011-03-01
Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy
Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less
Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer
Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.
2014-01-01
Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in several ways, and will likely become reality in the near future. PMID:23953737
Chen, Lei; Yan, Bing
2015-02-01
Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.
Williams, Kirstin A.; Villet, Martin H.
2014-01-01
Abstract Hybrids of Lucilia sericata and Lucilia cuprina have been shown to exist in previous studies using molecular methods, but no study has shown explicitly that these hybrids can be identified morphologically. Published morphological characters used to identify L. sericata and L. cuprina were reviewed, and then scored and tested using specimens of both species and known hybrids. Ordination by multi-dimensional scaling indicated that the species were separable, and that hybrids resembled L. cuprina, whatever their origin. Discriminant function analysis of the characters successfully separated the specimens into three unambiguous groups – L. sericata, L. cuprina and hybrids. The hybrids were morphologically similar irrespective of whether they were from an ancient introgressed lineage or more modern. This is the first evidence that hybrids of these two species can be identified from their morphology. The usefulness of the morphological characters is also discussed and photographs of several characters are included to facilitate their assessment. PMID:25061373
Epoxy Resin Composite Based on Functional Hybrid Fillers
Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil
2014-01-01
A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177
De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.
Guo, Xiang; Su, Handong; Shi, Qinghua; Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu
2016-04-01
Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.
De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids
Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu
2016-01-01
Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation. PMID:27110907
How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?
Xu, Xuefei; Alecu, I M; Truhlar, Donald G
2011-06-14
We introduce a new database called TSG48 containing 48 transition state geometrical data (in particular, internuclear distances in transition state structures) for 16 main group reactions. The 16 reactions are the 12 reactions in the previously published DBH24 database (which includes hydrogen transfer reactions, heavy-atom transfer reactions, nucleophilic substitution reactions, and association reactions plus one unimolecular isomerization) plus four H-transfer reactions in which a hydrogen atom is abstracted by the methyl or hydroperoxyl radical from the two different positions in methanol. The data in TSG48 include data for four reactions that have previously been treated at a very high level in the literature. These data are used to test and validate methods that are affordable for the entire test suite, and the most accurate of these methods is found to be the multilevel BMC-CCSD method. The data that constitute the TSG48 database are therefore taken to consist of these very high level calculations for the four reactions where they are available and BMC-CCSD calculations for the other 12 reactions. The TSG48 database is used to assess the performance of the eight Minnesota density functionals from the M05-M08 families and 26 other high-performance and popular density functionals for locating transition state geometries. For comparison, the MP2 and QCISD wave function methods have also been tested for transition state geometries. The MC3BB and MC3MPW doubly hybrid functionals and the M08-HX and M06-2X hybrid meta-GGAs are found to have the best performance of all of the density functionals tested. M08-HX is the most highly recommended functional due to the excellent performance for all five subsets of TSG48, as well as having a lower cost when compared to doubly hybrid functionals. The mean absolute errors in transition state internuclear distances associated with breaking and forming bonds as calculated by the B2PLYP, MP2, and B3LYP methods are respectively about 2, 3, and 5 times larger than those calculated by MC3BB and M08-HX.
NASA Astrophysics Data System (ADS)
Patra, Rusha; Dutta, Pranab K.
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
NASA Astrophysics Data System (ADS)
Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej
2018-07-01
The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.
Hybrid real-code ant colony optimisation for constrained mechanical design
NASA Astrophysics Data System (ADS)
Pholdee, Nantiwat; Bureerat, Sujin
2016-01-01
This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...
2017-02-21
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less
NASA Astrophysics Data System (ADS)
Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.
2017-03-01
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.
Xu, Xin; Goddard, William A
2004-03-02
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
NASA Astrophysics Data System (ADS)
Xu, Xin; Goddard, William A., III
2004-03-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
Xu, Xin; Goddard, William A.
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235
NASA Astrophysics Data System (ADS)
Shiba, Naoto; Yoshimitsu, Kazuhiro; Matsugaki, Tohru; Narita, Arata; Maeda, Takashi; Inada, Tomohisa; Tagawa, Yoshihiko; Numada, Kiyoshi; Nishi, Tetsuya
We developed ‘Hybrid exercise’ method that was designed to maintain the musculoskeletal system by using electrically stimulated antagonist muscles to resist volitional contraction of agonist muscles. This approach also produces a minimum of inertial reaction forces and has the advantage that it may minimize the need for external stabilization that is currently necessary during exercise in a weightlessness environment. The purpose of this study was to develop the intelligent suits with virtual reality (VR) system that had function of preventing disuse atrophy of musculoskeletal system using hybrid exercise system. Installing of the hybrid exercise system to the subject became easy by the intelligent suits. VR system realized the sense of sight by computer graphics animation synchronized with subjects' motion, and sense of force induced by electrical stimulation. By using VR system, the management of the exercise accomplishment degree was enabled easily because the device could record the exercise history. Intelligent suits with VR hybrid exercise system might become one of the useful countermeasures for the disuse musculoskeletal system in the space.
Screened hybrid density functionals for solid-state chemistry and physics.
Janesko, Benjamin G; Henderson, Thomas M; Scuseria, Gustavo E
2009-01-21
Density functional theory incorporating hybrid exchange-correlation functionals has been extraordinarily successful in providing accurate, computationally tractable treatments of molecular properties. However, conventional hybrid functionals can be problematic for solids. Their nonlocal, Hartree-Fock-like exchange term decays slowly and incorporates unphysical features in metals and narrow-bandgap semiconductors. This article provides an overview of our group's work on designing hybrid functionals for solids. We focus on the Heyd-Scuseria-Ernzerhof screened hybrid functional [J. Chem. Phys. 2003, 118, 8207], its applications to the chemistry and physics of solids and surfaces, and our efforts to build upon its successes.
Detection of Protein Interactions in T3S Systems Using Yeast Two-Hybrid Analysis.
Nilles, Matthew L
2017-01-01
Two-hybrid systems, sometimes termed interaction traps, are genetic systems designed to find and analyze interactions between proteins. The most common systems are yeast based (commonly Saccharomyces cerevisae) and rely on the functional reconstitution of the GAL4 transcriptional activator. Reporter genes, such as the lacZ gene of Escherichia coli (encodes β-galactosidase), are placed under GAL4-dependent transcriptional control to provide quick and reliable detection of protein interactions. In this method the use of a yeast-based two-hybrid system is described to study protein interactions between components of type III secretion systems.
Spin-polarized electron transport in hybrid graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-05-01
The experimental realization of hybrid graphene and h-BN provides a new way to modify the electronic and transport properties of graphene-based materials. In this work, we investigate the spin-polarized electron transport in hybrid graphene-BN zigzag nanoribbons by performing first-principles nonequilibrium Green’s function method calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. This behavior may be useful in making perfect spin filters.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
NASA Astrophysics Data System (ADS)
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
NASA Astrophysics Data System (ADS)
Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat
2018-07-01
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Organic-inorganic hybrid polymer-encapsulated magnetic nanobead catalysts.
Arai, Takayoshi; Sato, Toru; Kanoh, Hirofumi; Kaneko, Katsumi; Oguma, Koichi; Yanagisawa, Akira
2008-01-01
A new strategy for the encapsulation of magnetic nanobeads was developed by using the in situ self-assembly of an organic-inorganic hybrid polymer. The hybrid polymer of {[Cu(bpy)(BF(4))(2)(H(2)O)(2)](bpy)}(n) (bpy=4,4'-bipyridine) was constructed on the surface of amino-functionalized magnetic beads and the resulting hybrid-polymer-encapsulated beads were utilized as catalysts for the oxidation of silyl enolates to provide the corresponding alpha-hydroxy carbonyl compounds in high yield. After the completion of the reaction, the catalyst was readily recovered by magnetic separation and the recovered catalyst could be reused several times. Because the current method did not require complicated procedures for incorporating the catalyst onto the magnetic beads, the preparation and the application of various other types of organic-inorganic hybrid-polymer-coated magnetic beads could be possible.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
NASA Astrophysics Data System (ADS)
Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad
2018-03-01
In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.
Yan, Bing
2017-11-21
Metal-organic frameworks (MOFs) possess an important advantage over other candidate classes for chemosensory materials because of their exceptional structural tunability and properties. Luminescent sensing using MOFs is a simple, intuitive, and convenient method to recognize species, but the method has limitations, such as insufficient chemical selectivity and signal loss. MOFs contain versatile building blocks (linkers or ligands) with special chemical reactivity, and postsynthetic modification (PSM) provides an opportunity to exploit and expand their unique properties. The linkers in most MOFs contain aromatic subunits that can readily display luminescence after ultraviolet or visible (typically blue) excitation, and this is the main luminescent nature of most MOFs. The introduction of photoactive lanthanide ions (Ln 3+ ) into the MOF hosts may produce new luminescent signals at different positions from that of the MOF linker, but this depends on the intramolecular energy transfer (antenna effect) from the MOF (linkers) to the Ln 3+ ions. Controlling the Ln 3+ content in MOF hybrids may create multiple luminescent centers. The nature of the unique luminescent centers may cause different responses to sensing species (i.e., ratiometric sensing), which may provide a new opportunity for luminescence research with applications to chemical sensing. In this Account, recent research progress on using lanthanide-functionalized MOF hybrid materials to create multiple luminescent centers for chemical sensing is described. Here we propose a general strategy to functionalize MOF hosts with lanthanide ions, compounds, or other luminescent species (organic dyes or carbon dots) and to assemble types of photofunctional hybrid systems based on lanthanide-functionalized MOFs. Five main methods were used to functionalize the MOFs and assemble the hybrid materials: in situ composition, ionic doping, ionic exchange, covalent PSM, and coordinated PSM. Through the lanthanide functionalization, multiple (double or triple) luminescent centers were created with different luminescent bands in the visible region. Because of the different luminescent natures of the lanthanide ions, MOF linkers, and other species (organic dyes or carbon dots), they display different responses to sensing species. Currently, using these strategies, we have utilized a dual-response luminescent probe to realize chemical sensing of different types of cations (Fe 3+ /Fe 2+ , Hg 2+ , and Cd 2+ ), anions (Cr 2 O 7 2- /CrO 4 - and CO 3 2- ), molecules (volatile organic compounds and O 2 ), special air pollutants (formaldehyde), and biomarkers of food spoilage as well as pH and temperature. Additionally, we have achieved triple-luminescence-response sensing of ions (Ag + , Hg 2+ , and S 2- ) in complicated aqueous environments, which was developed using a logic operation.
Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?
Garrec, J; Sautet, P; Fleurat-Lessard, P
2011-07-07
The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.
Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media
Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...
Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals
NASA Astrophysics Data System (ADS)
Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.
2018-04-01
We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.
A hybrid multigroup neutron-pattern model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2014-01-01
Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.
Nature-inspired multifunctional membrane fabricated by adaptive hybridization of PNIPAm and PPy
NASA Astrophysics Data System (ADS)
Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon
2017-11-01
Specialized plant organs, such as guard cells of stomata, consist of soft materials with deformability and electrochemical properties in response to various environmental stimuli. Stimulus-responsive hydrogels with electrochemical properties are good candidates for imitating such functionalities having great potential in a wide range of applications. However, conductive hydrogels are usually mechanically rigid and the fabrication technology of structured hydrogels has low reproducibility. Here, inspired by stimulus-responsive functionalities of plants, a thermo-responsive multifunctional hybrid membrane (HM) is synthesized through the in situ hybridization of conductive poly(pyrrole)(PPy) on a photopolymerized poly(N-isopropylacrylamide)(PNIPAm) membrane. The various properties of the HM are investigated to characterize its multiple functions. In terms of morphology, the HM can be easily fabricated into various structures, and exhibits thermo-responsive deformability. In terms of functionality, it exhibits various electrical and charge responses to thermal stimuli. This simple and efficient fabrication method can be used as a promising platform for fabricating a variety of functional devices, such as actuators, biosensors, and filtration membranes. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2017R1A2B3005415).
A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction
NASA Astrophysics Data System (ADS)
Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria
2018-01-01
This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.
NASA Astrophysics Data System (ADS)
Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.
2017-08-01
Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is about 0.42. Our approach demonstrates the predictive power of materials informatics when a large number of materials is used to establish significant trends. This predictive power can be used to design new materials with desired properties. The applicability of this approach for other correlated electron systems is discussed.
Popović, Dejan B; Popović, Mirjana B
2006-01-01
This paper suggests that the optimal method for promoting of the recovery of upper extremity function in hemiplegic individuals is the use of hybrid assistive systems (HAS). The suggested HAS is a combination of stimulation of paralyzed distal segments (hand) in synchrony with robot controlled movements of proximal segments (upper arm and forearm). The use of HAS is envisioned as part of voluntary activation of preserved sensory-motor systems during task related exercise. This HAS design follows our results from functional electrical therapy, constraint induced movement therapy, intensive exercise therapy, and use of robots for rehabilitation. The suggestion is also based on strong evidences that cortical plasticity is best promoted by task related exercise and patterned electrical stimulation.
Chai, Jeng-Da
2017-01-28
We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H 2 and N 2 , twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-21
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
NASA Astrophysics Data System (ADS)
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-01
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
Synthesis of gold nanoparticles with graphene oxide.
Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng
2014-05-01
Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.
The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB
NASA Astrophysics Data System (ADS)
Wang, Jiangping; Hu, Yingcai
This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.
Bioinspired Design: Magnetic Freeze Casting
NASA Astrophysics Data System (ADS)
Porter, Michael Martin
Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.
Bahraminasab, Marjan; Farahmand, Farzam
2017-09-01
The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses. This article, therefore, seeks to address the following research questions: (RQ1) What is the desired structure of orthopedic hybrid materials? (RQ2) What is the contribution of the literature in the development of hybrid materials in the field of orthopedic research? (RQ3) Which type of manufacturing approaches is prevalently used to build these materials for knee and hip implants? (RQ4) Is there any inadequacy in the methods applied?
NASA Astrophysics Data System (ADS)
Georges, F.; Remouche, M.; Meyrueis, P.
2011-06-01
Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.
Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao
2018-03-15
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Vikramaditya, Talapunur; Lin, Shiang-Tai
2017-06-05
Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A hybrid method for evaluating enterprise architecture implementation.
Nikpay, Fatemeh; Ahmad, Rodina; Yin Kia, Chiam
2017-02-01
Enterprise Architecture (EA) implementation evaluation provides a set of methods and practices for evaluating the EA implementation artefacts within an EA implementation project. There are insufficient practices in existing EA evaluation models in terms of considering all EA functions and processes, using structured methods in developing EA implementation, employing matured practices, and using appropriate metrics to achieve proper evaluation. The aim of this research is to develop a hybrid evaluation method that supports achieving the objectives of EA implementation. To attain this aim, the first step is to identify EA implementation evaluation practices. To this end, a Systematic Literature Review (SLR) was conducted. Second, the proposed hybrid method was developed based on the foundation and information extracted from the SLR, semi-structured interviews with EA practitioners, program theory evaluation and Information Systems (ISs) evaluation. Finally, the proposed method was validated by means of a case study and expert reviews. This research provides a suitable foundation for researchers who wish to extend and continue this research topic with further analysis and exploration, and for practitioners who would like to employ an effective and lightweight evaluation method for EA projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.
2015-01-01
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919
Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N
2015-04-15
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.
Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P
2014-05-15
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures
Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.
2014-01-01
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941
Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.
Kim, Juyeong; Song, Xiaohui; Kim, Ahyoung; Luo, Binbin; Smith, John W; Ou, Zihao; Wu, Zixuan; Chen, Qian
2018-05-03
Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli-responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol-terminated polystyrene (PS) or polystyrene-poly(acrylic acid) (PS-b-PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS-b-PAA-coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lubeck, Christopher Ryan
The use of nanostructured, hybrid materials possesses great future potential. Many examples of nanostructured materials exist within nature, such as animal bone, animal teeth, and seashells. This research, inspired by nature, strove to mimic salient properties of natural materials, utilizing methods observed within nature to produce materials. Further, this research increased the functionality of the templates from "mere" template to functional participant. Different chemical methods to produce hybrid materials were employed within this research to achieve these goals. First, electro-osmosis was utilized to drive ions into a polymeric matrix to form hybrid inorganic polymer material, creating a material inspired by naturally occurring bone or seashell in which the inorganic component provides strength and the polymeric material decreases the brittleness of the combined hybrid material. Second, self-assembled amphiphiles, forming higher ordered structures, acted as a template for inorganic cadmium sulfide. Electronically active molecules based on ethylene oxide and aniline segments were synthesized to create interaction between the templating material and the resulting inorganic cadmium sulfide. The templating process utilized self-assembly to create the inorganic structure through the interaction of the amphiphiles with water. The use of self-assembly is itself inspired by nature. Self-assembled structures are observed within living cells as cell walls and cell membranes are created through hydrophilic and hydrophobic interactions. Finally, the mesostructured inorganic cadmium sulfide was itself utilized as a template to form mesostructured copper sulfide.
NASA Astrophysics Data System (ADS)
Moslemipour, Ghorbanali
2018-07-01
This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; ...
2017-07-20
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
NASA Astrophysics Data System (ADS)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel
2017-11-01
We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko
Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.
NASA Astrophysics Data System (ADS)
Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu
2016-06-01
To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.
Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method
NASA Astrophysics Data System (ADS)
Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen
2008-03-01
The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.
NASA Astrophysics Data System (ADS)
Li, Ze
2017-09-01
In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.
Present, future of automotive hybrid IC applications discussed
NASA Astrophysics Data System (ADS)
Matsuda, Nobuyoshi; Fukuoka, Atuhisa
1987-09-01
Hybrid ICs are presently utilized in various fields such as commercial televisions, VTRs, and audio devices, industrial usage of communication equipment, computers, terminals, and automobiles. Its applications and environments are various and diverse. The functions required for hybrid ICs vary from simple high density mounting for a system to the realization of high mechanisms with the application of function timing. The functions are properly used depending upon the system with its hybrid ICs and its circuit composition. Considering structure and reliability requirements for automotive hybrid ICs, an application example for hybrid ICs which use the package (COMPACT), will be discussed.
NASA Astrophysics Data System (ADS)
Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Diksha; Badano, Aldo
2013-03-15
Purpose: hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. Methods: The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. Results: The comparison suggests thatmore » hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. Conclusions: hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.« less
NASA Astrophysics Data System (ADS)
Patil, Avinash J.; Li, Mei; Mann, Stephen
2013-07-01
Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.
Patil, Avinash J; Li, Mei; Mann, Stephen
2013-08-21
Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.
Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J
2017-05-01
Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.
Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce
2013-10-07
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.
Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce
2014-01-01
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394
Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution
NASA Astrophysics Data System (ADS)
van Dongen, J.; Felici, F.; Hogeweij, G. M. D.; Geelen, P.; Maljaars, E.
2014-12-01
Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L-H transition.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pressure-induced dramatic changes in organic–inorganic halide perovskites
Yang, Wenge
2017-01-01
Organic–inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain in terms of their stability, the use of environmentally unfriendly chemicals, and the lack of an insightful understanding into structure–property relationships. Alternatively, pressure, a fundamental thermodynamic parameter that can significantly alter the atomic and electronic structures of functional materials, has been widely utilized to further our understanding of structure–property relationships, and also to enable emergent or enhanced properties of given materials. In this perspective, we describe the recent progress of high-pressure research on hybrid perovskites, particularly regarding pressure-induced novel phenomena and pressure-enhanced properties. We discuss the effect of pressure on structures and properties, their relationships and the underlying mechanisms. Finally, we give an outlook on future research avenues in which high pressure and related alternative methods such as chemical tailoring and interfacial engineering may lead to novel hybrid perovskites uniquely suited for high-performance energy applications. PMID:29147500
NASA Astrophysics Data System (ADS)
Llaver, Mauricio; Coronado, Eduardo A.; Wuilloud, Rodolfo G.
2017-12-01
A highly sensitive and efficient dispersive micro-solid phase extraction (D-μ-SPE) method was developed for inorganic Se speciation analysis. A novel ionic liquid (IL)-nanomaterial hybrid consisting of 1-dodecyl-3-methylimidazolium bromide-functionalized nanosilica was used for the efficient retention of Se(IV) complexed with ammonium pyrrolidine dithiocarbamate, followed by elution with an ethyl acetate/Triton X-114 mixture and determination by electrothermal atomic absorption spectroscopy. The Se(VI) species was selectively determined by difference between total inorganic Se and Se(IV) after pre-reduction. The IL-nanomaterial hybrid was characterized by Fourier transform infrared spectroscopy and transmission electronic microscopy. Likewise, Se(IV) sorption capacity of the retention material and maximum amount of IL loaded on its surface were determined. Several factors concerning the functionalization, extraction and elution steps were optimized, yielding a 100% extraction efficiency for Se(IV) under optimal conditions. A limit of detection of 1.1 ng L- 1, a relative standard deviation of 5.7% and a 110-fold enhancement factor were obtained. The D-μ-SPE method was successfully applied to several water samples from different origins and compositions, including rain, tap, underground, river and sea.
Reinersman, Phillip N; Carder, Kendall L
2004-05-01
A hybrid method is presented by which Monte Carlo (MC) techniques are combined with an iterative relaxation algorithm to solve the radiative transfer equation in arbitrary one-, two-, or three-dimensional optical environments. The optical environments are first divided into contiguous subregions, or elements. MC techniques are employed to determine the optical response function of each type of element. The elements are combined, and relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. One-dimensional results compare well with a standard radiative transfer model. The light field beneath and adjacent to a long barge is modeled in two dimensions and displayed. Ramifications for underwater video imaging are discussed. The hybrid model is currently capable of providing estimates of the underwater light field needed to expedite inspection of ship hulls and port facilities.
Top 10 "Smart" Technologies for Schools.
ERIC Educational Resources Information Center
Fodeman, Doug; Holzberg, Carol S.; Kennedy, Kristen; McIntire, Todd; McLester, Susan; Ohler, Jason; Parham, Charles; Poftak, Amy; Schrock, Kathy; Warlick, David
2002-01-01
Describes 10 smart technologies for education, including voice to text software; mobile computing; hybrid computing; virtual reality; artificial intelligence; telementoring; assessment methods; digital video production; fingerprint recognition; and brain functions. Lists pertinent Web sites for each technology. (LRW)
Design, processing and testing of LSI arrays hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Salmassy, S.
1978-01-01
Those factors affecting the cost of electronic subsystems utilizing LSI microcircuits were determined and the most efficient methods for low cost packaging of LSI devices as a function of density and reliability were developed.
Neural system modeling and simulation using Hybrid Functional Petri Net.
Tang, Yin; Wang, Fei
2012-02-01
The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.
A hybrid Pade-Galerkin technique for differential equations
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1993-01-01
A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
Carbon nanotube based hybrid nanostructures: Synthesis and applications
NASA Astrophysics Data System (ADS)
Ou, Fung Suong
Hybrid nanostructures are fascinating materials for their promising applications in future nanoelectronics, electrical interconnects and energy storage devices. Practical ways of connecting individual carbon nanotubes to metal contacts for their use as interconnects and in electronic devices have been challenging. In this thesis, carbon nanotube based hybrids that combine the best properties of carbon nanotubes and metal nanowires have been fabricated. The electrical properties and Raman spectra of the hybrid nanowires are also studied. This thesis will focus on our recent results in the development of carbon nanotube hybrids for various applications. Various hybrid structures of multiwalled carbon nanotubes and metal nanowires can be fabricated using a combination of electrodeposition and chemical vapor deposition techniques. Controlled fabrication of multi-segmented structures will be studied. Several novel applications of these structures, for example, as electrodes in ultra-high power supercapacitors, multi-functional smart materials are also studied. The thesis will also highlight the development of carbon nanotube hybrids based smart materials. Hybrid nanowires with hydrophobic carbon nanotube tails and hydrophilic metal nanowire heads, allows for the assembly of spheres in solution. The design and manipulation of these carbon nanotube hybrids based smart structures for various novel applications will be discussed. Such new class of carbon nanotube hybrids surfactants are likely to lead as new tools in various fields such as microfluidics or water purification. In addition, we will also look at other variations of hybrid nanostructures fabricated from our method.
NASA Astrophysics Data System (ADS)
Vasil'ev, V. A.; Dobrynina, N. V.
2017-01-01
The article presents data on the influence of information upon the functioning of complex systems in the process of ensuring their effective management. Ways and methods for evaluating multidimensional information that reduce time and resources, improve the validity of the studied system management decisions, were proposed.
Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster
NASA Astrophysics Data System (ADS)
Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA
2018-04-01
Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.
NASA Astrophysics Data System (ADS)
Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June
2014-12-01
Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.
Normal mode and experimental analysis of TNT Raman spectrum
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng
2017-04-01
In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.
A hybrid linear/nonlinear training algorithm for feedforward neural networks.
McLoone, S; Brown, M D; Irwin, G; Lightbody, A
1998-01-01
This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.
Bloemberg, Darin; Quadrilatero, Joe
2012-01-01
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.
Finite element model updating using the shadow hybrid Monte Carlo technique
NASA Astrophysics Data System (ADS)
Boulkaibet, I.; Mthembu, L.; Marwala, T.; Friswell, M. I.; Adhikari, S.
2015-02-01
Recent research in the field of finite element model updating (FEM) advocates the adoption of Bayesian analysis techniques to dealing with the uncertainties associated with these models. However, Bayesian formulations require the evaluation of the Posterior Distribution Function which may not be available in analytical form. This is the case in FEM updating. In such cases sampling methods can provide good approximations of the Posterior distribution when implemented in the Bayesian context. Markov Chain Monte Carlo (MCMC) algorithms are the most popular sampling tools used to sample probability distributions. However, the efficiency of these algorithms is affected by the complexity of the systems (the size of the parameter space). The Hybrid Monte Carlo (HMC) offers a very important MCMC approach to dealing with higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) steps as the global Monte Carlo (MC) moves to reach areas of high probability where the gradient of the log-density of the Posterior acts as a guide during the search process. However, the acceptance rate of HMC is sensitive to the system size as well as the time step used to evaluate the MD trajectory. To overcome this limitation we propose the use of the Shadow Hybrid Monte Carlo (SHMC) algorithm. The SHMC algorithm is a modified version of the Hybrid Monte Carlo (HMC) and designed to improve sampling for large-system sizes and time steps. This is done by sampling from a modified Hamiltonian function instead of the normal Hamiltonian function. In this paper, the efficiency and accuracy of the SHMC method is tested on the updating of two real structures; an unsymmetrical H-shaped beam structure and a GARTEUR SM-AG19 structure and is compared to the application of the HMC algorithm on the same structures.
Hybrid imaging: Instrumentation and Data Processing
NASA Astrophysics Data System (ADS)
Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas
2018-05-01
State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.
Optimization of a hybrid exchange-correlation functional for silicon carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Takuji; Zhang, Yanwen; Weber, William J
2013-01-01
A hybrid exchange-correlation functional is optimized in order to accurately describe the nature of silicon carbides (SiC) in the framework of ab-initio calculations based on density functional theory (DFT), especially with an aim toward future applications in defect studies. It is shown that the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the screening parameter of 0.15 -1 outperforms conventional exchange-correlation functionals and other popular hybrid functionals regarding description of band structures in SiC. High transferability is proven through assessment over various SiC polytypes, silicon and diamond. Excellent performance is also confirmed for other fundamental material properties including elastic constants and phonon frequency.
Absorption properties of metal-semiconductor hybrid nanoparticles.
Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten
2011-06-28
The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.
The one-electron oxidation of a dithiolate molecule: the importance of chemical intuition.
Bushnell, Eric A C; Burns, Thomas D; Boyd, Russell J
2014-05-14
A series of nine commonly used density functional methods were assessed to accurately predict the oxidation potential of the (C2H2S2(-2)/C2H2S2(•-)) redox couple. It was found that due to their greater tendency for charge delocalization the GGA functionals predict a structure where the radical electron is delocalized within the alkene backbone of C2H2S2(•-), whereas the hybrid functionals and the reference QCISD/cc-pVTZ predict that the radical electron remains localized on the sulfurs. However, chemical intuition suggests that the results obtained with the GGA functionals should be correct. Indeed, with the use of the geometries obtained at the HCTH/6-311++G(3df,3pd) level of theory both the QCISD and hybrid DFT methods yield a molecule with a delocalized electron. Notably, this new molecule lies at least 53 kJ mol(-1) lower in energy than the previously optimized one that had a localized radical. Using these new structures the calculated oxidation potential was found to be 2.71-2.97 V for the nine DFT functionals tested. The M06-L functional provided the best agreement with the QCISD/cc-pVTZ reference oxidation potential of 3.28 V.
A novel bioprinting method and system for forming hybrid tissue engineering constructs.
Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y
2015-12-18
Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance surrounding the conduit indicated that culture media effectively diffused through the conduit and fed the cells. The results suggest that the developed technology is potent to form functional TECs composed of rigid and soft biomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Zhang, Yuping; Zhou, Bingbing
2015-05-15
Aggregation-induced emission (AIE) luminogen, quaternary tetraphenylethene cation (TPEN), was successfully incorporated into layered α-zirconium phosphate (α-ZrP) by using co-precipitation method to form inorganic–organic hybrid materials. The obtained materials show the characteristic hexagonal platelet shape with the interlayer distance did not reveal significant difference compared with pure α-ZrP. In addition, the obtained hybrid materials emit strong blue emission centered at 476 nm in aqueous media due to the electrostatic interactions of TPEN with the anionic framework of α-ZrP, which largely restrict their intramolecular rotation. More importantly, the materials provide a pH dependent release of doxorubicin (DOX), suggesting that AIE luminogen functionalizedmore » α-ZrP may be used as an imaging guided and pH-responsive delivery system for targeting therapy. - Graphical abstract: AIE luminogen was successfully incorporated into layered α-zirconium phosphate by a co-precipitation method to form inorganic–organic hybrid materials, showing a pH dependent release of DOX. - Highlights: • AIE luminogen cation was incorporated into layered α-ZrP by co-precipitation method. • The obtained material emits strong blue emission upon UV irradiation. • The material exhibits pH dependent release of DOX. • The AIE functionalized α-ZrP has potential applications in imaging guided therapy.« less
Density functional study of double ionization energies
NASA Astrophysics Data System (ADS)
Chong, D. P.
2008-02-01
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.
de Souza, Israel D; Domingues, Diego S; Queiroz, Maria E C
2015-08-01
The present study (1) reports on the synthesis of two hybrid silica monoliths functionalized with aminopropyl or cyanopropyl groups by the sol-gel process; (2) evaluates these monoliths as selective stationary phase for microextraction by packed sorbent (MEPS) to determine drugs in plasma samples via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reactions monitoring (MRM) mode; and (3) discusses important factors related to the optimization of MEPS efficiency as well as the carryover effect. The prepared hybrid silica monoliths consisted of a uniform, porous, and continuous silica monolithic network. The structure of the aminopropyl hybrid silica monolith was more compact than the structure of the cyanopropyl hybrid silica monolith. The Fourier-transform infrared spectroscopy (FTIR) spectra of the hybrid silica monoliths displayed readily identifiable peaks, characteristic of the cyanopropyl and aminopropyl groups. Compared with the aminopropyl hybrid silica phase, the cyanopropyl hybrid silica phase exhibited higher binding capacity for most of the target drugs. The developed method afforded adequate linearity at concentrations ranging from the lower limit of quantification (0.05-1.00 ng mL(-1)) to the upper limit of quantification (40-10,500 ng mL(-1)); the coefficients of determination (r(2)) were higher than 0.9955. The precision of the method presented coefficients of variation (CV) lower than 14%; the relative standard error (RSE) of the accuracy ranged from -12% to 14%. The developed method allowed for simultaneous analysis of five antipsychotics (olanzapine, quetiapine, clozapine, haloperidol, and chlorpromazine) in combination with seven antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine, fluoxetine), two anticonvulsants (carbamazepine and lamotrigine), and two anxiolytics (diazepam and clonazepam) in plasma samples from schizophrenic patients, which should be valuable for therapeutic drug monitoring purposes. Copyright © 2015 Elsevier B.V. All rights reserved.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Bio-inspired Hybrid Carbon Nanotube Muscles
NASA Astrophysics Data System (ADS)
Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong
2016-05-01
There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursic, B.S.
1996-12-31
The results of the computational study of the structures, energies, dipole moments and IR spectra for a singlet and a triplet nitromethane are presented. Five different hybrids (BHandH, BHandHLYP, B3LYP, B3P86 and B3PW91), local (SVWN), and nonlocal (BLYP) DFT methods are used with various sizes of the gaussian type of basis set. The obtained results are compared to the HF, MP2, and MCSCF ab initio calculations, as well as, to the experimental results. Becke`s three functional based hybrid DFT methods outperform the following: the ab initio (HF, MP2 and MCSCF), the Becke`s half-and-half based DFT methods, and the local (SVWNmore » or LSDA) and nonlocal (BLYP) DFT methods. The computed nitromethane geometry, the dipole moment, the energy difference, and the IR frequency are in extraordinary agreement with the experimental results. Thus, we are recommending the B3LYP and the B3PW91 as the methods of choice when the computational study of small {open_quotes}difficult{close_quotes} molecules is considered.« less
a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar
NASA Astrophysics Data System (ADS)
Dehnavi, S.; Maghsoudi, Y.
2015-12-01
Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Design, fabrication, and operation of hybrid bionanodevices for biomedical applications
NASA Astrophysics Data System (ADS)
Tucker, Robert Matthew
Cells are the fundamental building blocks of life. Despite their simplicity, cells are extremely versatile, performing a variety of functions including detection, signaling, and repair. While current biomedical devices operate at the organ level, the next generation will operate at the cellular level, combining the nanoscale machinery of cells with the mechanical robustness of synthetic materials in the form of new hybrid devices. This thesis presents advances in four topics concerning the development of nanomedical devices: fabrication, stabilization, control, and operation. First, as feature sizes decrease from the milli- and microscale towards the nanoscale, new fabrication methods must be developed. A new rapid prototyping technique using confocal microscopy was used to produce freely-programmable high-resolution protein patterns of functional motor proteins on thermo-responsive polymer surfaces. Second, hybrid device operation should be temperature-independent, but most biological components have strong responses to temperature fluctuations. To counter operational fluctuations, the temperature-dependent enzymatic activity was characterized for two types of molecular motors with the goal of developing a bionanosystem which is stabilized against temperature fluctuations. Third, replacing electromechanical systems consisting of pumps and batteries with proteins that directly convert chemical potential into mechanical energy increases the efficiency and decreases the size of the bionanodevice, but requires new control methods. An enzymatic network was developed in which fuel was photolytically released to activate molecular shuttles, excess fuel was sequestered using an enzyme, and spatial and temporal control of the system was achieved. Finally, chemically powered bionanodevices will require high-precision nano- and microscale actuators. A two-part hybrid actuator was designed, which consists of a molecular motor-coated synthetic macroscale forcer and a microtubule-based stator. Methods to create and characterize the stator were developed, which can be used to optimize the force generation of the device.
2011-01-01
In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417
Controlled Photocatalytic Synthesis of Core–Shell SiC/Polyaniline Hybrid Nanostructures
Kormányos, Attila; Endrődi, Balázs; Ondok, Róbert; Sápi, András; Janáky, Csaba
2016-01-01
Hybrid materials of electrically conducting polymers and inorganic semiconductors form an exciting class of functional materials. To fully exploit the potential synergies of the hybrid formation, however, sophisticated synthetic methods are required that allow for the fine-tuning of the nanoscale structure of the organic/inorganic interface. Here we present the photocatalytic deposition of a conducting polymer (polyaniline) on the surface of silicon carbide (SiC) nanoparticles. The polymerization is facilitated on the SiC surface, via the oxidation of the monomer molecules by ultraviolet-visible (UV-vis) light irradiation through the photogenerated holes. The synthesized core–shell nanostructures were characterized by UV-vis, Raman, and Fourier Transformed Infrared (FT-IR) Spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy, and electrochemical methods. It was found that the composition of the hybrids can be varied by simply changing the irradiation time. In addition, we proved the crucial importance of the irradiation wavelength in forming conductive polyaniline, instead of its overoxidized, insulating counterpart. Overall, we conclude that photocatalytic deposition is a promising and versatile approach for the synthesis of conducting polymers with controlled properties on semiconductor surfaces. The presented findings may trigger further studies using photocatalysis as a synthetic strategy to obtain nanoscale hybrid architectures of different semiconductors. PMID:28773325
What correlation effects are covered by density functional theory?
NASA Astrophysics Data System (ADS)
He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter
The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.
Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias
2013-10-21
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.
Kurayama, Fumio; Suzuki, Satoru; Oyamada, Tetsuro; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru
2010-09-01
A new and facile method for preparing microcapsules with 3-aminopropyltriethoxysilane (APTES)/alginate hybrid shell (AP-capsule) is proposed based on gelling and sol-gel processes. In this method, conventional capsules with alginate shells (Alg-capsule) are produced by dripping carboxymethyl cellulose solution containing calcium chloride into a sodium alginate solution. Subsequently, addition of the Alg-capsules to an aqueous APTES solution induces the formation of APTES/alginate hybrid shells. The optical observation shows that the texture of AP-capsules is more glossy and transparent than that of Alg-capsules. The surface morphology and elemental composition of microcapsules were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). The results suggest that APTES molecules are incorporated to the framework of the alginate shells via electrostatic interaction between amino groups of APTES and carboxyl groups of alginate and the hybrid shells have a dense and homogeneous structure. In the formation reaction, the shrinking of the capsule shells occurs and the accumulation of APTES in the capsule shells proceeds with pseudo first-order kinetics. Moreover, these behaviors are greatly influenced by pH of the reaction solution, especially promoted under acidic and alkaline conditions. Copyright 2010 Elsevier Inc. All rights reserved.
Barbucci, Rolando; Giani, Gabriele; Fedi, Serena; Bottari, Severino; Casolaro, Mario
2012-12-01
Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface. The amino coating is determined and quantified by standard Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods, and by cyclic voltammetry, a novel approach that permits us to look at the solution properties of the functionalized NPs. The gel formation involves the creation of an amide bond between the carboxylic groups of CMC or HYAL and the amine groups of functionalized NPs, which work as crosslinking agents of the polymer chains. The hybrid hydrogels are chemically and morphologically characterized. The rheological and the water uptake properties of the hydrogels are also investigated. Under the application of an alternating magnetic field, the CMC-HYAL hybrid hydrogel previously loaded with doxorubicin shows a drug release greater than that showed by the CMC-HYAL hydrogel crosslinked with 1,3-diaminopropane. In conclusion, the presence of magnetic NPs makes the synthesized hybrid hydrogels suitable for application as a drug-delivery system by means of alternating magnetic fields. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.
Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang
2011-05-01
A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in
2014-09-21
By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less
Arbuznikov, Alexei V; Kaupp, Martin
2012-01-07
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
Sancho-García, J C
2011-09-13
Highly accurate coupled-cluster (CC) calculations with large basis sets have been performed to study the binding energy of the (CH)12, (CH)16, (CH)20, and (CH)24 polyhedral hydrocarbons in two, cage-like and planar, forms. We also considered the effect of other minor contributions: core-correlation, relativistic corrections, and extrapolations to the limit of the full CC expansion. Thus, chemically accurate values could be obtained for these complicated systems. These nearly exact results are used to evaluate next the performance of main approximations (i.e., pure, hybrid, and double-hybrid methods) within density functional theory (DFT) in a systematic fashion. Some commonly used functionals, including the B3LYP model, are affected by large errors, and only those having reduced self-interaction error (SIE), which includes the last family of conjectured expressions (double hybrids), are able to achieve reasonable low deviations of 1-2 kcal/mol especially when an estimate for dispersion interactions is also added.
Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems
NASA Astrophysics Data System (ADS)
Vasant, P.; Barsoum, N.
2010-06-01
In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.
Ion beam figuring of highly steep mirrors with a 5-axis hybrid machine tool
NASA Astrophysics Data System (ADS)
Yin, Xiaolin; Tang, Wa; Hu, Haixiang; Zeng, Xuefeng; Wang, Dekang; Xue, Donglin; Zhang, Feng; Deng, Weijie; Zhang, Xuejun
2018-02-01
Ion beam figuring (IBF) is an advanced and deterministic method for optical mirror surface processing. The removal function of IBF varies with the different incident angles of ion beam. Therefore, for the curved surface especially the highly steep one, the Ion Beam Source (IBS) should be equipped with 5-axis machining capability to remove the material along the normal direction of the mirror surface, so as to ensure the stability of the removal function. Based on the 3-RPS parallel mechanism and two dimensional displacement platform, a new type of 5-axis hybrid machine tool for IBF is presented. With the hybrid machine tool, the figuring process of a highly steep fused silica spherical mirror is introduced. The R/# of the mirror is 0.96 and the aperture is 104mm. The figuring result shows that, PV value of the mirror surface error is converged from 121.1nm to32.3nm, and RMS value 23.6nm to 3.4nm.
Yoo, Changhee; Do, Hyun-Ah; Jeong, In Gab; Park, Hongzoo; Hwang, Jung-Jin; Hong, Jun Hyuk; Cho, Jin Seon; Choo, Myong-Soo; Ahn, Hanjong
2010-01-01
Dendritic cells (DCs) are potent antigen-presenting cells. OK432 (Picibanil®) was introduced as a potent stimulator of DC maturation in combination with prostaglandin-E2 and interferon-α. We compared the efficacy of a DC-prostate cancer vaccine using early-mature DCs stimulated with OK432, PGE2 and INF-α (OPA) with that of vaccines using other methods. On days 3 or 7 of DC culture, TNF-α (T), TNF-α and LPS (TL) or OPA were employed as maturation stimulators. DU145 cells subjected to heat stress were hybridized with mature DCs using polyethyleneglycol. T cells were sensitized by the hybrids, and their proliferative and cytokine secretion activities and cytotoxicity were measured. The yields of early-mature DCs were higher, compared to yields at the conventional maturation time (P<0.05). In the early maturation setting, the mean fusion ratios, calculated from the fraction of dual-positive cells, were 13.3%, 18.6%, and 39.9%, respectively (P=0.051) in the T only, TL, and OPA-treated groups. The function of cytotoxic T cells, which were sensitized with the hybrids containing DCs matured early with OPA, was superior to that using other methods. The antitumor effects of DC-DU145 hybrids generated with DCs subjected to early maturation with the OPA may be superior to that of the hybrids using conventional maturation methods. PMID:20808670
Yoo, Changhee; Do, Hyun-Ah; Jeong, In Gab; Park, Hongzoo; Hwang, Jung-Jin; Hong, Jun Hyuk; Cho, Jin Seon; Choo, Myong-Soo; Ahn, Hanjong; Kim, Choung-Soo
2010-09-01
Dendritic cells (DCs) are potent antigen-presenting cells. OK432 (Picibanil) was introduced as a potent stimulator of DC maturation in combination with prostaglandin-E(2) and interferon-alpha. We compared the efficacy of a DC-prostate cancer vaccine using early-mature DCs stimulated with OK432, PGE2 and INF-alpha (OPA) with that of vaccines using other methods. On days 3 or 7 of DC culture, TNF-alpha (T), TNF-alpha and LPS (TL) or OPA were employed as maturation stimulators. DU145 cells subjected to heat stress were hybridized with mature DCs using polyethyleneglycol. T cells were sensitized by the hybrids, and their proliferative and cytokine secretion activities and cytotoxicity were measured. The yields of early-mature DCs were higher, compared to yields at the conventional maturation time (P<0.05). In the early maturation setting, the mean fusion ratios, calculated from the fraction of dual-positive cells, were 13.3%, 18.6%, and 39.9%, respectively (P=0.051) in the T only, TL, and OPA-treated groups. The function of cytotoxic T cells, which were sensitized with the hybrids containing DCs matured early with OPA, was superior to that using other methods. The antitumor effects of DC-DU145 hybrids generated with DCs subjected to early maturation with the OPA may be superior to that of the hybrids using conventional maturation methods.
Interference coupling analysis based on a hybrid method: application to a radio telescope system
NASA Astrophysics Data System (ADS)
Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi
2018-02-01
Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.
NASA Astrophysics Data System (ADS)
Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing
2018-03-01
Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.
Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.
Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk
2015-11-09
Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.
Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors
Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk
2015-01-01
Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm−1. As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm2 V−1 s−1, Ion/Ioff > 104), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices. PMID:26549711
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
NASA Astrophysics Data System (ADS)
Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao
2018-03-01
This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.
Hybrid vehicle assessment. Phase 1: Petroleum savings analysis
NASA Technical Reports Server (NTRS)
Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.
1984-01-01
The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-02-01
The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.
Jana, Subrata; Samal, Prasanjit
2018-03-28
The range-separated hybrid density functionals are very successful in describing a wide range of molecular and solid-state properties accurately. In principle, such functionals are designed from spherically averaged or system averaged as well as reverse engineered exchange holes. In the present attempt, the screened range-separated hybrid functional scheme has been applied to the meta-GGA rung by using the density matrix expansion based semilocal exchange hole (or functional). The hybrid functional proposed here utilizes the spherically averaged density matrix expansion based exchange hole in the range separation scheme. For slowly varying density correction the range separation scheme is employed only through the local density approximation based exchange hole coupled with the corresponding fourth order gradient approximate Tao-Mo enhancement factor. The comprehensive testing and performance of the newly constructed functional indicates its applicability in describing several molecular properties. The most appealing feature of this present screened hybrid functional is that it will be practically very useful in describing solid-state properties at the meta-GGA level.
Activation of different split functionalities upon re-association of RNA-DNA hybrids
Afonin, Kirill A.; Viard, Mathias; Martins, Angelica N.; Lockett, Stephen J.; Maciag, Anna E.; Freed, Eric O.; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A.
2013-01-01
Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of the protein functions and improved detection sensitivity. Here we show a similar technique based on a pair of RNA-DNA hybrids that can be generally used for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept this work is mainly focused on activation of RNA interference; however the release of other functionalities (resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing. This split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications. PMID:23542902
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; Thamir, Amin D.; Ahmed, Duha S.; Mohammad, M. R.
2016-07-01
In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO3:H2SO4 (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° and 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24h in shaker incubator with percentage of inhibition approaching 100%.
NASA Astrophysics Data System (ADS)
Yannopapas, V.; Paspalakis, E.
2018-05-01
We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
2015-07-21
biosensor. The insets show a magnified view of the SiNW channel region (W = 55 nm). ( c ) Photograph of the biosensor chip fabricated via a top-down method...of the SiNW FET is 147 mV/decade. (b) VT and ( c ) ISINW at different pH levels; these values were extracted from Fig. 2a. VT was extracted using the...function of pH level in the hybrid biosensor. The extracted current change is 5.5 × 105 (=5.74 decade per pH). ( c ) Transient response of IMOSFET while
Hybrid force-velocity sliding mode control of a prosthetic hand.
Engeberg, Erik D; Meek, Sanford G; Minor, Mark A
2008-05-01
Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Zhang, Jing; Zhang, Bailin; Tang, Jilin
2012-12-01
Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs.Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32092d
Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio
2017-01-01
Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803
Programmable Assembly of Hybrid Nanoclusters.
Ni, Songbo; Wolf, Heiko; Isa, Lucio
2018-02-20
Hybrid nanoparticle clusters (often metallic) are interesting plasmonic materials with tunable resonances and a near-field electromagnetic enhancement at interparticle junctions. Therefore, in recent years, we have witnessed a surge in both the interest in these materials and the efforts to obtain them. However, a versatile fabrication of hybrid nanoclusters, that is, combining more than one material, still remains an open challenge. Current lithographical or self-assembly methods are limited to the preparation of hybrid clusters with up to two different materials and typically to the fabrication of hybrid dimers. Here, we provide a novel strategy to deposit and align not only hybrid dimers but also hybrid nanoclusters possessing more complex shapes and compositions. Our strategy is based on the downscaling of sequential capillarity-assisted particle assembly over topographical templates. As a proof of concept, we demonstrate dimers, linear trimers, and 2D nanoclusters with programmable compositions from a range of metallic nanoparticles. Our process does not rely on any specific chemistry and can be extended to a large variety of particles and shapes. The template also simultaneously aligns the hybrid (often anisotropic) nanoclusters, which could facilitate device integration, for example, for optical readout after transfer to other substrates by a printing step. We envisage that this new fabrication route will enable the assembly and positioning of complex hybrid nanoclusters of different functional nanoparticles to study coupling effects not only locally but also at larger scales for new nanoscale optical devices.
NASA Astrophysics Data System (ADS)
Schmidt, Barnet Michael
An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.
NASA Astrophysics Data System (ADS)
Shi, Bingfang; Su, Yubin; Zhao, Jingjin; Liu, Rongjun; Zhao, Yan; Zhao, Shulin
2015-10-01
A room temperature reducing agent-free strategy for the synthesis of a nitrogen-doped graphene quantum dot-silver nanoparticle (N-GQD/AgNP) hybrid was presented. In this strategy, N-GQDs were used as a reducing agent and stabilizer for the formation of the N-GQD/AgNP hybrid, and the formation of the N-GQD/AgNP hybrid may result from the extraordinary reduction properties of N-GQDs, which are attributed to the nature of the surface oxygen-containing functional groups. The N-GQD/AgNP hybrid exhibits good dispersity and outstanding catalytic ability toward the oxidation of catechol (CC) and hydroquinone (HQ) by Ag+. In the presence of the N-GQD/AgNP hybrid, the reduction of Ag+ by CC and HQ was improved. CC enhanced the absorbance of the N-GQD/AgNP-Ag+ system the most, and HQ followed, while resorcinol (RC) had only a little effect on the absorption intensity of the system. Thus, a sensitive and selective colorimetric sensing method based on the N-GQD/AgNP-Ag+ system was developed for the discrimination of CC, HQ and RC. A good linear relationship was obtained from 0.1 to 15.0 μM for CC and from 0.3 to 20.0 μM for HQ. The detection limits of CC and HQ were 0.03 and 0.1 μM, respectively. In addition, the proposed method also shows a high selectivity for the detection of CC and HQ, and appreciable changes in color of the N-GQD/AgNP-Ag+ system toward CC, RC and HQ were observed.A room temperature reducing agent-free strategy for the synthesis of a nitrogen-doped graphene quantum dot-silver nanoparticle (N-GQD/AgNP) hybrid was presented. In this strategy, N-GQDs were used as a reducing agent and stabilizer for the formation of the N-GQD/AgNP hybrid, and the formation of the N-GQD/AgNP hybrid may result from the extraordinary reduction properties of N-GQDs, which are attributed to the nature of the surface oxygen-containing functional groups. The N-GQD/AgNP hybrid exhibits good dispersity and outstanding catalytic ability toward the oxidation of catechol (CC) and hydroquinone (HQ) by Ag+. In the presence of the N-GQD/AgNP hybrid, the reduction of Ag+ by CC and HQ was improved. CC enhanced the absorbance of the N-GQD/AgNP-Ag+ system the most, and HQ followed, while resorcinol (RC) had only a little effect on the absorption intensity of the system. Thus, a sensitive and selective colorimetric sensing method based on the N-GQD/AgNP-Ag+ system was developed for the discrimination of CC, HQ and RC. A good linear relationship was obtained from 0.1 to 15.0 μM for CC and from 0.3 to 20.0 μM for HQ. The detection limits of CC and HQ were 0.03 and 0.1 μM, respectively. In addition, the proposed method also shows a high selectivity for the detection of CC and HQ, and appreciable changes in color of the N-GQD/AgNP-Ag+ system toward CC, RC and HQ were observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04659a
Liu, Jikun; Zhao, Jiangqin; Petrochenko, Peter; Zheng, Jiwen; Hewlett, Indira
2016-12-15
In an effort to develop new tools for diagnosing influenza in resource-limited settings, we fabricated a polycarbonate (PC)-polydimethylsiloxane (PDMS) hybrid microchip using a simple epoxy silica sol-gel coating/bonding method and employed it in sensitive detection of influenza virus with Europium nanoparticles (EuNPs). The incorporation of sol-gel material in device fabrication provided functionalized channel surfaces ready for covalent immobilization of primary antibodies and a strong bonding between PDMS substrates and PC supports without increasing background fluorescence. In microchip EuNP immunoassay (µENIA) of inactivated influenza viruses, replacing native PDMS microchips with hybrid microchips allowed the achievement of a 6-fold increase in signal-to-background ratio, a 12-fold and a 6-fold decreases in limit-of-detection (LOD) in influenza A and B tests respectively. Using influenza A samples with known titers, the LOD of influenza µENIA on hybrid microchips was determined to be ~10(4) TCID50 titer/mL and 10(3)-10(4) EID50 titer/mL. A comparison test indicated that the sensitivity of influenza µENIA enhanced using the hybrid microchips even surpassed that of a commercial laboratory influenza ELISA test. In addition to the sensitivity improvement, assay variation was clearly reduced when hybrid microchips instead of native PDMS microchips were used in the µENIA tests. Finally, infectious reference viruses and nasopharyngeal swab patient specimens were successfully tested using μENIA on hybrid microchip platforms, demonstrating the potential of this unique microchip nanoparticle assay in clinical diagnosis of influenza. Meanwhile, the tests showed the necessity of using nucleic acid confirmatory tests to clarify ambiguous test results obtained from prototype or developed point-of-care testing devices for influenza diagnosis. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Godfrey-Kittle, Andrew; Cafiero, Mauricio
We present density functional theory (DFT) interaction energies for the sandwich and T-shaped conformers of substituted benzene dimers. The DFT functionals studied include TPSS, HCTH407, B3LYP, and X3LYP. We also include Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory calculations (MP2), as well as calculations using a new functional, P3LYP, which includes PBE and HF exchange and LYP correlation. Although DFT methods do not explicitly account for the dispersion interactions important in the benzene-dimer interactions, we find that our new method, P3LYP, as well as HCTH407 and TPSS, match MP2 and CCSD(T) calculations much better than the hybrid methods B3LYP and X3LYP methods do.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.
2015-11-14
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Keqing; Wang, Biao; Liu, Jiajia
Highlights: • In this paper, α-FeOOH/rGO hybrids had been prepared by a facile hydrothermal method. • The addition of the α-FeOOH/rGO hybrids showed a significant effect on the thermal stability and smoke suppression properties of PS composites. • Graphene can be employed to improve the smoke suppression properties of polymer and further extended the application of graphene. - Abstract: In this work, α-FeOOH/rGO hybrids were firstly prepared by a facile hydrothermal method. X-ray diffraction and transmission electron microscopy results indicated that α-FeOOH nanoparticles were dispersed uniformly on the surface of graphene nanosheets. Subsequently, the α-FeOOH/rGO hybrids were incorporated into polystyrenemore » (PS) matrix for the improvement of the thermal stability and smoke suppression properties. It was found that the thermal stability of PS nanocomposite was obviously enhanced upon the introduction of 2.0 wt% α-FeOOH/rGO hybrids. Furthermore, the addition of α-FeOOH/rGO hybrids could improve the smoke suppression properties of PS nanocomposites, as evidenced by the dramatical reduction of carbon monoxide production rate, total smoke release and total smoke production. The total flammable gaseous products from the PS nanocomposites were decreased which further led to the inhibition of smoke. Such a significant improvement in thermal stability and smoke suppression properties was mainly attributed to the physical barrier effect of graphene nanosheets and the catalytic carbonization function of α-FeOOH nanoparticles.« less
Lead-acid batteries in micro-hybrid vehicles
NASA Astrophysics Data System (ADS)
Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr
More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.
NASA Astrophysics Data System (ADS)
Ramesh, Sivalingam; Sivasamy, Arumugam; Kim, Joo-Hyung
2012-06-01
Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol-gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol-gel process via covalent bonding between the organic-inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and γ-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials.
Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi
2014-01-01
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435
Construction and application of a new dual-hybrid random phase approximation.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Kállay, Mihály
2015-10-13
The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N(4) with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Diels-Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy.
Removing Barriers for Effective Deployment of Intermittent Renewable Generation
NASA Astrophysics Data System (ADS)
Arabali, Amirsaman
The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation and congestion costs over a scheduling period. A technical assessment framework is developed to enhance the efficiency of wind integration and evaluate the economics of storage technologies and conventional gas-fired alternatives. The proposed method is used to carry out a cost-benefit analysis for the IEEE 24-bus system and determine the most economical technology. In order to mitigate the financial and technical concerns of renewable energy integration into the power system, a stochastic framework is proposed for transmission grid reinforcement studies in a power system with wind generation. A multi-stage multi-objective transmission network expansion planning (TNEP) methodology is developed which considers the investment cost, absorption of private investment and reliability of the system as the objective functions. A Non-dominated Sorting Genetic Algorithm (NSGA II) optimization approach is used in combination with a probabilistic optimal power flow (POPF) to determine the Pareto optimal solutions considering the power system uncertainties. Using a compromise-solution method, the best final plan is then realized based on the decision maker preferences. The proposed methodology is applied to the IEEE 24-bus Reliability Tests System (RTS) to evaluate the feasibility and practicality of the developed planning strategy.
Kamneva, Olga K; Rosenberg, Noah A
2017-01-01
Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378
NASA Astrophysics Data System (ADS)
Liu, Jiangguo; Tavener, Simon; Wang, Zhuoran
2018-04-01
This paper investigates the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces, specifically RT0 for triangles and unmapped RT[0] for quadrilaterals. These discrete weak gradients are used to approximate the classical gradient when solving the Darcy equation. The method produces continuous normal fluxes and is locally mass-conservative, regardless of mesh quality, and has optimal order convergence in pressure, velocity, and normal flux, when the quadrilaterals are asymptotically parallelograms. Implementation is straightforward and results in symmetric positive-definite discrete linear systems. We present numerical experiments and comparisons with other existing methods.
NASA Astrophysics Data System (ADS)
Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung
2015-04-01
Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.
ERIC Educational Resources Information Center
Underwood, William B.; Hernandez-Gantes, Victor M.
2017-01-01
The purpose of this study was to determine whether student outcomes are a function of participation in different modes of delivery and student age in an Opticianry program at the community college level. The three instructional delivery methods were traditional face-to-face instruction, online delivery, and a hybrid format where students take…
Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii
2017-01-01
ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains. PMID:29269498
Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.
Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola
2018-03-01
Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains. Copyright © 2018 Ortiz-Merino et al.
Crack-healing function of metal/Al2O3 hybrid materials
NASA Astrophysics Data System (ADS)
Nanko, M.; Maruoka, D.; Nguyen, T. D.
2011-10-01
Nano-Ni/Al2O3 hybrid materials have the crack-healing function by thermal oxidation process such as 1200°C for 6 h in air. In this hybrid material system, crack was filled up by an oxidation product, NiAl2O4, via outward diffusion of cations along grain boundaries of Al2O3 matrix. Ni/Al2O3 with Y2O3 doping and SiC+Ni/Al2O3 nano-hybrid materials have similar crack-healing performance with better oxidation resistance at high temperatures than Ni/Al2O3 nano-hybrid materials. Mo/Al2O3 hybrid materials were studied on a candidate with crack-healing function via thermal oxidation process at temperatures as low as 700°C.
Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia
2018-06-07
Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.
Energy level alignment at hybridized organic-metal interfaces from a GW projection approach
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying
Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.
Hybrid Enhanced Epidermal SpaceSuit Design Approaches
NASA Astrophysics Data System (ADS)
Jessup, Joseph M.
A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.
2012-01-01
A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs. PMID:22315992
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Zhang, Yonghe
2010-01-01
Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444
Higher Order Bases in a 2D Hybrid BEM/FEM Formulation
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.
2002-01-01
The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shunsuke A.; Taniguchi, Yasutaka; Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functionalmore » which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.« less
Resonant frequency calculations using a hybrid perturbation-Galerkin technique
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1991-01-01
A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.
Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton; ...
2017-05-24
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-08
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn
Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications
USDA-ARS?s Scientific Manuscript database
Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer st...
Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi; Schlaf, Rudy, E-mail: schlaf@usf.edu; Mazzio, Katherine A.
Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials,more » which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.« less
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
NASA Astrophysics Data System (ADS)
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
Lindsay, A E; Spoonmore, R T; Tzou, J C
2016-10-01
A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full probability distribution of capture times of a random walker by multiple small traps located inside a bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate the variance in the capture time of a random walker by a single interior trap and determine this quantity to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of typical capture times and that the full density must be determined. To solve the underlying diffusion equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source that permits the solution of the transform equation to be represented as a superposition of Helmholtz Green's functions. Using this solution, we construct asymptotic short-time solutions of the first-passage-time density, which captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the Helmholtz Green's function is employed followed by numerical inversion of the Laplace transform, the method reproduces the density for larger times. We demonstrate the accuracy of our solution technique with a comparison to statistics obtained from a time-dependent solution of the diffusion equation and discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the multimodal behavior in the capture time density that arises when the traps are strategically arranged. The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap shapes.
Kamei, Yasuhiro; Itou, Junji; Oda, Shoji; Masui, Mami; Kim, Jin-Hyeong; Ishikawa, Tomoko; Yuba, Shunsuke; Kinoshita, Masato; Mitani, Hiroshi; Todo, Takeshi
2007-12-01
Medaka is a small Asian freshwater teleost and has been an excellent model for fertilization studies for more than 50 years. Therefore, experimental procedures for in vitro fertilization (IVF) and cryopreservation of sperm are well established. In contrast, since the eggs or early embryos can not be cryopreserved, many females are killed to obtain unfertilized eggs for IVF. Recent progress in genomics is establishing medaka as a new model animal in functional genomics, and numerous mutant and transgenic strains have been established and stored as frozen sperm. Accumulated preserved resources require a simple and reliable recovery method for IVF. In this paper, we describe a method for obtaining a large number of unfertilized eggs without killing females, using sterile interspecific hybrids between Oryzias latipes and O. curvinotus. However, there is no report about the normality of offspring that were obtained by IVF using unfertilized eggs spawned in mating with the sterile hybrid male. In this paper, we have confirmed the reliability of the method regarding the influences on the next generation and also assessed conditions for efficient collection of unfertilized eggs. The method would be useful not only for fertilization studies but also for keeping transgenics and mutants, including a mutant library for a reverse genetic approach.
Band gap bowing and crossing of BxGa1-xN alloy investigated by hybrid functional method
NASA Astrophysics Data System (ADS)
Jiaping, Jiang; Yanqin, Gai; Gang, Tang
2016-02-01
The electronic properties of zinc-blende BxGa1-xN alloys are comparatively investigated by employing both the Perdewe-Burkee-Ernzerhof generalized-gradient approximation (PBE-GGA) and the Heyd-Scuseria-Ernzerhof screened hybrid functional methods (HSE06). HSE06 reproduced much closer ground-state properties to experiments. Large and composition-dependent bowing parameters bγ for the direct band gaps were obtained from both PBE and HSE06. The crossover composition where alloy switches from direct to indirect was predicted to occur at very similar x from PBE and HSE06. We can obtain direct gap BxGa1-xN with a gap value much larger than that of GaN by alloying x < 0.557 boron into GaN. Project supported by the Fundamental Research Funds for the Central Universities (No. 2010LKWL03), the Special Fund for Theoretical Physics (No. 11047130), and the National Natural Science Foundation of China (No. 11104345).
Preparation and characterization of functional material based on hybrid polymer composites
NASA Astrophysics Data System (ADS)
Agusu, La; Amiruddin; Taswito, Chen Chen; Herdianto; Zamrun, Muh.
2016-08-01
The microstructures and properties of hybrid polymer composites based on polyaniline (PANi)/γ-Fe2O3 nanoparticles/TiO2/carbon have been investigated for multifunctional applications such as heavy metal removal and initial study for radar absorbing material application. γ-Fe2O3 nanoparticles with spherical shape were synthetized by a coprecipitation method from iron sand. By activating the polyethylene glycol (PEG-400) coated carbon of coconut shell, the homogenous shape and size of carbon was achieved. Then, γ- Fe2O3, TiO2, and carbon were mixed with PANi by an in situ polymerization method at low temperature 0-5 oC. Characterization process involved XRD, SEM, FTIR, VSM, and DC conductivity measurements. For radar absorber application, the functionalized polymer composites showed good electrical conductivity 0.45 S/cm to absorb the incoming electromagnetic energy. An efficient and effective reduction of Pb2+ ion from the water has been achieved by using this material.
Nanoscale lamellar photoconductor hybrids and methods of making same
Stupp, Samuel I; Goldberger, Josh; Sofos, Marina
2013-02-05
An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d.sub.1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d.sub.2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d.sub.1+d.sub.2, and wherein d.sub.1 and d.sub.2 satisfy the relationship of d.sub.1.ltoreq.d.sub.2.ltoreq.3d.sub.1.
NASA Astrophysics Data System (ADS)
Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi
2015-08-01
We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.
NASA Astrophysics Data System (ADS)
Franco, J. M.; Rández, L.
The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barajas-Solano, David A.; Tartakovsky, A. M.
2016-10-13
We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomainmore » $$\\Omega^{hs}$$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $$\\Omega^{hs}$$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $$\\Omega^{hs}$$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.« less
Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.
Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan
2016-01-01
Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.
Tavares, Anthony J; Noor, M Omair; Uddayasankar, Uvaraj; Krull, Ulrich J; Vannoy, Charles H
2014-01-01
Semiconductor quantum dots (QDs) have long served as integral components in signal transduction modalities such as Förster resonance energy transfer (FRET). The majority of bioanalytical methods using QDs for FRET-based techniques simply monitor binding-induced conformational changes. In more recent work, QDs have been incorporated into solid-phase support systems, such as microfluidic chips, to serve as physical platforms in the development of functional biosensors and bioprobes. Herein, we describe a simple strategy for the transduction of nucleic acid hybridization that combines a novel design method based on FRET with an electrokinetically controlled microfluidic technology, and that offers further potential for amelioration of sample-handling issues and for simplification of dynamic stringency control.
Skull defect reconstruction based on a new hybrid level set.
Zhang, Ziqun; Zhang, Ran; Song, Zhijian
2014-01-01
Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.
An item-oriented recommendation algorithm on cold-start problem
NASA Astrophysics Data System (ADS)
Qiu, Tian; Chen, Guang; Zhang, Zi-Ke; Zhou, Tao
2011-09-01
Based on a hybrid algorithm incorporating the heat conduction and probability spreading processes (Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 4511), in this letter, we propose an improved method by introducing an item-oriented function, focusing on solving the dilemma of the recommendation accuracy between the cold and popular items. Differently from previous works, the present algorithm does not require any additional information (e.g., tags). Further experimental results obtained in three real datasets, RYM, Netflix and MovieLens, show that, compared with the original hybrid method, the proposed algorithm significantly enhances the recommendation accuracy of the cold items, while it keeps the recommendation accuracy of the overall and the popular items. This work might shed some light on both understanding and designing effective methods for long-tailed online applications of recommender systems.
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
Bates, J E; Mezei, P D; Csonka, G I; Sun, J; Ruzsinszky, A
2017-01-10
Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.
Zhou, Zi-Fei; Sun, Tuan-Wei; Chen, Feng; Zuo, Dong-Qing; Wang, Hong-Sheng; Hua, Ying-Qi; Cai, Zheng-Dong; Tan, Jun
2017-03-01
Biocompatibility, biodegradability and bioactivity are significantly important in practical applications of various biomaterials for bone tissue engineering. Herein, we develop a functional inorganic-organic hybrid system of calcium phosphate-phosphorylated adenosine (CPPA). Both calcium phosphate and phosphorylated adenosine molecules in CPPA are fundamental components in mammalians and play important roles in biological metabolism. In this work, we report our three leading research qualities: (1) CPPA hybrid microspheres with hollow and porous structure are synthesized by a facile one-step microwave-assisted solvothermal method; (2) CPPA hybrid microspheres show high doxorubicin loading capacity and pH-responsive drug release properties, and demonstrate positive therapeutic effects on six osteosarcoma cell lines in vitro and a mouse model of 143B osteosarcoma subcutaneous tumor in vivo; (3) CPPA hybrid microspheres are favorable to promote osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) by activating the AMPK pathway, with satisfactory evidences from cellular alkaline phosphatase staining, alizarin red staining, real time PCR and western analysis. The as-prepared CPPA hybrid microspheres are promising in anti-osteosarcoma and bone regeneration, which simultaneously display excellent properties on drug delivery and osteogenic differentiation of hBMSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaoyin
The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less
Adhikari, Prashanta Dhoj; Jeon, Seunghan; Cha, Myoung-Jun; Jung, Dae Sung; Kim, Yooseok; Park, Chong-Yun
2014-02-01
We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT-G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT-G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT-G structure and p-n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT-G hybrids with the present technique could provide an efficient, novel route to device fabrication.
Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Paine, Jeffrey S. N.; Rogers, Craig A.
1996-01-01
Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which perforation is initiated. Results suggest that the out-of-plane transverse shear properties of the composite and nitinol elements have a significant effect on the perforation resistance. Applications that can utilize the hybrid composites effectively will also be presented with the experimental studies.
Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
Massively parallel sparse matrix function calculations with NTPoly
NASA Astrophysics Data System (ADS)
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
HyDe: a Python Package for Genome-Scale Hybridization Detection.
Blischak, Paul D; Chifman, Julia; Wolfe, Andrea D; Kubatko, Laura S
2018-03-19
The analysis of hybridization and gene flow among closely related taxa is a common goal for researchers studying speciation and phylogeography. Many methods for hybridization detection use simple site pattern frequencies from observed genomic data and compare them to null models that predict an absence of gene flow. The theory underlying the detection of hybridization using these site pattern probabilities exploits the relationship between the coalescent process for gene trees within population trees and the process of mutation along the branches of the gene trees. For certain models, site patterns are predicted to occur in equal frequency (i.e., their difference is 0), producing a set of functions called phylogenetic invariants. In this paper we introduce HyDe, a software package for detecting hybridization using phylogenetic invariants arising under the coalescent model with hybridization. HyDe is written in Python, and can be used interactively or through the command line using pre-packaged scripts. We demonstrate the use of HyDe on simulated data, as well as on two empirical data sets from the literature. We focus in particular on identifying individual hybrids within population samples and on distinguishing between hybrid speciation and gene flow. HyDe is freely available as an open source Python package under the GNU GPL v3 on both GitHub (https://github.com/pblischak/HyDe) and the Python Package Index (PyPI: https://pypi.python.org/pypi/phyde).
Wang, Hui; Chen, Qianwang; Zhou, Shuiqin
2018-06-05
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-01-01
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239
NASA Astrophysics Data System (ADS)
Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk
2013-05-01
We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.
Quadratic adaptive algorithm for solving cardiac action potential models.
Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing
2016-10-01
An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Milton, James A.; Patole, Samson; Yin, Huabing; Xiao, Qiang; Brown, Tom; Melvin, Tracy
2013-01-01
Although strategies for the immobilization of DNA oligonucleotides onto surfaces for bioanalytical and top-down bio-inspired nanobiofabrication approaches are well developed, the effect of introducing spacer molecules between the surface and the DNA oligonucleotide for the hybridization of nanoparticle–DNA conjugates has not been previously assessed in a quantitative manner. The hybridization efficiency of DNA oligonucleotides end-labelled with gold nanoparticles (1.4 or 10 nm diameter) with DNA sequences conjugated to silicon surfaces via hexaethylene glycol phosphate diester oligomer spacers (0, 1, 2, 6 oligomers) was found to be independent of spacer length. To quantify both the density of DNA strands attached to the surfaces and hybridization with the surface-attached DNA, new methodologies have been developed. Firstly, a simple approach based on fluorescence has been developed for determination of the immobilization density of DNA oligonucleotides. Secondly, an approach using mass spectrometry has been created to establish (i) the mean number of DNA oligonucleotides attached to the gold nanoparticles and (ii) the hybridization density of nanoparticle–oligonucleotide conjugates with the silicon surface–attached complementary sequence. These methods and results will be useful for application with nanosensors, the self-assembly of nanoelectronic devices and the attachment of nanoparticles to biomolecules for single-molecule biophysical studies. PMID:23361467
NASA Astrophysics Data System (ADS)
Yi, Xiuying; Long, Mengqiu; Liu, Anhua; Li, Mingjun; Xu, Hui
2018-05-01
Graphene nanoribbons (GNRs) can be mainly classified into armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) by different edge chiral directions. In this work, by introducing Stone-Wales defects on the edges of the V-shaped aGNRs, we propose a kind of armchair/zigzag edge hybridized GNRs (a/zHGNRs) and using the density functional theory and the nonequilibrium Green's function method, the band structures and electronic transport properties of the a/zHGNRs have been calculated. Our results show that an indirect bandgap appears in the band structures of the a/zHGNRs, which is very different from the direct bandgap of aGNRs and gapless of zGNRs. We also find that the valance band is mainly derived from the armchair partial atoms on the hybridized edge, while the conduction band comes mainly from the zigzag partial atoms of the hybridized edge. Meanwhile, the bandgap also oscillates with a period of three when the ribbon width increases. In addition, our quantum transport calculations show that there is a remarkable transition between the semiconductor and the metal with different ribbon widths in the a/zHGNRs devices, and the corresponding physical analysis is given.
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles
NASA Astrophysics Data System (ADS)
Crane, Cameron
This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
Lee, Soo Eon; Kim, Hyun Jib
2015-01-01
Background As motion-preserving technique has been developed, the concept of hybrid surgery involves simultaneous application of two different kinds of devices, dynamic stabilization system and fusion technique. In the present study, the application of hybrid surgery for lumbosacral degenerative disease involving two-segments and its long-term outcome were investigated. Methods Fifteen patients with hybrid surgery (Hybrid group) and 10 patients with two-segment fusion (Fusion group) were retrospectively compared. Results Preoperative grade for disc degeneration was not different between the two groups, and the most common operated segment had the most degenerated disc grade in both groups; L4-5 and L5-S1 in the Hybrid group, and L3-4 and L4-5 in Fusion group. Over 48 months of follow-up, lumbar lordosis and range of motion (ROM) at the T12-S1 global segment were preserved in the Hybrid group, and the segmental ROM at the dynamic stabilized segment maintained at final follow-up. The Fusion group had a significantly decreased global ROM and a decreased segmental ROM with larger angles compared to the Hybrid group. Defining a 2-mm decrease in posterior disc height (PDH) as radiologic adjacent segment pathology (ASP), these changes were observed in 6 and 7 patients in the Hybrid and Fusion group, respectively. However, the last PDH at the above adjacent segment had statistically higher value in Hybrid group. Pain score for back and legs was much reduced in both groups. Functional outcome measured by Oswestry disability index (ODI), however, had better improvement in Hybrid group. Conclusion Hybrid surgery, combined dynamic stabilization system and fusion, can be effective surgical treatment for multilevel degenerative lumbosacral spinal disease, maintaining lumbar motion and delaying disc degeneration. PMID:26484008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
Electric and hybrid vehicles environmental control subsystem study
NASA Technical Reports Server (NTRS)
1981-01-01
An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.
The augmented Lagrangian method for parameter estimation in elliptic systems
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Kunisch, Karl
1990-01-01
In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.
Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi
2015-03-01
In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.
Graphene/Si CMOS Hybrid Hall Integrated Circuits
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-01-01
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222
Graphene/Si CMOS hybrid hall integrated circuits.
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-07-07
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.
Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.
2006-01-01
Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771
Optimization of cutting parameters for machining time in turning process
NASA Astrophysics Data System (ADS)
Mavliutov, A. R.; Zlotnikov, E. G.
2018-03-01
This paper describes the most effective methods for nonlinear constraint optimization of cutting parameters in the turning process. Among them are Linearization Programming Method with Dual-Simplex algorithm, Interior Point method, and Augmented Lagrangian Genetic Algorithm (ALGA). Every each of them is tested on an actual example – the minimization of production rate in turning process. The computation was conducted in the MATLAB environment. The comparative results obtained from the application of these methods show: The optimal value of the linearized objective and the original function are the same. ALGA gives sufficiently accurate values, however, when the algorithm uses the Hybrid function with Interior Point algorithm, the resulted values have the maximal accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com; Thamir, Amin D.; Ahmed, Duha S.
In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO{sub 3}:H{sub 2}SO{sub 4} (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° andmore » 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24 h in shaker incubator with percentage of inhibition approaching 100%.« less
Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.
Biomimicry Enhances Sequential Reactions of Tethered Glycolytic Enzymes, TPI and GAPDHS
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L.; Hinchman, Meleana M.; Travis, Alexander J.
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices. PMID:23626684
Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou
2008-10-01
A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).
NEW APPLICATIONS OF ADAPTOGENS TO REDUCE RADIATION SIDE EFFECTS.
Alekseeva, S N; Antipina, U D; Arzhakova, L I; Protodyakonov, S V
2015-01-01
One of the live medical issues today is to find medication to prevent adverse effects of ionizing radiation on the immune and hematopoietic systems. In Yakutia where in most of its regions the overall environmental situation is getting worse due to the development of natural deposits including radioactive deposits, this problem remains vital. The purpose of this work is to study radioprotective properties of adaptogens in the case of the hematopoietic system under irradiation. The studies were conducted on certain groups of hybrid mice. We used the methods of radiation exposure by a radiological apparatus RUM-25 on hybrid mice followed by studying the cellularity of bone marrow, spleen and thymus. The functional activity of all compartments of early hematopoiesis (bone marrow hematopoiesis) was identified by the exogenous colony forming method. The study found that the extracts of reindeer and moose antlers have a stimulating effect on the functional activity of the hematopoietic precursors in response to radiation. The study medication stimulates regeneration processes in the thymus and bone marrow after irradiation. Further, the adaptogens stimulatory effect on CFU functional activity was identified. The most pronounced effect has the extracts of reindeer antlers "Epsorin".
Wang, Xiaoying; Shu, Guofang; Gao, Chanchan; Yang, Yu; Xu, Qian; Tang, Meng
2014-12-01
An electrochemical biosensor based on functional composite nanofibers for hybridization detection of specific K-ras gene that is highly associated with colorectal cancer via multiple signal amplification strategy has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped nylon 6 (PA6) composite nanofibers (MWCNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for thionine (TH) electropolymerization. The functional composite nanofibers [MWCNTs-PA6-PTH, where PTH is poly(thionine)] used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. Through the hybridization reaction, a sandwich format of ssDNA1/K-ras gene/gold nanoparticle-labeled ssDNA2 (AuNPs-ssDNA2) was fabricated, and the AuNPs offered excellent electrochemical signal transduction. The signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles (TA/AuNPs). A significant sensitivity enhancement was obtained; the detection limit was down to 30fM, and the discriminations were up to 54.3 and 51.9% between the K-ras gene and the one-base mismatched sequences including G/C and A/T mismatched bases, respectively. The amenability of this method to the analyses of K-ras gene from the SW480 colorectal cancer cell lysates was demonstrated. The results are basically consistent with those of the K-ras Kit (HRM: high-resolution melt). The method holds promise for the diagnosis and management of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
50 CFR 21.30 - Raptor propagation permits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... method to condition raptors. You may hack a raptor that you produce under your propagation permit. (1) You may need permission from your State or tribal wildlife agency to hack a raptor you possess under... hacking is allowed. (2) Any hybrid you hack must have two attached functioning radio transmitters during...
50 CFR 21.30 - Raptor propagation permits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... method to condition raptors. You may hack a raptor that you produce under your propagation permit. (1) You may need permission from your State or tribal wildlife agency to hack a raptor you possess under... hacking is allowed. (2) Any hybrid you hack must have two attached functioning radio transmitters during...
50 CFR 21.30 - Raptor propagation permits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... method to condition raptors. You may hack a raptor that you produce under your propagation permit. (1) You may need permission from your State or tribal wildlife agency to hack a raptor you possess under... hacking is allowed. (2) Any hybrid you hack must have two attached functioning radio transmitters during...
50 CFR 21.30 - Raptor propagation permits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... method to condition raptors. You may hack a raptor that you produce under your propagation permit. (1) You may need permission from your State or tribal wildlife agency to hack a raptor you possess under... hacking is allowed. (2) Any hybrid you hack must have two attached functioning radio transmitters during...
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
NASA Astrophysics Data System (ADS)
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-01-01
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-06-08
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-02-01
Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-01-01
Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123
Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis
2012-06-01
The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.
NASA Astrophysics Data System (ADS)
Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin
2017-06-01
Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.
NASA Astrophysics Data System (ADS)
Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.
2013-01-01
The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.
Global hybrids from the semiclassical atom theory satisfying the local density linear response.
Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio
2015-01-13
We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2015-10-01
In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.
A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2015-01-01
In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature. PMID:27054199
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
Beerepoot, Maarten T P; Alam, Md Mehboob; Bednarska, Joanna; Bartkowiak, Wojciech; Ruud, Kenneth; Zaleśny, Robert
2018-06-15
The present work investigates the performance of exchange-correlation functionals in the prediction of two-photon absorption (2PA) strengths. For this purpose, we considered six common functionals used for studying 2PA processes and tested these on six organoboron chelates. The set consisted of two semilocal (PBE and BLYP), two hybrid (B3LYP and PBE0), and two range-separated (LC-BLYP and CAM-B3LYP) functionals. The RI-CC2 method was chosen as a reference level and was found to give results consistent with the experimental data that are available for three of the molecules considered. Of the six exchange-correlation functionals studied, only the range-separated functionals predict an ordering of the 2PA strengths that is consistent with experimental and RI-CC2 results. Even though the range-separated functionals predict correct relative trends, the absolute values for the 2PA strengths are underestimated by a factor of 2-6 for the molecules considered. An in-depth analysis, on the basis of the derived generalized few-state model expression for the 2PA strength for a coupled-cluster wave function, reveals that the problem with these functionals can be linked to underestimated excited-state dipole moments and, to a lesser extent, overestimated excitation energies. The semilocal and hybrid functionals exhibit less predictable errors and a variation in the 2PA strengths in disagreement with the reference results. The semilocal and hybrid functionals show smaller average errors than the range-separated functionals, but our analysis reveals that this is due to fortuitous error cancellation between excitation energies and the transition dipole moments. Our results constitute a warning against using currently available exchange-correlation functionals in the prediction of 2PA strengths and highlight the need for functionals that correctly describe the electron density of excited electronic states.
Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua
2011-11-04
A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
NASA Astrophysics Data System (ADS)
Ma, Lihong; Jin, Weimin
2018-01-01
A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.
NASA Astrophysics Data System (ADS)
Wang, C. C.; Tan, J. Y.; Liu, L. H.
2018-05-01
Hamiltonian adaptive resolution scheme (H-AdResS), which allows to simulate materials by treating different domains of the system at different levels of resolution, is a recently proposed atomistic/coarse-grained multiscale model. In this work, a scheme to calculate the dielectric functions of liquids on account of H-AdResS is presented. In the proposed H-AdResS dielectric-function calculation scheme (DielectFunctCalS), the corrected molecular dipole moments are calculated by multiplying molecular dipole moment by the weighting fraction of the molecular mapping point. As the widths of all-atom and hybrid regions show different degrees of influence on the dielectric functions, a prefactor is multiplied to eliminate the effects of all-atom and hybrid region widths. Since one goal of using the H-AdResS method is to reduce computational costs, widths of the all-atom region and the hybrid region can be reduced considering that the coarse-grained simulation is much more timesaving compared to atomistic simulation. Liquid water and ethanol are taken as test cases to validate the DielectFunctCalS. The H-AdResS DielectFunctCalS results are in good agreement with all-atom molecular dynamics simulations. The accuracy of the H-AdResS results, together with all-atom molecular dynamics results, depends heavily on the choice of the force field and force field parameters. The H-AdResS DielectFunctCalS allows us to calculate the dielectric functions of macromolecule systems with high efficiency and makes the dielectric function calculations of large biomolecular systems possible.
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-01
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2012-03-08
The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.
NASA Astrophysics Data System (ADS)
Bai, Yang; Wan, Xiaohong; Zeng, Ke; Ni, Yinmei; Qiu, Lirong; Li, Xiaoli
2016-12-01
Objective. When prefrontal-transcranial magnetic stimulation (p-TMS) performed, it may evoke hybrid artifact mixed with muscle activity and blink activity in EEG recordings. Reducing this kind of hybrid artifact challenges the traditional preprocessing methods. We aim to explore method for the p-TMS evoked hybrid artifact removal. Approach. We propose a novel method used as independent component analysis (ICA) post processing to reduce the p-TMS evoked hybrid artifact. Ensemble empirical mode decomposition (EEMD) was used to decompose signal into multi-components, then the components were separated with artifact reduced by blind source separation (BSS) method. Three standard BSS methods, ICA, independent vector analysis, and canonical correlation analysis (CCA) were tested. Main results. Synthetic results showed that EEMD-CCA outperformed others as ICA post processing step in hybrid artifacts reduction. Its superiority was clearer when signal to noise ratio (SNR) was lower. In application to real experiment, SNR can be significantly increased and the p-TMS evoked potential could be recovered from hybrid artifact contaminated signal. Our proposed method can effectively reduce the p-TMS evoked hybrid artifacts. Significance. Our proposed method may facilitate future prefrontal TMS-EEG researches.
High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.
Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon
2017-08-31
We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.
The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods
NASA Technical Reports Server (NTRS)
Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)
1997-01-01
The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.
Tailor-made force fields for crystal-structure prediction.
Neumann, Marcus A
2008-08-14
A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.
How to compute isomerization energies of organic molecules with quantum chemical methods.
Grimme, Stefan; Steinmetz, Marc; Korth, Martin
2007-03-16
The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (<10%) outliers. The best performance in the group of conventional functionals is found for the highly parametrized BMK hybrid meta-GGA. Contrary to accepted opinion, hybrid density functionals offer no real advantage over simple GGAs. For reasonably large AO basis sets, results of poor quality are obtained with the popular B3-LYP functional that cannot be recommended for thermochemical applications in organic chemistry. The results of this study are complementary to often used benchmarks based on atomization energies and should guide chemists in their search for accurate and efficient computational thermochemistry methods.
Silica based hybrid materials for drug delivery and bioimaging.
Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona
2018-05-10
Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Miller, Thomas Martin; Patton, Bruce W
2013-01-01
The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and themore » SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.« less
Zhao, W; Busto, R; Truettner, J; Ginsberg, M D
2001-07-30
The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.
Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M
2017-04-15
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Lo, Kin Cheung; Hau, King In; Chan, Wai Kin
2018-04-05
Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Kumaravel
2017-02-01
The hybrid energy systems (HESs) based electricity generation system has become a more attractive solution for rural electrification nowadays. Economically feasible and technically reliable HESs are solidly based on an optimisation stage. This article discusses about the optimal unit sizing model with the objective function to minimise the total cost of the HES. Three typical rural sites from southern part of India have been selected for the application of the developed optimisation methodology. Feasibility studies and sensitivity analysis on the optimal HES are discussed elaborately in this article. A comparison has been carried out with the Hybrid Optimization Model for Electric Renewable optimisation model for three sites. The optimal HES is found with less total net present rate and rate of energy compared with the existing method
NASA Astrophysics Data System (ADS)
Yunfang, Jia; Cheng, Ju
2016-01-01
The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene. Project supported by the National Natural Science Foundation of China (No. 61371028) and the Tianjin Natural Science Foundation (No. 12JCZDJC22400).
Fabrication of hybrid molecular devices using multi-layer graphene break junctions.
Island, J O; Holovchenko, A; Koole, M; Alkemade, P F A; Menelaou, M; Aliaga-Alcalde, N; Burzurí, E; van der Zant, H S J
2014-11-26
We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.
Fabrication of hybrid molecular devices using multi-layer graphene break junctions
NASA Astrophysics Data System (ADS)
Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.
2014-11-01
We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.
A hybrid brain-computer interface-based mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
A Hybrid Brain-Computer Interface-Based Mail Client
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
2017-03-01
A new chitosan (as biotemplate)-zinc-tin oxide hybrid structure was successfully synthesized by a chemical precipitation method and annealed at 500 °C. We studied the structural changes, optical, thermal and photo catalytic properties. The chemical bonding of the Zn-O and Sn-O-Sn functional groups were confirmed by FT-IR absorption peaks appearing at 538 and 635 cm-1. The different ratio of ZnO to SnO2 particles on the biotemplate matrix altered the morphology of the hybrids from an agglomerated state to a microcrystalline form confirmed by HR-SEM and TEM analysis. The formation of a Zn0.15Sn0.85O hybrid structure was observed in the visible light region, with an energy band gap of ˜3.19 eV and higher surface area of 98 m2 g-1. The thermal property shows that CS-Zn0.15Sn0.85O has a higher thermal stability than a CS-Zn0.25Sn0.75O hybrid structure. The results demonstrate that the biotemplate-zinc-tin oxide hybrid structure has a reinforced effect compared to the other components. Therefore, a biotemplate-based zinc-tin oxide hybrid structure could be a promising material for better dye removal efficiency, which was obtained for ˜100 and 96% with MB and RY-15 dyes.
Eyes-closed hybrid brain-computer interface employing frontal brain activation.
Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong
2018-01-01
Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.
Hybrid photonic-plasmonic crystal nanocavity sensors
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong
2018-02-01
We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.
Hsieh, Jui-Hua; Yin, Shuangye; Wang, Xiang S; Liu, Shubin; Dokholyan, Nikolay V; Tropsha, Alexander
2012-01-23
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.
Chen, Jiang; Xu, Lin; Jia, Yu-Song; Sun, Qi; Li, Jin-Yu; Zheng, Chen-Ying; Bai, Chun-Xiao; Yu, Qin-Sheng
2016-05-01
This study aimed to assess the preliminary clinical efficacy and feasibility of the hybrid technique for multilevel cervical myelopathy. Considering the many shortcomings of traditional treatment methods for multilevel cervical degenerative myelopathy, hybrid surgery (bi-level Bryan artificial disc [Medtronic Sofamor Danek, Memphis, TN, USA] replacement and anterior cervical discectomy and fusion) should be considered. Between March 2006 and November 2012, 108 patients (68 men and 40 women, average age 45years) underwent hybrid surgery. Based on the Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), and Odom's criteria, the clinical symptoms and neurological function before and after surgery were evaluated. Mean surgery duration was 90minutes, with average blood loss of 30mL. Mean follow-up duration was 36months. At the final follow-up, the mean JOA (± standard deviation) scores were significantly higher compared with preoperative values (15.08±1.47 versus 9.18±1.22; P<0.01); meanwhile, NDI values were markedly decreased (12.32±1.03 versus 42.68±1.83; P<0.01). Using Odom's criteria, the clinical outcomes were rated as excellent (76 patients), good (22 patients), fair (six patients), and poor (four patients). These findings indicate that the hybrid method provides an effective treatment for cervical myelopathy over three consecutive segments, ensuring a good clinical outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
Detection and isolation of nucleic acid sequences using competitive hybridization probes
Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.
1997-01-01
A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.
Detection and isolation of nucleic acid sequences using competitive hybridization probes
Lucas, J.N.; Straume, T.; Bogen, K.T.
1997-04-01
A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.
NASA Astrophysics Data System (ADS)
Hu, Yan-Yan; Li, Dong-Sheng
2016-01-01
The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.
Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P
2017-03-01
Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.
Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394
Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Oleksiy
2006-04-01
The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates the deposited charge and introduces a systematic error of the gain measurement. Signatures of disconnected strips and pinholes defects have been observed, the response of the disconnected strips to the laser beam has been correlated with the noise measurements. Beam test of four prototype modules have been carried out at PS accelerator at CERN using 7 GeV/c pions. It was demonstrated that the modules provide an excellent signal-to-noise ratio in the range 40-75. The estimated spatial resolution for the normally incident tracks is about 18 μm using the center-of-gravity cluster reconstruction method. A non-iterative method for spatial resolution determination was developed, it was shown that in order to determine the resolution of each individual detector in the telescope, the telescope should consist of at least 5 detectors. The detectors showed high detection efficiency, in the order 99%. It was shown that the particle loss occurs mostly in the defected regions near the noisy strips or strips with a very low gain. The efficiency of the sensor area with nominal characteristics is consistent with 100%.
Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions
NASA Astrophysics Data System (ADS)
Drut, Joaquín E.; Porter, William J.
2015-09-01
The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.
Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
Wang, Hailiang; Dai, Hongjie
2013-04-07
The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC-hybrid materials for high performance lithium ion batteries, rechargeable Li-S and Li-O2 batteries, supercapacitors and ultrafast Ni-Fe batteries, and new electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.
Mott Transition of MnO under Pressure: A Comparison of Correlated Band Theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasinathan, Deepa; Kunes, Jan; Koepernik, K
The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation+Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rock salt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPamore » range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin ((5/2){yields}(1/2)), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.« less
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Xu, Tong-yi; Zhang, Zhi-gang; Li, Xin; Han, Lin; Xu, Zhi-yun
2014-01-01
Background Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach. Methods We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE) coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve), weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically. Findings Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen macroscopically. Conclusions This design of the novel ePTFE transcatheter pulmonary valve is safe and effective to deploy in sheep by hybrid approach, and the early valvular functionality is good. PMID:24926892
Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D
2007-08-01
In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...
2017-05-16
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Robin, Malo; Dumait, Noée; Amela-Cortes, Maria; Roiland, Claire; Harnois, Maxime; Jacques, Emmanuel; Folliot, Hervé; Molard, Yann
2018-04-03
Hybrid nanomaterials made of inorganic nanocomponents dispersed in an organic host raise an increasing interest as low-cost solution-processable functional materials. However, preventing phase segregation while allowing a high inorganic doping content remains a major challenge, and usual methods require a functionalization step prior integration. Herein, we report a new approach to design such nanocomposite in which ceramic-like metallic nanocluster compounds are embedded at 10 wt % in organic copolymers, without any functionalization. Dispersion homogeneity and stability are ensured by weak interactions occurring between the copolymer lateral chains and the nanocluster compound. Hybrids could be ink-jet printed and casted on a blue LED. This proof-of-concept device emits in the red-NIR area and generates singlet oxygen, O 2 ( 1 Δg), of particular interest for lights, display, sensors or photodynamic based therapy applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-01-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866
Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji
2017-09-30
GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks
NASA Astrophysics Data System (ADS)
Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy
2014-06-01
Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.
Simulation-Based Validation of the p53 Transcriptional Activity with Hybrid Functional Petri Net.
Doi, Atsushi; Nagasaki, Masao; Matsuno, Hiroshi; Miyano, Satoru
2011-01-01
MDM2 and p19ARF are essential proteins in cancer pathways forming a complex with protein p53 to control the transcriptional activity of protein p53. It is confirmed that protein p53 loses its transcriptional activity by forming the functional dimer with protein MDM2. However, it is still unclear that protein p53 keeps its transcriptional activity when it forms the trimer with proteins MDM2 and p19ARF. We have observed mutual behaviors among genes p53, MDM2, p19ARF and their products on a computational model with hybrid functional Petri net (HFPN) which is constructed based on information described in the literature. The simulation results suggested that protein p53 should have the transcriptional activity in the forms of the trimer of proteins p53, MDM2, and p19ARF. This paper also discusses the advantages of HFPN based modeling method in terms of pathway description for simulations.
NASA Astrophysics Data System (ADS)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-05-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.
Yeast Two-Hybrid: State of the Art
Beyaert, Rudi
1999-01-01
Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination. PMID:12734586
Double-hybrid density-functional theory with meta-generalized-gradient approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing
2012-01-01
Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method.
DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES
The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...
Applications of Synthetic Microchannel and Nanopore Systems
NASA Astrophysics Data System (ADS)
Hinkle, Thomas Preston
This thesis describes research conducted on the physics and applications of micro- and nanoscale ion-conducting channels. Making use of the nanoscale physics that takes place in the vicinity of charged surfaces, there is the possibility that nanopores, holes on the order of 1 nm in size, could be used to make complex integrated ionic circuits. For inspiration on what such circuits could achieve we only need to look to biology systems, immensely complex machines that at their most basic level require precise control of ions and intercellular electric potentials to function. In order to contribute to the ever expanding field of nanopore research, we engineered novel hybrid insulator-conductor nanopores that behave analagously to ionic diodes, which allow passage of current flow in one direction but severely limit the current in the opposite direction. The experiments revealed that surface polarization of the conducting material can induce the formation of an electrical double layer in the same way static surface charges can. Furthermore, we showed that the hybrid device behaved similar to an ionic diode, and could see potential use as a standard rectifying element in ionic circuits. Another application based on ion conducting channels is resistive pulse sensing, a single particle detection and characterization method. We present three main experiments that expand the capacity of resistive pulse sensing for particle characterization. First, we demonstrate how resistive pulse sensing in pores with longitudinal irregularities can be used to measure the lengths of individual nanoparticles. Then, we describe an entirely new hybrid approach to resistive pulse sensing, whereby the electrical measurements are combined with simultaneous optical imaging. The hybrid method allows for validation of the resistive pulse signals and will greatly contribute to their interpretability. We present experiments that explore some of the possibilities of the hybrid method. Then, building off the hybrid method we present experiments performed to measure single particle deformability with resistive pulse sensing. Using a novel microfluidic channel design, we were able to reproducibily induce bidirectional deformation of cells. We describe how these deformations could be detected with the resistive pulse signal alone, paving the way for resistive pulse sensing based cell deformability cytometers.
NASA Astrophysics Data System (ADS)
Pala, M. G.; Esseni, D.
2018-03-01
This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
NASA Astrophysics Data System (ADS)
Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel
2018-04-01
Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.
Chen, Yuanzhi; Zeng, Deqian; Cortie, Michael B; Dowd, Annette; Guo, Huizhang; Wang, Junbao; Peng, Dong-Liang
2015-03-25
The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Angelopoulou, A; Efthimiadou, E K; Boukos, N; Kordas, G
2014-05-01
In this work, hybrid microspheres were prepared in a two-step process combining the emulsifier free-emulsion polymerization and the sol-gel coating method. In the first step, polystyrene (St) and poly(methyl methacrylate) (PMMA) microspheres were prepared as sacrificial template and in the second step a silanol shell was fabricated. The functionalized surface of the hybrid microspheres by silane analogs (APTES, TEOS) resulted in enhanced effects. The hollow microspheres were resulted either in an additional step by template dissolution and/or during the coating process. The microspheres' surface interactions and the size distribution were optimized by treatment in simulated body fluids, which resulted in the in vitro prediction of bioactivity. The bioassay test indicated that the induced hydroxyapatite resembled in structure to naturally occurring bone apatite. The drug doxorubicin (DOX) was used as a model entity for the evaluation of drug loading and release. The drug release study was performed in two different pH conditions, at acidic (pH=4.5) close to cancer cell environment and at slightly basic pH (pH=7.4) resembling the orthopedic environment. The results of the present study indicated promising hybrid microspheres for the potential application as drug delivery vehicles, for dual orthopedic functionalities in bone defects, bone inflammation, bone cancer and bone repair. Copyright © 2014 Elsevier B.V. All rights reserved.
Holland, Jason P; Green, Jennifer C
2010-04-15
The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
Hu, Zhenhua; Ma, Xiaowei; Qu, Xiaochao; Yang, Weidong; Liang, Jimin; Wang, Jing; Tian, Jie
2012-01-01
Cerenkov luminescence tomography (CLT) provides the three-dimensional (3D) radiopharmaceutical biodistribution in small living animals, which is vital to biomedical imaging. However, existing single-spectral and multispectral methods are not very efficient and effective at reconstructing the distribution of the radionuclide tracer. In this paper, we present a semi-quantitative Cerenkov radiation spectral characteristic-based source reconstruction method named the hybrid spectral CLT, to efficiently reconstruct the radionuclide tracer with both encouraging reconstruction results and less acquisition and image reconstruction time. We constructed the implantation mouse model implanted with a 400 µCi Na(131)I radioactive source and the physiological mouse model received an intravenous tail injection of 400 µCi radiopharmaceutical Iodine-131 (I-131) to validate the performance of the hybrid spectral CLT and compared the reconstruction results, acquisition, and image reconstruction time with that of single-spectral and multispectral CLT. Furthermore, we performed 3D noninvasive monitoring of I-131 uptake in the thyroid and quantified I-131 uptake in vivo using hybrid spectral CLT. Results showed that the reconstruction based on the hybrid spectral CLT was more accurate in localization and quantification than using single-spectral CLT, and was more efficient in the in vivo experiment compared with multispectral CLT. Additionally, 3D visualization of longitudinal observations suggested that the reconstructed energy of I-131 uptake in the thyroid increased with acquisition time and there was a robust correlation between the reconstructed energy versus the gamma ray counts of I-131 (r(2) = 0.8240). The ex vivo biodistribution experiment further confirmed the I-131 uptake in the thyroid for hybrid spectral CLT. Results indicated that hybrid spectral CLT could be potentially used for thyroid imaging to evaluate its function and monitor its treatment for thyroid cancer.
de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk
2018-04-06
Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.
Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani
2018-04-30
The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nielsen, Jeppe Lund; Kragelund, Caroline; Nielsen, Per Halkjær
Fluorescence in situ hybridization (FISH) can be combined with a number of staining techniques to reveal the relationships between the microorganisms and their function in complex microbial systems with a single-cell resolution. In this chapter, we have focused on staining methods for intracellular storage compounds (polyhydroxyalkanoates, polyphosphate) and a measure for cell viability, reduction of the tetrazolium-based redox stain CTC. These protocols are optimized for the study of microorganisms in waste-water treatment (activated sludge and biofilms), but they may also be used with minor modifications in many other ecosystems.
Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning
2014-01-01
Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced
Phillips, Jordan J; Peralta, Juan E
2012-09-11
Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.
Tuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification
NASA Astrophysics Data System (ADS)
Sordello, Fabrizio; Zeb, Gul; Hu, Kaiwen; Calza, Paola; Minero, Claudio; Szkopek, Thomas; Cerruti, Marta
2014-05-01
We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production.We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production. Electronic supplementary information (ESI) available: Statistical analysis of the D : G intensity ratio, additional XPS analysis and TEM micrographs. See DOI: 10.1039/c4nr01322k
Performance analysis of AES-Blowfish hybrid algorithm for security of patient medical record data
NASA Astrophysics Data System (ADS)
Mahmud H, Amir; Angga W, Bayu; Tommy; Marwan E, Andi; Siregar, Rosyidah
2018-04-01
A file security is one method to protect data confidentiality, integrity and information security. Cryptography is one of techniques used to secure and guarantee data confidentiality by doing conversion to the plaintext (original message) to cipher text (hidden message) with two important processes, they are encrypt and decrypt. Some researchers proposed a hybrid method to improve data security. In this research we proposed hybrid method of AES-blowfish (BF) to secure the patient’s medical report data into the form PDF file that sources from database. Generation method of private and public key uses two ways of approach, those are RSA method f RSA and ECC. We will analyze impact of these two ways of approach for hybrid method at AES-blowfish based on time and Throughput. Based on testing results, BF method is faster than AES and AES-BF hybrid, however AES-BF hybrid is better for throughput compared with AES and BF is higher.
Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield
Choe, Eunsoo; Drnevich, Jenny; Williams, Martin M.
2016-01-01
Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. PMID:26796516
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
Coated substrate apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt
A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I
2011-09-26
A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.
Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil
2006-06-01
In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.
Maheshwari, Shamoni; Barbash, Daniel A.
2012-01-01
Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr2, we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr1 or Hmr1, respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr2 is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr2. This indel is thus a polymorphism that can affect the HI function of Lhr. PMID:22865735
A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.
Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh
2013-01-01
Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.
Course 4: Density Functional Theory, Methods, Techniques, and Applications
NASA Astrophysics Data System (ADS)
Chrétien, S.; Salahub, D. R.
Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions
Pernía Leal, M; Assali, M; Cid, J J; Valdivia, V; Franco, J M; Fernández, I; Pozo, D; Khiar, N
2015-12-07
To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.
Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi
2009-05-15
Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion.
[The role of the serotonin system in the stress response of various cells
NASA Technical Reports Server (NTRS)
Belzhelarskaia, S. N.; Satton, F. F.; Sutton, F. (Principal Investigator)
2003-01-01
The recombinant mouse brain serotonin receptor (5HT1c) was used to study the response of plant cells and oocytes to a stress signal activated by the serotonin-serotonin receptor interaction and associated Ca2+ flow. Based on plant expression vectors, recombinant constructs were obtained to direct production of 5HT1c fused with the green fluorescent protein in plant cells. The mRNAs for hybrid proteins were synthesized in an in vitro transcription system. The expression and function of the hybrid protein and the function of the associated ion channels were electrophysiologically studied in Xenopus laevis oocytes injected with the hybrid mRNA. The hybrid protein was functional and changed the operation of the Ca2+ channel in oocytes. To study the expression of the hybrid constructs in plant cells, the in vitro transcription product was inoculated in tobacco leaves, which then fluoresced.
Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional
NASA Astrophysics Data System (ADS)
Song, Jong-Won; Hirao, Kimihiko
2015-07-01
We previously developed an efficient screened hybrid functional called Gaussian-Perdew-Burke-Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals. We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.
Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp
2015-07-14
We previously developed an efficient screened hybrid functional called Gaussian-Perdew–Burke–Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals.more » We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.« less
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Williams, Warren M.; Verry, Isabelle M.; Ansari, Helal A.; Hussain, S. Wajid; Ullah, Ihsan; Williamson, Michelle L.; Ellison, Nicholas W.
2011-01-01
Background and Aims DNA sequence similarities and hybridization patterns in Trifolium (clovers) section Trifoliastrum suggest that rapid radiation from a common ancestral source led to this complex of diverse species distributed across Europe, western Asia and North Africa. Two of the most geographically and ecologically divergent of these species are the rhizomatous T. ambiguum from high altitudes in eastern Europe and western Asia and the stoloniferous T. occidentale from sea level in western Europe. Attempts were made to hybridize these species to ascertain whether, despite this separation, gene flow could be achieved, indicating the retention of the genetic factors necessary for hybridization. Methods Three F1 hybrids formed after embryo rescue were described, characterized by conventional and molecular cytogenetics, subjected to fertility tests and progeny generations were developed. Results and Conclusions Partially fertile hybrids between Trifolium ambiguum and T. occidentale were obtained for the first time. The F1 hybrids produced seeds after open-pollination, and also produced triploid progeny in backcrosses to T. occidentale from the functioning of unreduced gametes in the hybrids. These plants were fertile and produced progeny with T. occidentale and with T. repens. Meiotic chromosome pairing in the F1 showed six to eight bivalents per pollen mother cell, indicating pairing between the parental genomes. A chromosome-doubled form of one hybrid, produced using colchicine, showed some multivalents, indicative of interspecific chromosome pairing. The hybrid plants were robust and combined phenotypic characteristics of both species, having stolons, thick roots and a few rhizomes. Results show that despite separation by the entire breadth of Europe, the speciation process is incomplete, and these taxa have partially retained most of the genetic compatibilities needed for hybridization (possibly except for endosperm development, which was not tested). The fertile progeny populations could lead to new clover breeding strategies based on new hybrid forms. PMID:21880661
NASA Astrophysics Data System (ADS)
Morales-Lara, Francisco; Domingo-García, María; López-Garzón, Rafael; Luz Godino-Salido, María; Peñas-Sanjuán, Antonio; López-Garzón, F. Javier; Pérez-Mendoza, Manuel; Melguizo, Manuel
2016-01-01
Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+.
NASA Astrophysics Data System (ADS)
Cremer, Dieter
The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.
Provably secure Rabin-p cryptosystem in hybrid setting
NASA Astrophysics Data System (ADS)
Asbullah, Muhammad Asyraf; Ariffin, Muhammad Rezal Kamel
2016-06-01
In this work, we design an efficient and provably secure hybrid cryptosystem depicted by a combination of the Rabin-p cryptosystem with an appropriate symmetric encryption scheme. We set up a hybrid structure which is proven secure in the sense of indistinguishable against the chosen-ciphertext attack. We presume that the integer factorization problem is hard and the hash function that modeled as a random function.
Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
Bao, Weizhai; Xie, Xiuqiang; Xu, Jing; Guo, Xin; Song, Jianjun; Wu, Wenjian; Su, Dawei; Wang, Guoxiu
2017-09-12
Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g -1 at 0.5 C and a high level of capacity retention of 878.4 mAh g -1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides.
Fujimoto, Satomi; Cameron, Jamie M; Wei, Rong-Jia; Kastner, Katharina; Robinson, David; Sans, Victor; Newton, Graham N; Oshio, Hiroki
2017-10-16
This study explores a new method to maximize the visible-light-driven photocatalytic performance of organic-inorganic hybrid polyoxometalates (POMs). Experimental and theoretical investigations of a family of phosphonate-substituted POMs show that modification of grafted organic moieties can be used to tune the electronic structure and photoactivity of the metal oxide component. Unlike fully inorganic polyoxotungstates, these organic-inorganic hybrid species are responsive to visible light and function as photocatalysts (λ > 420 nm) in the decomposition of a model environmental pollutant. The degree of photoactivation is shown to be dependent on the nature of the inductive effect exerted by the covalently grafted substituent groups. This study emphasizes the untapped potential that lies in an orbital engineering approach to hybrid-POM design and helps to underpin the next generation of bespoke, robust, and cost-effective molecular metal oxide photoactive materials and catalysts.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays
Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V.
2004-01-01
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques. PMID:14718554
Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.
Leung, Denis H Y; Wang, You-Gan; Zhu, Min
2009-07-01
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
NASA Astrophysics Data System (ADS)
Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole
2017-10-01
This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.
NASA Astrophysics Data System (ADS)
Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément
2006-02-01
The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.
Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il
2014-02-01
Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.
NASA Astrophysics Data System (ADS)
Yang, Xiuli; Fang, Qing; Ouyang, Hui
2018-04-01
Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.
A novel hybrid ensemble learning paradigm for tourism forecasting
NASA Astrophysics Data System (ADS)
Shabri, Ani
2015-02-01
In this paper, a hybrid forecasting model based on Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) is proposed to forecast tourism demand. This methodology first decomposes the original visitor arrival series into several Intrinsic Model Function (IMFs) components and one residual component by EMD technique. Then, IMFs components and the residual components is forecasted respectively using GMDH model whose input variables are selected by using Partial Autocorrelation Function (PACF). The final forecasted result for tourism series is produced by aggregating all the forecasted results. For evaluating the performance of the proposed EMD-GMDH methodologies, the monthly data of tourist arrivals from Singapore to Malaysia are used as an illustrative example. Empirical results show that the proposed EMD-GMDH model outperforms the EMD-ARIMA as well as the GMDH and ARIMA (Autoregressive Integrated Moving Average) models without time series decomposition.
NASA Astrophysics Data System (ADS)
Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping
2010-09-01
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng; Aluyor, E.; Audu, T.
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used tomore » predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.« less
NASA Astrophysics Data System (ADS)
Yang, Xiuli; Fang, Qing; Ouyang, Hui
2018-06-01
Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
NASA Astrophysics Data System (ADS)
Oboh, I.; Aluyor, E.; Audu, T.
2015-03-01
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R2), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.
A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans
Andachi, Yoshiki; Kohara, Yuji
2016-01-01
Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans. Here, we show a novel WISH method for miRNA detection in C. elegans. Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. PMID:27154969
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADISmore » also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.« less
Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.
Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza
2012-05-01
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.