Science.gov

Sample records for hybrid nuclear medicine

  1. Justification of the hybrid nuclear medicine examinations.

    PubMed

    Garcheva-Tsacheva, Marina B

    2015-07-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations.

  2. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  3. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  4. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  5. Nuclear medicine annual, 1984

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1984-01-01

    The following topics are reviewed in this work: nuclear physicians role in planning for and handling radiation accidents; the role of nuclear medicine in evaluating the hypertensive patient; studies of the heart with radionuclides; role of radionuclide imaging in the patient undergoing chemotherapy; hematologic nuclear medicine; the role of nuclear medicine in sports related injuries; radionuclide evaluation of hepatic function with emphasis on cholestatis.

  6. Technologists for Nuclear Medicine

    ERIC Educational Resources Information Center

    Barnett, Huey D.

    1974-01-01

    Physicians need support personnel for work with radioisotopes in diagnosing dangerous diseases. The Nuclear Medicine Technology (NMT) Program at Hillsborough Community College in Tampa, Florida, is described. (MW)

  7. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  8. Nuclear Medicine Annual, 1989

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  9. What Is Nuclear Medicine?

    MedlinePlus

    ... known as cosmic radiation, is in the upper atmosphere due to solar and galactic emissions. A typical ... used in medical procedures. 4 Cosmic Radiation Sun - - + - Atmosphere - + +- + + Earth How many nuclear medicine procedures are performed ...

  10. Pediatric nuclear medicine

    SciTech Connect

    Not Available

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  11. Children's (Pediatric) Nuclear Medicine

    MedlinePlus

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  12. Traceability in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Zimmerman, Brian E.; Judge, Steven

    2007-08-01

    Accurate, reproducible measurement of radioactivity in nuclear medicine applications is vital to ensure the safety and effectiveness of disease diagnosis and treatment using unsealed radioactive sources. The need to maintain a high degree of confidence in those measurements requires that they be carried out so as to be traceable to national and international standards. In addition, measurement traceability for radioactivity in medicine helps ensure international consistency in measurement at all levels of practice (national measurement laboratories, research institutions, isotope producers, radiopharmaceutical manufacturers and clinics). This paper explores the importance of radioactivity measurement in nuclear medicine and demonstrates how traceability can be extended from international standards to the quantity of the drug administered to the patient.

  13. Nuclear Medicine Annual, 1986

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1986-01-01

    Nuclear Medicine Annual, l986 features state-of-the-art reports on the technical aspects and clinical applications of single-photon emission computed tomography, as well as on monoclonal antibodies for radioimmunoimaging and on receptorbinding radiopharmaceuticals. Also included is a review of magnetic resonance imaging of congenital cardiac abnormalities. Other contributions cover bone mineral measurements; skeletal scintigraphy of the hands and wrists; and radionuclide blood-pool imaging in the diagnosis of deep-vein thrombosis of the leg.

  14. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    SciTech Connect

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  15. Nuclear medicine in oncology

    SciTech Connect

    Murphy, J.

    1996-12-31

    Radioactivity was discovered in the late 1890s, and as early as 1903, Alexander Graham Bell advocated that radioactivity be used to treat tumors. In 1913, the first paper describing therapeutic uses of radium was published; in 1936, {sup 24}Na was administered as a therapy to a leukemia patient. Three years later, uptake of {sup 89}Sr was noted in bone metastases. During the 1940s, there was increasing use of iodine therapy for thyroid diseases, including thyroid cancer. Diagnostic {open_quotes}imaging{close_quotes} with radioisotopes was increasingly employed in the 1930s and 40s using probes and grew in importance and utility with the development of scintillation detectors with photorecording systems. Although coincidence counting to detect positron emissions was developed in 1953, the first medical center cyclotron was not installed until 1961. The 1960s saw the development of {sup 99m}Tc-labeled radiopharmaceuticals, emission reconstruction tomography [giving rise to single photon emission computed tomography (SPECT) and positron emission tomography (PET)], and {sup 64}Ga tumor imaging. Nuclear medicine was recognized as a medical specialty in 1971. Radiolabeled antibodies targeting human tumors in animals was reported in 1973; antibody tumor imaging in humans was reported in 1978. Technology has continued to advance, including the development of SPECT cameras with coincidence detection able to perform FDG/PET imaging. With this overview as as backdrop, this paper focuses on the role of nuclear medicine in oncology from three perspectives: nonspecific tumor imaging agents, specific tumor imaging agents, and radioisotopes for tumor therapy. In summary, while tumor diagnosis and treatment were among the first uses explored for radioactivity, these areas have yet to reach their full potential. Development of new radioisotopes and new radiopharmaceuticals, coupled with improvements in technology, make nuclear oncology an area of growth for nuclear medicine.

  16. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  17. Nuclear medicine annual

    SciTech Connect

    Freeman, L.M.

    1988-01-01

    This book features a state-of-the-art report on single photon emission computed tomography (SPECT) in abdominal imaging, which highlights the emergency of /sup 99m/Tc-red cell imaging as the procedure of choice for diagnosing heptatic hemangioma. In addition, the use of captropril scinitigraphy in the study of suspected renovascular hypertension is reviewed. Articles survey research on radiolabeled monoclonal antibodies and assess the clinical experience with bone scanning for osseous metastases from breast carcinoma. An article on the role of nuclear medicine in the management of osteoporosis examines the problems that must be overcome before the bone mineral analysis with dual photon absorptiometry gains widespread clinical acceptance.

  18. Nuclear medicine annual 1990

    SciTech Connect

    Freeman, L.M. )

    1990-01-01

    Two of the major areas of cutting-edge nuclear medicine research, single-photon emission computed tomography (SPECT) functional brain imaging and monoclonal antibody studies receive attention in this volume. Advances in these areas are critical to the continued growth of our specialty. Fortunately, the current outlook in both areas remains quite optimistic. As has been the policy in the first decade of publication, thorough state-of-the-art reviews on existing procedures are interspersed with chapters dealing with research developments. The editor wishes to express a particular note of appreciation to a very supportive British colleague, Dr. Ignac Fogelman, who is becoming a regular contributor. His exhaustive review of the role of nuclear medicine in the evaluation of osteoporotic patients is packed with extremely useful information that will prove to be fruitful to all readers. The author would like to thank the readers and colleagues who have taken the time to offer useful and constructive comments over the past ten years. The author continue to welcome suggestions that will help to further improve this Annual.

  19. Nuclear medicine hepatobiliary imaging.

    PubMed

    Ziessman, Harvey A

    2010-02-01

    Nuclear medicine hepatobilary imaging (HIDA) is a time proven imaging methodology that uses radioactive drugs and specialized cameras to make imaging diagnoses based on physiology. HIDA radiopharmaceuticals are extracted by hepatocytes in the liver and cleared through the biliary system similar to bilirubin. The most common indication for HIDA imaging is acute cholecystitis, diagnosed by nonfilling of the gallbladder due to cystic duct obstruction. HIDA can detect high grade biliary obstruction prior to ductal dilatation; images reveal a persistent hepatogram without biliary clearance due to the high backpressure. HIDA also aids in the diagnosis of partial biliary obstruction due to stones, biliary stricture, and sphincter of Oddi obstruction. It can confirm biliary leakage postcholecystectomy and hepatic transplantation. Calculation of a gallbladder ejection fraction after cholecystokinin infusion is commonly used to diagnose chronic acalculous gallbladder disease. Diseased gallbladders do not contract. There are many other less common but valuable diagnostic indications for HIDA imaging. PMID:19879969

  20. Nuclear thermal/nuclear electric hybrids

    NASA Technical Reports Server (NTRS)

    Reid, B. D.

    1991-01-01

    A description is given of the nuclear thermal and nuclear electric hybrid. The specifications are described along with its mission performance. Next, the technical status, development requirements, and some cost estimates are provided.

  1. Nucleology, nuclear medicine, molecular nuclear medicine and subspecialties.

    PubMed

    Grammaticos, Philip C

    2005-01-01

    Henry N. Wagner Jr started the presentation of the highlights of the 39th Annual Meeting of the Society of Nuclear Medicine by quoting: "The economist JM Keynes said: "the difficult lies not in new ideas but in escaping from the old ones". Many changes have taken place in the actual term describing our specialty during the last 15 years. Cardiologists have adopted an important chapter of nuclear medicine and to describe that they use the term of "nuclear cardiology". Radiologists have proposed the term "radionuclide radiology". "Nuclear endocrinology", "nuclear oncology", "nuclear nephrology" may be considered as terms describing chapters of nuclear medicine related to other specialties. Will that indicate that our specialty will be divided into smaller chapters and be offered to colleagues working in other specialties leaving to us the role of the supervisor or perhaps the radioprotection officer for in vivo studies? Of course this role is now being exercised by our colleagues in medical physics. It is suggested to use the word " nucleology", instead of "nuclear medicine" where "nuclear" is used as an adjective. Thus, we will avoid being part of another specialty and cardiologists would use the term cardiac nucleology where "cardiac" is the adjective. The proposed term "nucleology" as compared to the existing term "nuclear medicine" has the advantage of being simpler, correct from the grammar point of view and not related to combined terms that may seem to offer part of our specialty to other specialties. At present our specialty faces many problems. The term "nucleology" supports our specialty from the point of view of terminology. During the 3rd International Meeting of Nuclear Medicine of N. Greece which was held in Thessaloniki, Macedonia, Greece on 4-6 November 2005, a discussion arose among participants as to whether the name of "nucleology" could replace the existing name of "nuclear medicine". Finally, a vote (between "yes" and "no") for the new proposed

  2. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  3. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  4. [Costing nuclear medicine diagnostic procedures].

    PubMed

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges. PMID:15886748

  5. Interesting Signs in Nuclear Medicine.

    PubMed

    Gnanasegaran, Gopinath; Sit, Cherry; Chen, Ruolei; Agrawal, Kanhaiyalal; Fogelman, Ignac

    2015-11-01

    Classic radiological and nuclear medicine signs have been reported extensively because of a myriad of pathophysiological processes. When encountered, they aid in diagnosis of conditions and add confidence for the reader, at times even hinting at a specific diagnosis. The naming of signs is commonly associated with objects from everyday life to establish familiarity with visual findings. Association of signs and disease comes with regular practice and improves understanding of the image and its underlying cause. In this article, we have collated nuclear medicine signs reported in the literature since 1970.

  6. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  7. Nuclear medicine instrumentation. Historic perspective.

    PubMed

    Croll, M N

    1994-01-01

    Recording the chronology of nuclear medicine instrumentation poses some difficult decisions as does the determination of the "father" of nuclear medicine?. Historians can agree on well-defined dates and events, but many of them are subjective and reside in the memories of those of us who were fortunate to experience the formative years of our field. We all search for the historical truth. The highlights of this story may begin with John Lawrence and phosphorus-32 therapy at Berkeley and continue with Enrico Fermi's sustained nuclear reaction, which lead to the Manhattan Project, then the Atomic Energy Commission, and finally, Sam Seidlin's treatment of thyroid metastases with iodine-131. The rectilinear scanner came to us from Benedict Cassen and was followed by Hal O. Anger and his gamma scintillation camera, one of the most pivotal developments in the field. A plethora of cameras followed: Merrill Benders's digital autofluroscope, Dave Kuhl's efforts for tomographic imaging, and then on to single photon emission computed tomography. Finally, we come back to Hal O. Anger, who suggested and worked with the idea of a positron camera, with positron emission tomography becoming commercially available in 1985. Ours is a variegated history, and I hope that this account speaks the historical truth.

  8. Licensing criteria for nuclear medicine.

    PubMed

    Westerman, B R

    1986-07-01

    The use of radioactive materials in medicine is one of the most highly regulated areas the physician has to deal with. There are three basic types of licenses for use of radioactive material defined in the Code of Federal Regulations (CFR), chapter 10, part 35. These are the general license, which is mainly applicable to small volume in vitro work; the specific license, which is used in most medical facilities; and the broad license, which is suited for larger research-oriented practices. Licensing requires proof of competence of the user and of adequate provision for protection of public health. Materials used in medicine are grouped for convenience into three diagnostic categories and two therapeutic categories. A sixth group, for sealed implants, is not generally applicable in nuclear medicine. Training and experience of users may be documented in a number of ways, including board certification in nuclear medicine. Therapeutic applications require additional proof of direct personal experience. The radiation safety officer is a pivotal individual in the licensing procedure, being directly responsible for carrying out the highly detailed requirements for protection of personnel and patients. A radiation safety program based on the "as low as reasonably achievable" (ALARA) concept requires personal monitoring, inventory control, detection and control of contamination, and strict adherence to licensing rules. Training of personnel and proper maintenance of equipment and facilities are also vital parts of the licensing process. The requirements of licensing and for renewal are clearly spelled out by the various regulatory agencies and require meticulous record keeping with documentation that all prescribed procedures have been followed and duly recorded.

  9. Nuclear medicine applications for the diabetic foot

    SciTech Connect

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  10. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  11. Nuclear Medicine Imaging in Pediatric Neurology

    PubMed Central

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  12. Nuclear Medicine Imaging in Pediatric Neurology.

    PubMed

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-02-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy.

  13. Patient dosimetry in nuclear medicine.

    PubMed

    Mattsson, Sören

    2015-07-01

    In diagnostic nuclear medicine, the biokinetics of the radiopharmaceutical (actually of the radionuclide) is determined for a number of representative patients. At therapy, it is essential to determine the patient's individual biokinetics of the radiopharmaceutical in order to calculate the absorbed doses to critical normal organs/tissues and to the target volume(s) with high accuracy. For the diagnostic situations, there is still a lack of quantitative determinations of the organ/tissue contents of radiopharmaceuticals and their variation with time. Planar gamma camera imaging using the conjugate view technique combined with a limited number of SPECT/CT images is the main method for such studies. In a similar way, PET/CT is used for 3D image-based internal dosimetry for PET substances. The transition from stylised reference phantoms to voxel phantoms will lead to improved dose estimates for diagnostic procedures. Examples of dose coefficients and effective doses for diagnostic substances are given. For the therapeutic situation, a pre-therapeutic low activity administration is used for quantitative measurements of organ/tissue distribution data by a gamma camera or a SPECT- or PET-unit. Together with CT and/or MR images this will be the base for individual dose calculations using Monte Carlo technique. Treatments based on administered activity should only be used if biological variations between patients are small or if a pre-therapeutic activity administration is impossible.

  14. An overview of nuclear medicine imaging procedures.

    PubMed

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses.

  15. [Potential radiation hazard in nuclear medicine].

    PubMed

    Guilabert, Nadine; Ricard, Marcel; Chamoulaud, Karen; Mazelier, Carole; Schlumberger, Martin

    2015-01-01

    Nuclear medicine uses unsealed radioisotopes. The potential radiation hazards depend on the amount of radioactivity administered and the type of radionucleide. Thus, radiation safety instructions will minimize radiation exposure and contamination as low as reasonably achievable. National nuclear safety authority requires rules, regulations and exposure limits for both patients and workers. Good practices and training staff contribute to optimize the radioprotection. PMID:25842441

  16. A Training Manual for Nuclear Medicine Technologists.

    ERIC Educational Resources Information Center

    Simmons, Guy H.; Alexander, George W.

    This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)

  17. Rheumatoid arthritis: Nuclear Medicine state-of-the-art imaging

    PubMed Central

    Rosado-de-Castro, Paulo Henrique; Lopes de Souza, Sergio Augusto; Alexandre, Dângelo; Barbosa da Fonseca, Lea Mirian; Gutfilen, Bianca

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease, which is associated with systemic and chronic inflammation of the joints, resulting in synovitis and pannus formation. For several decades, the assessment of RA has been limited to conventional radiography, assisting in the diagnosis and monitoring of disease. Nevertheless, conventional radiography has poor sensitivity in the detection of the inflammatory process that happens in the initial stages of RA. In the past years, new drugs that significantly decrease the progression of RA have allowed a more efficient treatment. Nuclear Medicine provides functional assessment of physiological processes and therefore has significant potential for timely diagnosis and adequate follow-up of RA. Several single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals have been developed and applied in this field. The use of hybrid imaging, which permits computed tomography (CT) and nuclear medicine data to be acquired and fused, has increased even more the diagnostic accuracy of Nuclear Medicine by providing anatomical localization in SPECT/CT and PET/CT studies. More recently, fusion of PET with magnetic resonance imaging (PET/MRI) was introduced in some centers and demonstrated great potential. In this article, we will review studies that have been published using Nuclear Medicine for RA and examine key topics in the area. PMID:25035834

  18. Nuclear Medicine Scans for Cancer

    MedlinePlus

    ... are the possible complications? For the most part, nuclear scans are safe tests. The doses of radiation are very small, and the radionuclides have a ... else should I know about these tests? The radiation exposure from a nuclear scan comes from the radionuclides used – the scanner ...

  19. Nuclear oncology, a fast growing field of nuclear medicine

    NASA Astrophysics Data System (ADS)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  20. Nuclear physics in medicine, minefield and kitchen

    NASA Astrophysics Data System (ADS)

    Moskal, Paweł

    2011-01-01

    Plethora of phenomena discovered and investigated in the Maria Curie laboratories constitute nowadays basis of functioning of various advanced devices used in modern science, industry and medicine. In this article we briefly describe few examples of nuclear physics applications, such as: non-invasive imaging of living organisms by means of Positron Emission Tomography, remote identification of explosives and other dangerous substances, using the technique of atometry, and preservation of food by its exposure to nuclear radiation.

  1. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  2. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  3. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  4. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  5. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  6. A nuclear chocolate box: the periodic table of nuclear medicine.

    PubMed

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry. PMID:25406520

  7. A nuclear chocolate box: the periodic table of nuclear medicine.

    PubMed

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  8. Introduction to suspension levels: nuclear medicine.

    PubMed

    Christofides, Stelios; Malone, Lesley; Mattson, Soren; Horton, Pat

    2013-02-01

    In 2007, the European Commission (EC) commissioned a group of experts to undertake the revision of Report Radiation Protection (RP) 91, written in 1997, on 'Criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations'. The revised draft report was submitted to the EC. Before publication, the EC issued this document for public consultation and has commissioned the same group of experts to consider the comments of the public consultation in further improving the revised report. The EC intends to publish the final report under its Radiation Report Series with the number RP 162. This paper introduces the project and presents the methodology adopted to devise the criteria of acceptability/suspension levels for nuclear medicine equipment.

  9. [Evaluation of thyroid diseases in nuclear medicine].

    PubMed

    Alimanović-Alagić, Rubina; Brković, Amera; Kucukalić-Selimović, Elma

    2008-01-01

    The thyroid is one of the larger endocrine glands in the body. The thyroid size is 15-20 gr. The gland produces hormones that regulate all metabolic processes in large number of tissues in the body, and produces hormones that affect the growth and rate of function of many other systems in the body. Studies of the endocrine system are among the original procedures in nuclear medicine. Thyroid scintigraphy and radio-tracer uptake studies remain an important part of the practice of nuclear medicine. Scintigraphy reveals functional and anatomic status of thyroid gland. A systematic and complete interpretation of the thyroid scintigrams requires assessments of thyroid size and configuration and identification and description of focal abnormalities, including hot and cold nodules and extrathyroidal activity in the neck or mediastinum. Early diagnosis and treatment of thyroid disease have made possible the reduction of morbidity and mortality associated with these disorders. PMID:19469277

  10. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  11. Nuclear Medicine Imaging in the Pediatric Patient

    PubMed Central

    Loveless, Vivian

    2006-01-01

    Pediatric nuclear medicine provides a wealth of information on a variety of disease states; however, precautions on dosing have to be taken into consideration. Also, expertise in conducting procedures and interpreting the results in pediatric patients is necessary. Emphasis is placed on diagnostic studies involving the central nervous system, musculoskeletal system, genitourinary system, gastrointestinal system, endocrine system, pulmonary system, and cardiovascular system along with a brief explanation of the mechanism of localization of the radiopharmaceuticals involved. Radiation safety issues are addressed when the expectant mother or nursing mother is administered radiopharmaceuticals. PMID:23115536

  12. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  13. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  14. Eigenimage filtering of nuclear medicine image sequences

    SciTech Connect

    Windham, J.P.; Froelich, J.W.; Abd-Allah, M.

    1985-05-01

    In many nuclear medicine imaging sequences the localization of radioactivity in organs other than the target organ interferes with imaging of the desired anatomical structure or physiological process. A filtering technique has been developed which suppresses the interfering process while enhancing the desired process. This technique requires the identification of temporal sequential signatures for both the interfering and desired processes. These signatures are placed in the form of signature vectors. Signature matrices, M/sub D/ and M/sub U/, are formed by taking the outer product expansion of the temporal signature vectors for the desired and interfering processes respectively. By using the transformation from the simultaneous diagonalization of these two signature matrices a weighting vector is obtained. The technique is shown to maximize the projection of the desired process while minimizing the interfering process based upon an extension of Rayleigh's Principle. The technique is demonstrated for first pass renal and cardiac flow studies. This filter offers a potential for simplifying and extending the accuracy of diagnostic nuclear medicine procedures.

  15. The role of general nuclear medicine in breast cancer

    PubMed Central

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer. PMID:26229668

  16. The role of general nuclear medicine in breast cancer.

    PubMed

    Greene, Lacey R; Wilkinson, Deborah

    2015-03-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer. PMID:26229668

  17. The role of general nuclear medicine in breast cancer

    SciTech Connect

    Greene, Lacey R; Wilkinson, Deborah

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  18. Nuclear Medicine Imaging of Neuroendocrine Tumors.

    PubMed

    Brabander, Tessa; Kwekkeboom, Dik J; Feelders, Richard A; Brouwers, Adrienne H; Teunissen, Jaap J M

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with (111)In-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy (PRRT). In the past decade, different positron-emitting tomography (PET) tracers have been developed. The largest group is the (68)Gallium-labeled somatostatin analogs ((68)Ga-SSA). Several studies have demonstrated their superiority compared to SRS in sensitivity and specificity. Furthermore, patient comfort and effective dose are favorable for (68)Ga-SSA. Other PET targets like β-[(11)C]-5-hydroxy-L-tryptophan ((11)C-5-HTP) and 6-(18)F-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) were developed recently. For insulinomas, glucagon-like peptide-1 receptor imaging is a promising new technique. The evaluation of response after PRRT and other therapies is a challenge. Currently, the official follow-up is performed with radiological imaging techniques. The role of nuclear medicine may increase with the newest tracers for PET. In this review, the different nuclear imaging techniques and tracers for the imaging of NETs will be discussed.

  19. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  20. Nuclear medicine training and practice in the Czech Republic.

    PubMed

    Kamínek, Milan; Koranda, Pavel

    2014-08-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic.

  1. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  2. Common uses of nonradioactive drugs in nuclear medicine

    SciTech Connect

    Ponto, J.A.; Hladik, W.B.

    1984-06-01

    A variety of nonradioactive pharmaceuticals commonly used in patients who receive nuclear medicine diagnostic tests are described. Nonradioactive drugs used in thyroid, brain, hepatobiliary, cardiac, renal, Meckel's diverticulum, gallium, adrenal, and hematological studies are described. Pharmaceutical necessities used as disinfectants, diluents, and anticoagulants are also described. Hospital pharmacists should be familiar with the uses of commonly prescribed nonradioactive drugs in nuclear medicine studies.

  3. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea.

    PubMed

    Kim, Byung Il

    2016-02-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the "Institute for Quality Management of Nuclear Medicine", and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization.

  4. Career prospects for graduating nuclear medicine residents: survey of nuclear medicine program directors.

    PubMed

    Harolds, Jay A; Guiberteau, Milton J; Metter, Darlene F; Oates, M Elizabeth

    2013-08-01

    There has been much consternation in the nuclear medicine (NM) community in recent years regarding the difficulty many NM graduates experience in securing initial employment. A survey designed to determine the extent and root causes behind the paucity of career opportunities was sent to all 2010-2011 NM residency program directors. The results of that survey and its implications for NM trainees and the profession are presented and discussed in this article.

  5. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  6. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    SciTech Connect

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine.

  7. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures.

    PubMed

    Koizumi, Kiyoshi; Masaki, Hidekazu; Matsuda, Hiroshi; Uchiyama, Mayuki; Okuno, Mitsuo; Oguma, Eiji; Onuma, Hiroshi; Kanegawa, Kimio; Kanaya, Shinichi; Kamiyama, Hiroshi; Karasawa, Kensuke; Kitamura, Masayuki; Kida, Tetsuo; Kono, Tatsuo; Kondo, Chisato; Sasaki, Masayuki; Terada, Hitoshi; Nakanishi, Atsushi; Hashimoto, Teisuke; Hataya, Hiroshi; Hamano, Shin-ichiro; Hirono, Keishi; Fujita, Yukihiko; Hoshino, Ken; Yano, Masayuki; Watanabe, Seiichi

    2014-06-01

    The Japanese Society of Nuclear Medicine has recently published the consensus guidelines for pediatric nuclear medicine. This article is the English version of the guidelines. Part 1 proposes the dose optimization in pediatric nuclear medicine studies. Part 2 comprehensively discusses imaging techniques for the appropriate conduct of pediatric nuclear medicine procedures, considering the characteristics of imaging in children.

  8. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  9. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  10. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea

    PubMed Central

    2016-01-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the “Institute for Quality Management of Nuclear Medicine”, and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  11. Computer Generated Cardiac Model For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  12. Role of the biomedical engineer in nuclear medicine.

    PubMed

    Llaurado, J G

    1981-01-01

    Throughout the short history of the development of radioactivity applied in the biomedical field, there have been many contributions made by engineers. With the advent of Nuclear Medicine as a well systematized specialty and its mushrooming in hospitals, the opportunities for biomedical engineers have increased. This article is written from the viewpoint of historic perspective in order to display the different aspects and situations where engineers, and particularly biomedical and clinical engineers, can participate in Nuclear Medicine. Finally, a more detailed survey is made of the activities of biomedical engineers in the nuclear medicine department.

  13. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. PMID:27237444

  14. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016.

  15. A brief overview of nuclear medicine in China.

    PubMed

    Wang, S C; Chou, C E

    1989-04-01

    The year 1956 witnessed the birth of Nuclear Medicine in China, when the first course, Biomedical Applications of Isotopes, was offered in our country by the Peking Union Medical College (PUMC). This course was preceded by a training course in nuclear instruments in which students learned to construct the radiation detection devices required for performing experiments using radioisotopes. In 1958, several courses in clinical nuclear medicine brought up the first generation of nuclear medicine physicians in China. Historically, some of the chief events include: (1) operation of the first reactor, producing 33 radioactive isotopes in 1958; (2) first linear scanner built in 1960; (3) setting up an organization for the control of radiopharmaceuticals in 1961; (4) distribution of the first batch of cyclotron-produced isotopes in 1963; (5) development and use of the first radioimmunoassay (RIA) procedure in 1963; (6) production of tritium in 1964; (7) production of 99.8% enriched heavy water in 1965; (8) supply of 99mTc and 113mIn generators in 1972; (9) first gamma camera imported in 1972 and first homemade gamma camera installed in 1977; (10) founding of Chinese Society of Nuclear Medicine (CSNM) in 1980; (11) publication of the Chinese Journal of Nuclear Medicine beginning in 1981; (12) first single photon emission computed tomography (SPECT) imported in 1983. At present, there are 556 nuclear medicine departments in China with 4,000 staff.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. [Therapeutic advances of nuclear medicine in oncology].

    PubMed

    Valdés Olmos, R A; Hoefnagel, C A; Bais, E; Boot, H; Taal, B; de Kraker, J; Vote, P A

    2001-12-01

    With the development of new radiopharmaceuticals there is a tendency to apply nuclear medicine therapy for malignancies of higher incidence (lymphoma, prostate) than the ones which have been treated for many years (thyroid cancer, neuroendocrine tumours). One of the most important areas of current development in radionuclide cancer therapy is the monotherapeutic use of new or already available radiopharmaceuticals in preclinical or phase I studies and to a lesser degree in phase II trials. In this context, the radioimmunotherapy is showing important advances in the treatment of medullary thyroid carcinoma, malignant lymphomas en brain tumours with potential extension to neuroblastoma therapy. The development of DOTA as a chelating agent has lead to the use of Y-90-DOTATOC in the treatment of neuroendocrine tumours, particularly carcinoid tumours, and non-I131I-avid thyroid carcinomas. In an effort to improve tumour targeting together with simultaneous reduction of physiological organ uptake, 131I-MIBG is being used in combination with interferon a and pre-targeting with unlabelled MIBG in the treatment of carcinoid tumours. New routes of administration of radiopharmaceuticals (intratumoral, intra-arterial) have enhanced the treatment of malignancies of liver, pancreas and brain as well as the potential use of radioimmunotherapy by intravesical administration for bladder carcinoma. Another significant tendency in radionuclide therapy is its evolution from monotherapy towards a combined application with other anticancer modalities. Some recent examples of combined therapy with demonstrated anti-tumour effect are found in neuroblastoma (131I-MIBG and chemotherapy), bone metastases of prostatic carcinoma (addition of 89Sr to chemotherapy schedules), brain malignancies (adjuvant use of radioimmnunotherapy in relation to surgery and external radiotherapy) and lymphoma (radioimmunotherapy combined with chemotherapy or immunotherapy). Reinforcing this trend in phase II and

  17. The practice of nuclear medicine in common market countries.

    PubMed

    Askienazy, S

    1993-01-01

    There is no politically structured European policy on nuclear medicine, and there are significant discrepancies between the various member states. It is hard to guess whether competing imaging modalities will slow down the process of development that took place in underequipped countries. But it appears likely that with the free circulation of professionals between European Community countries, free competition will stimulate these countries toward major development in nuclear medicine. PMID:8469996

  18. The practice of nuclear medicine in common market countries.

    PubMed

    Askienazy, S

    1993-01-01

    There is no politically structured European policy on nuclear medicine, and there are significant discrepancies between the various member states. It is hard to guess whether competing imaging modalities will slow down the process of development that took place in underequipped countries. But it appears likely that with the free circulation of professionals between European Community countries, free competition will stimulate these countries toward major development in nuclear medicine.

  19. Labelled compounds and radiopharmaceuticals applied in nuclear medicine

    SciTech Connect

    Balaban, A.; Galateanu, I.; Geogescu, G.; Simionescu, L.

    1986-01-01

    This book includes material on radiopharmacy and nuclear medicine with a section on in vitro assays. Contents are divided into four parts: radioisotopes, labelled compounds and radiopharmaceuticals; radiopharmaceuticals used for diagnostic purposes; in vitro methods of analysis with labelled compounds and applications of radioimmunoassay to medicine.

  20. The Society of Nuclear Medicine in the new millennium.

    PubMed

    Carretta, R F

    2000-07-01

    The Society of Nuclear Medicine (SNM), which was first organized in January 1954 by 12 men at the Davenport Hotel in Spokane, WA, has evolved into an international educational organization. It has more than 15,000 members, including physicians, scientists, technologists, and industrialists. The SNM has embarked on a new strategic plan that will make it the premier educational and scientific organization representing the specialty of nuclear medicine. The role of the Society in the new millennium and its relationship with other international nuclear medicine societies continue to evolve. The opportunity for joint educational programs, interchange of ideas, research, an international journal, educational activities, and the sharing of professional experiences awaits the SNM and its members in the new millennium. The Society has also reached out to other organizations and physicians who are involved in the clinical practice of nuclear medicine to forge new alliances that will strengthen the specialty of nuclear medicine. These alliances will allow nuclear medicine physicians to speak with a unified voice when faced with regulatory and reimbursement issues and will help in advancing the research, education, and clinical mission of the SNM. PMID:10928386

  1. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  2. The contribution of medical physics to nuclear medicine: a physician's perspective.

    PubMed

    Ell, Peter J

    2014-12-01

    This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.

  3. Applications of CdTe to nuclear medicine. Final report

    SciTech Connect

    Entine, G.

    1985-05-07

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals. (ACR)

  4. Nuclear medicine imaging of bone infections.

    PubMed

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  5. IAEA support to medical physics in nuclear medicine.

    PubMed

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a

  6. Comparative analysis of dosimetry parameters for nuclear medicine

    SciTech Connect

    Toohey, R.E.; Stabin, M.G.

    1999-01-01

    For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRP Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.

  7. The IAEA technical cooperation programme and nuclear medicine in the developing world: objectives, trends, and contributions.

    PubMed

    Casas-Zamora, Juan Antonio; Kashyap, Ridhi

    2013-05-01

    The International Atomic Energy Agency's technical cooperation (TC) programme helps Member States in the developing world with limited infrastructure and human resource capacity to harness the potential of nuclear technologies in meeting socioeconomic development challenges. As a part of its human health TC initiatives, the Agency, through the TC mechanism, has the unique role of promoting nuclear medicine applications of fellowships, scientific visits, and training courses, via technology procurement, and in the past decade has contributed nearly $54 million through 180 projects in supporting technology procurement and human resource capacity development among Member States from the developing world (low- and middle-income countries). There has been a growing demand in nuclear medicine TC, particularly in Africa and ex-Soviet Union States where limited infrastructure presently exists, based on cancer and cardiovascular disease management projects. African Member States received the greatest allocation of TC funds in the past 10 years dedicated to building new or rehabilitating obsolete nuclear medicine infrastructure through procurement support of single-photon emission computed tomography machines. Agency support in Asia and Latin America has emphasized human resource capacity building, as Member States in these regions have already acquired positron emission tomography and hybrid modalities (positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography) in their health systems. The strengthening of national nuclear medicine capacities among Member States across different regions has enabled stronger regional cooperation among developing countries who through the Agency's support and within the framework of regional cooperative agreements are sharing expertise and fostering the sustainability and productive integration of nuclear medicine within their health systems.

  8. Nuclear Medicine in Pediatric and Adolescent Tumors.

    PubMed

    Kiratli, Pınar Özgen; Tuncel, Murat; Bar-Sever, Zvi

    2016-07-01

    Nuclear medicine has an important role in the management of many cancers in pediatric age group with multiple imaging modalities and radiopharmaceuticals targeting various biological uptake mechanisms. 18-Flourodeoxyglucose is the radiotracer of choice especially in patients with sarcoma and lymphoma. (18)FDG-PET, for sarcoma and lymphomas, is proved to be superior to conventional imaging in staging and therapy response. Although studies are limited in pediatric population, (18)FDG-PET/CT has found its way through international guidelines. Limitations and strengths of PET imaging must be noticed before adapting PET imaging in clinical protocols. Established new response criteria using multiple parameters derived from (18)FDG-PET would increase the accuracy and repeatability of response evaluation. Current data suggest that I-123 metaiodobenzylguanidine (MIBG) remains the tracer of choice in the evaluation of neuroblastoma (NB) because of its high sensitivity, specificity, diagnostic accuracy, and prognostic value. It is valuable in determining the response to therapy, surveillance for disease recurrence, and in selecting patients for I-131 therapy. SPECT/CT improves the diagnostic accuracy and the interpretation confidence of MIBG scans. (18)FDG-PET/CT is an important complementary to MIBG imaging despite its lack of specificity to NB. It is valuable in cases of negative or inconclusive MIBG scans and when MIBG findings underestimate the disease status as determined from clinical and radiological findings. F-18 DOPA is promising tracer that reflects catecholamine metabolism and is both sensitive and specific. F-18 DOPA scintigraphy provides the advantages of PET/CT imaging with early and short imaging times, high spatial resolution, inherent morphologic correlation with CT, and quantitation. Regulatory and production issues currently limit the tracer's availability. PET/CT with Ga-68 DOTA appears to be useful in NB imaging and may have a unique role in selecting

  9. The use of personal computers in nuclear medicine.

    PubMed

    Tello, R; Potter, J E; Hill, T C

    1994-01-01

    Consolidating personal computers (PCs) with nuclear medicine technology can create high computational power comparable with that produced by vendor-specific computer equipment, and at more affordable prices. The integration of a standard platform and operating system with a large installed base has enabled our department to maintain itself at the cutting edge of technology with minimal expense. Along with the savings from the purchase of PC software and hardware come the added advantage of rapid training of staff with minimal in-house effort, especially given the vast educational support in the general community. The integration of a standard platform and operating system with a large installed base has provided the nuclear medicine department with computational resources once unheard of because of economies of scale. The acceptance and integration of a pervasive, flexible technology into nuclear medicine have shown that state-of-the-art studies can be performed at low cost. PMID:8122130

  10. Training requirements for chemists in radiotracer development for nuclear medicine

    SciTech Connect

    Finn, R.; Fowler, J.

    1988-01-01

    This panel was organized to address the current and anticipated future shortage of chemists with advanced training to fill positions in the nuclear medicine field. Although hard data and statistics are difficult to acquire, we will attempt to highlight the impact of chemistry on nuclear medicine and to describe the growth of the field which has led to an increasing need for chemists resulting in the current manpower shortage. We also will make recommendations for attracting Ph.D. chemists to careers in nuclear medicine research and possible mechanisms for postgraduate training. Solving this problem and establishing a long term committment and mechanism for advanced training is critically important to meet the current needs of the profession and to assure future growth and innovation. 3 tabs.

  11. [Positron emission tomography: a new modality in Brazilian nuclear medicine].

    PubMed

    Robilotta, Cecil Chow

    2006-01-01

    In nuclear medicine, radioactive substances are used to diagnose and treat disease. This medical specialty, that can provide information about the human body's physiologic and metabolic processes, has become a key diagnostic tool for the early detection of many different disorders, including various types of cancer. The present article describes the historical milestones in nuclear medicine; the basic physical principles underlying positron emission tomography (PET), which is an imaging method used to map the distribution of radiopharmaceuticals in the body for diagnostic and therapeutic purposes, and the current status of this modality in Brazil.

  12. Nuclear waste actinides as fissile fuel in hybrid blankets

    SciTech Connect

    Sahin, S.; Al-Kusayer, T.A.

    1983-12-01

    The widespread use of the present LWRs produces substantial quantities of nuclear waste materials. Among those, actinide nuclear waste poses a serious problem of stockage because the associated half life times for actinides is measured in terms of geological time periods (several millions of years) so that no waste disposal guarantee over such time intervals can be given, except for space disposal. On the other hand, these nuclear waste actinides are very good fissionable materials for high energetic (D,T) fusion neutrons. It is therefore worthwhile to investigate their quality as potential nuclear fuel in hybrid blankets. The present study investigates the neutronic performance of hybrid blankets containing Np/sup 237/ and Cm/sup 244/ as fissile materials. The isotopic composition of Americium has been adjusted to the spent fuel isotope composition of a LWR. The geometrical design has been made, according to the AYMAN fussion-fission (hybrid) experimental facility, now in the very early phase of planning.

  13. Pioneers of nuclear medicine, Madame Curie.

    PubMed

    Grammaticos, Philip C

    2004-01-01

    Among those who have made important discoveries in the field of radioactivity and thus helped in the development of nuclear medicine as an identical entity are: Heinrich Hertz who in 1886 demonstrated the existence of radiowaves. In 1895 Wilhelm Röntgen discovered the X-rays. In 1896 H. Becquerel described the phenomenon of radioactivity. He showed that a radioactive uranium salt was emitting radioactivity which passing through a metal foil darkened a photographic plate. An analogous experiment performed by S.Thomson in London was announced to the president of the Royal Society of London before the time H.Becquerel announced his discovery but Thomson never claimed priority for his discovery. Muarie Sklodowska Curie (1867-1934) was undoubtedly the most important person to attribute to the discovery of radioactivity. In 1898 she discovered radium as a natural radioactive element. This is how she describes the hard time she had, working with her husband Pierre Curie (1859-1906) for the discovery of radium and polonium: "During the first year we did not go to the theater or to a concert or visited friends. I miss my relatives, my father and my daughter that I see every morning and only for a little while. But I do not complain...". In presenting her discovery of radium, Madame Curie said: " ...in the hands of a criminal, radium is very dangerous. So we must often ask ourselves: will humanity earn or lose from this discovery? I, myself belong to those who believe the former...". The notebooks that Madame Curie had when she was working with radium and other radioactive elements like polonium, thorium and uranium are now kept in Paris. They are contaminated with radioactive materials having very long half-lives and for this reason anyone who wishes to have access to these notes should sign that he takes full responsibility. There are some more interesting points in Madame Curie's life which may not be widely known like: Although her full name is Maria Sklodowska

  14. Pioneers of nuclear medicine, Madame Curie.

    PubMed

    Grammaticos, Philip C

    2004-01-01

    Among those who have made important discoveries in the field of radioactivity and thus helped in the development of nuclear medicine as an identical entity are: Heinrich Hertz who in 1886 demonstrated the existence of radiowaves. In 1895 Wilhelm Röntgen discovered the X-rays. In 1896 H. Becquerel described the phenomenon of radioactivity. He showed that a radioactive uranium salt was emitting radioactivity which passing through a metal foil darkened a photographic plate. An analogous experiment performed by S.Thomson in London was announced to the president of the Royal Society of London before the time H.Becquerel announced his discovery but Thomson never claimed priority for his discovery. Muarie Sklodowska Curie (1867-1934) was undoubtedly the most important person to attribute to the discovery of radioactivity. In 1898 she discovered radium as a natural radioactive element. This is how she describes the hard time she had, working with her husband Pierre Curie (1859-1906) for the discovery of radium and polonium: "During the first year we did not go to the theater or to a concert or visited friends. I miss my relatives, my father and my daughter that I see every morning and only for a little while. But I do not complain...". In presenting her discovery of radium, Madame Curie said: " ...in the hands of a criminal, radium is very dangerous. So we must often ask ourselves: will humanity earn or lose from this discovery? I, myself belong to those who believe the former...". The notebooks that Madame Curie had when she was working with radium and other radioactive elements like polonium, thorium and uranium are now kept in Paris. They are contaminated with radioactive materials having very long half-lives and for this reason anyone who wishes to have access to these notes should sign that he takes full responsibility. There are some more interesting points in Madame Curie's life which may not be widely known like: Although her full name is Maria Sklodowska

  15. A CD-ROM/Internet hybrid for nuclear data dissemination

    SciTech Connect

    James, J.Z.; Vujic, J.L.

    1994-12-31

    Most neutronics and shielding calculations depend on large nuclear databases, such as the Evaluated Nuclear Data File (ENDF) and the Evaluated Nuclear Structure Data File (ENSDF). In an attempt to provide a wider user community with easy access to nuclear databases, as well as with easy-to-use tools for displaying nuclear data, we have developed a new methodology in electronic publishing, dissemination and database updates, based on the combination of compact disk read-only-memory (CD-ROM) technology and the information superhighway on Internet. This report outlines the CD-ROM/Internet hybrid system.

  16. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study.

    PubMed

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-08-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.

  17. Is there a place for music in nuclear medicine?

    PubMed

    Giannouli, Vaitsa; Lytras, Nikolaos; Syrmos, Nikolaos

    2012-01-01

    Music, since the time of ancient Greek Asclepieia is well-known for its influence on men's behavior. Nuclear Medicine can study the effect of music in humans' brain. Positron emission tomography (PET) studies have shown brain areas to be activated after colored hearing vs after hearing to words. Furthermore, PET studies gave evidence that visual imagery of a musical stave is used by some musically untrained subjects in a pitch discrimination task. Listening to music combines intellect and emotion by intimate anatomical and functional connexions between temporal lobe, hippocampus and limbic system. Mozart's music is considered the best for bringing favorable music effects to men. This is called "the Mozart's effect" and by some is attributed to the fact that this kind of music's sequences tend to repeat regularly every 20-30sec, which is about the same length of time as brain-wave patterns. It may be useful to suggest that a certain kind of music played in the waiting room and/or in the examining room of a Nuclear Medicine Department may support patients ' cooperation with their physicians, especially in cardiac nuclear medicine. Furthermore, patients should be calm and not afraid of radioactivity. A long DVD program to be played during working hours can be decided between a music therapist and the Nuclear Medicine physician. PMID:23227458

  18. Nuclear Medicine Technology: A Suggested Two-Year Curriculum Manual.

    ERIC Educational Resources Information Center

    Hunter, David

    This curriculum guide prescribes an educational program for training nuclear medicine technologists. Following a brief section on program development, the curriculum is both outlined and presented in detail. For each of the 44 courses, the following information is given: (1) sequential placement of the course in the curriculum; (2) course…

  19. Essentials of nuclear medicine imaging. 3rd edition

    SciTech Connect

    Mettler, F.A.; Guiberteau, M.J.

    1991-01-01

    This book covers topics ranging from basic physics and instrumentation to various aspects of clinical imaging and regulatory issues. It includes a section on single photon emission computed tomography (SPECT). The clinical sections include newer aspects of nuclear medicine, such as antibody imaging, pharmacologic stress, bone mineral analysis, evaluation of renovascular hypertension, and the role of gallium in patients with acquired immunodeficiency syndrome.

  20. Dictionary/handbook of nuclear medicine and clinical imaging

    SciTech Connect

    Iturralde, M.P. )

    1989-01-01

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  1. Is there a place for music in nuclear medicine?

    PubMed

    Giannouli, Vaitsa; Lytras, Nikolaos; Syrmos, Nikolaos

    2012-01-01

    Music, since the time of ancient Greek Asclepieia is well-known for its influence on men's behavior. Nuclear Medicine can study the effect of music in humans' brain. Positron emission tomography (PET) studies have shown brain areas to be activated after colored hearing vs after hearing to words. Furthermore, PET studies gave evidence that visual imagery of a musical stave is used by some musically untrained subjects in a pitch discrimination task. Listening to music combines intellect and emotion by intimate anatomical and functional connexions between temporal lobe, hippocampus and limbic system. Mozart's music is considered the best for bringing favorable music effects to men. This is called "the Mozart's effect" and by some is attributed to the fact that this kind of music's sequences tend to repeat regularly every 20-30sec, which is about the same length of time as brain-wave patterns. It may be useful to suggest that a certain kind of music played in the waiting room and/or in the examining room of a Nuclear Medicine Department may support patients ' cooperation with their physicians, especially in cardiac nuclear medicine. Furthermore, patients should be calm and not afraid of radioactivity. A long DVD program to be played during working hours can be decided between a music therapist and the Nuclear Medicine physician.

  2. High Performance Organ-Specific Nuclear Medicine Imagers.

    NASA Astrophysics Data System (ADS)

    Majewski, Stan

    2006-04-01

    One of the exciting applications of nuclear science is nuclear medicine. Well-known diagnostic imaging tools such as PET and SPECT (as well as MRI) were developed as spin-offs of basic scientific research in atomic and nuclear physics. Development of modern instrumentation for applications in particle physics experiments offers an opportunity to contribute to development of improved nuclear medicine (gamma and positron) imagers, complementing the present set of standard imaging tools (PET, SPECT, MRI, ultrasound, fMRI, MEG, etc). Several examples of new high performance imagers developed in national laboratories in collaboration with academia will be given to demonstrate this spin-off activity. These imagers are designed to specifically image organs such as breast, heart, head (brain), or prostate. The remaining and potentially most important challenging application field for dedicated nuclear medicine imagers is to assist with cancer radiation treatments. Better control of radiation dose delivery requires development of new compact in-situ imagers becoming integral parts of the radiation delivery systems using either external beams or based on radiation delivery by inserting or injecting radioactive sources (gamma, beta or alpha emitters) into tumors.

  3. Society of Nuclear Medicine--57th annual meeting.

    PubMed

    Searle, Ben

    2010-08-01

    The 57th Annual Meeting of the Society of Nuclear Medicine, held in Salt Lake City, UT, USA, included topics covering new developments in imaging agents and radiopharmaceutical therapies in the field of nuclear medicine. This conference report highlights selected presentations related to imaging of the brain, the prediction of heart disease, and the detection and treatment of various cancers. Investigational drugs discussed include TF-2 plus [68Ga]IMP-288 and TF-2 plus [111In]IMP-288 (both Immunomedics Inc), [11C]PBR-170 (Royal Prince Alfred Hospital/Australian Nuclear Science & Technology Organization), [11C]LY-2795050 (Eli Lilly & Co), yttrium (90Y) clivatuzumab tetraxetan (Garden State Cancer Center/Immunomedics Inc), [18F]LMI-1195 (Lantheus Medical Imaging Inc), fluciclovine (18F) (GE Healthcare/Nihon Medi-Physics Co Ltd), [99mTc]MIP-1340 and [99mTc]MIP-1407 (both Molecular Insight Pharmaceuticals Inc).

  4. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  5. Basic principles of nuclear medicine techniques for detection and evaluation of trauma and sports medicine injuries.

    PubMed

    Matin, P

    1988-04-01

    Nuclear medicine skeletal imaging is a very sensitive technique for evaluating bone and muscle abnormalities because it can detect minor changes in metabolism and blood flow. The specificity of bone imaging, however, depends on the ability of the nuclear medicine physician to make a differential diagnosis. To aid in making a specific diagnosis, this article describes the various patterns of abnormality in stress fractures, tibial stress syndrome (shin splints), compartment syndrome, enthesopathy, and traumatic fractures. The characteristic scintigraphic appearance of joint injuries, muscle injuries (rhabdomyolysis), and radionuclide arthrography is discussed and the way the scan patterns change with time in these various disorders is described. A brief summary of the basic anatomy and physiology of bone and muscle in normal and injured tissue is presented and the basic mechanisms which cause the various abnormal scan patterns is postulated. In addition, a staging system for stress fractures is presented to help direct the referring physician toward the proper management of the injured patient. In most cases, nuclear medicine skeletal imaging can be used to differentiate between acute muscle injury, tibial stress syndrome, skeletal injury (periosteal reaction, stress fracture, and traumatic fracture) or an abnormality that is entirely associated with the joint or connective tissue. This differential diagnosis is easier if the nuclear medicine procedure is performed within a few days after the onset of injury.

  6. Current procedural terminology coding of nuclear medicine procedures.

    PubMed

    McKusick, K A; Quaife, M A

    1993-01-01

    The future of nuclear medicine is dependent on payment for new procedures. Today, the basis of payment by the federal government is a relative value unit (RVU) system; the RVUS employed in this system are for medical services and procedures listed and described in Physicians' Current Procedural Terminology, fourth edition. Current procedural terminology (CPT) is maintained by the AMA; annual revisions include adding new codes or revised or deleted old codes. This process involves all national medical specialty societies. Starting in 1992 a new process, the Relative Updating Committee, which was initiated by the AMA, organized medicine to formalize a method for recommending relative values for physician procedures and services. In this rapidly changing scenario, all nuclear medicine procedure codes are under review by the coding and nomenclature committees of the medical societies interested in imaging. Significant CPT changes and additions were made in the cardiovascular nuclear medicine codes in 1992, reflecting the current imaging protocols and pharmacological agents for performing cardiac stress testing and new codes that recognize combinations of ventricular function measurements in patients undergoing myocardial perfusion imaging with technetium-99m agents.

  7. Discharges of nuclear medicine radioisotopes in Spanish hospitals.

    PubMed

    Krawczyk, E; Piñero-García, F; Ferro-García, M A

    2013-02-01

    Given the increasing use of radiopharmaceuticals in medicine, the aim of this paper is to determine radioactivity levels in the effluents of hospitals with Nuclear Medicine Departments. The radiological study of hospital discharges was carried out by gamma spectrometry, and liquid scintillation spectrometry to determine (14)C and (3)H contents. On March 9th and April 19th, 2010, daily radioactivity levels were monitored from 8:30 a.m. to 7:30 p.m. Each sample was collected at a specific control point of two major public hospitals in Granada (Spain). The analytical results show the presence of radionuclides such as (99m)Tc, (131)I, (67)Ga, and (111)In.They are frequently used in nuclear medicine for diagnostic and/or therapeutic purposes. This study shows the differences between direct and after-storage discharges and also justifies the need of storage tanks in hospitals with nuclear medicine departments. Moreover, monitoring of (99m)Tc released at hospital control points can be a useful tool for optimizing the safety conditions of storage tanks and discharge of radionuclides. PMID:23103581

  8. Impact of the prospective payment system on the delivery of nuclear medicine services

    SciTech Connect

    Crucitti, T.W.; Pappas, V.M.

    1986-07-01

    The study evaluates the effect of the Medicare Prospective Payment System (PPS) on nuclear medicine technologists and services. Since 80% of nuclear medicine technologists work in hospitals, a large segment of the professionals would be affected by the new system. The survey was designed to assess the PPSs effect on nuclear medicine departments at the early implementation stage.

  9. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  10. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  11. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  12. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  13. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  14. American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine

    SciTech Connect

    1991-12-31

    Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be aware of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.

  15. Nuclear medicine in clinical neurology: an update

    SciTech Connect

    Oldendorf, W.H.

    1981-01-01

    Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, seven extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans.

  16. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    SciTech Connect

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  17. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  18. [Cost analysis of twenty-nine nuclear medicine procedures].

    PubMed

    Kastanioti, Catherine K; Alphalbouharali, Gihand; Fotopoulos, Andreas

    2004-01-01

    The aim of this study was to compare actual cost estimates for diagnostic procedures as applied in the nuclear medicine department of our University Hospital, with cost estimates obtained through an analytical activity-based costing methodology. Activity data on the use of twenty-nine nuclear medicine procedures were collected. The actual hospital prices for the fiscal years of 2003-2004 were obtained from the Accounting Department of the Hospital. Cost estimates were calculated per patient. Activity-based data were compared with hospital prices and also with unit costs from the activity-based costing methodology. Our results showed a significant statistical difference between unit cost estimates per patient based on hospital prices, as compared with those based on unit costs. This study shows that in our university hospital, reliance on generic hospital prices for nuclear medicine procedures, considerable underestimates their real cost by a mean value of 40% as derived through the activity-based costing methodology and can lead to substantial financial hospital deficits.

  19. Assessment of OEP health's risk in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-01

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 ± 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  20. Initial experience with a nuclear medicine viewing workstation

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  1. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  2. Limits of Tumor Detectability in Nuclear Medicine and PET

    PubMed Central

    Erdi, Yusuf Emre

    2012-01-01

    Objective: Nuclear medicine is becoming increasingly important in the early detection of malignancy. The advantage of nuclear medicine over other imaging modalities is the high sensitivity of the gamma camera. Nuclear medicine counting equipment has the capability of detecting levels of radioactivity which exceed background levels by as little as 2.4 to 1. This translates to only a few hundred counts per minute on a regular gamma camera or as few as 3 counts per minute when using coincidence detection on a positron emission tomography (PET) camera. Material and Methods: We have experimentally measured the limits of detectability using a set of hollow spheres in a Jaszczak phantom at various tumor-to-background ratios. Imaging modalities for this work were (1) planar, (2) SPECT, (3) PET, and (4) planar camera with coincidence detection capability (MCD). Results: When there is no background (infinite contrast) activity present, the detectability of tumors is similar for PET and planar imaging. With the presence of the background activity , PET can detect objects in an order of magnitude smaller in size than that can be seen by conventional planar imaging especially in the typical clinical low (3:1) T/B ratios. The detection capability of the MCD camera lies between a conventional nuclear medicine (planar / SPECT) scans and the detection capability of a dedicated PET scanner. Conclusion: Among nuclear medicine’s armamentarium, PET is the closest modality to CT or MR imaging in terms of limits of detection. Modern clinical PET scanners have a resolution limit of 4 mm, corresponding to the detection of tumors with a volume of 0.2 ml (7 mm diameter) in 5:1 T/B ratio. It is also possible to obtain better resolution limits with dedicated brain and animal scanners. The future holds promise in development of new detector materials, improved camera design, and new reconstruction algorithms which will improve sensitivity, resolution, contrast, and thereby further diminish

  3. Role of nuclear medicine in chemotherapy of malignant lesions

    SciTech Connect

    Kim, E.E.; Haynie, T.P.

    1985-01-01

    The major role of nuclear medicine in clinical oncology is in tumor imaging, which includes evaluating specific organs or the entire body for the presence of tumor. Nuclear medicine studies have been used clinically in the initial evaluation of the tumor extent and in the subsequent management of the cancer patient to assess response to treatment, to detect early relapse, and to assist in making decisions concerning follow-up treatment. Technetium-99m macroaggregated albumin perfusion study for intraarterial chemotherapy has been helpful in monitoring the catheter tip, providing a map of regional perfusion at the capillary level (tumor vascularity), evaluating the degree of arteriovenous shunt in tumor bed, and optimizing division of the dose of chemotherapeutic agent when bilateral arterial catheters are used. Quantitative and serial radionuclide angiocardiography has been useful in assessing doxorubicin (Adriamycin, Adria Laboratories, Columbus, Ohio) toxicity, and /sup 67/Ga-citrate imaging has been used to monitor chemotherapy effect on lungs and kidneys. Radionuclide venography can demonstrate suspected thrombus, and the delineation of the vascular anatomy also allows proper placement of another catheter for continuous effective chemotherapy. Serial bone scans have been the primary modality to assess the response of bone metastasis to systemic therapy in breast cancer patients, and nuclear hepatic imaging may show tumor response, hepatocellular dysfunction, and cholecystitis related to chemotherapeutic agents. 41 references.

  4. Recent developments and future trends in nuclear medicine instrumentation.

    PubMed

    Zaidi, Habib

    2006-01-01

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic comcameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for "low cost" clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued--which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. PMID:16696367

  5. Nuclear Medicine in Thyroid Diseases in Pediatric and Adolescent Patients

    PubMed Central

    Volkan-Salancı, Bilge; Özgen Kıratlı, Pınar

    2015-01-01

    Both benign and malignant diseases of the thyroid are rare in the pediatric and adolescent population, except congenital hypothyroidism. Nuclear medicine plays a major role, both in the diagnosis and therapy of thyroid pathologies. Use of radioactivity in pediatric population is strictly controlled due to possible side effects such as secondary cancers; therefore, management of pediatric patients requires detailed literature knowledge. This article aims to overview current algorithms in the management of thyroid diseases and use of radionuclide therapy in pediatric and adolescent population. PMID:26316469

  6. Interface requirements in nuclear medicine devices and systems

    SciTech Connect

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable.

  7. The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925.

    PubMed

    Patton, Dennis D

    2003-08-01

    In 1925, Hermann Blumgart performed the first diagnostic procedure using radioactive indicators on humans; this first is well recognized. Less well recognized is the fact that Blumgart and his coworker Otto C. Yens, then a medical student, developed the first instrumentation used in a diagnostic procedure involving radioactive indicators. The instrumentation, a modified Wilson cloud chamber, turned out to be the detector most suitable for their purpose. Blumgart also showed remarkable foresight in outlining the requirements both for a satisfactory indicator (tracer) and for a satisfactory detector--requirements that still hold true today. The Blumgart-Yens modified cloud chamber was the birth of nuclear medicine instrumentation. PMID:12902429

  8. Nuclear medicine for imaging of epithelial ovarian cancer.

    PubMed

    Abedi, Seyed Mohammad; Mardanshahi, Alireza; Shahhosseini, Roza; Hosseinimehr, Seyed Jalal

    2016-05-01

    Cancer is one of the leading causes of mortality worldwide. Usually, the diagnosis of cancer at an early stage is important to facilitate proper treatment and survival. Nuclear medicine has been successfully used in the diagnosis, staging, therapy and monitoring of cancers. Single-photon emission computed tomography and PET-based companion imaging agents are in development for use as a companion diagnostic tool for patients with ovarian cancer. The present review discusses the basic and clinical studies related to the use of radiopharmaceuticals in the diagnosis and management of ovarian cancer, focusing on their utility and comparing them with other imaging techniques such as computed tomography and MRI.

  9. Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine.

    PubMed

    Pillai, Ambikalmajan M R; Knapp, Furn F Russ

    2015-01-01

    Lutetium-177 ((177)Lu) is a late entrant into the nuclear medicine therapy arena but is expected to become one of the most widely used therapeutic radionuclides. This paper analyses the reason for the increasing preference of (177)Lu as a therapeutic radionuclide. While the radionuclidic properties favor its use for several therapeutic applications, the potential for large scale production of (177)Lu is also an important aspect for its acceptability as a therapeutic radionuclide. This introductory discussion also summarizes some developing clinical uses and suggested future directions for applications of (177)Lu.

  10. Nuclear medicine technologists and unauthorized self-injections.

    PubMed

    Miller, K L; King, S H; Eggli, D F; Thompson, L K

    2006-02-01

    An Office of Investigation (OI) investigation by the U.S. Nuclear Regulatory Commission (NRC) determined that, on three separate occasions over the past 10 years, technologists in one licensed nuclear medicine program were injected with radiopharmaceuticals without Authorized User knowledge or approval. The most recent instance, the one that precipitated the investigation, was discovered by the licensee and self-reported to the NRC; the other two instances were discovered during the OI investigation and came as a complete surprise to the licensee. In a mediated Alternative Dispute Resolution (ADR) involving the licensee, a professional, independent mediator and representatives of the NRC, an agreement was worked out whereby the licensee would admit to the violations and work with the NRC to inform other licensees that this is not an acceptable practice and that there are additional precautions that licensees can and should take to assure that such violations do not happen on their watch. PMID:16404185

  11. Image Reconstruction for Prostate Specific Nuclear Medicine imagers

    SciTech Connect

    Mark Smith

    2007-01-11

    There is increasing interest in the design and construction of nuclear medicine detectors for dedicated prostate imaging. These include detectors designed for imaging the biodistribution of radiopharmaceuticals labeled with single gamma as well as positron-emitting radionuclides. New detectors and acquisition geometries present challenges and opportunities for image reconstruction. In this contribution various strategies for image reconstruction for these special purpose imagers are reviewed. Iterative statistical algorithms provide a framework for reconstructing prostate images from a wide variety of detectors and acquisition geometries for PET and SPECT. The key to their success is modeling the physics of photon transport and data acquisition and the Poisson statistics of nuclear decay. Analytic image reconstruction methods can be fast and are useful for favorable acquisition geometries. Future perspectives on algorithm development and data analysis for prostate imaging are presented.

  12. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital

    PubMed Central

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-01-01

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely. PMID:27077874

  13. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    PubMed

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  14. Establishment of a national program for quality control of nuclear medicine instrumentation.

    PubMed

    Coca Perez, Marco A; Torres Aroche, Leonel A; Bejerano, Gladys López; Mayor, Roberto Fraxedas; Corona, Consuelo Varela; López, Adlin

    2008-12-01

    Monitoring the quality of instrumentation used in nuclear medicine is mandatory to guarantee the clinical efficacy of medical practice. A national program for the quality control of nuclear medicine instruments was established in Cuba and was certified and approved by the regulatory authorities. The program, which establishes official regulations and audit services, sets up educational activities, distributes technical documentation, and maintains a national phantom bank, constitutes a valuable and useful tool to guarantee the quality of nuclear medicine instrumentation. PMID:19008290

  15. Problems in detection and measurement in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Aysun Ugur, Fatma

    2015-07-01

    Nuclear Medicine studies are performed with a variety of types of radiation measurement instruments, depending on the kind of radiation source that is being measured and the type of information sought. For example, some instruments are designed for in vitro measurements on blood samples, urine specimens, and so forth. Others are designed for in vivo measurements of radioactivity in patients. All these instruments have special design characteristics to optimize them for their specific tasks, as described in this study; however, some considerations of design characteristics and performance limitations are common to all of them. An important consideration for any radiation measurement instrument is its detection efficiency. Maximum detection efficiency is desirable because one thus obtains maximum information with a minimum amount of radioactivity. Also important are instrument's counting rate limitations. There are finite counting rate limits for all counting and imaging instruments used in nuclear medicine, above which accurate results are obtained because of data losses and other data distortions. Non penetrating radiations, such as ß particles, have special detection and measurement problems. In this study, some of these general considerations have been discussed.

  16. Technetium-99m chelators in nuclear medicine. A review.

    PubMed

    Hjelstuen, O K

    1995-03-01

    Nuclear medicine is a branch of medical imaging that uses radioactive tracers to examine the function of body systems. The radionuclide used in about 90% of all examinations is 99Tcm, which is available from 99Mo/99Tcm generators at most nuclear medicine departments. In aqueous medium, technetium is chemically stable as pertechnetate, 99TcmO4-. Injected into the human body, pertechnetate will be absorbed by the thyroid gland because of the similarity to iodide in its radius and charge. To reach targets in the human body other than glandula thyreoidea, 99Tcm needs a carrier molecule, usually a chelating agent. Many chelators that form stable complexes with 99Tcm have affinities for certain tissues in the human body. Other chelators can be manipulated by pharmaceutical formation to be retained in certain body systems. In order to form bonds with technetium, the chelator must contain electron donors like nitrogen, oxygen and sulfur. Space between multiple electron donor atoms is required to allow several bonds to form with the central metal. The stability of the complex increases with increasing number of bonds. Today, chelators for the use with 99Tcm exist for a number of highly sensitive scintigraphic studies of the brain, heart, skeleton, kidneys, hepatobiliary system and lungs. This includes chelators such as dimercaptosuccinic acid, 1,2-ethylenediylbis-L-cysteine diethyl ester, methylenediphosphonate, hexamethylpropyleneamineoxime and hexakis(methoxy isobutyl isonitrile).

  17. Java-based PACS and reporting system for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  18. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  19. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  20. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  1. Photons across medicine: relating optical and nuclear imaging

    PubMed Central

    Nordstrom, Robert; Cherry, Simon; Azhdarinia, Ali; Sevick-Muraca, Eva; VanBrocklin, Henry

    2013-01-01

    The Optics in the Life Sciences conference sponsored by the Optical Society of America was held in Waikoloa Beach, HI on April 14 – 18, 2013. Papers were presented in the areas of Bio-Optics: Design & Application, Novel Techniques in Microscopy, Optical Molecular Probes, Imaging & Drug Delivery, and Optical Trapping Applications. A focal point of the meeting was a special symposium entitled “Photons Across Medicine”, organized by Adam Wax, Duke University, highlighting activities of joint interest between the Optical Society of America (OSA) and the Society for Nuclear Medicine and Molecular Imaging (SNMMI). This paper is a synopsis of the presentations made at this joint symposium. Central to the special symposium presentations was the fact that the optical and nuclear imaging communities share common interests and challenges. These are highlighted in this article. Also discussed was the fact that the nuclear technologies in imaging have found their way into general clinical utility, a feat that has yet to be achieved by optical methods. Because of the common ground shared by the two technologies, coordination between the two societies should be planned. PMID:24409377

  2. [Future vascular medicine: inauguration of a cardiovascular hybrid concept].

    PubMed

    Debus, S; Larena-Avellaneda, A; Kölbel, T; Kieback, A; Atlihan, G; Diener, H

    2014-10-01

    The demographic developments will lead to an exponential increase of cardiovascular diseases. Additionally, technical developments of conservative and invasive treatment modalities will be added to distinguished, organ-orientated therapeutic concepts. This will also require a new orientation of vascular services. This concept implies that specific contents are referred to and contained in partner specialties. Since the heart and vascular system function as an anatomic and functional union, implementation of vascular medicine within cardiovascular centres represents a logical consequence.

  3. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled

  4. The A-bomb, 50 years later: The evolution of nuclear medicine

    SciTech Connect

    Kotz, D.

    1995-08-01

    In the wake of the Hiroshima and Nagasaki bombings, the U.S. government began to invest heavily in its nuclear program. Nuclear medicine stood to gain from these postwar policies, but it also suffered some setbacks. Fifty years ago this month, two atomic bombs were dropped on Japan, killing thousands of civilians and ushering in a quick and final end to World War II. The beginning of the post-war era signaled the birth of nuclear medicine as it is widely applied today. In fact, the same nuclear reactor that produced elements for the A-bomb project was turned over for the mass production of radionuclides for medicine and industry. The link between the A-bomb and nuclear medicine, however, has always been a sensitive subject among nuclear physicians whose patients may associate radionuclide injections with mushroom clouds. Although this link is not justified, the government`s interest in developing nuclear technology following World War II did have a significant impact on nuclear medicine: on the upside, millions of federal dollars were funneled into the production of radionuclides for research and medicine. On the downside, Congress established the Atomic Energy Commission (AEC)-which later became the Nuclear Regulatory Commission (NRC)-to oversee safety issues, making nuclear medicine the only medical field regulated by a federal agency.

  5. A modular scintillation camera for use in nuclear medicine

    SciTech Connect

    Milster, T.D.; Arendt, J.; Barrett, H.H.; Easton, R.L.; Rossi, G.R.; Selberg, L.A.; Simpson, R.G.

    1984-02-01

    A ''modular'' scintillation camera is discussed as an alternative to using Anger cameras for gamma-ray imaging in nuclear medicine. Each module is an independent gamma camera and consists of a scintillation crystal, light pipe and mask plane, PMT's, and processing electronics. Groups of modules efficiently image radionuclide distributions by effectively utilizing crystal area. Performance of each module is maximized by using Monte-Carlo computer simulations to determine the optical design of the camera, optimizing the signal processing of the PMT signals using maximum-likelihood (ML) estimators, and incorporating digital lookup tables. Each event is completely processed in 2 ..mu..sec, and FWHM of the PSF over the crystal area is expected to be 3 mm. Both one-dimensional and two-dimensional prototypes are tested for spatial and energy resolution

  6. Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals.

    PubMed

    Sathekge, Mike; Maes, Alex; D'Asseler, Yves; Vorster, Mariza; Van de Wiele, Christophe

    2012-06-01

    In this paper, data available on nuclear medicine imaging using commercially available radiopharmaceuticals for the differentiation, staging, and prediction or assessment of the response to treatment in tuberculosis (TB) are reviewed. Limited available studies suggest that single photon emission computed tomography (SPECT) using either 201Tl, 99mTc-sestamibi, or 99mTc-tetrofosmin is accurate (≥85%) and has a high negative predictive value (≥90%) for the differentiation of TB from carcinoma in patients presenting with a solitary pulmonary nodule (SPN). The criteria for detection of TB on 201Tl SPECT are nondepiction of the suspicious lesion in the delayed image or a negative retention index [washout on the delayed images (3–4 h postinjection) vs. the early image (5–15 min postinjection)] and a comparable-to-background uptake on 99mTc-sestamibi or 99mTc-tetrofosmin SPECT. Another SPECT tracer of potential interest for the differentiation of TB from malignant SPN that warrants further exploration, is N-isopropyl-p-[123I]iodoamphetamine (123I-IMP). In contrast, 18F-fluorodeoxyglucose (18F-FDG) PET is unable to differentiate malignancy from TB and thus cannot be used as a tool to reduce futile biopsy/thoracotomy in these patients. A limited number of studies have reported on the potential of nuclear medicine imaging in assessment of the extent of disease in patients with extrapulmonary TB using 67Ga-citrate SPECT and 18F-FDG PET, respectively. 67Ga-citrate SPECT was shown to be as sensitive as bone scintigraphy for the detection of bone infection and was found to be complementary to computed tomography (CT) imaging. 18F-FDG PET was found to be significantly more efficient when compared with CT, respectively, in over half of patients for the identification of sites of lymph node involvement that were missed by CT and often the only sites of extrapulmonary TB identified. Unfortunately, 18F-FDG PET findings did not lead to alterations in treatment planning in any

  7. Role of nuclear medicine in clinical urology and nephrology

    SciTech Connect

    Blaufox, M.D.; Fine, E.; Lee, H.B.; Scharf, S.

    1984-05-01

    The application of radionuclide studies to nephrologic and urologic practice has reached a measurable degree of maturity during the past several years. In spite of this, the utilization of these techniques in many institutions in the United States continues to be far less frequent than one would expect from the clinical advantages. The aim of this editorial is to try to place the role of nuclear medicine in urology and nephrology in perspective. At the present time, in spite of the large number of renal agents that have been developed, there is no practical ideal radiopharmaceutical that can serve as a universal agent. Arbitrarily, one may reduce the chief armamentarium to only four radiopharmaceuticals; technetium-99m DTPA, I-131 OIH (orthoiodohippurate), technetium-99m glucoheptonate and technetium-99m DMSA. These agents are discussed with their relative advantages and disadvantages.

  8. Diffusion processes in tumors: A nuclear medicine approach

    NASA Astrophysics Data System (ADS)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  9. Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals.

    PubMed

    Sathekge, Mike; Maes, Alex; D'Asseler, Yves; Vorster, Mariza; Van de Wiele, Christophe

    2012-06-01

    In this paper, data available on nuclear medicine imaging using commercially available radiopharmaceuticals for the differentiation, staging, and prediction or assessment of the response to treatment in tuberculosis (TB) are reviewed. Limited available studies suggest that single photon emission computed tomography (SPECT) using either 201Tl, 99mTc-sestamibi, or 99mTc-tetrofosmin is accurate (≥85%) and has a high negative predictive value (≥90%) for the differentiation of TB from carcinoma in patients presenting with a solitary pulmonary nodule (SPN). The criteria for detection of TB on 201Tl SPECT are nondepiction of the suspicious lesion in the delayed image or a negative retention index [washout on the delayed images (3–4 h postinjection) vs. the early image (5–15 min postinjection)] and a comparable-to-background uptake on 99mTc-sestamibi or 99mTc-tetrofosmin SPECT. Another SPECT tracer of potential interest for the differentiation of TB from malignant SPN that warrants further exploration, is N-isopropyl-p-[123I]iodoamphetamine (123I-IMP). In contrast, 18F-fluorodeoxyglucose (18F-FDG) PET is unable to differentiate malignancy from TB and thus cannot be used as a tool to reduce futile biopsy/thoracotomy in these patients. A limited number of studies have reported on the potential of nuclear medicine imaging in assessment of the extent of disease in patients with extrapulmonary TB using 67Ga-citrate SPECT and 18F-FDG PET, respectively. 67Ga-citrate SPECT was shown to be as sensitive as bone scintigraphy for the detection of bone infection and was found to be complementary to computed tomography (CT) imaging. 18F-FDG PET was found to be significantly more efficient when compared with CT, respectively, in over half of patients for the identification of sites of lymph node involvement that were missed by CT and often the only sites of extrapulmonary TB identified. Unfortunately, 18F-FDG PET findings did not lead to alterations in treatment planning in any

  10. NMINT--introductory courseware for nuclear medicine: database design.

    PubMed

    Mankovich, N J; Verma, R C; Yue, A; Veyne, D; Ratib, O; Bennett, L R

    1991-01-01

    Computer-Aided Instruction (CAI) provides a dynamic and self-paced learning experience to the medical trainee. Microcomputer based hypermedia systems integrate text, graphics, and image information. We present the design of an introductory CAI course for nuclear medicine called NMINT and elaborate on the underlying relational database that contains clinically relevant information and links to local or remote image storage over high speed networks. The IBM PS/2 Windows system uses Toolbook software augmented by C language modules for image and image-overlay database access. The current implementation stores text, graphical lesson material, and image index information on microcomputer magnetic disk; image data are stored on the attached optical disk. The storage architecture is described in detail. We emphasize its multi-access methods and its expandability into department-wide image networks. PMID:1807706

  11. Nuclear medicine in acute and chronic renal failure

    SciTech Connect

    Sherman, R.A.; Byun, K.J.

    1982-07-01

    The diagnostic value of renal scintiscans in patients with acute or chronic renal failure has not been emphasized other than for the estimation of renal size. /sup 131/I OIH, /sup 67/gallium, /sup 99m/TcDTPA, glucoheptonate and DMSA all may be valuable in a variety of specific settings. Acute renal failure due to acute tubular necrosis, hepatorenal syndrome, acute interstitial nephritis, cortical necrosis, renal artery embolism, or acute pyelonephritis may be recognized. Data useful in the diagnosis and management of the patient with obstructive or reflux nephropathy may be obtained. Radionuclide studies in patients with chronic renal failure may help make apparent such causes as renal artery stenosis, chronic pyelonephritis or lymphomatous kidney infiltration. Future correlation of scanning results with renal pathology promises to further expand nuclear medicine's utility in the noninvasive diagnosis of renal disease.

  12. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  13. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  14. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  15. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    NASA Astrophysics Data System (ADS)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  16. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  17. Standardization of Administered Activities in Pediatric Nuclear Medicine: A Report of the First Nuclear Medicine Global Initiative Project, Part 2-Current Standards and the Path Toward Global Standardization.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seung; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2016-07-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI are to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. It was decided to divide the final report of this project into 2 parts. Part 1 was published in this journal in the spring of 2015. This article presents part 2 of the final report. It discusses current standards for administered activities in children and adolescents that have been developed by various professional organizations. It also presents an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of 313 nuclear medicine clinics and centers from 29 countries. Lastly, it provides recommendations for a path toward global standardization of the administration of radiopharmaceuticals in children.

  18. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine]. Technical progress report

    SciTech Connect

    Not Available

    1989-12-31

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  19. (In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine)

    SciTech Connect

    Not Available

    1989-01-01

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  20. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  1. Mars mission performance enhancement with hybrid nuclear propulsion

    SciTech Connect

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  2. [Bone-seeking radioactive substances in nuclear medicine].

    PubMed

    Pfeiffer, G

    1976-12-01

    The concept of bone affinity of a radioactive tracer is developed on theoretical grounds and is discussed on the basis of the various substances used in nuclear medical diagnosis of bone disease. On the basis of results on the uptake of very short lived nuclides and extremely large molecules, evidence is provided that the incorporation of the tracer in the apatite crystal is not a primary criterion of bone affinity since incorporation cannot take place on timelimiting grounds in the former case and on spatial grounds in the latter. The fixation on bone is therefore more likely the result of non-specific adsorption processes. The utility of a radioactive substance in practical application in nuclear medicine depends on the radioactive characteristics of the nuclide and on its behavior in the organism. In this context the quality of the scintigram is particularly dependent on the mode and rate of elimination of that fraction of the tracer that is not bound by the skeleton. The various mechanism which cause differences in the uptake of tracer by healthy and pathological bone tissue are discussed with special regard to the role of blood flow. PMID:1012921

  3. Highlights lecture EANM 2015: the search for nuclear medicine's superheroes.

    PubMed

    Buck, Andreas; Decristoforo, Clemens

    2016-09-01

    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many

  4. Highlights lecture EANM 2015: the search for nuclear medicine's superheroes.

    PubMed

    Buck, Andreas; Decristoforo, Clemens

    2016-09-01

    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many

  5. Routine Quality Control of Clinical Nuclear Medicine Instrumentation: A Brief Review*

    PubMed Central

    Zanzonico, Pat

    2009-01-01

    This article reviews routine quality-control (QC) procedures for current nuclear medicine instrumentation, including the survey meter, dose calibrator, well counter, intraoperative probe, organ (“thyroid”) uptake probe, γ-camera, SPECT and SPECT/CT scanner, and PET and PET/CT scanner. It should be particularly useful for residents, fellows, and other trainees in nuclear medicine, nuclear cardiology, and radiology. The procedures described and their respective frequencies are presented only as general guidelines. PMID:18587088

  6. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  7. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  8. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d)...

  9. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    PubMed

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online

  10. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    PubMed

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  11. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    PubMed

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession. PMID:27195385

  12. Histone-poly(A) hybrid molecules as tools to block nuclear pores.

    PubMed

    Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D

    1995-04-01

    Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.

  13. [The psychodynamics of work with iodine-131 in nuclear medicine].

    PubMed

    da Silveira, Leila Cunha; Guilam, Maria Cristina Rodrigues; de Oliveira, Sergio Ricardo

    2013-11-01

    This paper seeks to demonstrate to what extent alternative forms adopted in the working process of professionals with iodine-131 in nuclear medicine can assist in managing risks of ionizing radiation. The design is based on the main theoretical concepts of the psychodynamics of work in relation to workers' health. In the case study, data were gathered from 15 workers of a public health institution in the city of Rio de Janeiro by means of semi-structured individual interviews and non-systematic direct observation. Bardin's content analysis method was used for the data analysis. When comparing the results obtained with standard prescribed models, it was found that the respondents had changed their approach. They developed individual defense mechanisms, such as denial of risk, and collective defensive strategies, leading them to tackle the greatest danger as a form of defense. The defensive role of ideologies of the profession are manifest. On the contrary, the acquired knowledge derived from prudence proved effective in minimizing the risks of radiation exposure. The authors discuss the limitations of security management that does not consider the workers' subjectivity and inherent knowledge. PMID:24196882

  14. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better. PMID:16102243

  15. Therapeutic radionuclides in nuclear medicine: current and future prospects.

    PubMed

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-10-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.

  16. Portable gamma camera for clinical use in nuclear medicine

    SciTech Connect

    Pani, R.; Pellegrini, R.; Scopinaro, F.

    1996-12-31

    Up today Hamamatsu R3292 is the Position Sensitive Photo Multiplier Tube (PSPMT) with the largest sensitive area (10 cm of diameter). At the same time it has the minimum size for clinical application in Nuclear Medicine. A portable gamma camera was realized, based on 5 inches PSPMT coupled to a scintillating array. The head has a light weight (15 Kg.) spatial resolution resulted better than that of Anger Camera with good linearity response, good energy resolution and FOV coincident with intrinsic one of PSPMT. To optimize gamma camera response two different scintillating arrays were tested: YAP:Ce and CsI (Tl). Their overall size cover all photochatode active area, and crystal pixel size was 2 mm x 2 mm. The detection efficiency resulted comparable to that of Anger Camera. The best result was obtained by CsI (Tl) scintillating: an intrinsic spatial resolution of 1.6 mm FWHM and a relative energy resolution of 17% FWHM. With a standard general purpose collimator a spatial resolution of about 2 mm resulted. Some preliminary results were also obtained in breast scintigraphy.

  17. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  18. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  19. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  20. Ethical dilemmas in today's nuclear medicine and radiology practice.

    PubMed

    Barron, Bruce J; Kim, E Edmund

    2003-11-01

    Throughout history, societies have developed their own codes of ethics, including those pertaining to the practice of medicine. In the United States, physicians have adopted a set of ethics based on religious values and historical teachings. We, as physicians, have been presented several codes of ethics, including the American Medical Association Code of Ethics and the American College of Radiology Code of Ethics. Over time, we have learned to appropriately apply these codes to our daily practice. With the advent of new technologies in imaging, we may lose sight as to the transfer of these principles to reflect current conditions. Recent history has shown a trend of new technology leading to potential misuse of this technology and further leading to stricter governmental regulations. It is the purpose of this review to give guidelines for dealing with new technologies, such as PET imaging, and we describe a radiologist's ethical responsibility in a doctor-patient relationship. A historical review of medical ethics will lead to discussions about various issues affecting radiologists and nuclear physicians. To be sure, not all ethical situations are black and white, and therefore there are many gray areas. The opinions expressed in this article are those of the authors and are based on extension of already established rules of ethical conduct.

  1. Advanced hybrid nuclear propulsion Mars mission performance enhancement

    SciTech Connect

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-02-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  2. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process

  3. Analysis of mitochondrial respiratory-related genes reveals nuclear and mitochondrial genome cooperation in allotetraploid hybrid.

    PubMed

    Peng, L-Y; Wang, J; Tao, M; You, C-P; Ye, L; Xiao, J; Zhang, C; Liu, Y; Liu, S-J

    2014-01-01

    An allotetraploid hybrid lineage derived from the distant hybridization of red crucian carp (Carassius auratus red var., ♀, 2n =100) × common carp (Cyprinus carpio L., ♂, 2n =100) was investigated for its mitochondrial and nuclear genome inheritance patterns. Based on liver transcriptomic data for this hybrid, red crucian carp, and common carp, we identified 94, 136, and 86 contigs corresponding to 41, 46, and 37 mitochondrial respiratory chain nuclear genes, respectively. Mitochondrial respiratory chain nuclear gene sequences from red crucian carp and common carp were both detected in the allotetraploid hybrid, indicating that both parental nuclear genomes were participated in the synthesis of mitochondrial respiratory protein complexes in the hybrid. For mitochondrial respiratory related genes, high sequence similarity (>90%) and a low nucleotide divergence rate (<0.2) between red crucian carp and common carp could be a critical factor allowing cooperation of the three genomes (red crucian carp mitochondrial genome, red crucian and common carp nuclear genomes) in the allotetraploid hybrid lineage. Interestingly, gene duplication events were identified in the allotetraploid hybrid, red crucian and common carp, as confirmed by analysis of orthologous gene trees for these fish. Our findings provide valuable information with which to study cooperation between the nuclear and mitochondrial genomes of other hybrids, and will provide basic genetic information of relevance to mitochondrial-related diseases in humans and animals.

  4. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  5. Will the Australian nuclear medicine technologist workforce meet anticipated health care demands?

    PubMed

    Adams, Edwina; Schofield, Deborah; Cox, Jennifer; Adamson, Barbara

    2008-05-01

    Determination of national nuclear medicine technologist workforce size was made from census data in 2001 and 1996 and from the professional body in 2004. A survey conducted by the authors in 2005 provided retention patterns in north-eastern Australia and suggested causes. Utilisation of nuclear medicine diagnostic services was established through the Medicare Benefits Schedule group statistics. More than half the nuclear medicine technologist workforce is under 35 years of age. Attrition commences from age 30, with very few workers over 55 years. In 2005 there was a 12% attrition of the survey workforce. In the past decade, service provision increased while workforce size decreased and the nuclear medicine technologist workforce is at risk of failing to meet the anticipated rise in health service needs. PMID:18447815

  6. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [LBNL, Center for Functional Imaging

    2016-07-12

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  7. CdZnTe arrays for nuclear medicine imaging

    SciTech Connect

    Barber, H.B.

    1996-12-31

    In nuclear medicine, a gamma-ray-emitting radiotracer is injected into the body, and the resulting biodistribution is imaged using a gamma camera. Current gamma cameras use a design developed by Anger. An Anger camera makes use of a slab of scintillation detector that is viewed by an array of photomultiplier tubes and uses an analog position estimation technique to determine the position of the gamma ray`s interaction. The image-forming optics is usually a multi-bore collimator made of lead. Such cameras are characterized by poor, system spatial resolution ({approximately}1 cm) due to poor detector resolution ({approximately}0.4 cm) and poor collimator performance. Arrays of semiconductor detectors are an attractive alternative to scintillators for use in gamma cameras. Semiconductor detectors have excellent energy resolution. High spatial resolution is also possible because large semiconductor detector arrays with small pixel sizes can be produced using photolithography techniques. A new crystal growth technique (high-pressure vertical Bridgman) allows production of detector grade CdTe and CdZnTe in multikilogram ingots. Although the cost of CdZnTe detectors has come down substantially in the last few years, in part because of economies of scale, costs are still more than an order of magnitude higher than those required for a commercial camera ($20--$50/gram). High detector costs are perhaps the major stumbling block to developing a semiconductor gamma camera. The photolithography techniques required to make large CdZnTe arrays have already been demonstrated. This paper discusses the recent developments made in CdZnTe detectors.

  8. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    PubMed Central

    Gültekin, Salih Sinan; Şahmaran, Turan

    2013-01-01

    Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS), 30/135; whole body bone scintigraphy (WBS), 35/135; myocardial perfusion scintigraphy (MPS) and 30/135; renal scintigraphy (RS)] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 μSv h-1 for full bladder and 29, 55, 103 and 37 μSv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible. Conflict of interest:None declared. PMID:24416625

  9. New filter for iodine applied in nuclear medicine services.

    PubMed

    Ramos, V S; Crispim, V R; Brandão, L E B

    2013-12-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system (where doses of radioiodine are handled within fume hoods, and new filters will be installed at their exit), using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon and silver impregnated silica are effective for I2 capture with large or small amounts of substrate but the use of activated carbon is restricted due to its low flash point (423 K). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to use natural activated carbon since it was not absorbed by SiO2+Ag crystals. We concluded that, for an exhaust flow range of (145 ± 2)m(3)/h, a double stage filter using SiO2+Ag in the first stage and natural activated carbon in the second stage is sufficient to meet radiological safety requirements. PMID:23974306

  10. 4.8 Dose to Embryo and Foetuses in Diagnostic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.8 Dose to Embryo and Foetuses in Diagnostic Nuclear Medicine' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  11. The effects of the Brazilian regulatory inspection programme on nuclear medicine facilities.

    PubMed

    Alves, C E G R; Azevedo, E M; de Sá, L V; da Rosa, L A R; Mendes, L C G; França, W F L; Gutterres, R F; Gonçalves, M

    2009-12-01

    This paper aims to demonstrate the importance of the regulatory inspections carried out by the Brazilian regulatory body in the area of nuclear medicine. The main aspects observed during the inspections are presented as well as the time evolution of the non-compliances, according to their occurrence by type. We also evaluate factors concerning the working of the nuclear medicine facility responsible for solving the non-compliances. The results suggest a decrease of occurrence of non-compliances with time that can be related to the strictness of the inspections and the awareness of the personnel in the nuclear medicine facilities. An analysis of radiation dose exposure levels for the professionals involved in nuclear medicine was carried out; although dose values are below regulatory dose limits, their occurrence is not decreasing satisfactorily. Results indicate the need for staff training and commitment of the responsible nuclear medicine facility staff to the radiological protection procedures. Our results also emphasise the importance of continuous coercive actions to improve the level of radiological protection in nuclear medicine facilities in compliance with the standards established by the national regulatory authority and international recommendations.

  12. Hybrid 3D printing: a game-changer in personalized cardiac medicine?

    PubMed

    Kurup, Harikrishnan K N; Samuel, Bennett P; Vettukattil, Joseph J

    2015-12-01

    Three-dimensional (3D) printing in congenital heart disease has the potential to increase procedural efficiency and patient safety by improving interventional and surgical planning and reducing radiation exposure. Cardiac magnetic resonance imaging and computed tomography are usually the source datasets to derive 3D printing. More recently, 3D echocardiography has been demonstrated to derive 3D-printed models. The integration of multiple imaging modalities for hybrid 3D printing has also been shown to create accurate printed heart models, which may prove to be beneficial for interventional cardiologists, cardiothoracic surgeons, and as an educational tool. Further advancements in the integration of different imaging modalities into a single platform for hybrid 3D printing and virtual 3D models will drive the future of personalized cardiac medicine.

  13. Hybrid 3D printing: a game-changer in personalized cardiac medicine?

    PubMed

    Kurup, Harikrishnan K N; Samuel, Bennett P; Vettukattil, Joseph J

    2015-12-01

    Three-dimensional (3D) printing in congenital heart disease has the potential to increase procedural efficiency and patient safety by improving interventional and surgical planning and reducing radiation exposure. Cardiac magnetic resonance imaging and computed tomography are usually the source datasets to derive 3D printing. More recently, 3D echocardiography has been demonstrated to derive 3D-printed models. The integration of multiple imaging modalities for hybrid 3D printing has also been shown to create accurate printed heart models, which may prove to be beneficial for interventional cardiologists, cardiothoracic surgeons, and as an educational tool. Further advancements in the integration of different imaging modalities into a single platform for hybrid 3D printing and virtual 3D models will drive the future of personalized cardiac medicine. PMID:26465262

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  15. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  16. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  17. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  18. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2....

  19. A Perspective of the Future of Nuclear Medicine Training and Certification.

    PubMed

    Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M; Osborne, Joseph R

    2016-01-01

    Nuclear Medicine (NM) has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become "Molecular Imaging." Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle-imaging, radiopharmaceuticals, and instrumentation. Since the foundation of the American Board of NM, the practice of NM and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and NM. The potential for further cooperation or fusion of the American Board of Radiology and the American Board of NM is likely to bring about a new path for NM and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid NM-Radiology specialty that combines Physiology and Molecular Biology with detailed anatomical imaging that sustains the innovation that has been central to NM residency and practice. We introduce a few basic trends in imaging use in the United States. These trends do not predict future use, but highlight the need for an appropriately credentialed practitioner to interpret these examination results and provide value to the health care system. PMID:26687859

  20. A Perspective of the Future of Nuclear Medicine Training and Certification.

    PubMed

    Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M; Osborne, Joseph R

    2016-01-01

    Nuclear Medicine (NM) has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become "Molecular Imaging." Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle-imaging, radiopharmaceuticals, and instrumentation. Since the foundation of the American Board of NM, the practice of NM and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and NM. The potential for further cooperation or fusion of the American Board of Radiology and the American Board of NM is likely to bring about a new path for NM and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid NM-Radiology specialty that combines Physiology and Molecular Biology with detailed anatomical imaging that sustains the innovation that has been central to NM residency and practice. We introduce a few basic trends in imaging use in the United States. These trends do not predict future use, but highlight the need for an appropriately credentialed practitioner to interpret these examination results and provide value to the health care system.

  1. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOEpatents

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  2. Current Status of Nuclear Medicine Practice in the Middle East.

    PubMed

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  3. Current Status of Nuclear Medicine Practice in the Middle East.

    PubMed

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  4. Current Status of Nuclear Medicine Practice in Latin America and the Caribbean.

    PubMed

    Páez, Diana; Orellana, Pilar; Gutiérrez, Claudia; Ramirez, Raúl; Mut, Fernando; Torres, Leonel

    2015-10-01

    The practice of nuclear medicine (NM) in the Latin American and Caribbean region has experienced important growth in the last decade. However, there is great heterogeneity among countries regarding the availability of technology and human resources. According to data collected through June 2014 by the International Atomic Energy Agency (IAEA), the total number of γ cameras in the region is 1,231, with an average of 2.16 per million inhabitants. Over 90% of the equipment is SPECT cameras; 7.6% of which have hybrid technology. There are 161 operating PET or PET/CT cameras in 12 member states, representing a rate of 0.3 per million people. Most NM centers belong to the private health system and are in capitals or major cities. Only 4 countries have the capability of assembling 99Mo-99mTc generators, and 2 countries produce 99mTc from nuclear reactors. Cold kits are produced in some countries, and therapeutic agents are mostly imported from outside the region. There are 35 operative cyclotrons. In relation to human resources: there is 1 physician per γ camera, 1.6 technologists per γ camera, 0.1 medical physicist per center, and approximately 0.1 radiochemist or radiopharmacist per center. Nearly 94% of the procedures are diagnostic. PET studies represent about 4% of the total. The future of NM in the Latin American and Caribbean region is promising, with great potential and possibilities. Some of the most important factors driving the region toward greater homogeneity in the availability and application of NM, and bridging the gaps between countries, are clinician awareness of the importance of NM in managing diseases prevalent in the region, increased building of capacity, continuous and strong support from international organizations such as the IAEA through national and regional projects, and strong public-private partnerships and government commitment.

  5. Current Status of Nuclear Medicine Practice in Latin America and the Caribbean.

    PubMed

    Páez, Diana; Orellana, Pilar; Gutiérrez, Claudia; Ramirez, Raúl; Mut, Fernando; Torres, Leonel

    2015-10-01

    The practice of nuclear medicine (NM) in the Latin American and Caribbean region has experienced important growth in the last decade. However, there is great heterogeneity among countries regarding the availability of technology and human resources. According to data collected through June 2014 by the International Atomic Energy Agency (IAEA), the total number of γ cameras in the region is 1,231, with an average of 2.16 per million inhabitants. Over 90% of the equipment is SPECT cameras; 7.6% of which have hybrid technology. There are 161 operating PET or PET/CT cameras in 12 member states, representing a rate of 0.3 per million people. Most NM centers belong to the private health system and are in capitals or major cities. Only 4 countries have the capability of assembling 99Mo-99mTc generators, and 2 countries produce 99mTc from nuclear reactors. Cold kits are produced in some countries, and therapeutic agents are mostly imported from outside the region. There are 35 operative cyclotrons. In relation to human resources: there is 1 physician per γ camera, 1.6 technologists per γ camera, 0.1 medical physicist per center, and approximately 0.1 radiochemist or radiopharmacist per center. Nearly 94% of the procedures are diagnostic. PET studies represent about 4% of the total. The future of NM in the Latin American and Caribbean region is promising, with great potential and possibilities. Some of the most important factors driving the region toward greater homogeneity in the availability and application of NM, and bridging the gaps between countries, are clinician awareness of the importance of NM in managing diseases prevalent in the region, increased building of capacity, continuous and strong support from international organizations such as the IAEA through national and regional projects, and strong public-private partnerships and government commitment. PMID:26229143

  6. A study of technetium-99m wastage in selected private sector nuclear medicine imaging departments

    PubMed Central

    Bresser, Philippa; Teixeira, Nadia

    2013-01-01

    Background South African nuclear medicine imaging departments have been fortunate in being able to receive an uninterrupted supply of molybdenum-99 (99Mo)/technetium-99m (99mTc) generators. Nuclear medicine radiographers practising in private sector services in the northern Gauteng region indicated a possible problem with the quantities of wasted and unused 99mTc radiopharmaceuticals returned to the radiopharmaceutical supply laboratory. Daily radiopharmaceutical deliveries are a combination of ordered packages and standard packages. The purpose of the standard package is to accommodate emergency and after-hours nuclear medicine services. The purpose of the study was to interrogate the unconfirmed reports of 99mTc radiopharmaceutical wastage. Methods A descriptive quantitative research design was conducted in six private sector nuclear medicine imaging practices in the northern Gauteng region. Overt observations of the quantities of radiopharmaceutical supply, usage and wastage were conducted over 2 days in each of these practices. Results Ordered packages comprised 14% of the total 99mTc radiopharmaceutical deliveries to these six nuclear medicine imaging departments. It was identified that: (1) a total of 83.2% of ordered packages and 35.1% of standard packages of preprepared syringes were utilized; (2) a total of 36% of ordered packages and 22.6% of standard packages of bulk 99mTc were utilized; and (3) a total of 70.6% of the total quantity of radiopharmaceuticals was returned to the radiopharmaceutical laboratory. The total wastage represented 45.5% of the ordered packages and 75.8% of the standard packages. Conclusion Wastage of 74 GBq of 99mTc from six sites over 12 days should raise concerns for the nuclear medicine industry. A review of the system framework that supports communication between the radiopharmaceutical supplier/s and the nuclear medicine imaging practices is recommended. PMID:24089081

  7. Nuclear medicine practices in the 1950s through the mid-1970s and occupational radiation doses to technologists from diagnostic radioisotope procedures.

    PubMed

    Drozdovitch, Vladimir; Brill, Aaron B; Mettler, Fred A; Beckner, William M; Goldsmith, Stanley J; Gross, Milton D; Hays, Marguerite T; Kirchner, Peter T; Langan, James K; Reba, Richard C; Smith, Gary T; Bouville, André; Linet, Martha S; Melo, Dunstana R; Lee, Choonsik; Simon, Steven L

    2014-10-01

    Data on occupational radiation exposure from nuclear medicine procedures for the time period of the 1950s through the 1970s is important for retrospective health risk studies of medical personnel who conducted those activities. However, limited information is available on occupational exposure received by physicians and technologists who performed nuclear medicine procedures during those years. To better understand and characterize historical radiation exposures to technologists, the authors collected information on nuclear medicine practices in the 1950s, 1960s, and 1970s. To collect historical data needed to reconstruct doses to technologists, a focus group interview was held with experts who began using radioisotopes in medicine in the 1950s and the 1960s. Typical protocols and descriptions of clinical practices of diagnostic radioisotope procedures were defined by the focus group and were used to estimate occupational doses received by personnel, per nuclear medicine procedure, conducted in the 1950s to 1960s using radiopharmaceuticals available at that time. The radionuclide activities in the organs of the reference patient were calculated using the biokinetic models described in ICRP Publication 53. Air kerma rates as a function of distance from a reference patient were calculated by Monte Carlo radiation transport calculations using a hybrid computational phantom. Estimates of occupational doses to nuclear medicine technologists per procedure were found to vary from less than 0.01 μSv (thyroid scan with 1.85 MBq of administered I-iodide) to 0.4 μSv (brain scan with 26 MBq of Hg-chlormerodin). Occupational doses for the same diagnostic procedures starting in the mid-1960s but using Tc were also estimated. The doses estimated in this study show that the introduction of Tc resulted in an increase in occupational doses per procedure.

  8. NUCLEAR MEDICINE PRACTICES IN THE 1950s THROUGH THE mid-1970s AND OCCUPATIONAL RADIATION DOSES TO TECHNOLOGISTS FROM DIAGNOSTIC RADIOISOTOPE PROCEDURES

    PubMed Central

    Drozdovitch, Vladimir; Brill, Aaron B.; Mettler, Fred A.; Beckner, William M.; Goldsmith, Stanley J.; Gross, Milton D.; Hays, Marguerite T.; Kirchner, Peter T.; Langan, James K.; Reba, Richard C.; Smith, Gary T.; Bouville, André; Linet, Martha S.; Melo, Dunstana R.; Lee, Choonsik; Simon, Steven L.

    2014-01-01

    Data on occupational radiation exposure from nuclear medicine procedures for the time period of the 1950s through the 1970s is important for retrospective health risk studies of medical personnel who conducted those activities. However, limited information is available on occupational exposure received by physicians and technologists who performed nuclear medicine procedures during those years. To better understand and characterize historical radiation exposures to technologists, we collected information on nuclear medicine practices in the 1950s, 1960s, and 1970s. To collect historical data needed to reconstruct doses to technologists, a focus group interview was held with experts who began using radioisotopes in medicine in the 1950s and the 1960s. Typical protocols and descriptions of clinical practices of diagnostic radioisotope procedures were defined by the focus group and were used to estimate occupational doses received by personnel, per nuclear medicine procedure, conducted in the 1950s-1960s using radiopharmaceuticals available at that time. The radionuclide activities in the organs of the reference patient were calculated using the biokinetic models described in ICRP Publication 53. Air kerma rates as a function of distance from a reference patient were calculated by Monte Carlo radiation transport calculations using a hybrid computational phantom. Estimates of occupational doses to nuclear medicine technologists per procedure were found to vary from less than 0.01 μSv (thyroid scan with 1.85 MBq of administered 131I-iodide) to 0.4 μSv (brain scan with 26 MBq of 203Hg-chlormerodin). Occupational doses for the same diagnostic procedures starting in the mid-1960s but using 99mTc were also estimated. The doses estimated in this study show that the introduction of 99mTc resulted in an increase in occupational doses per procedure. PMID:25162420

  9. (In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine)

    SciTech Connect

    Not Available

    1990-01-01

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. We are utilizing these endpoints to examine sets of individuals who have been exposed to ionizing radiation as a result of medical procedures. The cohorts we are studying include: nuclear medicine technicians, two set of nuclear medicine patients, sets of controls and a new set of Hodgkins disease patients. Emphasis in the second year has been on measurements of chromosome aberrations in patients imaged with thallium-201, mutant frequencies in patients imaged with technetium-99, mutant frequencies in nuclear medicine technicians and physical therapists, and mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described in this report in more detail.

  10. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    SciTech Connect

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  11. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    SciTech Connect

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail.

  12. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Annual technical progress report, [1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  13. Triggering radiation alarm at security checks. Patients should be informed even after diagnostic nuclear medicine procedures.

    PubMed

    Palumbo, Barbara; Neumann, Irmgard; Havlik, Ernst; Palumbo, Renato; Sinzinger, Helmut

    2009-01-01

    During the last few years an increasing number of nuclear medicine patients in various countries evoked a radiation alarm after therapeutic or diagnostic procedures, and even after passive exposure. A prospective calculation of activity retention in the patient's body is difficult due to extremely high variation of uptake and kinetics. Furthermore, different sensitivities and distances of the detectors make a prospective calculation even more difficult. In this article a number of cases are being reported, related problems are discussed and the surprisingly very limited literature reviewed. In order to minimize problems after eventually triggering alarms, we strongly recommend that each patient receives a certificate providing personal data, tracer, dose, half-life of the radionuclide, type and date of procedure applied as well as the nuclear medicine unit to contact for further information. Furthermore, a closer cooperation and exchange of information between the authorities and local nuclear medicine societies, would be welcome. PMID:19330183

  14. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d) Radiation physics; (e) Nuclear instrumentation; (f) Statistics; (g) Radionuclide chemistry; (h) Radiopharmacology... courses in the following areas: (1) Human anatomy and physiology; (2) Physics; (3) Mathematics;...

  15. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of patient care; (b) Radiation safety and protection; (c) Nuclear medicine physics; (d) Radiation physics; (e) Nuclear instrumentation; (f) Statistics; (g) Radionuclide chemistry; (h) Radiopharmacology... courses in the following areas: (1) Human anatomy and physiology; (2) Physics; (3) Mathematics;...

  16. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    NASA Astrophysics Data System (ADS)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  17. Nuclear medicine dose equivalent a method for determination of radiation risk

    SciTech Connect

    Huda, W.

    1986-12-01

    Conventional nuclear medicine dosimetry involves specifying individual organ doses. The difficulties that can arise with this approach to radiation dosimetry are discussed. An alternative scheme is described that is based on the ICRP effective dose equivalent, H/sub E/, and which is a direct estimate of the average radiation risk to the patient. The mean value of H/sub E/ for seven common /sup 99m/Tc nuclear medicine procedures is 0.46 rem and the average radiation risk from this level of exposure is estimated to be comparable to the risk from smoking approx. 28 packs of cigarettes or driving approx. 1300 miles.

  18. Internal radiation therapy: a neglected aspect of nuclear medicine in the molecular era

    PubMed Central

    Lin, Yansong

    2015-01-01

    Abstract With increasing evidence, internal radiation therapy, also known as brachytherapy, has become a neglected aspect of nuclear medicine in the molecular era. In this paper, recent developments regarding internal radiation therapy, including developments in radioiodine-131 (131I) and thyroid, radioimmunotherapy (RIT) for non-Hodgkin lymphoma (NHL), and radiopharmaceuticals for bone metastases. Relevant differences and status of their applications in China were mentioned as well. These molecular mediated internal radiation therapies are gaining increasing importance by providing palliative and curative treatments for an increasing number of diseases and becoming one of the important parts of molecular nuclear medicine. PMID:26445567

  19. Sources and magnitude of occupational and public exposures from nuclear medicine procedures

    SciTech Connect

    1996-03-11

    This Report addresses the sources of exposures incurred in the practice of nuclear medicine and provides the necessary data to evaluate the magnitude of exposures to those directly associated with that practice and to those who provide nursing care to the patients containing radiopharmaceuticals. Exposure to members of the public are also addressed. The primary emphasis of this Report is on these individuals and not on the patient, since the patient receives the direct benefit from the nuclear medicine procedure. It is recognized that the patient also receives the bulk of any potential radiation decrement.

  20. Quality assurance in nuclear medicine facilities; availability of final recommendations--FDA. Notice.

    PubMed

    1985-05-13

    The Food and Drug Administration (FDA) is announcing the availability of final recommendations prepared by its Center for Devices and Radiological Health (CDRH) on quality assurance programs in nuclear medicine facilities. The final recommendations include the agency's rationale for the recommendations as well as references that can be used as well as references that can be used as guides in conducting quality control monitoring. These final recommendations are available as a technical report in CDRH's radiation recommendations series. They are intended to encourage and promote the development of voluntary quality assurance programs in nuclear medicine facilities. PMID:10271280

  1. Production and characterization of intertribal somatic hybrids of Raphanus sativus and Brassica rapa with dye and medicinal plant Isatis indigotica.

    PubMed

    Tu, Yuqin; Sun, Jian; Liu, Yan; Ge, Xianhong; Zhao, Zhigang; Yao, Xingcheng; Li, Zaiyun

    2008-05-01

    Intertribal somatic hybrids of Raphanus sativus (2n = 18, RR) and Brassica rapa spp. chinensis (2n = 20, AA) with the dye and medicinal plant Isatis indigotica (2n = 14, I I) were firstly obtained by polyethylene glycol-induced symmetric fusions of mesophyll protoplasts. One mature hybrid with R. sativus established in field had intermediate morphology but was totally sterile. It had the expected chromosome number (2n = 32, RRI I) and parental chromosomes were distinguished by genomic in situ hybridization (GISH) analysis, and these chromosomes were paired as 16 bivalents in pollen mother cells (PMCs) at diakinesis and mainly segregated equally as 16:16 at anaphase I (A I), but the meiotic disturbance in second division was obvious. Five mature hybrids with B. rapa established in field were morphologically intermediate but showed some differences in phenotypic traits and fertility, two were partially fertile. Cytological and GISH investigations revealed that these hybrids had 2n = 48 with AAIIII complement and their PMCs showed normal pairing of 24 bivalents and mainly equal segregation 24:24, but meiotic abnormalities of lagging chromosomes and micronuclei appeared frequently during second divisions. AFLP analysis showed that all of these hybrids had mainly the DNA banding pattern from the addition of two parents plus some alterations. Some hybrids should be used for the genetic improvement of crops and the dye and medicinal plant.

  2. Tracking patient radiation exposure: challenges to integrating nuclear medicine with other modalities

    PubMed Central

    Mercuri, Mathew; Rehani, Madan M.; Einstein, Andrew J.

    2013-01-01

    The cumulative radiation exposure to the patient from multiple radiological procedures can place some individuals at significantly increased risk for stochastic effects and tissue reactions. Approaches, such as those in the International Atomic Energy Agency’s Smart Card program, have been developed to track cumulative radiation exposures to individuals. These strategies often rely on the availability of structured dose reports, typically found in the DICOM header. Dosimetry information is currently readily available for many individual x-ray based procedures. Nuclear medicine, of which nuclear cardiology constitutes the majority of the radiation burden in the U.S., currently lags behind x-ray based procedures with respect to reporting of radiation dosimetric information. This paper discusses qualitative differences between nuclear medicine and x-ray based procedures, including differences in the radiation source and measurement of its strength, the impact of biokinetics on dosimetry, and the capability of current scanners to record dosimetry information. These differences create challenges in applying monitoring and reporting strategies used in x-ray based procedures to nuclear medicine, and integrating dosimetry information across modalities. A concerted effort by the medical imaging community, dosimetry specialists and manufacturers of imaging equipment is required to develop strategies to improve the reporting of radiation dosimetry data in nuclear medicine. Some ideas on how to address this issue are suggested. PMID:22695788

  3. Tracking patient radiation exposure: challenges to integrating nuclear medicine with other modalities.

    PubMed

    Mercuri, Mathew; Rehani, Madan M; Einstein, Andrew J

    2012-10-01

    The cumulative radiation exposure to the patient from multiple radiological procedures can place some individuals at significantly increased risk for stochastic effects and tissue reactions. Approaches, such as those in the International Atomic Energy Agency's Smart Card program, have been developed to track cumulative radiation exposures to individuals. These strategies often rely on the availability of structured dose reports, typically found in the DICOM header. Dosimetry information is currently readily available for many individual x-ray-based procedures. Nuclear medicine, of which nuclear cardiology constitutes the majority of the radiation burden in the US, currently lags behind x-ray-based procedures with respect to reporting of radiation dosimetric information. This article discusses qualitative differences between nuclear medicine and x-ray-based procedures, including differences in the radiation source and measurement of its strength, the impact of biokinetics on dosimetry, and the capability of current scanners to record dosimetry information. These differences create challenges in applying, monitoring, and reporting strategies used in x-ray-based procedures to nuclear medicine, and integrating dosimetry information across modalities. A concerted effort by the medical imaging community, dosimetry specialists, and manufacturers of imaging equipment is required to develop strategies to improve the reporting of radiation dosimetry data in nuclear medicine. Some ideas on how to address this issue are suggested. PMID:22695788

  4. Possibilities for the production of radioisotopes for nuclear-medicine problems by means of photonuclear reactions

    SciTech Connect

    Dzhilavyan, L. Z.; Karev, A. I.; Raevsky, V. G.

    2011-12-15

    For electrons of energy about 55 MeV that create an average current of about 40 Micro-Sign A, it is shown that the production of many of the radioisotopes important for nuclear medicine is possible in significant amounts.

  5. A survey of incidents in radiology and nuclear medicine in the West of Scotland.

    PubMed

    Martin, C J

    2005-10-01

    Data on 606 incidents in radiology and nuclear medicine departments reported to a central health physics service have been analysed and causes reviewed. 85% of incidents in radiology departments and 37% in nuclear medicine were overexposures of patients. 80% of these resulted from human error or procedural failure, and of these 32% were mistakes by the referrer. Other incidents in nuclear medicine were contamination events (49%) and failure in management of radioactive materials (10%). Effective doses for patient overexposures covered a broad range with those for CT being 1 mSv and above, while those for other radiology examinations were mostly less than 2 mSv. Reporting of patient overexposure incidents in radiology has increased by four-fold in recent years. The average numbers reported during the last 3 years were 91 per year in radiology and 12 per year in nuclear medicine, for hospitals with a population base of 2.8 million. Incident investigations demonstrated the importance of robust procedures and defences to identify mistakes that could lead to incidents. The central incident reporting and investigation system has raised the awareness of staff about the type of mistakes which could lead to incidents and promoted the introduction of recommended actions to reduce these risks.

  6. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  7. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    MedlinePlus

    ... the Pediatric Imaging Council of the Society of Nuclear Medicine, as well as over 50 other societies, are members of this group. We are a group of over 700,000 health care professionals in radiology, pediatrics, medical physics and radiation protection. More information can be found ...

  8. Computer aided test selection (CATS) for nuclear medicine--a prototype system for renal investigations.

    PubMed

    Houston, A S; Tindale, W B

    1996-01-01

    An expert system for renal test selection in nuclear medicine has been developed as the first stage of a collaborative project on test selection in nuclear medicine. The stages of knowledge elicitation and knowledge representation were addressed by means of a questionnaire which was completed by five experts in the field of renal nuclear medicine. A flow chart was developed from the responses and implemented using a commercially available expert system shell (Crystal 4.5). A menu specifying clinical problems, for which renal nuclear medicine is useful, is displayed to the user who is prompted for a choice. Specific aspects of the chosen problem are then shown and again a choice is requested. Selected tests, in order of expert preference, are displayed and further information on any of these is available, if required, on selection from a menu subdivided into categories such as patient preparation, preliminary investigations, etc. The system provides cross-referencing to other areas of investigation and is currently being evaluated using a structured approach commonly employed in the assessment of user interfaces. PMID:8947892

  9. Development of Career Opportunities for Technicians in the Nuclear Medicine Field. Final Report.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    This report describes a nationally coordinated program development project whose purpose was to catalyze the implementation of needed postsecondary educational programs in the field of nuclear medicine technology (NMT). The NMT project was carried out during the six year period 1968-74 in cooperation with more than 36 community/junior colleges and…

  10. ``THE UNVEILED HEART'' a teaching program in cardiovascular nuclear medicine

    NASA Astrophysics Data System (ADS)

    Itti, Roland; Merabet, Yasmina; Roca, Ramona; Bontemps, Laurence; Itti, Emmanuel

    2004-07-01

    The functional investigation of cardiac diseases using nuclear techniques involves several variables, such as myocardial perfusion, cellular viability or mechanical contraction. The combined, topographical and quantitative assessment of these variables can characterize the functional state of the heart in terms of normal myocardium, ischemia, hibernation or necrosis. The teaching program, "The Unveiled Heart", has been designed in order to help nuclear physicians or cardiologists approaching these concepts and their implications for diagnosis of coronary artery disease, optimization of therapeutic strategies and prognosis evaluation. Anatomical correlations with coronary angiographic results obtained during balloon occlusion at the time of coronary angioplasty demonstrate the complementary role of imaging techniques and highlight the patient to patient variability of risk areas. A sectorial model derived from a polar projection of the myocardium presents for each sector the probability of involvement of a given coronary artery.

  11. Comparison of the activity measurements in nuclear medicine services in the Brazilian northeast region.

    PubMed

    de Farias Fragoso, Maria da Conceição; de Albuquerque, Antônio Morais; de Oliveira, Mércia L; de Lima, Fabiana Farias; Barreto, Flávio Chiappetta Paes; de Andrade Lima, Ricardo

    2013-12-01

    The Northeastern Regional Centre for Nuclear Sciences (CRCN-NE), National Nuclear Energy Commission, has organized for the first time in nuclear medicine services (NMSs) in the Brazilian northeast region a comparison of activity measurements for (99m)Tc, (131)I, (67)Ga, (201)Tl and (57)Co. This tool is widely utilized to evaluate not only the accuracy of radionuclide calibrators, but also the competence of NMSs to measure the activity of the radiopharmaceuticals and the performance of the personnel involved in these measurements. The comparison results showed that 90% of the results received from participants are within the ±10% limit established by the Brazilian Norm.

  12. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    DOE PAGESBeta

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Sprinkle, James

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less

  13. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    SciTech Connect

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Sprinkle, James

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests can be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.

  14. Fluorescent In Situ Hybridization of Nuclear Bodies in Drosophila melanogaster Ovaries.

    PubMed

    Nizami, Zehra F; Liu, Ji-Long; Gall, Joseph G

    2015-01-01

    Fluorescent in situ hybridization (FISH) is a technique for determining the cytological localization of RNA or DNA molecules. There are many approaches available for generating in situ hybridization probes and conducting the subsequent hybridization steps. Here, we describe a simple and reliable FISH method to label small RNAs (200-500 nucleotides in length) that are enriched in nuclear bodies in Drosophila melanogaster ovaries, such as Cajal bodies (CBs) and histone locus bodies (HLBs). This technique can also be applied to other Drosophila tissues, and to abundant mRNAs such as histone transcripts. PMID:26324435

  15. Radioactivity appearing at landfills in household trash of nuclear medicine patients: much ado about nothing?

    PubMed

    Siegel, Jeffry A; Sparks, Richard B

    2002-03-01

    The U.S. NRC in 1997 removed its arbitrary 1.11 GBq (30 mCi) rule, which had been in existence for almost 50 y, and now many more patients receiving radionuclide therapy in nuclear medicine can be treated as outpatients. However, another problem has the potential to limit the short-lived reality of outpatient treatment unless nuclear medicine practitioners and the health physics community gets involved. Radioactive articles in the household trash of nuclear medicine patients are appearing at solid waste landfills that have installed radiation monitors to prevent the entry of any detectable radioactivity, and alarms are going off around the country. These monitors are set to alarm at extremely low activity levels. Some states may actually hold licensees responsible if a patient's radioactive household trash is discovered in a solid waste stream; this is another major reason [along with continued use of the 1.11 GBq (30 mCi) rule] why many licensees are still not releasing their radionuclide therapy patients. This is in spite of the fact that the radioactivity contained in released nuclear medicine therapy patients, let alone the much lower activity level contained in their potentially radioactive household wastes, poses a minimal hazard to the public health and safety or to the environment. Currently, there are no regulations governing the disposal of low-activity, rapidly-decaying radioactive materials found in the household trash of nuclear medicine patients, the performance of landfill radiation monitors, or the necessity of spectrometry equipment. Resources are, therefore, being unnecessarily expended by regulators and licensees in responding to radiation monitor alarms that are caused by these unregulated short-lived materials that may be mixed with municipal trash. Recommendations are presented that would have the effect of modifying the existing landfill regulations and practices so as to allow the immediate disposal of such wastes.

  16. Current global and Korean issues in radiation safety of nuclear medicine procedures.

    PubMed

    Song, H C

    2016-06-01

    In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014. PMID:26960820

  17. Current global and Korean issues in radiation safety of nuclear medicine procedures.

    PubMed

    Song, H C

    2016-06-01

    In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014.

  18. Nuclear medicine survey recommendations for a changing regulatory environment.

    PubMed

    Vernig, P G; Schumacher, T A

    2001-11-01

    The revision of 10 CFR 35 approved on 23 September 2000 and due for implementation in 2001, reduces the number of required radiation and contamination surveys to one ambient radiation survey each day when an administration requiring a written directive is used. This paper compares the current requirements in 10 CFR 35; the single, remaining, specific requirement in the revised part 35; the Nuclear Regulatory Commission's guidance in the proposed NUREG SR1556 and the general requirement for surveys to demonstrate compliance with 10 CFR 20. We also make recommendations on what periodic surveys are prudent. PMID:11669196

  19. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, part 1-statement of the issue and a review of available resources.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seong; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2015-04-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI were to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. This article presents part 1 of the final report of this initial project of the NMGI. It provides a review of the value of pediatric nuclear medicine, the current understanding of the carcinogenic risk of radiation as it pertains to the administration of radiopharmaceuticals in children, and the application of dosimetric models in children. A listing of pertinent educational and reference resources available in print and online is also provided. The forthcoming part 2 report will discuss current standards for administered activities in children and adolescents that have been developed by various organizations and an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of nuclear medicine clinics and centers. Lastly, the part 2 report will recommend a path forward toward global standardization of the administration of radiopharmaceuticals in children. PMID:25766899

  20. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, part 1-statement of the issue and a review of available resources.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seong; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2015-04-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI were to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. This article presents part 1 of the final report of this initial project of the NMGI. It provides a review of the value of pediatric nuclear medicine, the current understanding of the carcinogenic risk of radiation as it pertains to the administration of radiopharmaceuticals in children, and the application of dosimetric models in children. A listing of pertinent educational and reference resources available in print and online is also provided. The forthcoming part 2 report will discuss current standards for administered activities in children and adolescents that have been developed by various organizations and an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of nuclear medicine clinics and centers. Lastly, the part 2 report will recommend a path forward toward global standardization of the administration of radiopharmaceuticals in children.

  1. Observation Leads to Improved Operations in Nuclear Medicine.

    PubMed

    Religioso, Deo G

    2016-01-01

    The concept of observation--going out and seeing what is happening in daily operations---would seem like a normal management activity, but the reality in practice of the philosophy and technique is often underutilized. Once an observation has been determined, the next steps are to test and validate any discoveries on paper. For process change to be implemented, numerical data is needed to back-up observations in order to be heard and taken seriously by the executive team. Boca Raton Regional Hospital saw an opportunity to improve the process for radiopharmaceutical standing orders within its nuclear imaging department. As a result of this observation, the facility realized improved savings and an increase in employee motivation.

  2. Nuclear medicine in urological cancers: what is new?

    PubMed

    Nanni, Cristina; Zanoni, Lucia; Fanti, Stefano

    2014-10-01

    The diffusion of PET/computed tomography has opened up a new role for nuclear imaging in urological oncology. Prostate cancer is evaluated with choline ((11)C or (18)F) PET due to a lack of sensitivity of (18)F-fluorodeoxyglucose (FDG). However, many new tracers, such as (18)F-fluorocyclobutane-1-carboxylic acid and (68)Ga-prostate-specific membrane antigen, are under investigation, offering promising results in the particular setting of radically treated patients with biochemical relapse. The performance of (18)F-FDG depends on the histological type; indeed, renal cell cancer may present variable metabolic uptake. In this field, mainly antibodies labeled with positron emitters are under clinical evaluation. Finally, (18)F-FDG PET/computed tomography has been proven to show good accuracy in detecting metastatic testicular and bladder cancers, despite not having valid results in detecting local disease. The urological cancer diagnostic process is currently under continuous development.

  3. Observation Leads to Improved Operations in Nuclear Medicine.

    PubMed

    Religioso, Deo G

    2016-01-01

    The concept of observation--going out and seeing what is happening in daily operations---would seem like a normal management activity, but the reality in practice of the philosophy and technique is often underutilized. Once an observation has been determined, the next steps are to test and validate any discoveries on paper. For process change to be implemented, numerical data is needed to back-up observations in order to be heard and taken seriously by the executive team. Boca Raton Regional Hospital saw an opportunity to improve the process for radiopharmaceutical standing orders within its nuclear imaging department. As a result of this observation, the facility realized improved savings and an increase in employee motivation. PMID:27172652

  4. Radiation risk and nuclear medicine: An interview with a Nobel Prize winner

    SciTech Connect

    Yalow, R.S.

    1995-12-01

    In a speech given years ago at the Veterans Administration Medical Center, Bronx, NY, Rosalyn S. Yalow, 1977 Nobel Prize recipient for her invention of radioimmunoassay, made several salient points on the perception of fear or hazards from exposure to low-level radiation and low-level radioactive wastes. For the past three years, Yalow has been concerned with the general fear of radiation. In this interview, Newsline solicited Yalow`s views on public perceptions on radiation risk and what the nuclear medicine community can do to emphasize the fact that, if properly managed, the use of isotopes in medicine and other cases is not dangerous.

  5. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  6. Semiconductor detectors for Compton imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Harkness, LJ; Judson, D. S.; Kennedy, H.; Sweeney, A.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sampson, J. A.; Burrows, I.; Groves, J.; Headspith, J.; Lazarus, I. H.; Simpson, J.; Bimson, W. E.; Kemp, G. J.

    2012-01-01

    An investigation is underway at the University of Liverpool to assess the suitability of two position sensitive semiconductor detectors as components of a Compton camera for nuclear medical imaging. The ProSPECTus project aims to improve image quality, provide shorter data acquisition times and lower patient doses by replacing conventional Single Photon Emission Computed Tomography (SPECT) systems. These mechanically collimated systems are employed to locate a radioactive tracer that has been administered to a patient to study specifically targeted physiological processes. The ProSPECTus system will be composed of a Si(Li) detector and a High Purity Germanium (HPGe) detector, a configuration deemed optimum using a validated Geant4 simulation package. Characterising the response of the detectors to gamma irradiation is essential in maximising the sensitivity and image resolution of the system. To this end, the performance of the HPGe ProSPECTus detector and a suitable Si(Li) detector has been assessed at the University of Liverpool. The energy resolution of the detectors has been measured and a surface scan of the Si(Li) detector has been performed using a finely collimated 241Am gamma ray source. Results from the investigation will be presented.

  7. Small modular reactor modeling using modelica for nuclear-renewable hybrid energy systems applications

    DOE PAGESBeta

    Mikkelson, Daniel; Chang, Chih -Wei; Cetiner, Sacit M.; Qualls, A. Lou; Doster, J. Michael; Dinh, T. Nam

    2015-10-01

    Here, the U.S. Department of Energy (DOE) supports research and development (R&D) that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet grid demand and industrial thermal energy needs [1]. One hybridization approach being investigated by the DOE Offices of Nuclear Energy (NE) and the DOE Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources to better manage overall energy use for the combined electricity, industrial manufacturing, and transportation sectors.

  8. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility

    PubMed Central

    Zeng, Yan-Fei; Zhang, Jian-Guo; Duan, Ai-Guo; Abuduhamiti, Bawerjan

    2016-01-01

    In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture. PMID:27306416

  9. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.

    PubMed

    Zeng, Yan-Fei; Zhang, Jian-Guo; Duan, Ai-Guo; Abuduhamiti, Bawerjan

    2016-06-16

    In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.

  10. Nuclear Hybrid Energy Systems - Regional Studies. West Texas and Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; McKellar, Michael G.; Deason, Wesley R.; Vilim, Richard B.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases - not generic examples - based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  11. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  12. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine.

    PubMed

    Ballinger, J R

    2010-11-01

    Most nuclear medicine studies use (99)Tc(m), which is the decay product of (99)Mo. The world supply of (99)Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of (99)Mo supply will rely on a combination of replacing conventional reactors and developing new technologies.

  13. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine

    PubMed Central

    Ballinger, J R

    2010-01-01

    Most nuclear medicine studies use 99Tcm, which is the decay product of 99Mo. The world supply of 99Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of 99Mo supply will rely on a combination of replacing conventional reactors and developing new technologies. PMID:20965898

  14. Communication of radiation risk in nuclear medicine: Are we saying the right thing?

    PubMed

    Pandit, Manish; Vinjamuri, Sobhan

    2014-07-01

    The radiation risk arising from nuclear medicine investigations represents a small but manageable risk to patients and it needs to be effectively communicated to them. Frequently in the culture of "doctor knows best," patients trust their doctors to do whatever is right and appropriate and leave it to them to worry about any attendant risks associated with any tests involving the use of radiation. The benefit to the patient of having a speedier diagnosis and a further guide to management may not be effectively communicated in a comprehensive, timely and professional manner. In this article, we address the issue of communication of radiation risk and benefits to patients and the basis for such information. While there are different ways of communicating radiation risk, we recognize that certain basic parameters are absolutely essential for patients to enable them to make an informed choice about undergoing a nuclear medicine investigation under the direction of a well-trained and qualified individual. PMID:25210276

  15. Collective effective dose in Europe from X-ray and nuclear medicine procedures.

    PubMed

    Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S

    2015-07-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput.

  16. NEED FOR INDIVIDUAL CANCER RISK ESTIMATES IN X-RAY AND NUCLEAR MEDICINE IMAGING.

    PubMed

    Mattsson, Sören

    2016-06-01

    To facilitate the justification of an X-ray or nuclear medicine investigation and for informing patients, it is desirable that the individual patient's radiation dose and potential cancer risk can be prospectively assessed and documented. The current dose-reporting is based on effective dose, which ignores body size and does not reflect the strong dependence of risk on the age at exposure. Risk estimations should better be done through individual organ dose assessments, which need careful exposure characterisation as well as anatomical description of the individual patient. In nuclear medicine, reference biokinetic models should also be replaced with models describing individual physiological states and biokinetics. There is a need to adjust population-based cancer risk estimates to the possible risk of leukaemia and solid tumours for the individual depending on age and gender. The article summarises reasons for individual cancer risk estimates and gives examples of methods and results of such estimates. PMID:26994092

  17. [Nationwide survey of nuclear medicine practice and estimation of collective effective dose in Japan.].

    PubMed

    Matsumoto, Masaki; Nishizawa, Kanae; Iwai, Kazuo; Akahane, Keiichi; Maruyama, Takashi

    2006-01-01

    For the estimation of collective effective dose from radiopharmaceuticals used in nuclear medicine diagnosis, a national survey was carried out in Japan. The survey contents covered radiopharmaceutical use, sex, age, activity, and so on of each patient in October 1997 and the monthly number of examinations in 1997. The annual number of diagnostic examinations using radiopharmaceuticals was 0.82 million for males and 0.74 million for females. The frequency of examination was about 3% for patients less than 17 years old and about 60% for those more than 60 years old. Effective dose was calculated on the basis of such literature as ICRP publications. The dose used most frequently was 5-6mSv per examination. The collective effective doses from diagnostic nuclear medicine examinations were estimated to be 13100 man .Sv for males and 20200 man .Sv for females. PMID:17164536

  18. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  19. The development and use of radionuclide generators in nuclear medicine -- recent advances and future perspectives

    SciTech Connect

    Knapp, F.F. Jr.

    1998-03-01

    Although the trend in radionuclide generator research has declined, radionuclide generator systems continue to play an important role in nuclear medicine. Technetium-99m obtained from the molybdenum-99/technetium-99m generator system is used in over 80% of all diagnostic clinical studies and there is increasing interest and use of therapeutic radioisotopes obtained from generator systems. This paper focuses on a discussion of the major current areas of radionuclide generator research, and the expected areas of future research and applications.

  20. Applications of CdTe to nuclear medicine. Annual report, February 1, 1979-January 31, 1980

    SciTech Connect

    Entine, G

    1980-01-01

    The application of CdTe gamma detectors in nuclear medicine is reported on. An internal probe was developed which can be inserted into the heart to measure the efficiency of various radiopharmaceuticals in the treatment of heart attacks. A second application is an array of detectors which is light enough to be worn by ambulatory patients and can measure the change in cardiac output over an eight hour period during heart attack treatment. The instrument includes an on board tape recorder. (ACR)

  1. Evaluation of 133Xe radiation exposure dosimetry for workers in nuclear medicine laboratories.

    PubMed

    Piltingsrud, H V; Gels, G L

    1982-06-01

    Evaluation of past studies of 133Xe dosimetry and nuclear medicine laboratory air concentrations of 133Xe indicates that significant levels of 133Xe may exist in routine operational environments of a nuclear medicine laboratory. This leads to the question of whether present health physics radiation control methods are adequate to keep occupational personnel exposures within acceptable levels. It would appear that if personnel dosimeters (film and TLD badges) respond properly to the radiation of 133Xe, normal health physics control procedures are probably adequate. If they do not respond adequately, personnel exposures may exceed recommended levels and special instrumentation or administrative procedures are called for. Therefore, the first step in studying potential problems in the subject area is to evaluate the response of a variety of personnel radiation dosimeters to 133Xe. This paper describes the methods and materials used to expose personnel dosimeters to known amounts of 133Xe radiations in an exposure chamber constructed at the BRH Nuclear Medicine Laboratory. Also presented are calculated values for Dose Equivalents (D.E.) in a phantom from external radiation resulting from immersion in clouds having a constant concentration of 133Xe but varying cloud radii. This implies the relative importance of the beta and the X + gamma radiation responses of the personnel dosimeters under various exposure conditions. Results of this study indicate that none of the dosimeter systems evaluated provide adequate performance for use as a primary indicator of the D.E. resulting from 133Xe radiations for a worker in a nuclear medicine laboratory, and that personnel dosimetry considerations in 133Xe-containing atmospheres are very dependent on the radii of the 133Xe clouds.

  2. Patients' and personnel's perceptions of service quality and patient satisfaction in nuclear medicine.

    PubMed

    De Man, Stefanie; Gemmel, Paul; Vlerick, Peter; Van Rijk, Peter; Dierckx, Rudi

    2002-09-01

    Patients' and personnel's perceptions of service quality were analysed to position nuclear medicine organisations in the service triangle theory of Haywood-Farmer [ Int J Production and Operations Management 1988; 6:19-29]. After distinguishing the service quality dimensions of nuclear medicine, a comparison was made between the service quality perceptions of patients ( n=259) and those of personnel ( n=24). We examined the importance of different service quality dimensions by studying their relationship to patient satisfaction. The proposed five dimensions of SERVQUAL, the most commonly used service quality measurement scale, were not confirmed. Patients considered tangibles and assurance as one dimension, while the original empathy dimension was separated into empathy and convenience. Personnel perceived all service quality dimensions as less good than did patients, except for empathy. Results indicated that patients' perception of service quality was correlated with patient satisfaction, especially in terms of reliability and tangibles-assurance. Based on these service quality dimensions, we suggest that nuclear medicine services need to optimise their physical and process component and the technical skills of personnel.

  3. Dose rate measurements from radiopharmaceuticals: implications for nuclear medicine staff and for children with radioactive parents.

    PubMed

    Greaves, C D; Tindale, W B

    1999-02-01

    Following the introduction of a number of radiopharmaceuticals, we assessed the dose received by staff working in the nuclear medicine department and also by children who may be in close contact with a radioactive parent. We measured departure dose rates (microSv.h-1) at distances of 0.1, 0.5 and 1.0 m from the skin surface at the level of the thyroid, chest and bladder of patients undergoing the following nuclear medicine procedures: MUGA scans using 99Tcm-labelled red blood cells, myocardial perfusion scans using 99Tcm-labelled radiopharmaceuticals, lymphoscintigraphy using colloidal 99Tcm (Re) sulphide, bone scans using 99Tcm-labelled oxidronate, 111In-octreotide scans, 111In-labelled leukocyte studies and cardiac reinjection studies using 201Tl. The maximum dose rates at 0.1 m were those from MUGA studies (167.3 microSv.h-1) and myocardial perfusion studies (one-day protocol = 391.7 microSv.h-1, two-day protocol = 121.8 microSv.h-1). The implications of these dose rates on both technical and nursing staff are assessed. Also, the dose received by an infant in close contact with a parent following a nuclear medicine investigation was estimated.

  4. USE OF RADIOPHARMACEUTICALS IN DIAGNOSTIC NUCLEAR MEDICINE IN THE UNITED STATES: 1960–2010

    PubMed Central

    Drozdovitch, Vladimir; Brill, Aaron B.; Callahan, Ronald J.; Clanton, Jeffrey A.; DePietro, Allegra; Goldsmith, Stanley J.; Greenspan, Bennett S.; Gross, Milton D.; Hays, Marguerite T.; Moore, Stephen C.; Ponto, James A.; Shreeve, Walton W.; Melo, Dunstana R.; Linet, Martha S.; Simon, Steven L.

    2014-01-01

    To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, we assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake, brain scan, brain blood flow, lung perfusion and ventilation, bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans, cardiac imaging procedures, tumor localization studies, localization of gastrointestinal bleeding, and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologist’s cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations. PMID:25811150

  5. Estimation of internal exposure to 99Mo in nuclear medicine patients.

    PubMed

    Silva, I C O A; Lucena, E A; Souza, W O; Dantas, A L A; Dantas, B M

    2010-01-01

    (99m)Tc is the most widely used radionuclide in nuclear medicine. It is obtained by elution of (99)Mo-(99m)Tc generators. Depending on the quality of the generator and its integrity, (99)Mo may be extracted from the column during the elution process, becoming a radionuclidic impurity in the (99m)Tc eluate. This fact would impart an unnecessary dose to the patients submitted to diagnostic procedures. The aim of this work is to evaluate (99)Mo incorporation and internal effective doses in nuclear medicine patients through bioassay techniques, providing information on the metabolism of molybdenum in humans. A methodology based on in vivo and in vitro measurements was developed. In vivo measurements were performed with a NaI detector installed in the IRD WBC. Urine samples were analysed with a HPGe at the IRD bioassay laboratory. Patients showed detectable activities of (99)Mo in whole body and urine. Results were interpreted with AIDE software. Estimated incorporation was compared to predicted values based on ICRP model. Effective doses were in the order of micro sieverts. Results suggest the need to implement a routine quality control program of radionuclidic impurity of (99)Mo in (99m)Tc eluates to be conducted by radiopharmacy laboratories of nuclear medicine centers.

  6. Nuclear medicine program progress report for quarter ending December 31, 1996

    SciTech Connect

    Knapp, F.F. Jr.; Beets, A.L.; Boll, R.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1997-03-20

    In this report the authors describe the use of an effective method for concentration of the rhenium-188 bolus and the results of the first Phase 1 clinical studies for bone pain palliation with rhenium-188 obtained from the tungsten-188/rhenium-188 generator. Initial studies with therapeutic levels of Re-188-HEDP at the Clinic for Nuclear Medicine at the University of Bonn, Germany, have demonstrated the expected good metastatic uptake of Re-188-HEDP in four patients who presented with skeletal metastases from disseminated prostatic cancer with good pain palliation and minimal marrow suppression. In addition, skeletal metastatic targeting of tracer doses of Re-188(V)-DMSA has been evaluated in several patients with metastases from prostatic cancer at the Department of Nuclear Medicine at the Canterbury and Kent Hospital in Canterbury, England. In this report the authors also describe further studies with the E-(R,R)-IQNP ligand developed in the ORNL Nuclear Medicine Program as a potential imaging agent for detection of changes which may occur in the cerebral muscarinic-cholinergic receptors (mAChR) in Alzheimer`s and other diseases.

  7. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  8. Radionuclide radiologist directed nuclear medicine services in district general hospitals in the South Thames Region.

    PubMed

    Conry, B G; Burwood, R J

    2001-08-01

    The equipment, staffing levels and imaging workload of all 14 radiologist directed nuclear medicine services in district general hospitals in the South Thames Region are presented. These are generally single camera departments providing a broad range of imaging procedures, including cardiac studies and white cell labelling, as well as the more usual renal, lung, thyroid and bone examinations. All departments have a high throughput, averaging 2358 examinations per year. Departmental staffing levels are variable, with some institutions having inadequate consultant radiology sessions free of other commitments as well as inadequate physics support. Potentially, these are important quality and legal issues that departments may need to address with hospital Trusts and Commissioning Agencies. Four small departments provided a service without any formally contracted radiologist sessions for nuclear medicine in the radiologists' job plans. The three medium sized departments have a closer match between sessions contracted and those actually worked, but in only one of these did the contracted sessional commitment equal the recommendation of the Nuclear Medicine Committee of the Royal College of Physicians. There is a disparity between the number of contracted consultant sessions and those actually worked in most institutions (86%), being at least two sessions in eight hospitals. Recommendations are made regarding the adequacy of some of the elements of provision in South Thames and the legal and safety implications for hospital Trust management and Commissioning Agencies. PMID:11511496

  9. Extremity exposure in nuclear medicine: preliminary results of a European study.

    PubMed

    Sans Merce, M; Ruiz, N; Barth, I; Carnicer, A; Donadille, L; Ferrari, P; Fulop, M; Ginjaume, M; Gualdrini, G; Krim, S; Mariotti, F; Ortega, X; Rimpler, A; Vanhavere, F; Baechler, S

    2011-03-01

    The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: (99m)Tc and (18)F. For therapeutic treatments, Zevalin(®) and DOTATOC (both labelled with (90)Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin doses.

  10. Patients' and personnel's perceptions of service quality and patient satisfaction in nuclear medicine.

    PubMed

    De Man, Stefanie; Gemmel, Paul; Vlerick, Peter; Van Rijk, Peter; Dierckx, Rudi

    2002-09-01

    Patients' and personnel's perceptions of service quality were analysed to position nuclear medicine organisations in the service triangle theory of Haywood-Farmer [ Int J Production and Operations Management 1988; 6:19-29]. After distinguishing the service quality dimensions of nuclear medicine, a comparison was made between the service quality perceptions of patients ( n=259) and those of personnel ( n=24). We examined the importance of different service quality dimensions by studying their relationship to patient satisfaction. The proposed five dimensions of SERVQUAL, the most commonly used service quality measurement scale, were not confirmed. Patients considered tangibles and assurance as one dimension, while the original empathy dimension was separated into empathy and convenience. Personnel perceived all service quality dimensions as less good than did patients, except for empathy. Results indicated that patients' perception of service quality was correlated with patient satisfaction, especially in terms of reliability and tangibles-assurance. Based on these service quality dimensions, we suggest that nuclear medicine services need to optimise their physical and process component and the technical skills of personnel. PMID:12192553

  11. General comparison of functional imaging in nuclear medicine with other modalities

    SciTech Connect

    Adam, W.E.

    1987-01-01

    New (noninvasive) diagnostic procedures in medicine (ultrasound (US), digital subtraction angiography (DSA), computed tomography (CT), nuclear magnetic resonance (NMR)) create a need for a review of the clinical utility of functional imaging in nuclear medicine. A general approach that is valid for all imaging procedures is not possible. For this reason, an individual assessment for each class of functional imaging is necessary, taking into account the complexity and sophistication of the various imaging procedures. This leads to a hierarchical order: first order functional imaging: imaging of organ motion (heart, lungs, blood); second order functional imaging: imaging of excretory function (kidneys, liver); and third and fourth order functional imaging: imaging of metabolism (except excretory function). First order functional imaging is possible fundamentally, although with limitations in detail, by all modalities. Second order functional imaging is not possible with US. Third and fourth order functional imaging is a privilege of nuclear medicine alone. Up to now, NMR has not proven clinically useful to produce metabolic images in its true sense. First and second order functional imaging of nonradioactive procedures face severe disadvantages, including difficulties in performing stress investigations, which are essential for coronary heart disease, limited capability for true quantitative information (eg, kidney clearance in mL/min), side effects of contrast media and paramagnetic substances, and high costs. 58 references.

  12. Use of radiopharmaceuticals in diagnostic nuclear medicine in the United States: 1960-2010.

    PubMed

    Drozdovitch, Vladimir; Brill, Aaron B; Callahan, Ronald J; Clanton, Jeffrey A; DePietro, Allegra; Goldsmith, Stanley J; Greenspan, Bennett S; Gross, Milton D; Hays, Marguerite T; Moore, Stephen C; Ponto, James A; Shreeve, Walton W; Melo, Dunstana R; Linet, Martha S; Simon, Steven L

    2015-05-01

    To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, the authors assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake; brain scan; brain blood flow; lung perfusion and ventilation; bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans; cardiac imaging procedures; tumor localization studies; localization of gastrointestinal bleeding; and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologists' cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations.

  13. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image. PMID:25880881

  14. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  15. Survey of physician requirements in six specialties: manpower needs in anesthesiology, neurology, nuclear medicine, pathology, physical medicine and rehabilitation, radiology. Final report

    SciTech Connect

    Wills, J.

    1980-07-01

    This report was prepared to assist the Graduate Medical Education National Advisory Committee (GMENAC) in its efforts to model physician manpower requirements in six specialties: anesthesiology, neurology, nuclear medicine, pathology, physical medicine and rehabilitation, and radiology. The purpose of this report is to (1) survey and present the existing literature on manpower requirements in each of these six specialties, and (2) discuss the special problems present in each specialty in modeling manpower requirements, and where possible, suggest possible avenues of resolution.

  16. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  17. SUS in nuclear medicine in Brazil: analysis and comparison of data provided by Datasus and CNEN*

    PubMed Central

    Pozzo, Lorena; Coura Filho, George; Osso Júnior, João Alberto; Squair, Peterson Lima

    2014-01-01

    Objective To investigate the outpatient access to nuclear medicine procedures by means of the Brazilian Unified Health System (SUS), analyzing the correspondence between data provided by this system and those from Comissão Nacional de Energia Nuclear (CNEN) (National Commission of Nuclear Energy). Materials and Methods Data provided by Datasus regarding number of scintillation chambers, outpatient procedures performed from 2008 to 2012, administrative responsibility for such procedures, type of service providers and outsourced services were retrieved and evaluated. Also, such data were compared with those from institutions certified by CNEN. Results The present study demonstrated that the system still lacks maturity in terms of correct data input, particularly regarding equipment available. It was possible to list the most common procedures and check the growth of the specialty along the study period. Private centers are responsible for most of the procedures covered and reimbursed by SUS. However, many healthcare facilities are not certified by CNEN. Conclusion Datasus provides relevant data for analysis as done in the present study, although some issues still require attention. The present study has quantitatively depicted the Brazilian reality regarding access to nuclear medicine procedures offered by/for SUS. PMID:25741070

  18. A background to nuclear transfer and its applications in agriculture and human therapeutic medicine.

    PubMed

    Campbell, Keith H S

    2002-03-01

    The development of a single celled fertilized zygote to an animal capable of reproduction involves not only cell division but the differentiation or specialization to numerous cell types forming each tissue and organ of the adult animal. The technique of nuclear transfer allows the reconstruction of an embryo by the transfer of genetic material from a single donor cell, to an unfertilized egg from which the genetic material has been removed. Successful development of live offspring from such embryos demonstrates that the differentiated state of the donor nucleus is not fixed and can be reprogrammed by the egg cytoplasm to control embryo and fetal development. Nuclear transfer has many applications in agriculture and human medicine. This article will review some of the factors associated with the success of embryo development following nuclear transfer and outline the potential uses of the technology.

  19. A background to nuclear transfer and its applications in agriculture and human therapeutic medicine*

    PubMed Central

    Campbell, Keith HS

    2002-01-01

    The development of a single celled fertilized zygote to an animal capable of reproduction involves not only cell division but the differentiation or specialization to numerous cell types forming each tissue and organ of the adult animal. The technique of nuclear transfer allows the reconstruction of an embryo by the transfer of genetic material from a single donor cell, to an unfertilized egg from which the genetic material has been removed. Successful development of live offspring from such embryos demonstrates that the differentiated state of the donor nucleus is not fixed and can be reprogrammed by the egg cytoplasm to control embryo and fetal development. Nuclear transfer has many applications in agriculture and human medicine. This article will review some of the factors associated with the success of embryo development following nuclear transfer and outline the potential uses of the technology. PMID:12033731

  20. Hepatocyte nuclear factor-4 prevents silencing of hepatocyte nuclear factor-1 expression in hepatoma x fibroblast cell hybrids.

    PubMed Central

    Bulla, G A

    1997-01-01

    Hepatocyte nuclear factors-1alpha (HNF1alpha) and -4 (HNF4) are components of a liver-enriched transcription activation pathway which is thought to play a critical role in hepatocyte-specific gene expression, including activation of alpha1-antitrypsin gene expression. HNF1alpha, HNF4 and alpha1-antitrypsin (alpha1AT) genes are extinguished in hepatoma/fibroblast somatic cell hybrids, suggesting that fibroblasts contain a repressor-like activity. To determine the molecular basis for silencing of these genes in cell hybrids, ectopic expression of HNF1alpha and HNF4 was used. Results show that constitutive expression of HNF4 prevents extinction of HNF1alpha gene expression in hepatoma/fibroblast hybrids. In contrast, forced HNF1alpha expression failed to prevent extinction of the HNF4 locus in cell hybrids. Likewise, the alpha1AT gene remained silent in the presence of both HNF1alpha and HNF4. These results suggest that extinction of HNF1alpha is a simple lack-of-activation phenotype, whereas extinction of HNF4 andalpha1AT loci is more complex, perhaps involving negative regulation. PMID:9171105

  1. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression

    PubMed Central

    Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal

    2013-01-01

    Background and Aims Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Methods Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Key Results Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. Conclusions The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific

  2. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  3. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    SciTech Connect

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  4. Medicines

    MedlinePlus

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  5. Design and operation of a nuclear medicine picture archiving and communication system.

    PubMed

    Brown, P H; Krishnamurthy, G T

    1990-07-01

    Construction of a new Veterans Administration Medical Center provided a unique opportunity to design and implement a state-of-the-art nuclear medicine department in a large teaching and research hospital. The new medical center allowed the acquisition of all new gamma cameras and computer systems without any historical need to patch together a system of old and new equipment. The picture archiving and communication system (PACS) was designed to link five gamma cameras to four image viewing areas, followed by digital archive on an optical disc. The gamma cameras' computers and viewing areas' computers are linked to a central networking computer in a manner that provides nine independent but digitally communicating image computers. Each nuclear medicine computer is capable of acquiring gamma camera data while possibly also performing up to three other simultaneous tasks: analysis of image data, transfer of image data from node to node, and patient database manipulation. The nine image computers each appear to the user as a digital file cabinet, containing various folders, which in turn contain patient studies. To transfer a patient study from one location to another, the user simply queues a transfer request by selecting a file drawer-folder combination for the source and destination locations. It takes only a few seconds to queue a transfer request, and the transfer is complete about a minute later without any further user intervention. A computer genie awakens during the early morning off-hours and performs housekeeping tasks, including movement of patient studies (based on date of acquisition) from active viewing folders to inactive archive folders. All scheduling, workload data, patient image reports, etc, are handled by a patient textual information database system. Patient reports and scheduling information are transmitted to the medical center's central computer where they are made readily available throughout the medical center. The PACS, in clinical use

  6. Health concerns related to radiation exposure of the female nuclear medicine patient.

    PubMed Central

    Stabin, M G

    1997-01-01

    The female nuclear medicine patient is of special concern in evaluating radiation dose and risk in nuclear medicine. The female's overall body size and organ sizes generally are smaller than those of her male counterpart (thus her radiation doses will be higher, given the same amounts of administered activity and similar biokinetics); female gonads are inside the body instead of outside and are near several organs often important as source organs in internal dosimetry (urinary bladder, liver, kidneys, intestines); risk of breast cancer is significantly higher among females than males; and in the case of pregnancy, exposure to radiation of the embryo/fetus and the nursing infant are of special concern in such an analysis. All these concerns are addressed in this study through a comparative study of radiation doses for males and females over a large number (approximately 60) of nuclear medicine studies and through a study of what is known about radiation dosimetry in pregnancy and breast feeding. It was found that women's critical organ doses and effective doses (as defined by the International Commission on Radiological Protection 60 [ICRP 60] are about 25% higher than those for men across all these studies. Women's gonad doses, however, may be as much as 10 to 30 times higher than those in men, although 2- to 3-fold differences are common. Many radiopharmaceuticals are administered to women of childbearing age; however, little is known about how much activity crosses the placenta and about the biokinetics in the fetus should it occur. Nonetheless, dose estimates are provided at four stages of pregnancy (early, 3-month, 6-month, and 9-month gestation) for a large number of radiopharmaceuticals, whether or not quantitative estimates of placental crossover can be made. Many radiopharmaceuticals are also excreted in breast milk of nursing mothers. Breast feeding interruption schedules are suggested through analysis of the observed kinetics of these pharmaceuticals and

  7. An alternate approach to the production of radioisotopes for nuclear medicine applications.

    PubMed

    D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  8. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained.

  9. Role of nuclear medicine bone scans in evaluating pain in athletic injuries

    SciTech Connect

    Martire, J.R.

    1987-10-01

    The utilization of nuclear medicine bone scanning examinations early in the diagnostic process allows physicians to render prompt and correct treatment in urgent or difficult athletic cases. Bone scanning should be performed for athletic injuries whenever (1) x-rays are normal but bone or joint pain persists; (2) x-rays are positive but it cannot be determined if the findings are acute or chronic; (3) soft-tissue injuries present and x-rays are not useful; and (4) bone pain or joint impairment present without a history of trauma.89 references.

  10. Detection of thoracic infections by nuclear medicine techniques in the acquired immunodeficiency syndrome

    SciTech Connect

    Kramer, E.L.; Sanger, J.J. )

    1989-11-01

    The challenge of the acquired immunodeficiency syndrome (AIDS) for nuclear medicine has been the early detection of related intrathoracic opportunistic infections, inflammatory conditions, and neoplasms. Gallium-67 citrate scanning has proved a sensitive test not only for Pneumocystis carinii pneumonia but for many of the other opportunistic infections and malignancies, including mycobacterial infections and lymphoma. Patterns and intensity of gallium uptake may suggest more specific diagnoses. Indium-111-labeled white blood cells may also be a valuable diagnostic tool in the AIDS patient.41 references.

  11. The Hotelling Trace Criterion Used for System Optimization and Feature Enhancement in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Fiete, Robert Dean

    The Hotelling trace criterion (HTC) is a measure of class separability used in pattern recognition to find a set of linear features that optimally separate two classes of objects. In this dissertation we use the HTC not as a figure of merit for features, but as a figure of merit for characterizing imaging systems and designing filters for feature enhancement in nuclear medicine. If the HTC is to be used to optimize systems, then it must correlate with human observer performance. In our first study, a set of images, created by overlapping ellipses, was used to simulate images of livers. Two classes were created, livers with and without tumors, with noise and blur added to each image to simulate nine different imaging systems. Using the ROC parameter d_ {rm a} as our measure, we found that the HTC has a correlation of 0.988 with the ability of humans to separate these two classes of objects. A second study was performed to demonstrate the use of the HTC for system optimization in a realistic task. For this study we used a mathematical model of normal and diseased livers and of the imaging system to generate a realistic set of liver images from nuclear medicine. A method of adaptive, nonlinear filtering which enhances the features that separate two sets of images has also been developed. The method uses the HTC to find the optimal linear feature operator for the Fourier moduli of the images, and uses this operator as a filter so that the features that separate the two classes of objects are enhanced. We demonstrate the use of this filtering method to enhance texture features in simulated liver images from nuclear medicine, after using a training set of images to obtain the filter. We also demonstrate how this method of filtering can be used to reconstruct an object from a single photon-starved image of it, when the object contains a repetitive feature. When power spectrums for real liver scans from nuclear medicine are calculated, we find that the three

  12. Transportation issues in nuclear medicine and the release of radioactivity into the environment.

    PubMed

    Westerman, B R

    1986-07-01

    Large volumes of radioactive materials are shipped daily over the nation's highways, by air, and by other transportation modes for a variety of purposes. These shipments include those intended for nuclear medicine applications. Shipments are governed by the Federal Department of Transportation, the Nuclear Regulatory Commission, and, for international shipments, the International Atomic Energy Agency. Knowledge of the regulations of these agencies is essential for maintenance of a viable radiation safety program. The use of radioactive materials is invariably accompanied by the potential for release of radioactivity into the environment. This potential is addressed in the recommendations and regulations of several voluntary and governmental agencies. Recently, new concepts have been introduced into these recommendations and regulations that use the concepts of "annual limit of intake," "committed effective dose equivalent," and "derived air concentrations." These concepts improve the applicability of present standards for the release of radioactive materials into the environment and for the protection of individuals from these materials. PMID:3749916

  13. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.

    PubMed

    Clements, Craig S; Bikkul, Ural; Ahmed, Mai Hassan; Foster, Helen A; Godwin, Lauren S; Bridger, Joanna M

    2016-01-01

    The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH. PMID:27147055

  14. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.

    PubMed

    Clements, Craig S; Bikkul, Ural; Ahmed, Mai Hassan; Foster, Helen A; Godwin, Lauren S; Bridger, Joanna M

    2016-01-01

    The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.

  15. Understanding the cause of an unreadable nuclear medicine image: a case of unexpected results with 123I whole-body scintigraphy.

    PubMed

    Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo

    2014-12-01

    When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician.

  16. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  17. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  18. [The nuclear medicine department and the TEP/Biomedical Cyclotron unit].

    PubMed

    Goldman, S; Schoutens, A; Blocklet, D; Dumarey, N; Egrise, D; Lipschutz, B; Monclus, M; Moreno-Reyes, R; Schmitz, F; Van Naemen, J; Wikler, D

    2002-01-01

    During the last 25 years, the clinical and experimental activity in nuclear medicine at Erasme hospital has been influenced by the implementation of positron emission tomography (PET) in 1990 as a method of brain functional investigation. The activity of the PET/biomedical cyclotron unit has been dedicated to various subjects in neurology, neurosciences, psychiatry, oncology and cardiology. This has been made possible by developments in radiochemistry. The radiochemistry laboratory has designed and produced original tracers such as 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)-methyl]guanine (FHPG), a tracer of viral thymidine kinase activity in gene therapy protocols. We have brought new applications of PET, such as its integration into stereotactic neurosurgical and radioneurosurgical techniques in order to improve their diagnostic and therapeutic performance in neurooncology. We have also conducted multiple studies on brain physiology and pathophysiology, in particular with the use of functional and metabolic brain mapping methods and the use of tracers of neurotransmission systems. The Department of nuclear medicine has also performed studies on bone metabolism and investigated in vivo imaging methods of infectious and immune processes.

  19. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals

    PubMed Central

    Novruzov, Fuad; Vinjamuri, Sobhan

    2014-01-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident. PMID:25004166

  20. A methodology for auto-monitoring of internal contamination by 131I in nuclear medicine workers.

    PubMed

    Vidal, M V S; Dantas, A L A; Dantas, B M

    2007-01-01

    The manipulation of 131I in Nuclear Medicine involves significant risks of internal contamination of the staff. In the event of an accidental contamination, or when the Radiological Protection Program includes routine individual monitoring of internal contamination, it is necessary to implement internal dose estimation through in vivo and in vitro bioassay techniques. Due to the huge extension of the Brazilian country, this type of monitoring becomes unfeasible if all measurements have to be performed at the institutes of the CNEN. Thus, if the Nuclear Medicine Centres (NMC) become able to conduct the monitoring of their employees, this skill would be of great significance. The methodology proposed in this work consists in a simple and inexpensive protocol for auto-monitoring the internal contamination by 131I, using the resources available at the NMC. In order to verify the influence of the phantom in the calibration factor for the measurement of 131I in thyroid, it was performed a comparison among a variety of phantoms commercially available, including the Neck-Thyroid Phantom developed in IRD. A protocol for performing in vivo and in vitro measurements by the NMC was established. The applicability of the individual monitoring techniques was also evaluated by comparing the detection limits with the derived limits associated with the annual dose limits for workers.

  1. [Development of the software package of the nuclear medicine data processor for education and research].

    PubMed

    Maeda, Hisato; Yamaki, Noriyasu; Azuma, Makoto

    2012-01-01

    The objective of this study was to develop a personal computer-based nuclear medicine data processor for education and research in the field of nuclear medicine. We call this software package "Prominence Processor" (PP). Windows of Microsoft Corporation was used as the operating system of this PP, which have 1024 × 768 image resolution and various 63 applications classified into 6 groups. The accuracy was examined for a lot of applications of the PP. For example, in the FBP reconstruction application, there was visually no difference in the image quality as a result of comparing two SPECT images obtained from the PP and GMS-5500A (Toshiba). Moreover, Normalized MSE between both images showed 0.0003. Therefore the high processing accuracy of the FBP reconstruction application was proven as well as other applications. The PP can be used in an arbitrary place if the software package is installed in note PC. Therefore the PP is used to lecture and to practice on an educational site and used for the purpose of the research of the radiological technologist on a clinical site etc. widely now. PMID:22449907

  2. Communication of radiation risk in nuclear medicine: Are we saying the right thing?

    PubMed Central

    Pandit, Manish; Vinjamuri, Sobhan

    2014-01-01

    The radiation risk arising from nuclear medicine investigations represents a small but manageable risk to patients and it needs to be effectively communicated to them. Frequently in the culture of “doctor knows best,” patients trust their doctors to do whatever is right and appropriate and leave it to them to worry about any attendant risks associated with any tests involving the use of radiation. The benefit to the patient of having a speedier diagnosis and a further guide to management may not be effectively communicated in a comprehensive, timely and professional manner. In this article, we address the issue of communication of radiation risk and benefits to patients and the basis for such information. While there are different ways of communicating radiation risk, we recognize that certain basic parameters are absolutely essential for patients to enable them to make an informed choice about undergoing a nuclear medicine investigation under the direction of a well-trained and qualified individual. PMID:25210276

  3. Russian practical guidance on radiological support for justification of X-ray and nuclear medicine examinations.

    PubMed

    Balonov, M; Golikov, V; Kalnitsky, S; Zvonova, I; Chipiga, L; Sarycheva, S; Shatskiy, I; Vodovatov, A

    2015-07-01

    An important part of the justification process is assessment of the radiation risks caused by exposure of a patient during examination. The authors developed official national methodology both for medical doctors and sanitary inspectors called 'assessment of radiation risks of patients undergoing diagnostic examinations with the use of ionizing radiation'. The document addresses patients of various age groups and a wide spectrum of modern X-ray and nuclear medicine examinations. International scale of risk categorisation was implemented by the use of effective dose with account for age dependence of radiation risk. The survey of effective doses in radiology, including CT, mammography, and intervention radiology, and nuclear medicine, including single-photon emission tomography and positron emission tomography, for patients of various age groups from several regions of Russia was used for the risk assessment. The output of the methodology is a series of tables for each diagnostic technology with lists of examinations for three age groups (children/adolescents, adults and seniors) corresponding to various radiation risk categories. PMID:25862538

  4. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism.

    PubMed

    Nieciecki, Michał; Cacko, Marek; Królicki, Leszek

    2015-12-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated.

  5. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals.

    PubMed

    Bomanji, Jamshed B; Novruzov, Fuad; Vinjamuri, Sobhan

    2014-10-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident.

  6. Russian practical guidance on radiological support for justification of X-ray and nuclear medicine examinations.

    PubMed

    Balonov, M; Golikov, V; Kalnitsky, S; Zvonova, I; Chipiga, L; Sarycheva, S; Shatskiy, I; Vodovatov, A

    2015-07-01

    An important part of the justification process is assessment of the radiation risks caused by exposure of a patient during examination. The authors developed official national methodology both for medical doctors and sanitary inspectors called 'assessment of radiation risks of patients undergoing diagnostic examinations with the use of ionizing radiation'. The document addresses patients of various age groups and a wide spectrum of modern X-ray and nuclear medicine examinations. International scale of risk categorisation was implemented by the use of effective dose with account for age dependence of radiation risk. The survey of effective doses in radiology, including CT, mammography, and intervention radiology, and nuclear medicine, including single-photon emission tomography and positron emission tomography, for patients of various age groups from several regions of Russia was used for the risk assessment. The output of the methodology is a series of tables for each diagnostic technology with lists of examinations for three age groups (children/adolescents, adults and seniors) corresponding to various radiation risk categories.

  7. Nuclear medicine and ultrasound; correlation in diagnosis of disease of liver and biliary tract.

    PubMed

    Lomonaco, A; Kline, P; Halpern, S; Leopold, G

    1975-10-01

    Even though the radiocolloid scan is nonspecific it will be approximately 70%-80% accurate in predicting the presence or absence of liver disease and somewhat less accurate than that in making statements as to the specific type of disease. This compares well with other modalities. The ability of nuclear medicine techniques to provide a correct diagnosis is improved when additional isotopic techniques such as hepatic blood flow studies and 131I-rose bengal and 67Ga scanning are performed. Ultrasound scanning is also non specific. To date, the major application of ultrasound in the study of the liver has been in deciphering puzzling contour abnormalities seen on nuclear medicine scans and in demonstrating fluid-filled abnormalities. Its usefulness in diffuse and solid focal lesions has been less dramatic. More recently, however, the development of gray scale has necessitated a reevaluation of the technique. Gray scale demonstrates a large number of intrahepatic interfaces that were previously invisible, and it has already been shown to demonstrate focal disorders such as metastasis more easily than the nongray-scale method. It can also demonstrate dilated biliary radicals, the gallbladder, and gallstones. In addition, while routinely studying the liver one can evaluate diaphragmatic motion and various retroperitoneal structures such as the pancreas, lymph nodes, and abdominal vascular structures.

  8. Automated motion correction based on target tracking for dynamic nuclear medicine studies

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Tetrault, Tracy; Fahey, Fred; Treves, Ted

    2008-03-01

    Nuclear medicine dynamic studies of kidneys, bladder and stomach are important diagnostic tools. Accurate generation of time-activity curves from regions of interest (ROIs) requires that the patient remains motionless for the duration of the study. This is not always possible since some dynamic studies may last from several minutes to one hour. Several motion correction solutions have been explored. Motion correction using external point sources is inconvenient and not accurate especially when motion results from breathing, organ motion or feeding rather than from body motion alone. Centroid-based motion correction assumes that activity distribution is only inside the single organ (without background) and uniform, but this approach is impractical in most clinical studies. In this paper, we present a novel technique of motion correction that first tracks the organ of interest in a dynamic series then aligns the organ. The implementation algorithm for target tracking-based motion correction consists of image preprocessing, target detection, target positioning, motion estimation and prediction, tracking (new search region generation) and target alignment. The targeted organ is tracked from the first frame to the last one in the dynamic series to generate a moving trajectory of the organ. Motion correction is implemented by aligning the organ ROIs in the image series to the location of the organ in the first image. The proposed method of motion correction has been applied to several dynamic nuclear medicine studies including radionuclide cystography, dynamic renal scintigraphy, diuretic renography and gastric emptying scintigraphy.

  9. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander.

    PubMed

    Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David

    2016-04-01

    Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change. PMID:26850834

  10. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander.

    PubMed

    Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David

    2016-04-01

    Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change.

  11. Development of cytoplasmic-nuclear male sterility, its inheritance, and potential use in hybrid pigeonpea breeding.

    PubMed

    Saxena, Kul B; Ravikoti, V Kumar; Dalvi, Vijay A; Pandey, Lalji B; Gaddikeri, Guruprasad

    2010-01-01

    Pigeonpea [Cajanus cajan (L.) Millsp.] is a unique food legume because of its partial (20-30%) outcrossing nature, which provides an opportunity to breed commercial hybrids. To achieve this, it is essential to have a stable male-sterility system. This paper reports the selection of a cytoplasmic-nuclear male-sterility (CMS) system derived from an interspecific cross between a wild relative of pigeonpea (Cajanus sericeus Benth. ex. Bak.) and a cultivar. This male-sterility source was used to breed agronomically superior CMS lines in early (ICPA 2068), medium (ICPA 2032), and late (ICPA 2030) maturity durations. Twenty-three fertility restorers and 30 male-sterility maintainers were selected to develop genetically diverse hybrid combinations. Histological studies revealed that vacuolation of growing tetrads and persistence of tetrad wall were primary causes of the manifestation of male sterility. Genetic studies showed that 2 dominant genes, of which one had inhibitory gene action, controlled fertility restoration in the hybrids. The experimental hybrids such as TK 030003 and TK 030009 in early, ICPH 2307 and TK 030625 in medium, and TK 030861 and TK 030851 in late maturity groups exhibited 30-88% standard heterosis in multilocation trials.

  12. BOOK REVIEW: Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Coulot, J.

    2003-08-01

    H Zaidi and G Sgouros (eds) Bristol: Institute of Physics Publishing (2002) £70.00, ISBN: 0750308168 Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with `therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique

  13. A Study on a Hybrid Approach for Diagnosing Faults in Nuclear Power Plant

    SciTech Connect

    Yang, M.; Zhang, Z.J.; Peng, M.J.; Yan, S.Y.; Wang, H.; Ouyang, J.

    2006-07-01

    Proper and rapid identification of malfunctions is of premier importance for the safe operation of Nuclear Power Plants (NPP). Many monitoring or/and diagnosis methodologies based on artificial and computational intelligence have been proposed to aid operator to understand system problems, perform trouble-shooting action and reduce human error under serious pressure. However, because no single method is adequate to handle all requirements for diagnostic system, hybrid approaches where different methods work in conjunction to solve parts of the problem interest researchers greatly. In this study, Multilevel Flow Models (MFM) and Artificial Neural Network (ANN) are proposed and employed to develop a fault diagnosis system with the intention of improving the success rate of recognition on the one hand, and improving the understandability of diagnostic process and results on the other hand. Several simulation cases were conducted for evaluating the performance of the proposed diagnosis system. The simulation results validated the effectiveness of the proposed hybrid approach. (authors)

  14. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Final performance report, January 1, 1989--December 31, 1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail.

  15. The nuclear medicine therapy care coordination service: a model for radiologist-driven patient-centered care.

    PubMed

    Moncayo, Valeria M; Applegate, Kimberly E; Duszak, Richard; Barron, Bruce J; Fitz, Jim; Halkar, Raghuveer K; Lee, Daniel J; Schuster, David M

    2015-06-01

    We developed a longitudinal care coordination service to proactively deliver high-quality and family-centered care in patients receiving radioiodine therapy for thyroid cancer. In an iterative, multidisciplinary team manner, a pretherapy consultation service, which included scripted interactions, documentation, and checklists for quality control, evolved over time into a robust patient-centered longitudinal care coordination nuclear medicine service. Radiation safety precautions, the rationale for therapy, and management of patient expectations were addressed through the initial consultation, and discharge and posttreatment care were managed during subsequent follow-up. The patient-physician relationship created during longitudinal nuclear medicine therapy care is one tool to help counteract the growing commoditization of radiology. This article describes the process that the nuclear medicine specialists in our department established to enhance radiologist value by providing both exceptional thyroid cancer treatment and continuity of care.

  16. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Caffo, Brian; Frey, Eric C.

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  17. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  18. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  19. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  20. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  1. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  2. Hybridization using cytoplasmic male sterility and herbicide tolerance from nuclear genes

    SciTech Connect

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    1987-04-14

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of a crop which is capable of undergoing both self-pollination and cross-pollination. This process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit tolerance to at least one herbicide attributable solely to homozygous dominant nuclear genes, and male fertile plants which are capable of pollinating the cytoplasmic male sterile plants and which lack the herbicide tolerance because the presence of homozygous recessive nuclear genes for such trait. The cytoplasmic male sterile plants and the male fertile plants are pollinated with pollen derived from the male fertile plants. Seed is formed on the cytoplasmic male sterile plants and on the male fertile plants. Harvesting in bulk the seed is formed on the plants of the first planting area.

  3. Hybridization using cytoplasmic male sterility, cytoplasmic herbicide tolerance, and herbicide tolerance from nuclear genes

    SciTech Connect

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    1987-04-14

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.

  4. The carp-goldfish nucleocytoplasmic hybrid has mitochondria from the carp as the nuclear donor species.

    PubMed

    Hu, Guangfu; Zou, Guiwei; Liu, Xiangjiang; Liang, Hongwei; Li, Zhong; Hu, Shaona

    2014-02-25

    It is widely accepted that mitochondria and its DNA (mtDNA) exhibit strict maternal inheritance, with sperm contributing no or non-detectable mitochondria to the next generation. In fish, nuclear transfer (NT) through the combination of a donor nucleus and an enucleated oocyte can produce fertile nucleocytoplasmic hybrids (NCHs) even between different genera and subfamilies. One of the best studied fish NCHs is CyCa produced by transplanting the nuclei plus cytoplasm from the common carp (Cyprinus carpio var. wuyuanensis) into the oocytes of the wild goldfish (Carassius auratus), which has been propagated by self-mating for three generations. These NCH fish thus provide a unique model to study the origin of mitochondria. Here we report the complete mtDNA sequence of the CyCa hybrid and its parental species carp and goldfish as nuclear donor and cytoplasm host, respectively. Interestingly, the mtDNA of NCH fish CyCa is 99.69% identical to the nuclear donor species carp, and 89.25% identical to the oocyte host species goldfish. Furthermore, an amino acid sequence comparison of 13 mitochondrial proteins reveals that CyCa is 99.68% identical to the carp and 87.68% identical to the goldfish. On an mtDNA-based phylogenetic tree, CyCa is clustered with the carp but separated from the goldfish. A real-time PCR analysis revealed the presence of carp mtDNA but the absence of goldfish mtDNA. These results demonstrate--for the first time to our knowledge--that the mtDNA of a NCH such as CyCa fish may originate from its nuclear donor rather than its oocyte host.

  5. The patient as a radioactive source: an intercomparison of survey meters for measurements in nuclear medicine.

    PubMed

    Uhrhan, K; Drzezga, A; Sudbrock, F

    2014-11-01

    In this work, the radiation exposure in nuclear medicine is evaluated by measuring dose rates in the proximity of patients and those in close contact to sources like capsules and syringes. A huge number of different survey meters (SMs) are offered commercially. This topic has recently gained interest since dosemeters and active personal dosemeters (APD) for the new dose quantities (ambient and directional dose equivalent) have become available. One main concern is the practical use of SMs and APD in daily clinical routines. Therefore, the radiation field of four common radiopharmaceuticals containing (18)F, (90)Y, (99m)Tc and (131)I in radioactive sources or after application to the patient was determined. Measurements were carried out with different SMs and for several distances. Dose rates decline significantly with the distance to the patient, and with some restrictions, APD can be used as SMs.

  6. [Effect of changing into slippers on the pollution situation in the nuclear medicine management district].

    PubMed

    Miyashita, Makoto; Takahashi, Yoshimasa; Akiyama, Masayuki; Takase, Tadashi; Kato, Kyoichi; Nitta, Masaru; Nakazawa, Yasuo

    2012-01-01

    Changing into slippers when entering the nuclear medicine management district prevented pollution expansion. Accidents involving patients falling occurred in university facilities. It was thought that changing slippers was the cause. The pollution situation was measured in three facilities by using the smear method and the direct technique to examine the effect of changing slippers. The current state was measured. After pollution prevention guidance was continuously done, pollution expansion was measured; three weeks of measurements were compared. Pollution was detected in the first period of weeks at a frequency of 19 times. For the latter period, it was detected 6 times. Half the pollution was in the restroom. Pollution was reduced by doing pollution prevention guidance for the restroom. Patients' falls occur even if they change slippers. Falling accidents can be decreased.

  7. Recently revised diagnostic reference levels in nuclear medicine in Bulgaria and in Finland.

    PubMed

    Korpela, H; Bly, R; Vassileva, J; Ingilizova, K; Stoyanova, T; Kostadinova, I; Slavchev, A

    2010-01-01

    An EU twinning project entitled 'Strengthening of administrative structures for radiation protection and safe use of ionising radiation in diagnostics and therapy' was established between Bulgaria and Finland, lasting from June 2008 to May 2009. One component of the project was to improve the optimisation of patient protection in nuclear medicine (NM) through revising diagnostic reference levels (DRLs). The revised DRLs are based on national surveys on the numbers of NM procedures and activities given to the patients in different procedures. The survey in Bulgaria was carried out in 2008 and that in Finland in 2007. National DRLs were established for the most frequent and dose-relevant examinations. The proposed DRLs in both countries are in good agreement with other national recommendations in Europe.

  8. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    PubMed

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards.

  9. Assessment of metabolic bone disease: review of new nuclear medicine procedures

    SciTech Connect

    Wahner, H.W.

    1985-12-01

    In the management of patients with metabolic bone disease, nuclear medicine laboratories offer two nontraumatic procedures of potential clinical importance: bone mineral measurements and bone scintigraphy. Bone mineral measurements from the radius, lumbar spine, and hip obtained with use of absorptiometry or computed tomography can be used to predict the risk of fracture at these skeletal sites, can determine the severity of bone loss for the assessment of a benefit-versus-risk ratio on which appropriate therapy can be based, and can substantiate the effectiveness of therapy over time. Bone scintigraphy with use of labeled diphosphonate allows assessment of focal and, in defined circumstances, of total skeletal bone turnover in patients with normal kidney function. Both of these techniques have been used successfully in studies of population groups for the evaluation of trends. Their application to the management of individual patients is currently being evaluated. 41 references.

  10. One-year clinical experience with a fully digitized nuclear medicine department: organizational and economical aspects

    NASA Astrophysics Data System (ADS)

    Anema, P. C.; de Graaf, C. N.; Wilmink, J. B.; Hall, David R.; Hoekstra, A. G.; van Rijk, P. P.; Van Isselt, J. W.; Viergever, Max A.

    1991-07-01

    At the department of nuclear medicine of the University Hospital Utrecht a single-modality PACS has been operational since mid-1990. After one year of operation the functionality, the organizational and economical consequences, and the acceptability of the PACS were evaluated. The functional aspects reviewed were: viewing facilities, patient data management, connectivity, reporting facilities, archiving, privacy, and security. It was concluded that the improved quality of diagnostic viewing and the potential integration with diagnosis, reporting, and archiving are highly appreciated. The many problems that have occurred during the transition period, however, greatly influence the appreciation and acceptability of the PACS. Overall, it is felt that in the long term there will be a positive effect on the quality and efficiency of the work.

  11. The Glitter of Carbon Nanostructures in Hybrid/Composite Hydrogels for Medicinal Use.

    PubMed

    Iglesias, Daniel; Bosi, Susanna; Melchionna, Michele; Da Ros, Tatiana; Marchesan, Silvia

    2016-01-01

    In recent years, we have witnessed to fast developments in the medicinal field of hydrogels containing various forms of integrated nanostructured carbon that adds interesting mechanical, thermal, and electronic properties. Besides key advances in tissue engineering (especially for conductive tissue, such as for the brain and the heart), there has been innovation also in the area of drug delivery on-demand, with engineered hydrogels capable of repeated response to light, thermal, or electric stimuli. This mini-review focusses on the most promising developments as applied to the gelation of protein/ peptide (including self-assembling amino acids and low-molecular-weight gelators), polysaccharide, and/or synthetic polymer components in medicine. The emerging field of graphene-only hydrogels is also briefly discussed, to give the reader a full flavor of the rising new paradigms in medicine that are made possible through the integration of nanostructured carbon (e.g., carbon nanotubes, nanohorns, nanodiamonds, fullerene, etc.). Nanocarbons are offering great opportunities to bring on a revolution in therapy that the modern medicinal chemist needs to master, to realise their full potential into powerful therapeutic solutions for the patient. PMID:26876524

  12. Hybrid systems for transuranic waste transmutation in nuclear power reactors: state of the art and future prospects

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Prikhod'ko, V. V.

    2014-11-01

    The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.

  13. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.

    PubMed

    Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi

    2016-04-01

    As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.

  14. The American College of nuclear physicians 18th annual meeting and scientific sessions DOE day: Substance abuse and nuclear medicine abstracts

    SciTech Connect

    Not Available

    1992-02-01

    Despite the enormous personal and social cost Of substance abuse, there is very little knowledge with respect to the mechanisms by which these drugs produce addiction as well as to the mechanisms of toxicity. Similarly, there is a lack of effective therapeutic intervention to treat the drug abusers. In this respect, nuclear medicine could contribute significantly by helping to gather information using brain imaging techniques about mechanisms of drug addiction which, in turn, could help design better therapeutic interventions, and by helping in the evaluation and diagnosis of organ toxicity from the use of drugs of abuse. This volume contains six short descriptions of presentations made at the 18th Meeting of the American College of Nuclear Physicians -- DOE Day: Substance Abuse and Nuclear Medicine.

  15. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.

    PubMed

    Ho, Derek; Drake, Tyler K; Bentley, Rex C; Valea, Fidel A; Wax, Adam

    2015-08-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  16. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L. ) larvae

    SciTech Connect

    Keating, S.T.; Burand, J.P.; Elkinton, J.S. )

    1989-11-01

    Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. The hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.

  17. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  18. Self-irradiation of the blood from selected nuclides in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Eberlein, U.; Lassmann, M.

    2014-03-01

    Nuclear medicine dosimetry and research in biodosimetry often require the knowledge of the absorbed dose to the blood. This study provides coefficients for the absorbed dose rates to the blood related to the activity concentration in the blood as a function of the vessel radius for radionuclides commonly used in targeted radiotherapy and in PET-diagnostics: C-11, F-18, Ga-68, Y-90, Tc-99 m, I-124, I-131, and Lu-177. The energy deposition patterns after nuclear disintegrations in blood vessel lumina (cylinders homogeneously filled with blood) with radii from 0.01 to 25.0 mm were simulated with the Monte-Carlo radiation transport code MCNPX. An additional contribution from photon radiation from activity in blood in the remainder of the body was taken into account based on a reasonable blood distribution model. The fraction of energy absorbed from non-penetrating radiation in the blood is low in thin blood vessels but approaches the total energy emitted by particles with increasing lumen radius. For photon radiation, irradiation to blood in small vessels is almost completely due to radioactive decays in distant blood distributed throughout the body, whereas the contribution from activity in the vessel becomes dominant for lumen radii exceeding 13 mm. The dependences of the absorbed dose rates on the lumen radius can be described with good accuracy by empirical functions which can be used to determine the absorbed doses to the blood and to the surrounding tissue.

  19. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  20. Exposing Exposure: Enhancing Patient Safety through Automated Data Mining of Nuclear Medicine Reports for Quality Assurance and Organ Dose Monitoring

    PubMed Central

    Ikuta, Ichiro; Wasser, Elliot J.; Warden, Graham I.; Gerbaudo, Victor H.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an open-source informatics toolkit capable of creating a radiation exposure data repository from existing nuclear medicine report archives and to demonstrate potential applications of such data for quality assurance and longitudinal patient-specific radiation dose monitoring. Materials and Methods: This study was institutional review board approved and HIPAA compliant. Informed consent was waived. An open-source toolkit designed to automate the extraction of data on radiopharmaceuticals and administered activities from nuclear medicine reports was developed. After iterative code training, manual validation was performed on 2359 nuclear medicine reports randomly selected from September 17, 1985, to February 28, 2011. Recall (sensitivity) and precision (positive predictive value) were calculated with 95% binomial confidence intervals. From the resultant institutional data repository, examples of usage in quality assurance efforts and patient-specific longitudinal radiation dose monitoring obtained by calculating organ doses from the administered activity and radiopharmaceutical of each examination were provided. Results: Validation statistics yielded a combined recall of 97.6% ± 0.7 (95% confidence interval) and precision of 98.7% ± 0.5. Histograms of administered activity for fluorine 18 fluorodeoxyglucose and iodine 131 sodium iodide were generated. An organ dose heatmap which displays a sample patient’s dose accumulation from multiple nuclear medicine examinations was created. Conclusion: Large-scale repositories of radiation exposure data can be extracted from institutional nuclear medicine report archives with high recall and precision. Such repositories enable new approaches in radiation exposure patient safety initiatives and patient-specific radiation dose monitoring. © RSNA, 2012 PMID:22627599

  1. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    SciTech Connect

    Avila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; Gamboa de Buen, I.; Buenfil, A. E.; Brandan, M. E.

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  2. CHF Performance of Hybrid Mixing Vane Grid for a Nuclear Fuel Bundle

    SciTech Connect

    Shin, Chang-Hwan; Chun, Tae-Hyun; Choo, Yeon-Jun; Moon, Sang-Ki; Chun, Se-Young

    2007-07-01

    Numerous studies have shown that the mixing vanes of the spacer grids in a nuclear fuel rod bundle increase the Critical Heat Flux (CHF) significantly. The amount of the CHF enhancement depends strongly on the design of the mixing vanes such as the vane shape and vane bending angle. Recently a new mixing vane design was developed for an advanced spacer grid. It is called a Hybrid Mixing Vane. The main objective of this work is to evaluate the CHF performance of the hybrid vane grid and to compare it with that of a split vane grid. Three kinds of rod bundles were tested for the above objectives: no mixing vane grids, the hybrid mixing vane grids, and the split mixing vane grids. To measure the CHF data, 5x5 rod bundle experiments were conducted in the FTHEL (Freon Thermal Hydraulic Experiment Loop). Each experiment was performed by maintaining the following system conditions as constant: inlet pressure, inlet temperature, and mass flow rate. The experiments were performed in ranges of the inlet pressure, P{sub in} = 2000{approx}3000 kPa, mass flux, G = 1000{approx}3000 kg/m{sup 2}s, and inlet subcooling, {delta}h{sub in}= 10{approx}55 kJ/kg, which simulates the PWR operating conditions for a water equivalence through a fluid-to-fluid modeling. The CHF performances were compared with the data belonging to a PWR's operating conditions; a pressure of 2000{approx}3000 kPa and a mass flux of 1500{approx}3000 kg/m{sup 2}s. The average of the CHF increase for the hybrid mixing grids for 20 data sets is 18.2% higher than that for the no vane grids. While the average of the CHF increase for the split mixing vane grids for 20 data sets is 14.5% higher than that for the no vane grids. Consequently, the CHF performance of the hybrid mixing vane grid is superior by about 4% to that of the split mixing vane grid near the normal PWR operating conditions even under a longer grid span than usual. (authors)

  3. Reticulate evolution: frequent introgressive hybridization among chinese hares (genus lepus) revealed by analyses of multiple mitochondrial and nuclear DNA loci

    PubMed Central

    2011-01-01

    Background Interspecific hybridization may lead to the introgression of genes and genomes across species barriers and contribute to a reticulate evolutionary pattern and thus taxonomic uncertainties. Since several previous studies have demonstrated that introgressive hybridization has occurred among some species within Lepus, therefore it is possible that introgressive hybridization events also occur among Chinese Lepus species and contribute to the current taxonomic confusion. Results Data from four mtDNA genes, from 116 individuals, and one nuclear gene, from 119 individuals, provides the first evidence of frequent introgression events via historical and recent interspecific hybridizations among six Chinese Lepus species. Remarkably, the mtDNA of L. mandshuricus was completely replaced by mtDNA from L. timidus and L. sinensis. Analysis of the nuclear DNA sequence revealed a high proportion of heterozygous genotypes containing alleles from two divergent clades and that several haplotypes were shared among species, suggesting repeated and recent introgression. Furthermore, results from the present analyses suggest that Chinese hares belong to eight species. Conclusion This study provides a framework for understanding the patterns of speciation and the taxonomy of this clade. The existence of morphological intermediates and atypical mitochondrial gene genealogies resulting from frequent hybridization events likely contribute to the current taxonomic confusion of Chinese hares. The present study also demonstrated that nuclear gene sequence could offer a powerful complementary data set with mtDNA in tracing a complete evolutionary history of recently diverged species. PMID:21794180

  4. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    PubMed

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  5. Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.

    SciTech Connect

    Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

    2007-09-01

    Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

  6. Methods for simultaneous interphase in situ hybridization and nuclear antigen immunocytochemistry in T47-D cells.

    PubMed

    Mialhe, A; Cassanelli, S; Louis, J; Seigneurin, D

    1996-02-01

    Procedures that combine immunocytochemistry (ICC) and in situ hybridization (ISH) techniques are now used to investigate phenotype/genotype relationships in the same cells. In this report we describe three rapid procedures for simultaneous detection of a nuclear antigen, progesterone receptors (PR), and the centromeric region of chromosome 11 (to which the human PR gene has been assigned) in T47-D cells. Proteins were stained by precipitates of horseradish peroxidase-diaminobenzidine (PO-DAB, brown color), alkaline phosphatase-Fast Red (APase-Fast Red, red color) or alkaline phosphatase-nitroblue tetrazolium-X-phosphate (APase-NBT-X-Phosphate, blue color) respectively. To obtain a suitable contrast for the two labels, we detected DNA on PO-DAB and APase-NBT-X-phosphate-immunostained cells with interphasic fluorescent in situ hybridization (FISH). By contrast, we combined the APase-Fast Red ICC with an immunocytochemical ISH using alkaline phosphatase-NBT-X-phosphate detection. Only the procedure combining APase-NBT-X-phosphate ICC and FISH ensures optimal visualization of both the PR content and the number of chromosome 11. This method easily provides simultaneous localization of DNA and protein targets in the same cells and should be applicable to many other situations. PMID:8609377

  7. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    SciTech Connect

    Samei, E; Nelson, J; Hangiandreou, N

    2014-06-15

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  8. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future.

    PubMed

    Bautista, Patricia A; Luis, Teofilo O L San

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery. PMID:27408901

  9. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future.

    PubMed

    Bautista, Patricia A; Luis, Teofilo O L San

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery.

  10. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future

    PubMed Central

    Bautista, Patricia A.; Luis, Teofilo O.L. San

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery. PMID:27408901

  11. Herbalism, home gardens, and hybridization: Wõthïhã medicine and cultural change.

    PubMed

    Heckler, S L

    2007-03-01

    Using the example of the Wõthïhã of the Manapiare River Valley, Amazonas State, Venezuela, I challenge the image of the indigenous Amazonian as an expert in herbalism. I argue that the observed absence of medicinal plant use in early Wõthïhã ethnography, rather than reflecting researcher oversight, reflects the centrality of shamanism. According to Wõthïhã shamanic cosmology, herbal medicines, while useful to relieve symptoms and treat minor injuries, fail to address the underlying cause of illness. Using a combination of quantitative and qualitative methods, I find that as the role and influence of shamanism have dramatically decreased, the Wõthïhã have turned elsewhere for medical treatment. Biomedical remedies have shown to be effective, thereby encouraging an acceptance of symptom-specific treatments. Biomedicine's patchy availability, however, has encouraged the Wõthïhã to look beyond biomedicine. Several folk healing traditions are being incorporated by the Wõthïhã, each with its own herbal tradition.

  12. Dose received by occupationally exposed workers at a nuclear medicine department

    SciTech Connect

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  13. New principles in nuclear medicine imaging: a full aperture stereoscopic imaging technique.

    PubMed

    Strocovsky, Sergio G; Otero, Dino

    2010-01-01

    In nuclear medicine, images of planar scintigraphy and single photon emission computerized tomography (SPECT) obtained through gamma camera (GC) appear to be blurred. Alternatively, coded aperture imaging (CAI) can surpass the quality of GC images, but still it is not extensively used due to the decoding complexity of some images and the difficulty in controlling the noise. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. Here we present a full aperture imaging (FAI) technique which overcomes the problems of CAI ordinary systems. The gamma radiation transmitted through a large single aperture is edge-encoded, taking advantage of the fact that nuclear radiation is spatially incoherent. The novel technique is tested by means of Monte Carlo method with simple and complex sources. Spatial resolution tests and parallax tests of GC versus FAI were made, and three-dimensional capacities of GC versus FAI were analyzed. Simulations have allowed comparison of both techniques under ideal, identical conditions. The results show that FAI technique has greater sensitivity (approximately 100 times) and greater spatial resolution (>2.6 times at 40 cm source-detector distance) than that of GC. FAI technique allows to obtain images with typical resolution of GC short source-detector distance but at longer source-detector distance. The FAI decoding algorithm simultaneously reconstructs four different projections, while GC produces only one projection per acquisition. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information. Thus GC-based systems could be substituted, given that FAI technique is simple and it produces four images which may feed stereoscopic systems, substituting in some cases, tomographic reconstructions.

  14. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  15. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines.

    PubMed

    Guo, Baojian; Chen, Yanhong; Li, Chuan; Wang, Tianya; Wang, Rui; Wang, Bo; Hu, Sha; Du, Xiaofen; Xing, Hongyan; Song, Xiao; Yao, Yingyin; Sun, Qixin; Ni, Zhongfu

    2014-05-01

    To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI-TOF-MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3-10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein-associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.

  16. The role of compact PSPMTs for image quality enhancement in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cinti, M. N.; Pani, R.; Pellegrini, R.; Garibaldi, F.; Cusanno, F.; Campanini, R.; Lanconelli, N.; Riccardi, A.; Zavattini, G.; Di Domenico, G.; Belcari, N.; Bencivelli, W.; Motta, Alfonso; Vaiano, Angela; Del Guerra, A.

    2003-06-01

    Compact gamma cameras based on arrays of compact Position Sensitive Photomultipliers (PSPMTs) (Hamamatsu R7600-C8/12) were recently developed by several research groups. The previous generation of dedicated gamma cameras (5 in. PSPMT) demonstrated the clinical benefit and general diagnostic value for functional breast imaging in comparison with conventional nuclear medicine technique (Anger Camera prone scintimammography and 99mTc Sestamibi administration). The aim of this paper is to investigate how scintillation material and pixel size of crystal arrays can improve image contrast and tumor SNR values. In this paper we compare tumor Signal-to-Noise Ratio (SNR) results obtained by imagers based on CsI(Tl) and NaI(Tl) array, respectively, by means of a liquid and solid breast phantom. The data collected by NaI(Tl) array show a improvement of SNR values for small tumor size (less than 8 mm). The improvement is also evident in small camera, even though for tumor size less than 6 mm the results are near visibility limit.

  17. Radiation exposure to nuclear medicine staff involved in PET/CT practice in Serbia.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Todorovic, N; Lucic, S

    2014-12-01

    The purpose of this work is to evaluate the radiation exposure to nuclear medicine (NM) staff in the two positron emission tomography-computed tomography centres in Serbia and to investigate the possibilities for dose reduction. Dose levels in terms of Hp(10) for whole body and Hp(0.07) for hands of NM staff were assessed using thermoluminescence and electronic personal dosemeters. The assessed doses per procedure in terms of Hp(10) were 4.2-7 and 5-6 μSv, in two centres, respectively, whereas the extremity doses in terms of Hp(0.07) in one of the centres was 34-126 μSv procedure(-1). The whole-body doses per unit activity were 17-19 and 21-26 μSv GBq(-1) in two centres, respectively, and the normalised finger dose in one centre was 170-680 μSv GBq(-1). The maximal estimated annual whole-body doses in two centres were 3.4 and 2.0 mSv, while the corresponding extremity dose in the later one was 45 mSv. Improvements as introduction of automatic dispensing system and injection and optimisation of working practice resulted in dose reduction ranging from 12 up to 67 %.

  18. Intercomparison of 131I and 99mTc activity measurements in Brazilian nuclear medicine services.

    PubMed

    Iwahara, A; De Oliveira, A E; Tauhata, L; da Silva, C J; Lopes, R T

    2001-03-01

    This work outlines the quality assurance program for the activity measurements of the most used radionuclides at Brazilian Nuclear Medicine Services (NMS). The program aims to guarantee that the patient is given the correct prescribed amount of activity in diagnostic or therapeutic applications. This accurate administration depends upon proper use and calibration of the activity meters by the NMS. Underestimation of administered activity in diagnostic practices could delay correct diagnosis disturbing the value of the investigation. On the other hand, the overestimation would be worse, mainly in therapeutic applications, because an unnecessarily high absorbed dose would be delivered to the patient. The preliminary results of intercomparison for 131I and 99mTc showed that many activity meters used at NMS's present problems giving results up to 41% greater than the reference values determined at the National Metrology Laboratory for Ionizing Radiation (LNMRI) which is recognized as the Brazilian authorized metrology laboratory for ionizing radiation. These results have demonstrated that the NMS should improve the accuracy of the activity measurements of the radionuclides administered to the patients and establish the traceability to the national standards of measurements. These standards are based on a pressurized well-type ionization chamber installed at LNMRI and calibrated with reference sources standardized by absolute methods. The protocol of the intercomparison and recommendations made in order to minimize errors in measuring procedures are described and results are discussed.

  19. Implementation of a national metrology network of radionuclides used in nuclear medicine.

    PubMed

    dos Santos, Joyra A; Iwahara, Akira; Nícoli, Iêda G; Corrêa, Rosângela S; Alabarse, Frederico G; dos Santos, Carlos E L; Xavier, Ana M; Garcia, Eloy J; Tauhata, Luiz; Lopes, Ricardo T

    2006-01-01

    The Nuclear Medicine Services (NMS) in Brazil routinely use dose calibrators to measure the activity of solutions containing radiopharmaceuticals. These solutions are administered to patients with the intention to diagnose or treat illnesses. However, for optimal results, the activity of these radiopharmaceuticals must be determined as accurately as possible. The National Laboratory for Ionizing Radiation Metrology (LNMRI) led, since 1998, a comparison program for activity measurements of radiopharmaceuticals administered to patients in the NMS with the purpose promoting quality control. This program has been carried out successfully in Rio de Janeiro, but there is a need to implement it around the country. This can be resolved through the implementation of a network of regional laboratories at various locations throughout the national territory. Currently, such a network is active at a second site, located in Brasília, covering the needs of the Center-West Region, and at a third site, located in Porto Alegre, in the South Region. This work presents the results of comparisons for the radiopharmaceuticals nuclides 131I and 99Tcm and proves that the implementation of a radionuclide metrology network is feasible and viable.

  20. Applicability of radioactive 99mTc-O4- magnetic fluid to nuclear medicine

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hee; Kim, Seong-Min; Kim, Keun-Ho; Kim, Chong-Oh

    2011-01-01

    Magnetite nanoparticles were synthesized with solution of ferrous and ferric chlorides and ammonia water by sonochemical method. The hydrophilically radioactive magnetic fluids were prepared by labeling technetium pertechnetate (99mTc-O4-) and then adsorbing alginic acid on the magnetite particles. In order to measure some properties of the dispersed particles, the magnetic fluids were freezed down to -70 oC, and were dried in vacuum. The total size of the particles was about 15 nm with the core diameter of 12 nm and their superparamagnetic saturation magnetization was 63 emu/g for the core-shell of Fe3O4/Algin and 52 emu/g for that of Fe3O4/99mTc-O4-/Algin. The labeling of radioactive 99mTc-O4- to the magnetite particles was efficient to about 70 %. The fluid of magnetic particles on which the radioisotopic substance is labeled with such an efficiency level may be applied as a tracer for diagnosis in nuclear medicine.

  1. The development of new radionuclide generator systems for nuclear medicine applications

    SciTech Connect

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. ); Brihaye, C.; Guillaume, M. . Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  2. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.

  3. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  4. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi

    2016-01-01

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the 131I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of 131I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  5. National intercomparisons of 131I radioactivity measurements in nuclear medicine centres in India.

    PubMed

    Joseph, Leena; Anuradha, R; Nathuram, R; Shaha, V V; Abani, M C

    2003-01-01

    National intercomparisons of activity measurements of 131I, a radioisotope widely used for diagnosis and therapy of thyroid related ailments, were initiated in 1979 as a quality assurance program, towards improving radiation safety procedures and related dosimetry in Nuclear Medicine Centres (NMCs) in India. Oral administration of a known quantity of radioiodine to patients requires accurate radioactivity measurements to be performed on a well-calibrated isotope calibrators. Under or over estimation of the activity due to a faulty or uncalibrated isotope calibrator could provide misleading results. Calibration of isotope calibrators and the traceablity of subsequent measurements to the national standards laboratory is one of the essential basic radiation safety requirement of the IAEA. In view of the stringent quality assurance requirements for activity measurements imposed by Atomic Energy Regulatory Board, a National Intercomparison Program was initiated and to date ten such intercomparison programs have been conducted by the Radiation Safety Systems Division, of the Bhabha Atomic Research Centre. This program has benefited the participants by making their measurements traceable to the National Primary Standards. Over the years there has been a marked increase in the number of NMCs participating in the intercomparison programs. As a result, the number of institution showing large deviation from the correct value has decreased considerably over the years. This program thus, has enabled participating NMCs to check their isotope calibrators so as to ensure proper delivery of radiation dose to the patients and hence to optimise patient exposure.

  6. Uncertainty and sensitivity analysis of biokinetic models for radiopharmaceuticals used in nuclear medicine.

    PubMed

    Li, W B; Hoeschen, C

    2010-01-01

    Mathematical models for kinetics of radiopharmaceuticals in humans were developed and are used to estimate the radiation absorbed dose for patients in nuclear medicine by the International Commission on Radiological Protection and the Medical Internal Radiation Dose (MIRD) Committee. However, due to the fact that the residence times used were derived from different subjects, partially even with different ethnic backgrounds, a large variation in the model parameters propagates to a high uncertainty of the dose estimation. In this work, a method was developed for analysing the uncertainty and sensitivity of biokinetic models that are used to calculate the residence times. The biokinetic model of (18)F-FDG (FDG) developed by the MIRD Committee was analysed by this developed method. The sources of uncertainty of all model parameters were evaluated based on the experiments. The Latin hypercube sampling technique was used to sample the parameters for model input. Kinetic modelling of FDG in humans was performed. Sensitivity of model parameters was indicated by combining the model input and output, using regression and partial correlation analysis. The transfer rate parameter of plasma to other tissue fast is the parameter with the greatest influence on the residence time of plasma. Optimisation of biokinetic data acquisition in the clinical practice by exploitation of the sensitivity of model parameters obtained in this study is discussed. PMID:20185457

  7. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  8. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization.

    PubMed

    Gajan, David; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Melzi, Roberto; van Kalkeren, Henri A; Veyre, Laurent; Thieuleux, Chloé; Conley, Matthew P; Grüning, Wolfram R; Schwarzwälder, Martin; Lesage, Anne; Copéret, Christophe; Bodenhausen, Geoffrey; Emsley, Lyndon; Jannin, Sami

    2014-10-14

    Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion. PMID:25267650

  9. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization

    PubMed Central

    Gajan, David; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Melzi, Roberto; van Kalkeren, Henri A.; Veyre, Laurent; Thieuleux, Chloé; Conley, Matthew P.; Grüning, Wolfram R.; Schwarzwälder, Martin; Lesage, Anne; Copéret, Christophe; Bodenhausen, Geoffrey; Emsley, Lyndon; Jannin, Sami

    2014-01-01

    Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion. PMID:25267650

  10. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  11. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine.

  12. Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species

    PubMed Central

    Sætre, Glenn-Peter; Bailey, Richard I.

    2014-01-01

    Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (“mother's curse”) at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread

  13. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora.

    PubMed

    Chen, Yongmei; Hou, Yansong; Guo, Zixiao; Wang, Wenqing; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-01-01

    The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I) reconstruct the phylogeny, (II) examine the genetic structure and (III) identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP) region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches. PMID:26674070

  14. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora.

    PubMed

    Chen, Yongmei; Hou, Yansong; Guo, Zixiao; Wang, Wenqing; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-01-01

    The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I) reconstruct the phylogeny, (II) examine the genetic structure and (III) identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP) region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches.

  15. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora

    PubMed Central

    Chen, Yongmei; Hou, Yansong; Guo, Zixiao; Wang, Wenqing; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-01-01

    The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I) reconstruct the phylogeny, (II) examine the genetic structure and (III) identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP) region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches. PMID:26674070

  16. Proceedings of the DOE workshop on the role of a high-current accelerator in the future of nuclear medicine

    SciTech Connect

    Moody, D.C.; Peterson, E.J.

    1989-05-01

    The meeting was prompted by recent problems with isotope availability from DOE accelerator facilities; these difficulties have resulted from conflicting priorities between physics experiments and isotope production activities. The workshop was a forum in which the nuclear medicine community, isotope producers, industry, and other interested groups could discuss issues associated with isotope availability (including continuous supply options), the role of DOE and industry in isotope production, and the importance of research isotopes to the future of nuclear medicine. The workshop participants endorsed DOE's presence in supplying radioisotopes for research purposes and recommended that DOE should immediately provide additional support for radionuclide production in the form of personnel and supplies, DOE should establish a policy that would allow income from sales of future ''routine'' radionuclide production to be used to support technicians, DOE should obtain a 70-MeV, 500-/mu/A variable-energy proton accelerator as soon as possible, and DOE should also immediately solicit proposals to evaluate the usefulness of a new or upgraded high-energy, high-current machine for production of research radionuclides. This proceedings volume is a summary of workshop sessions that explored the future radionuclide needs of the nuclear medicine community and discussed the DOE production capabilities that would be required to meet these needs.

  17. Hybrid molecules of carvacrol and benzoyl urea/thiourea with potential applications in agriculture and medicine.

    PubMed

    Pete, Umesh D; Zade, Chetan M; Bhosale, Jitendra D; Tupe, Santosh G; Chaudhary, Preeti M; Dikundwar, Amol G; Bendre, Ratnamala S

    2012-09-01

    Benzoyl phenyl urea, a class of insect growth regulator's acts by inhibiting chitin synthesis. Carvacrol, a naturally occurring monoterpenoid is an effective antifungal agent. We have structurally modified carvacrol (2-methyl-5-[1-methylethyl] phenol) by introducing benzoylphenyl urea linkage. Two series of benzoylcarvacryl thiourea (BCTU, 4a-f) and benzoylcarvacryl urea (BCU, 5a-f) derivatives were prepared and characterized by elemental analysis, IR, (1)H and (13)C NMR and Mass spectroscopy. Derivatives 4b, 4d, 4e, 4f and 5d, 5f showed comparable insecticidal activity with the standard BPU lufenuron against Dysdercus koenigii. BCTU derivatives 4c, 4e and BCU 5c showed good antifungal activity against phytopathogenic fungi viz. Magnaporthe grisae, Fusarium oxysporum, Dreschlera oryzae; food spoilage yeasts viz. Debaromyces hansenii, Pichia membranifaciens; and human pathogens viz. Candida albicans and Cryptococcus neoformans. Compounds 5d, 5e and 5f showed potent activity against human pathogens. Moderate and selective activity was observed for other compounds. All the synthesized compounds were non-haemolytic. These compounds have potential application in agriculture and medicine. PMID:22850211

  18. Nuclear Medicine Program progress report for quarter ending June 30, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Hsieh, B.T.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1993-07-01

    The ``IQNP`` agent is an antagonist for the cholinergic-muscarinic receptor. Since the IQNP molecule has two asymmetric centers and either cis or trans isomerism of the vinyl iodide, there are eight possible isomeric combinations. In this report, the systematic synthesis, purification and animal testing of several isomers of radioiodinated ``IQNP`` are reported. A dramatic and unexpected relation between the absolute configuration at the two asymmetric centers and the stereochemistry of the vinyl iodide on receptor specificity was observed. The E-(R)(R) isomer shows specific and significant localization (per cent dose/gram at 6 hours) in receptor-rich cerebral structures (i.e. Cortex = 1.38 + 0.31; Striatum = 1.22 + 0.20) and low uptake in tissues rich in the M{sub 2} subtype (Heart = 0.10; Cerebellum = 0.04). In contrast, the E-(R)(S) isomer shows very low receptor-specific uptake (Cortex = 0.04; Striatum = 0.02), demonstrating the importance of absolute configuration at the acetate center. An unexpected and important observation is that the stereochemistry of the vinyl iodine appears to affect receptor subtype specificity, since the Z-(R,S)(R) isomer shows much higher uptake in the heart (0.56 + 0.12) and cerebellum (0.17 + 0.04). Studies are now in progress to confirm these exciting results in vitro. Progress has also continued during this period with several collaborative programs. The first large-scale clinical tungsten-188/rhenium-188 generator prototype (500 mCi) was fabricated and supplied to the Center for Molecular Medicine and Immunology (CMMI), in Newark, New Jersey, for Phase I clinical trials of rhenium-188-labeled anti CEA antibodies for patient treatment. Collaborative studies are also continuing in conjunction with the Nuclear Medicine Department at the University of Massachusetts where a generator is in use to compare the biological properties of {open_quotes}direct{close_quotes} and {open_quotes}indirect{close_quotes} labeled antibodies.

  19. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    NASA Technical Reports Server (NTRS)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  20. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    SciTech Connect

    Piyush Sabharwall; Michael George mckellar; Su-Jong Yoon

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  1. Dosimetry of transmission measurements in nuclear medicine: a study using anthropomorphic phantoms and thermoluminescent dosimeters.

    PubMed

    Almeida, P; Bendriem, B; de Dreuille, O; Peltier, A; Perrot, C; Brulon, V

    1998-10-01

    Quantification in positron emission tomography (PET) and single photon emission tomographic (SPET) relies on attenuation correction which is generally obtained with an additional transmission measurement. Therefore, the evaluation of the radiation doses received by patients needs to include the contribution of transmission procedures in SPET (SPET-TM) and PET (PET-TM). In this work we have measured these doses for both PET-TM and SPET-TM. PET-TM was performed on an ECAT EXACT HR+ (CTI/Siemens) equipped with three rod sources of germanium-68 (380 MBq total) and extended septa. SPET-TM was performed on a DST (SMV) equipped with two collimated line sources of gadolinium-153 (4 GBq total). Two anthropomorphic phantoms representing a human head and a human torso, were used to estimate the doses absorbed in typical cardiac and brain transmission studies. Measurements were made with thermoluminescent dosimeters (TLDs, consisting of lithium fluoride) having characteristics suitable for dosimetry investigations in nuclear medicine. Sets of TLDs were placed inside small plastic bags and then attached to different organs of the phantoms (at least two TLDs were assigned to a given organ). Before and after irradiation the TLDs were placed in a 2.5-cm-thick lead container to prevent exposure from occasional sources. Ambient radiation was monitored and taken into account in calculations. Transmission scans were performed for more than 12 h in each case to decrease statistical noise fluctuations. The doses absorbed by each organ were calculated by averaging the values obtained for each corresponding TLD. These values were used to evaluate the effective dose (ED) following guidelines described in ICRP report number 60. The estimated ED values for cardiac acquisitions were 7.7 x 10(-4) +/- 0.4 x 10(-4) mSv/MBq.h and 1.9 x 10(-6) +/- 0.4 x 10(-6) mSv/MBq.h for PET-TM and SPET-TM, respectively. For brain scans, the values of ED were calculated as 2.7 x 10(-4) +/- 0.2 x 10(-4) m

  2. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    PubMed Central

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-01-01

    Context: Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. Aim: The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. Materials and Methods: A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. Results: The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. Conclusion: ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments. PMID:25400363

  3. Nuclear medicine program progress report for quarter ending September 30, 1995

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Luo, H.; McPherson, D.W.; Mirzadeh, S.

    1995-12-31

    In this report, we describe the results for study of the production of lutetium-177 ({sup 177}Lu) in the High Flux Isotope Reactor (HFIR). Two pathways for production of {sup 177}Lu were studied which involved both direct neutron capture on enriched {sup 176}Lu, {sup 176}Lu (n,{gamma}){sup 177}Lu, reaction and by decay of ytterbium-177 ({sup 177}Yb) produced by the {sup 176}Yb(n,{gamma}){sup 177}Yb ({beta}{sup {minus}} {sup {yields}}) reaction. Although the direct route is more straight forward and does not involve any separation steps, the indirect method via {beta}{sup {minus}}-decay of {sup 177}Yb has the advantage of providing carrier-free {sup 177}Lu, which would be required for antibody radiolabeling and other applications where very high specific activity is required.Substrates required for preparation of tissue-specific agents and several radioisotopes were also provided during this period through several Medical Cooperative Programs. These include the substrate for preparation of the ``BMIPP`` cardiac imaging which was developed in the ORNL Nuclear Medicine Program, which was provided to Dr. A. Giodamo, M.D. and colleagues at the Catholic University Hospital in Rome, Italy. Tungsten-188 produced in the ORNL HFIR was also provided to the Catholic University Hospital for fabrication of a tungsten-188/rhenium-188 generator to provide carrier-free rhenium-188 which will be used for preparation of rhenium-188 labeled methylenediphosphonate (MDP) for initial clinical evaluation for palliative treatment of bone pain (L. Troncone, M.D.). Samples of substrates for preparation of the new ORNL ``IQNP`` agent for imaging of muscarinic-cholinergic receptors were provided to the Karolinska Institute in Stockholm, Sweden, for preparation of radioiodinated IQNP for initial imaging studies with this new agent in monkeys and for tissue binding studies with human brain samples obtained from autopsy (C. Halldin, Ph.D.).

  4. Comparative evaluation of NMR and nuclear medicine in disc space infection: A pilot study

    SciTech Connect

    Modic, M.; Feiglin, D.; Piraino, D.; O'Donnell, J.K.; Go, R.T.; Weinstein, M.; MacIntyre, W.J.

    1984-01-01

    Six patients with proven disc space infection underwent bone scanning with 975MB/sub q/ HDP together with NMR imaging on a 0.6T superconducting magnet to obtain weighted T1 30mSec (TE .3 Sec TR) and T2 (120mSec TE 3 Sec TR) images within a 48 hr. period. All patients had plain radiographic evaluation of the areas involved. Three pts. had Ga-67 Citrate scans using 222MBq activity following the bone scan and 1 patient had CT images of the involved area. All 6 bone scans showed increased bony uptake in at least the adjacent vertebral end plates but did not show any abnormal uptake in the region of the disc. Bony activity distribution was non-specific and could have been consistent with either degenerative or osteomyelitic change. Gallium imaging in one case supported the latter diagnosis but did not indicate presence of disc space involvement. Two other cases showed bony involvement to the extent of the bone scan; one showing minimal uptake due to antibiotic therapy. Plain radiographs were suggestive of disc space infection in all cases. NMR in all cases revealed marked disc space and adjacent bone involvement to the extent shown on bone scans. T1 and T2 weighted images appeared highly specific for either infection or degenerative change and were unaffected by antibiotic therapy. NMR appears to be more sensitive in evaluation of disc space infection than radionuclide studies. NMR is also able to provide significant anatomic information involving thecal sac and neural structures. Nuclear medicine studies appear equally sensitive though less specific in the evaluation of bone involvement except perhaps where antibiotic therapy has been used.

  5. Nuclear Medicine Program progress report for quarter ending September 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1992-02-01

    Rat tissue distribution properties of IQNP,'' a new radioiodinated cholinergic-muscarinic receptor antagonist, are described. IQNP is the acronym for 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}-phenyl-{alpha}(1-iodo-1-propen-3-yl) acetate, which is an analogue of the QNB muscarinic antagonist in which the p-iodophenyl moiety has been replaced with the 1-iodo-1-propen-3-yl moiety. The radioiodinated IQNP analogue is easier to prepare in much higher yields than QNB and is thus a candidate for the evaluation of muscarinic receptors by external imaging techniques. Studies in rats demonstrated that IQNP shows high uptake in those cerebral regions rich in muscarinic receptors QNB-treatment of rats either 1 h before (pre) or 2 h after (post) administration of radioiodinated IQNP resulted in significant displacement or blocking of cerebral specific IQNP uptake (% dose/gm) in the cortex and striatum. These studies demonstrate that IQNP has specificity for the cholinergic-muscarinic receptor and is a good candidate for further studies. Also during this period, several agents developed in the ORNL Nuclear Medicine Program were supplied to Medical Cooperative Programs for collaborative studies including the iodine-125-labeled BMIPP and DMIPP fatty acid analogues and the IPM antibody labeling agent. Tin-117m and gold-199 were produced in the ORNL High Flux Isotope Reactor (HFIR) and supplied to the OHER-supported program in the Medical Department at Brookhaven National Laboratory to aid in their research until the re-start of the High Flux Brookhaven Reactor.

  6. Nuclear Medicine Program progress report for quarter ending September 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1992-02-01

    Rat tissue distribution properties of ``IQNP,`` a new radioiodinated cholinergic-muscarinic receptor antagonist, are described. IQNP is the acronym for 1-azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}-phenyl-{alpha}(1-iodo-1-propen-3-yl) acetate, which is an analogue of the QNB muscarinic antagonist in which the p-iodophenyl moiety has been replaced with the 1-iodo-1-propen-3-yl moiety. The radioiodinated IQNP analogue is easier to prepare in much higher yields than QNB and is thus a candidate for the evaluation of muscarinic receptors by external imaging techniques. Studies in rats demonstrated that IQNP shows high uptake in those cerebral regions rich in muscarinic receptors QNB-treatment of rats either 1 h before (pre) or 2 h after (post) administration of radioiodinated IQNP resulted in significant displacement or blocking of cerebral specific IQNP uptake (% dose/gm) in the cortex and striatum. These studies demonstrate that IQNP has specificity for the cholinergic-muscarinic receptor and is a good candidate for further studies. Also during this period, several agents developed in the ORNL Nuclear Medicine Program were supplied to Medical Cooperative Programs for collaborative studies including the iodine-125-labeled BMIPP and DMIPP fatty acid analogues and the IPM antibody labeling agent. Tin-117m and gold-199 were produced in the ORNL High Flux Isotope Reactor (HFIR) and supplied to the OHER-supported program in the Medical Department at Brookhaven National Laboratory to aid in their research until the re-start of the High Flux Brookhaven Reactor.

  7. Characterisation of crystal matrices and single pixels for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Herbert, D. J.; Belcari, N.; Camarda, M.; Guerra, A. Del; Vaiano, A.

    2005-01-01

    Commercially constructed crystal matrices are characterised for use with PSPMT detectors for PET system developments and other nuclear medicine applications. The matrices of different scintillation materials were specified with pixel dimensions of 1.5×1.5 mm2 in cross-section and a length corresponding to one gamma ray interaction length at 511 keV. The materials used in this study were BGO, LSO, LYSO, YSO and CsI(Na). Each matrix was constructed using a white TiO loaded epoxy that forms a 0.2 mm septa between each pixel. The white epoxy is not the optimum choice in terms of the reflective properties, but represents a good compromise between cost and the need for optical isolation between pixels. We also tested a YAP matrix that consisted of pixels of the same size specification but was manufactured by a different company, who instead of white epoxy, used a thin aluminium reflective layer for optical isolation that resulted in a septal thickness of just 0.01 mm, resulting in a much higher packing fraction. The characteristics of the scintillation materials, such as the light output and energy resolution, were first studied in the form of individual crystal elements by using a single pixel HPD. A comparison of individual pixels with and without the epoxy/dielectric coatings was also performed. Then the matrices themselves were coupled to a PSPMT in order to study the imaging performance. In particular, the system pixel resolution and the peak to valley ratio were measured at 511 and 122 keV.

  8. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling

    PubMed Central

    Gibson, Joshua D.; Arechavaleta-Velasco, Miguel E.; Tsuruda, Jennifer M.; Hunt, Greg J.

    2015-01-01

    Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent’s allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation. PMID:26648977

  9. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling.

    PubMed

    Gibson, Joshua D; Arechavaleta-Velasco, Miguel E; Tsuruda, Jennifer M; Hunt, Greg J

    2015-01-01

    Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent's allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation.

  10. A six nuclear gene phylogeny of Citrus (Rutaceae) taking into account hybridization and lineage sorting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Citrus (Rutaceae) comprises of many important cultivated species which generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4-12 Ma), incomplete lineage sorting of ancestral polymorphisms...

  11. Progress in the development of large-area modular 64 x 64 CdZnTe imaging arrays for nuclear medicine

    SciTech Connect

    Matherson, K.J.; Barber, H.B.; Barrett, H.H.; Eskin, J.D.; Dereniak, E.L.; Marks, D.G.; Woolfenden, J.M.; Young, E.T.; Augustine, F.L.

    1998-06-01

    Previous efforts by this group have demonstrated the potential of hybrid semiconductor detector arrays for use in gamma-ray imaging applications. In this paper, the author describes progress in the development of a prototype imaging system consisting of a 64 x 64-pixel CdZnTe detector array mated to a multiplexer readout circuit that was custom designed for their nuclear medicine application. The detector array consists of a 0.15 cm thick slab of CdZnTe which has a 64 x 64 array of 380 {micro}m square pixel electrodes on one side produced by photolithography; the other side has a continuous electrode biased at {minus}150 V. Electrical connections between the detector electrodes and corresponding multiplexer bump pads are made with indium bump bonds. Although the CdZnTe detector arrays characterized in this paper are room-temperature devices, a slight amount of cooling is necessary to reduce thermally generated dark current in the detectors. Initial tests show that this prototype imager functions well with more than 90% of its pixels operating. The device is an excellent imager; phantom images have a spatial resolution of 1.5 mm, limited by the collimator bore.

  12. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance.

    PubMed

    Chen, Lin; Guo, Xianpu; Xie, Conghua; He, Li; Cai, Xingkui; Tian, Lingli; Song, Botao; Liu, Jun

    2013-07-01

    The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.

  13. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  14. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  15. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review

    PubMed Central

    Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria

    2015-01-01

    Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site

  16. Suitability of nuclear medicine gamma cameras as gamma spectrometers in the event of a radiological emergency

    NASA Astrophysics Data System (ADS)

    Engdahl, J. C.; Bharwani, K.

    2005-11-01

    Nuclear medicine gamma cameras are large area NaI(Tl) scintillation detectors that measure both the position and energy of incident gamma rays. A typical, commercial, large field-of-view (LFOV), gamma camera has about 2000 cm 3 of useful detector volume with an entrance window of 50×40 cm 2 by 1 cm thickness. A 3″×3″ NaI(Tl) detector, by comparison, has 17.4% of the volume and 2.3% of the area of the LFOV gamma camera. A 2002 survey reported 11,700 gamma cameras as being installed in hospitals and clinics in the US. In the event of a radiological emergency, the ability to utilize some of this installed detector capacity would be desirable. This work investigates the feasibility of using the gamma camera as a large area gamma spectrometer for detecting and quantifying isotopes likely to be involved in a radiological emergency caused by dispersion of radioactivity by a so called "dirty bomb." Monte Carlo modeling was used to analyze detection sensitivity as a function of energy for the camera vs. the 3″×3″ cylinder. For a point source positioned 100 cm from the face of the detector, the ratio of total extrinsic efficiency of the camera to that of the 3″×3″ cylinder varied from 40.3 at 140 keV to 7.3 at 5 MeV. Ratios for extrinsic efficiency of peaks (including the full energy peak, single escape, and double escape peaks) varied from 41.1 at 140 keV to 5.5 at 5 MeV. Modifications that will be required to enable the cameras to function as spectrometers over a wide energy range are described and discussed. Given the large sensitivity advantage, the fact that the camera is shielded on three sides, and that cameras are already present at many locations to where victims of a disaster would be transported, it is desirable that such system capabilities be investigated.

  17. A Compton camera for low energy gamma ray imaging in nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Leblanc, James Walter

    C-SPRINT is a prototype electronically-collimated imaging system that has been built using pixellated, low-noise, position-sensitive silicon as the first detector, and a sodium iodide scintillation detector ring as the second detector. The camera was intended to characterize potential performance gains of Compton cameras in nuclear medicine applications. The system consists of a single 4.5 x 1.5 x 0.03 cm3 silicon pad detector module with 2 keV energy resolution centered at the front face of a 50 cm diameter, 12 cm long NaI detector annulus. Calculations of the Uniform Cramer-Rao lower bound show that a "design Compton camera" based on our prototype can challenge existing mechanically-collimated systems at low to medium energies (˜140.5 - 400 keV) despite the deleterious effects of Doppler broadening. Measurements with our current system have yielded system sensitivity and spatial resolution estimates using 99mTc and 131I isotopes. Results showed an absolute efficiency of 1.8 x 10 -7 for 99mTc and 1.2 x 10-6 for 131I. The 99mTc value is an order of magnitude lower than predicted because of a combination of worse than expected silicon detector triggering performance, timing resolution issues, and system dead time effects. After correcting for these, efficiency predictions based on Monte Carlo analysis fall within 10% of the measured values. Spatial resolution estimates are also within 10% of analytical predictions. Measured resolution for the 99mTc point source was 15 min FWHM while in the 131I case, resolution improved to 8 mm FWHM. Extended source imaging was performed to characterize system performance under more challenging conditions. Images obtained were compared with measurements using a clinically-available mechanically collimated Anger camera. A resolution-variance study was also conducted for both isotopes. The results showed that the C-SPRINT camera performance on a per-detected photon basis was worse than the Anger camera for 99mTc but was similar for

  18. Nuclear-Driven Copper-Based Hybrid Thermo/Electro Chemical Cycle for Hydrogen Production

    SciTech Connect

    Khalil, Yehia F.; Rostkowski, Katherine H.

    2006-07-01

    and sodium hydroxide. Finally, we discuss the applicability of high-temperature nuclear reactors as an ideal fit to providing thermal energy and electricity required for operating the hybrid thermochemical plant with high overall system efficiency. (authors)

  19. Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences.

    PubMed

    Yamasaki, Yo Y; Nishida, Mutsumi; Suzuki, Toshiyuki; Mukai, Takahiko; Watanabe, Katsutoshi

    2015-09-01

    Rhinogobius fishes (Gobiidae) are distributed widely in East and Southeast Asia, and represent the most species-rich group of freshwater gobies with diversified life histories (i.e., amphidromous, fluvial, and lentic). To reveal their phylogenetic relationships and life history evolution patterns, we sequenced six nuclear and three mitochondrial DNA (mtDNA) loci from 18 species, mainly from the mainland of Japan and the Ryukyu Archipelago. Our phylogenetic tree based on nuclear genes resolved three major clades, including several distinct subclades. The mtDNA and nuclear DNA phylogenies showed large discordance, which strongly suggested mitochondrial introgression through large-scale interspecific hybridization in these regions. On the basis of the molecular dating using geological data as calibration points, the hybridization occurred in the early to middle Pleistocene. Reconstruction of the ancestral states of life history traits based on nuclear DNA phylogeny suggests that the evolutionary change from amphidromous to freshwater life, accompanied by egg size change, occurred independently in at least three lineages. One of these lineages showed two life history alterations, i.e., from amphidromous (small egg) to fluvial (large egg) to lentic (small egg). Although more inclusive analysis using species outside Japan should be further conducted, the present results suggest the importance of the life history evolution associated with high adaptability to freshwater environments in the remarkable species diversification in this group. Such life history divergences may have contributed to the development of reproductive isolation.

  20. Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences.

    PubMed

    Yamasaki, Yo Y; Nishida, Mutsumi; Suzuki, Toshiyuki; Mukai, Takahiko; Watanabe, Katsutoshi

    2015-09-01

    Rhinogobius fishes (Gobiidae) are distributed widely in East and Southeast Asia, and represent the most species-rich group of freshwater gobies with diversified life histories (i.e., amphidromous, fluvial, and lentic). To reveal their phylogenetic relationships and life history evolution patterns, we sequenced six nuclear and three mitochondrial DNA (mtDNA) loci from 18 species, mainly from the mainland of Japan and the Ryukyu Archipelago. Our phylogenetic tree based on nuclear genes resolved three major clades, including several distinct subclades. The mtDNA and nuclear DNA phylogenies showed large discordance, which strongly suggested mitochondrial introgression through large-scale interspecific hybridization in these regions. On the basis of the molecular dating using geological data as calibration points, the hybridization occurred in the early to middle Pleistocene. Reconstruction of the ancestral states of life history traits based on nuclear DNA phylogeny suggests that the evolutionary change from amphidromous to freshwater life, accompanied by egg size change, occurred independently in at least three lineages. One of these lineages showed two life history alterations, i.e., from amphidromous (small egg) to fluvial (large egg) to lentic (small egg). Although more inclusive analysis using species outside Japan should be further conducted, the present results suggest the importance of the life history evolution associated with high adaptability to freshwater environments in the remarkable species diversification in this group. Such life history divergences may have contributed to the development of reproductive isolation. PMID:25929788

  1. Historical Patterns in the Types of Procedures Performed and Radiation Safety Practices Used in Nuclear Medicine From 1945-2009.

    PubMed

    Van Dyke, Miriam E; Drozdovitch, Vladimir; Doody, Michele M; Lim, Hyeyeun; Bolus, Norman E; Simon, Steven L; Alexander, Bruce H; Kitahara, Cari M

    2016-07-01

    The authors evaluated historical patterns in the types of procedures performed in diagnostic and therapeutic nuclear medicine and the associated radiation safety practices used from 1945-2009 in a sample of U.S. radiologic technologists. In 2013-2014, 4,406 participants from the U.S. Radiologic Technologists (USRT) Study who previously reported working with medical radionuclides completed a detailed survey inquiring about the performance of 23 diagnostic and therapeutic radionuclide procedures and the use of radiation safety practices when performing radionuclide procedure-related tasks during five time periods: 1945-1964, 1965-1979, 1980-1989, 1990-1999, and 2000-2009. An overall increase in the proportion of technologists who performed specific diagnostic or therapeutic procedures was observed across the five time periods. Between 1945-1964 and 2000-2009, the median frequency of diagnostic procedures performed substantially increased (from 5 wk to 30 wk), attributable mainly to an increasing frequency of cardiac and non-brain PET scans, while the median frequency of therapeutic procedures performed modestly decreased (from 4 mo to 3 mo). Also a notable increase was observed in the use of most radiation safety practices from 1945-1964 to 2000-2009 (e.g., use of lead-shielded vials during diagnostic radiopharmaceutical preparation increased from 56 to 96%), although lead apron use dramatically decreased (e.g., during diagnostic imaging procedures, from 81 to 7%). These data describe historical practices in nuclear medicine and can be used to support studies of health risks for nuclear medicine technologists.

  2. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} –{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  ‑3% to  ‑20% with larger differences at lower energies (‑3% for 1 MeV electron in lung to  ‑20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  ‑6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  3. Syringe shape and positioning relative to efficiency volume inside dose calibrators and its role in nuclear medicine quality assurance programs.

    PubMed

    Santos, J A M; Carrasco, M F; Lencart, J; Bastos, A L

    2009-06-01

    A careful analysis of geometry and source positioning influence in the activity measurement outcome of a nuclear medicine dose calibrator is presented for (99m)Tc. The implementation of a quasi-point source apparent activity curve measurement is proposed for an accurate correction of the activity inside several syringes, and compared with a theoretical geometric efficiency model. Additionally, new geometrical parameters are proposed to test and verify the correct positioning of the syringes as part of acceptance testing and quality control procedures.

  4. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect.

  5. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} -{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a viable

  6. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine.

    PubMed

    Mikell, Justin; Cheenu Kappadath, S; Wareing, Todd; Erwin, William D; Titt, Uwe; Mourtada, Firas

    2016-06-21

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA (®) for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and (192)Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as (131)I and (90)Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ([Formula: see text]), energy group structures ([Formula: see text]) for each radionuclide component, angular quadrature orders ([Formula: see text], and scattering order expansions ([Formula: see text]-[Formula: see text]); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for (90)Y and (131)I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  7. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine.

    PubMed

    Mikell, Justin; Cheenu Kappadath, S; Wareing, Todd; Erwin, William D; Titt, Uwe; Mourtada, Firas

    2016-06-21

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA (®) for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and (192)Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as (131)I and (90)Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ([Formula: see text]), energy group structures ([Formula: see text]) for each radionuclide component, angular quadrature orders ([Formula: see text], and scattering order expansions ([Formula: see text]-[Formula: see text]); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for (90)Y and (131)I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  8. [Bibliographic consideration of proper management of radioactive waste on short-lived period nuclides that are used in nuclear medicine].

    PubMed

    Kida, Tetsuo; Watanabe, Hiroshi; Yamaguchi, Ichirou; Nagaoka, Hiroaki; Fujibuchi, Toshioh; Tanaka, Shinji; Hayakawa, Toshio

    2009-05-20

    A rational clearance system for medical radioactive waste has not yet been established in Japan. As Europe and USA's ways, the establishment of DIS that medical radioactive waste what are kept in storage room for more than decided period each nuclide except from regulation of radiation's control. The purpose of this report is to clarify the problems with the establishment of DIS in Japan through a literature review of the experience in Europe and the USA and previous research that has been reported in Japan. To establish the DIS system, the radiation control system in nuclear medicine should be rebuilt and put into effect. PMID:19498253

  9. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  10. Reporting nuclear cardiology: a joint position paper by the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI).

    PubMed

    Trägårdh, Elin; Hesse, Birger; Knuuti, Juhani; Flotats, Albert; Kaufmann, Philipp A; Kitsiou, Anastasia; Hacker, Marcus; Verberne, Hein J; Edenbrandt, Lars; Delgado, Victoria; Donal, Erwan; Edvardsen, Thor; Galderisi, Maurizio; Habib, Gilbert; Lancellotti, Patrizio; Nieman, Koen; Rosenhek, Raphael; Agostini, Denis; Gimelli, Alessia; Lindner, Oliver; Slart, Riemert; Ubleis, Christopher

    2015-03-01

    The report of an imaging procedure is a critical component of an examination, being the final and often the only communication from the interpreting physician to the referring or treating physician. Very limited evidence and few recommendations or guidelines on reporting imaging studies are available; therefore, an European position statement on how to report nuclear cardiology might be useful. The current paper combines the limited existing evidence with expert consensus, previously published recommendations as well as current clinical practices. For all the applications discussed in this paper (myocardial perfusion, viability, innervation, and function as acquired by single photon emission computed tomography and positron emission tomography or hybrid imaging), headings cover laboratory and patient demographics, clinical indication, tracer administration and image acquisition, findings, and conclusion of the report. The statement also discusses recommended terminology in nuclear cardiology, image display, and preliminary reports. It is hoped that this statement may lead to more attention to create well-written and standardized nuclear cardiology reports and eventually lead to improved clinical outcome.

  11. Accessory spleen mimicking pancreatic tumour: evaluation by 99mTc-labelled colloid SPECT/CT study. Report of two cases and a review of nuclear medicine methods utility.

    PubMed

    Pachowicz, M; Mocarska, A; Starosławska, E; Pietrzyk, Ł; Chrapko, B

    2015-01-01

    The accessory spleen is a common congenital anomaly, typically asymptomatic and harmless to the patient. However, in some clinical cases, this anomaly beco-mes significant as it can be mistaken for a tumour or lymph node and be missed during a therapeutic splenectomy. There are nuclear medicine modalities which can be applied in the identification and localisation of an accessory spleen. They include scintigraphy with radiolabelled colloids or heat damaged red blood cells, which are trapped in the splenic tissue. Modern techniques, including hybrid imaging, enable simultaneous structure and tracer distribution evaluations. Additionally, radiation-guided surgery can be used in cases where the accessory spleen, which is usually small (not exceeding 1 cm) and difficult to find among other tissues, has to be removed. In the study, we would like to present 2 cases of patients in which the malignancy had to be excluded for the reason that the multiple accessory spleens were very closely related to the pancreas. There was a lack of certainty in the multi-phase computed tomography (CT) evaluation; however, this situation was clearly resolved by using the 99mTc-stannous colloid single photon emission computed tomography/ CT study. We would also like to briefly analyse the clinical applications of nuclear medicine in case of an accessory spleen. PMID:26620518

  12. Genetic introgression and hybridization in Antillean freshwater turtles (Trachemys) revealed by coalescent analyses of mitochondrial and cloned nuclear markers.

    PubMed

    Parham, James F; Papenfuss, Theodore J; Dijk, Peter Paul van; Wilson, Byron S; Marte, Cristian; Schettino, Lourdes Rodriguez; Brian Simison, W

    2013-04-01

    Determining whether a conflict between gene trees and species trees represents incomplete lineage sorting (ILS) or hybridization involving native and/or invasive species has implications for reconstructing evolutionary relationships and guiding conservation decisions. Among vertebrates, turtles represent an exceptional case for exploring these issues because of the propensity for even distantly related lineages to hybridize. In this study we investigate a group of freshwater turtles (Trachemys) from a part of its range (the Greater Antilles) where it is purported to have undergone reticulation events from both natural and anthropogenic processes. We sequenced mtDNA for 83 samples, sequenced three nuDNA markers for 45 samples, and cloned 29 polymorphic sequences, to identify species boundaries, hybridization, and intergrade zones for Antillean Trachemys and nearby mainland populations. Initial coalescent analyses of phased nuclear alleles (using (*)BEAST) recovered a Bayesian species tree that strongly conflicted with the mtDNA phylogeny and traditional taxonomy, and appeared to be confounded by hybridization. Therefore, we undertook exploratory phylogenetic analyses of mismatched alleles from the "coestimated" gene trees (Heled and Drummond, 2010) in order to identify potential hybrid origins. The geography, morphology, and sampling context of most samples with potential introgressed alleles suggest hybridization over ILS. We identify contact zones between different species on Jamaica (T. decussata × T. terrapen), on Hispaniola (T. decorata × T. stejnegeri), and in Central America (T. emolli × T. venusta). We are unable to determine whether the distribution of T. decussata on Jamaica is natural or the result of prehistoric introduction by Native Americans. This uncertainty means that the conservation status of the Jamaican T. decussata populations and contact zone with T. terrapen are unresolved. Human-mediated dispersal events were more conclusively implicated

  13. Diagnosis of Periprosthetic Joint Infection: The Role of Nuclear Medicine May Be Overestimated.

    PubMed

    Diaz-Ledezma, Claudio; Lamberton, Courtney; Lichstein, Paul; Parvizi, Javad

    2015-06-01

    Although the International Consensus Meeting on Periprosthetic Joint Infection's definition of periprosthetic joint infection (PJI) does not include nuclear imaging as part of the diagnostic criteria, many contemporary nuclear imaging studies are reporting exceptional results in PJI diagnosis. We conducted a systematic review of studies published from 2004 to 2012 reporting the accuracy of nuclear imaging for diagnosis of PJI, utilizing a specially designed tool (QUADAS-2) for critical appraisal and investigation of bias. Our results revealed high risk of bias as well as high levels of concern regarding the clinical applicability of these tests in a majority of the studies. On the basis of our findings, we recommend that the use of nuclear imaging for diagnosis of PJI be limited to a few select cases.

  14. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  15. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  16. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  17. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  18. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility.

    PubMed

    Zafrilla, Jorge E; Cadarso, María-Ángeles; Monsalve, Fabio; de la Rúa, Cristina

    2014-12-16

    Spain faces the challenge of 80-95% greenhouse gas emissions reduction by 2050 (European Energy Roadmap). As a possible first step to fulfill this objective, this paper presents a two-level analysis. First, we estimate the carbon footprint of a hypothetical nuclear facility in Spain. Using a hybrid multiregional input-output model, to avoid truncation while diminishing sector aggregation problems and to improve environmental leakages estimations, we calculate the CO2 equivalent emissions associated with the different phases of the nuclear life-cycle--construction, fuel processing and operation and maintenance--taking into account the countries or regions where the emissions have been generated. Our results estimate a nuclear carbon footprint of 21.30 gCO2e/kWh, of which 89% comes from regions outside Spain. In some regions, the highest impacts are mostly direct (92%, 95%, and 92% of total carbon emissions in the U.S., France, and UK, respectively), meaning that these emissions are linked to the inputs directly required for nuclear energy production; in other regions, indirect emissions are higher (83% in China), which becomes relevant for policy measures. Second, through the analyses of different scenarios, we unravel and quantify how different assumptions that are often taken in the literature result in different carbon emissions.

  19. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility.

    PubMed

    Zafrilla, Jorge E; Cadarso, María-Ángeles; Monsalve, Fabio; de la Rúa, Cristina

    2014-12-16

    Spain faces the challenge of 80-95% greenhouse gas emissions reduction by 2050 (European Energy Roadmap). As a possible first step to fulfill this objective, this paper presents a two-level analysis. First, we estimate the carbon footprint of a hypothetical nuclear facility in Spain. Using a hybrid multiregional input-output model, to avoid truncation while diminishing sector aggregation problems and to improve environmental leakages estimations, we calculate the CO2 equivalent emissions associated with the different phases of the nuclear life-cycle--construction, fuel processing and operation and maintenance--taking into account the countries or regions where the emissions have been generated. Our results estimate a nuclear carbon footprint of 21.30 gCO2e/kWh, of which 89% comes from regions outside Spain. In some regions, the highest impacts are mostly direct (92%, 95%, and 92% of total carbon emissions in the U.S., France, and UK, respectively), meaning that these emissions are linked to the inputs directly required for nuclear energy production; in other regions, indirect emissions are higher (83% in China), which becomes relevant for policy measures. Second, through the analyses of different scenarios, we unravel and quantify how different assumptions that are often taken in the literature result in different carbon emissions. PMID:25386802

  20. Nuclear war in the Middle East: where is the voice of medicine and public health.

    PubMed

    Dallas, Cham E; Burkle, Frederick M

    2011-10-01

    Once again, the politically volatile Middle East and accompanying rhetoric has escalated the risk of a major nuclear exchange. Diplomatic efforts have failed to make the medical consequences of such an exchange a leading element in negotiations. The medical and academic communities share this denial. Without exaggeration, the harsh reality of the enormous consequences of an imminently conceivable nuclear war between Iran and Israel will encompass an unprecedented millions of dead and an unavoidable decline in public health and environmental devastation that would impact major populations in the Middle East for decades to come. Nuclear deterrence and the uncomfortable but real medical and public health consequences must become an integral part of a broader global health diplomacy that emphasizes health security along with poverty reduction and good governance. PMID:22509536

  1. Dictionary of radiation protection, radiobiology and nuclear medicine: English, German, French and Russian

    SciTech Connect

    Sube, R.

    1986-01-01

    This dictionary is a thematic enlargement of the four-language Dictionary of Nuclear Engineering, compiled by the same author. It comprises about 12,000 terms in each language. The subject matter dealt with is indicated in detail on the interleaves preceding each separate part of the dictionary. The majority of terms have been compiled from texts in the same language. Care has been taken to use standard terms. The terminology employed by the International Nuclear Information System (INIS) as part of the International Atomic Energy Organization has been incorporated in full.

  2. Design and manufacturing of anthropomorphic thyroid-neck phantom for use in nuclear medicine centres in Chile.

    PubMed

    Hermosilla, A; Díaz Londoño, G; García, M; Ruíz, F; Andrade, P; Pérez, A

    2014-12-01

    Anthropomorphic phantoms are used in nuclear medicine for imaging quality control, calibration of gamma spectrometry system for the study of internal contamination with radionuclides and for internal dosimetric studies. These are constructed of materials that have radiation attenuation coefficients similar to those of the different organs and tissues of the human body. The material usually used for the manufacture of phantoms is polymethyl methacrylate. Other materials used for this purpose are polyethylene, polystyrene and epoxy resin. This project presents the design and manufacture of an anthropomorphic thyroid-neck phantom that includes the cervical spine, trachea and oesophagus, using a polyester resin (ρ = 1.1 g cm(-3)). Its linear and mass attenuation coefficients were experimentally determined and simulated by means of XCOM software, finding that this material reproduces the soft tissue ICRU-44 in a range of energies between 80 keV and 11 MeV, with less than a 5 % difference. PMID:24567500

  3. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Progress report, May 1, 1993--April 30, 1994

    SciTech Connect

    Kabalka, G.W.

    1994-02-01

    New methods based on reactive organometallic precursors containing organic functional groups that are generally responsible for physiologic responses are being exploited for preparation of radiopharmaceutials. This program focuses on the design of new chemistry (molecular architecture) and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceutical. The new technology which is often based on organoborane chemistry is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE. facilities such as Brookhaven National Laboratory and Oak Ridge National Laboratory. New radiopharmaceutical are evaluated preclinically by colleagues at UT, Emory University and The University of Pennsylvania, and by Nova Screen.

  4. [Introduction of a quality management system compliant with DIN EN 9001:2000 in a university department of nuclear medicine].

    PubMed

    Jansen-Schmidt, V; Paschen, U; Kröger, S; Bohuslavizki, K H; Clausen, M

    2001-12-01

    In 1995, the management of the University Clinic Hamburg-Eppendorf proposed to establish a total quality assurance (QA) system. A revised QA-system has been introduced stepwise in the department of nuclear medicine since 1997, and certification was achieved in accordance with DIN EN ISO 9001:2000 on February 14, 2001. The QA-handbook is divided into two parts. The first part contains operational (diagnostic and therapeutic) procedures in so-called standard operating procedures (SOP). They describe the indication of procedures as well as the competences and time necessary in a standardized manner. Up to now, more than 70 SOPs have been written as a collaborative approach between technicians and physicians during daily clinical routine after analysing and discussing the procedures. Thus, the results were more clearly defined processes and more satisfied employees. The second part consists of general rules and directions concerning the security of work and equipment as well as radiation protection tasks, hygiene etc. as it is required by the law. This part was written predominantly by the management of the department of nuclear-medicine and the QA-coordinator. Detailed information for the patients, documentation of the work-flows as well as the medical report was adopted to the QM-system. Although in the introduction phase of a QA-system a vast amount of time is necessary, some months later a surplus for the clinical workday will become available. The well defined relations of competences and procedures will result in a gain of time, a reduction of costs and a help to ensure the legal demands. Last but not least, the QA-system simply helps to build up confidence and acceptance both by the patients and the referring physicians.

  5. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  6. Discovery of rhenium and masurium (technetium) by Ida Noddack-Tacke and Walter Noddack. Forgotten heroes of nuclear medicine.

    PubMed

    Biersack, H-J; Stelzner, F; Knapp, F F

    2015-01-01

    The history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the subsequent use of rhenium-188 (beta/gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine.

  7. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  8. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products.

    PubMed

    Kumar, Dinesh

    2016-09-01

    NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions.

  9. Fast-forward genetics by radiation hybrids to saturate the locus regulating nuclear-cytoplasmic compatibility in Triticum.

    PubMed

    Bassi, Filippo M; Ghavami, Farhad; Hayden, Matthew J; Wang, Yi; Forrest, Kerrie L; Kong, Stephan; Dizon, Rhoderissa; Michalak de Jimenez, Monika K; Meinhardt, Steven W; Mergoum, Mohamed; Gu, Yong Q; Kianian, Shahryar F

    2016-08-01

    The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.9 million markers. The high marker saturation obtained for a critical region of chromosome 1D allowed identification of 3318 reads that mapped in close proximity of the scs. A novel in silico approach was deployed to extend these short reads to sequences of up to 70 Kb in length and identify candidate open reading frames (ORFs). Markers were developed to anchor the short contigs containing ORFs to a radiation hybrid map of 650 individuals with resolution of 288 Kb. The region containing the scs locus was narrowed to a single Bacterial Artificial Chromosome (BAC) contig of Aegilops tauschii. Its sequencing and assembly by nano-mapping allowed rapid identification of a rhomboid gene as the only ORF existing within the refined scs locus. Resequencing of this gene from multiple germplasm sources identified a single nucleotide mutation, which gives rise to a functional amino acid change. Gene expression characterization revealed that an active copy of this rhomboid exists on all homoeologous chromosomes of wheat, and depending on the specific cytoplasm each copy is preferentially expressed. Therefore, a new methodology was applied to unique genetic stocks to rapidly identify a strong candidate gene for the control of nuclear-cytoplasmic compatibility in wheat.

  10. Fast-forward genetics by radiation hybrids to saturate the locus regulating nuclear-cytoplasmic compatibility in Triticum.

    PubMed

    Bassi, Filippo M; Ghavami, Farhad; Hayden, Matthew J; Wang, Yi; Forrest, Kerrie L; Kong, Stephan; Dizon, Rhoderissa; Michalak de Jimenez, Monika K; Meinhardt, Steven W; Mergoum, Mohamed; Gu, Yong Q; Kianian, Shahryar F

    2016-08-01

    The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.9 million markers. The high marker saturation obtained for a critical region of chromosome 1D allowed identification of 3318 reads that mapped in close proximity of the scs. A novel in silico approach was deployed to extend these short reads to sequences of up to 70 Kb in length and identify candidate open reading frames (ORFs). Markers were developed to anchor the short contigs containing ORFs to a radiation hybrid map of 650 individuals with resolution of 288 Kb. The region containing the scs locus was narrowed to a single Bacterial Artificial Chromosome (BAC) contig of Aegilops tauschii. Its sequencing and assembly by nano-mapping allowed rapid identification of a rhomboid gene as the only ORF existing within the refined scs locus. Resequencing of this gene from multiple germplasm sources identified a single nucleotide mutation, which gives rise to a functional amino acid change. Gene expression characterization revealed that an active copy of this rhomboid exists on all homoeologous chromosomes of wheat, and depending on the specific cytoplasm each copy is preferentially expressed. Therefore, a new methodology was applied to unique genetic stocks to rapidly identify a strong candidate gene for the control of nuclear-cytoplasmic compatibility in wheat. PMID:26915753

  11. Class A β-Lactamases as Versatile Scaffolds to Create Hybrid Enzymes: Applications from Basic Research to Medicine

    PubMed Central

    Matagne, André; Galleni, Moreno; Dumoulin, Mireille

    2013-01-01

    Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β-lactamases as versatile scaffolds to design hybrid enzymes (referred to as β-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins. PMID:24066299

  12. Hybrid Statistical Testing for Nuclear Material Accounting Data and/or Process Monitoring Data

    SciTech Connect

    Ticknor, Lawrence O.; Hamada, Michael Scott; Sprinkle, James K.; Burr, Thomas Lee

    2015-04-14

    The two tests employed in the hybrid testing scheme are Page’s cumulative sums for all streams within a Balance Period (maximum of the maximums and average of the maximums) and Crosier’s multivariate cumulative sum applied to incremental cumulative sums across Balance Periods. The role of residuals for both kinds of data is discussed.

  13. Integrating workplace exposure databases for occupational medicine services and epidemiologic studies at a former nuclear weapons facility.

    PubMed

    Ruttenber, A J; McCrea, J S; Wade, T D; Schonbeck, M F; LaMontagne, A D; Van Dyke, M V; Martyny, J W

    2001-02-01

    We outline methods for integrating epidemiologic and industrial hygiene data systems for the purpose of exposure estimation, exposure surveillance, worker notification, and occupational medicine practice. We present examples of these methods from our work at the Rocky Flats Plant--a former nuclear weapons facility that fabricated plutonium triggers for nuclear weapons and is now being decontaminated and decommissioned. The weapons production processes exposed workers to plutonium, gamma photons, neutrons, beryllium, asbestos, and several hazardous chemical agents, including chlorinated hydrocarbons and heavy metals. We developed a job exposure matrix (JEM) for estimating exposures to 10 chemical agents in 20 buildings for 120 different job categories over a production history spanning 34 years. With the JEM, we estimated lifetime chemical exposures for about 12,000 of the 16,000 former production workers. We show how the JEM database is used to estimate cumulative exposures over different time periods for epidemiological studies and to provide notification and determine eligibility for a medical screening program developed for former workers. We designed an industrial hygiene data system for maintaining exposure data for current cleanup workers. We describe how this system can be used for exposure surveillance and linked with the JEM and databases on radiation doses to develop lifetime exposure histories and to determine appropriate medical monitoring tests for current cleanup workers. We also present time-line-based graphical methods for reviewing and correcting exposure estimates and reporting them to individual workers. PMID:11217711

  14. Integrating workplace exposure databases for occupational medicine services and epidemiologic studies at a former nuclear weapons facility.

    PubMed

    Ruttenber, A J; McCrea, J S; Wade, T D; Schonbeck, M F; LaMontagne, A D; Van Dyke, M V; Martyny, J W

    2001-02-01

    We outline methods for integrating epidemiologic and industrial hygiene data systems for the purpose of exposure estimation, exposure surveillance, worker notification, and occupational medicine practice. We present examples of these methods from our work at the Rocky Flats Plant--a former nuclear weapons facility that fabricated plutonium triggers for nuclear weapons and is now being decontaminated and decommissioned. The weapons production processes exposed workers to plutonium, gamma photons, neutrons, beryllium, asbestos, and several hazardous chemical agents, including chlorinated hydrocarbons and heavy metals. We developed a job exposure matrix (JEM) for estimating exposures to 10 chemical agents in 20 buildings for 120 different job categories over a production history spanning 34 years. With the JEM, we estimated lifetime chemical exposures for about 12,000 of the 16,000 former production workers. We show how the JEM database is used to estimate cumulative exposures over different time periods for epidemiological studies and to provide notification and determine eligibility for a medical screening program developed for former workers. We designed an industrial hygiene data system for maintaining exposure data for current cleanup workers. We describe how this system can be used for exposure surveillance and linked with the JEM and databases on radiation doses to develop lifetime exposure histories and to determine appropriate medical monitoring tests for current cleanup workers. We also present time-line-based graphical methods for reviewing and correcting exposure estimates and reporting them to individual workers.

  15. Steep, coincident, and concordant clines in mitochondrial and nuclear-encoded genes in a hybrid zone between subspecies of Atlantic killifish, Fundulus heteroclitus.

    PubMed

    McKenzie, Jessica L; Dhillon, Rashpal S; Schulte, Patricia M

    2016-08-01

    Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus-specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non-neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non-neutral nuclear clines, SNPs in two nuclear-encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin-binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non-unimodal, suggesting selection against advanced-generation hybrids, possibly due to effects on processes involved in oxidative metabolism. PMID:27547353

  16. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  17. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    SciTech Connect

    Terlizzi, Stefano; Dulla, Sandra; Ravetto, Piero; Rahnema, Farzad; Zhang, Dingkang

    2015-12-31

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  18. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    NASA Astrophysics Data System (ADS)

    Terlizzi, Stefano; Rahnema, Farzad; Zhang, Dingkang; Dulla, Sandra; Ravetto, Piero

    2015-12-01

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  19. A Network Model and Computational Approach for the Mo-99 Supply Chain for Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Nagurney, Ladimer; Nagurney, Anna

    2011-11-01

    Technetium-99m, produced from the decay of Molybdenum-99, is the most commonly used radioisotope for medical imaging, specifically in cardiac and cancer diagnostics. The MO-99 is produced in a small number of reactors and is processed and distributed worldwide. We have developed a tractable network model and computational approach for the design and redesign of the MO-99 supply chains. This topic is of special relevance to medical physics given the product's widespread use and the aging of the nuclear reactors where it is produced. This generalized network model, for which we derived formulae for the arc and path multipliers that capture the underlying physics of radioisotope decay, includes total operational cost minimization, and the minimization of cost associated with nuclear waste disposal, coupled with capacity investment (or disinvestment) costs. Its solution yields the optimal link capacities as well as the optimal MO-99 flows so that demand at the medical facilities is satisfied. We illustrate the framework with a Western Hemisphere case study. The framework provides the foundation for further empirical research and the basis for the modeling and analysis of supply chain networks for other very time-sensitive medical products.

  20. [Sudeck syndrome--a combined clinico-roentgenologic-nuclear medicine study].

    PubMed

    Schurawitzki, H; Wickenhauser, J; Fezoulidis, I; Sadil, V; Fialka, V

    1988-10-01

    147 patients with clinical suspicion of a Sudeck syndrome were submitted to X-ray and nuclear medical examinations. The clinical suspicion was confirmed in 122 patients. In six cases showing no X-ray symptoms, the diagnosis could only be confirmed by scintigraphy. A new classification of stages was necessary for therapeutic reasons: I = early stage, II = acute/subacute stage, III = healing stage, IV = defective recovery. Modifications due to therapy were demonstrated early by 100 scintigraphic check-up examinations, whereas the evidence of such modifications in X-ray pictures was delayed. The study describes the X-ray morphology as well as the scintigraphic manifestations of the Sudeck syndrome. The study shows that scintigraphy is a valuable examination method. It is useful in diagnosing early stages often not detected in X-ray examination, in the assessment of the evolution of a disease, and in the classification of stages. PMID:2467419

  1. Nuclear Medicine Program progress report for quarter ending June 30, 1991

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Srivastava, P.C.; Hasan, A.; Lambert, C.R.; Lambert, S.J.; Rice, D.E.

    1991-09-01

    In this report the excitation functions for production of gallium-66 via {alpha}-induced nuclear reactions on enriched zinc-66 have been measured with E{sub {alpha}}{le}27.3 Mev and E{sub {alpha}}{le}43.7 MeV employing the stack thin-target technique. In addition, the induced activity of gallium-67 in the same sets of targets allowed an evaluation of the excitation functions of the corresponding nuclear reactions. These preliminary studies have demonstrated that sufficient levels of gallium-66 can be produced by {alpha}-induced reactions on enriched zinc targets. A series of radioiodinated analogues of 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}, {alpha}-diphenylacetate (QNB) have been prepared. These new analogues include 1-azabicyclo-(2.2.2)oct-3-yl{alpha}-hydroxy-{alpha}-(4-iodophenyl)-{alpha}-methylacetate(2,I-WNA), 1-azabicyclo(2.2.2)oct-3-yl (3-iodo)-xanthene-9-carboxylate (3,I-QNX), and 1-azabicyclo(2.2.2)oct-3-yl {alpha}-hydroxy-{alpha}-(E-1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (4,I-QNP), which have also been radiolabeled with iodine-125 with high specific activity. The biodistribution, brain uptake, and receptor specificity of these new analogues are currently being studied. Shipments of radioactive agents made to collaborators during this period included. One shipment of iodine-125-labeled 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) and tungsten-188/rhenium-188 generator. 16 refs., 7 figs., 1 tab.

  2. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.

    2010-11-01

    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  3. Generation of nuclear hybrids overcoming the natural barrier of incompatibility: transfer of nuclei from Lentinula edodes into protoplasts of Coriolus versicolor.

    PubMed

    Kim, C; Choi, E C; Kim, B K

    2000-02-01

    Heterokaryotic nuclear hybrids overcoming the natural barriers of incompatibility have been studied in basidiomycetes. To produce these nuclear hybrids between incompatible mushrooms, which have several potent pharmacological effects, nuclear transfer was performed between Lentinula edodes and Coriolus versicolor. Nuclei from serine auxotrophs of Lentinula edodes, LE207 (Ser-) were transferred into the protoplasts of arginine auxotrophs of Coriolus versicolor, CV17 (Arg-), using 30% polyethylene glycol 4000 in 10 mM CaCl2-glycine solution (pH 8.0). Nuclear transfer progenies were selected by nutritional complementation on minimal media supplemented with 0.6 M sucrose. The progenies were classified based on colony morphology to L. edodes-like, C. versicolor-like and non-parental type. Most of the progenies grew slower than either parent. The number of nuclei per cell was similar but the DNA content varied between progenies. The isozyme patterns of nuclear hybrids resembled either of the parent profiles or showed a mixed profile. PMID:10728662

  4. Nuclear Medicine Program progress report for quarter ending September 30, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1992-12-01

    The radioiodination and in vivo evaluation of p-iodocaramiphen a muscarinic antagonist which binds with high affinity to the M{sub 1} receptor subtype in vitro are described. Biodistribution studies in female Fischer rats demonstrated that [{sup 125}I]-piodocaraminphen had significant cerebral localization, but the uptake did not demonstrate specific uptake in those cerebral regions rich in muscarinic receptors, and radioactivity washed out rapidly from the brain. In addition there was no significant blockage of activity when the rats were preinjected with quinuclidinyl benzilate. These results suggest that p-iodocaramiphen is not a good candidate for the in vivo study of M{sub 1} muscarinic receptor populations by SPECT. Because of the widespread interest and expected importance of the availability of large amounts of tungsten-188 required for the tungsten-188/rhenium-188 generator systems, we have investigated the large-scale production of tungsten-188 in the ORNL HFIR. We have also compared our production data with the theoretical production values and with experimental data available in the literature from other reactors. Tungsten-188 is produced in a fission nuclear reactor by double neutron capture of tungsten-186. The experimental yield of tungsten-188 is approximately 4 mCi/mg of tungsten-186 at the end of bombardment (EOB) in the HFIR operating at 85 MWt power for a one cycle irradiation ({approximately}21 days) at a thermal neutron flux of 2 {times} 10{sup 15} n.s{sup {minus}1}cm{sup {minus}2}.

  5. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  6. Nuclear Medicine Program progress report for quarter ending September 30, 1992

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; McPherson, D.W.; Mirzadeh, S.; Hasan, A.; Lambert, C.R.

    1992-12-01

    The radioiodination and in vivo evaluation of p-iodocaramiphen a muscarinic antagonist which binds with high affinity to the M[sub 1] receptor subtype in vitro are described. Biodistribution studies in female Fischer rats demonstrated that [[sup 125]I]-piodocaraminphen had significant cerebral localization, but the uptake did not demonstrate specific uptake in those cerebral regions rich in muscarinic receptors, and radioactivity washed out rapidly from the brain. In addition there was no significant blockage of activity when the rats were preinjected with quinuclidinyl benzilate. These results suggest that p-iodocaramiphen is not a good candidate for the in vivo study of M[sub 1] muscarinic receptor populations by SPECT. Because of the widespread interest and expected importance of the availability of large amounts of tungsten-188 required for the tungsten-188/rhenium-188 generator systems, we have investigated the large-scale production of tungsten-188 in the ORNL HFIR. We have also compared our production data with the theoretical production values and with experimental data available in the literature from other reactors. Tungsten-188 is produced in a fission nuclear reactor by double neutron capture of tungsten-186. The experimental yield of tungsten-188 is approximately 4 mCi/mg of tungsten-186 at the end of bombardment (EOB) in the HFIR operating at 85 MWt power for a one cycle irradiation ([approximately]21 days) at a thermal neutron flux of 2 [times] 10[sup 15] n.s[sup [minus]1]cm[sup [minus]2].

  7. Specificity and sensitivity of SPECT myocardial perfusion studies at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus

    NASA Astrophysics Data System (ADS)

    Koumna, S.; Yiannakkaras, Ch; Avraamides, P.; Demetriadou, O.

    2011-09-01

    The aim is to determine the sensitivity and specificity of Myocardial Perfusion Imaging (MPI) performed at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus. Through a retrospective analysis, patient results obtained by MPI were compared to results obtained by Invasive Angiography. We analyzed data from 96 patients that underwent both MPI and Angiography during the years 2009-2010, with a maximum time interval of ± 9 months between the two types of medical exams. For 51 patients, the indication was the detection of CAD. For 45 patients, the indication was to assess viability and/or ischemia after MI, PCI or CABG. Out of 84 patients with CAD confirmed by angiography, 80 patients resulted in abnormal MPI (sensitivity of 95% and positive predictive value of 98%). Out of 12 patients with normal coronaries, 10 patients resulted in normal MPI (specificity of 83% and negative predictive value of 71%).In conclusion, for the patients with abnormal MPI and confirmed CAD, MPI was a useful aid for further therapy management.

  8. [Situation of supply and boom of PET imaging: what is the future for technetium-99m in nuclear medicine?].

    PubMed

    Maia, S; Ayachi Hatit, N; Paycha, F

    2011-05-01

    Molecular imaging has shown its interest in the diagnosis, staging and therapy monitoring of many diseases, especially in the field of cancer. This imaging modality can detect non-invasively early molecular changes specific to these diseases. Its expansion includes two aspects linked firstly with the advanced techniques of imaging modalities and secondly with the development of tracers as radio pharmaceuticals for imaging new molecular targets. Technetium-99m ((99m)Tc), because of its physical characteristics, its widespread availability and low cost, is the most used radionuclide in molecular imaging with the technique of single photon emission computed tomography (SPECT). Nevertheless, the current difficulty concerning the supply and the great interest of Positron Emission Tomography (PET), the "competitor" imaging modality-using molecules labelled with fluorine-18 ((18)F), legitimates the question about the future of (99m)Tc, its supremacy and the emergence of new tracer labelled with (99m)Tc. Focusing on the actual and future supply situation, the place of SPECT imaging in nuclear medicine, as well as the development of new molecules labelled with (99m)Tc is necessary to show that this radionuclide will remain essential for the speciality in the next years.

  9. [Experimental formative tools for the personnel and organizing models for a Nuclear Medicine Service of the public healthcare in Italy].

    PubMed

    Marcolongo, A; Mazzetti, M D; Rubello, D

    2007-12-01

    In the present prospective study started in 2004, we evaluated the potential role of the ''job on site'' model as a formative tool previously proposed by the ''Ministero della Salute'' in Italy and at the moment it is yet in an experimental phase in our Country. We applied this ''job on site'' model for the development of a new Nuclear Medicine Service in Rovigo Hospital (ULSS 18 of Veneto Region Italy). Moreover, there were planned, experimented and applied different organizing working models involving both physicians, technicians and nurses. The indicators of productivity realised in the period August 2004 to June 2007 were taken as end points. In our experience, the ''job on site'' model was particularly useful as a formative tool, and allowed a qualified preparation of the Service personnel as well as a rapid achievement of standard Regional and National indicators of productivity. Moreover, from a cost-effectiveness point of view, the daily working model we applied, that is based on a prolongation of the daily work per operator, proved to be highly effective in our Hospital. The data reported here may be of interest for the future planning of similar Services in the Public National and Regional Healthcare.

  10. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  11. Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers.

    PubMed

    Al-Qurainy, F; Khan, S; Tarroum, M; Al-Hemaid, F M; Ali, M A

    2011-11-10

    Dried parts of different plant species often look alike, especially in powdered form, making them very difficult to identify. Ruta graveolens, sold as a dried medicinal herb, can be adulterated with Euphorbia dracunculoides. The genomic DNA was isolated from the leaf powder (100 mg each) using the modified CTAB method. Internal transcribed spacer sequences of nuclear ribosomal DNA (nrDNA-ITS), and chloroplast spacer sequences (rpoB and rpoC1) are regarded as potential genes for plant DNA barcoding. We amplified and sequenced these spacer sequences and confirmed the sequences with a BLAST search. Sequence alignment was performed using ClustalX to look for differences in the sequences. A DNA marker was developed based on rpoB and rpoC1 of the nrDNA-ITS for the identification of the adulterant E. dracunculoides in samples of R. graveolens that are sold in local herbal markets. Sequence-characterized amplified region markers of 289 and 264 bp for R. graveolens and 424 bp for E. dracunculoides were developed from dissimilar sequences of this nrDNA-ITS to speed up the authentication process. This marker successfully distinguished these species in extracted samples with as little as 5 ng DNA/μL extract.

  12. A heartrending burden of gynaecological cancers in advance stage at nuclear institute of medicine and radiotherapy Jamshoro Sindh

    PubMed Central

    Bibi, Seema; Ashfaque, Sanober; Laghari, Naeem Ahmed

    2016-01-01

    Objectives: In Pakistan gynaecological cancers are among the leading causes of women’s morbidity and mortality posing huge financial burden on families, communities and state. Due to lack of national cancer registry exact facts and figures are unknown therefore this study was planned to find out prevalence, age, site and stage of presentation of gynaecological cancers at Nuclear Institute of Medicine and Radiotherapy (NIMRA), Jamshoro. Methods: A retrospective, cross sectional study was conducted from 1st January 2011 to 31st December 2011 at NIMRA Jamshoro. All cases of genital tract cancers were evaluated, required data was entered on predesigned performa and results were analyzed manually. Results: Out of 2401 total registered cancer cases, 231 (9.6%) patients were suffering from gynaecological cancer making it third most common cancer. Ovary was commonest site followed by cervix and uterus. More than 60% cases presented in advanced stage, mostly during 4th and 5th decade of life. Conclusion: Gynecological cancer was among top three cancers at one of the busiest public sector cancer institute in Sindh province and significant number presented in advance stage making treatment difficult and expensive. There is urgent need for development and implementation of an effective health policy regarding cancer prevention and treatment. PMID:27022358

  13. Software development for ACR-approved phantom-based nuclear medicine tomographic image quality control with cross-platform compatibility

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Choi, Jae Min; Nam, Ki Pyo; Chae, Sun Young; Ryu, Jin-Sook; Moon, Dae Hyuk; Kim, Jae Seung

    2015-07-01

    Quality control and quality assurance (QC/QA) have been two of the most important issues in modern nuclear medicine (NM) imaging for both clinical practices and academic research. Whereas quantitative QC analysis software is common to modern positron emission tomography (PET) scanners, the QC of gamma cameras and/or single-photon-emission computed tomography (SPECT) scanners has not been sufficiently addressed. Although a thorough standard operating process (SOP) for mechanical and software maintenance may help the QC/QA of a gamma camera and SPECT-computed tomography (CT), no previous study has addressed a unified platform or process to decipher or analyze SPECT phantom images acquired from various scanners thus far. In addition, a few approaches have established cross-platform software to enable the technologists and physicists to assess the variety of SPECT scanners from different manufacturers. To resolve these issues, we have developed Interactive Data Language (IDL)-based in-house software for crossplatform (in terms of not only operating systems (OS) but also manufacturers) analyses of the QC data on an ACR SPECT phantom, which is essential for assessing and assuring the tomographical image quality of SPECT. We applied our devised software to our routine quarterly QC of ACR SPECT phantom images acquired from a number of platforms (OS/manufacturers). Based on our experience, we suggest that our devised software can offer a unified platform that allows images acquired from various types of scanners to be analyzed with great precision and accuracy.

  14. A novel non-linear recursive filter design for extracting high rate pulse features in nuclear medicine imaging and spectroscopy.

    PubMed

    Sajedi, Salar; Kamal Asl, Alireza; Ay, Mohammad R; Farahani, Mohammad H; Rahmim, Arman

    2013-06-01

    Applications in imaging and spectroscopy rely on pulse processing methods for appropriate data generation. Often, the particular method utilized does not highly impact data quality, whereas in some scenarios, such as in the presence of high count rates or high frequency pulses, this issue merits extra consideration. In the present study, a new approach for pulse processing in nuclear medicine imaging and spectroscopy is introduced and evaluated. The new non-linear recursive filter (NLRF) performs nonlinear processing of the input signal and extracts the main pulse characteristics, having the powerful ability to recover pulses that would ordinarily result in pulse pile-up. The filter design defines sampling frequencies lower than the Nyquist frequency. In the literature, for systems involving NaI(Tl) detectors and photomultiplier tubes (PMTs), with a signal bandwidth considered as 15 MHz, the sampling frequency should be at least 30 MHz (the Nyquist rate), whereas in the present work, a sampling rate of 3.3 MHz was shown to yield very promising results. This was obtained by exploiting the known shape feature instead of utilizing a general sampling algorithm. The simulation and experimental results show that the proposed filter enhances count rates in spectroscopy. With this filter, the system behaves almost identically as a general pulse detection system with a dead time considerably reduced to the new sampling time (300 ns). Furthermore, because of its unique feature for determining exact event times, the method could prove very useful in time-of-flight PET imaging.

  15. Usefulness of specific calibration coefficients for gamma-emitting sources measured by radionuclide calibrators in nuclear medicine

    SciTech Connect

    Bochud, Francois O.; Laedermann, Jean-Pascal; Baechler, Sebastien; Kosinski, Marek; Bailat, Claude J.

    2011-07-15

    Purpose: In nuclear medicine, the activity of a radionuclide is measured with a radionuclide calibrator that often has a calibration coefficient independent of the container type and filling. Methods: To determine the effect of the container on the accuracy of measuring the activity injected into a patient, The authors simulated a commercial radionuclide calibrator and 18 container types most typically used in clinical practice. The instrument sensitivity was computed for various container thicknesses and filling levels. Monoenergetic photons and electrons as well as seven common radionuclides were considered. Results: The quality of the simulation with gamma-emitting sources was validated by an agreement with measurements better than 4% in five selected radionuclides. The results show that the measured activity can vary by more than a factor of 2 depending on the type of container. The filling level and the thickness of the container wall only have a marginal effect for radionuclides of high energy but could induce differences up to 4%. Conclusions: The authors conclude that radionuclide calibrators should be tailored to the uncertainty required by clinical applications. For most clinical cases, and at least for the low-energy gamma and x-ray emitters, measurements should be performed with calibration coefficients specific to the container type.

  16. Development of more efficacious [Tc]-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  17. Photodetectors for Nuclear Medical Imaging

    PubMed Central

    Moses, William W.

    2009-01-01

    There have been a number of recent advances in photodetector technology, notably in photomultiplier tubes with high quantum efficiency (up to ~50%), hybrid photodetectors, and silicon-based Geiger-mode photodetectors. This paper looks at the potential benefits that these technologies can bring to nuclear medicine, notably SPECT and PET. We find that while the potential benefits to SPECT are relatively small, they can bring performance improvements in many areas for PET. PMID:20161403

  18. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    NASA Astrophysics Data System (ADS)

    Trujillo-Zamudio, F. E.; Gómez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-01

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 ± 0.17 mR/h, b) 0.47 ± 0.20 mR/h, and c) 0.86 ± 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  19. No more time to stay 'single' in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach.

    PubMed

    Mattiucci, S; Acerra, V; Paoletti, M; Cipriani, P; Levsen, A; Webb, S C; Canestrelli, D; Nascetti, G

    2016-07-01

    A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex (s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α-1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals (N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11) were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on the same specimens, which indicated the occurrence of a large number of 'hybrids' both in sympatry and allopatry. These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and their hybrid categories derived from the application of that single marker (i.e. PCR-RFLPs analysis of the ITS of rDNA). Finally, Bayesian clustering, using allozymes and EF1 α-1 nDNA markers, has demonstrated that hybridization between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species.

  20. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    NASA Astrophysics Data System (ADS)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  1. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  2. Study of a New Design of P-N Semiconductor Detector Array for Nuclear Medicine Imaging by Monte Carlo Simulation Codes

    PubMed Central

    Hajizadeh-Safar, M.; Ghorbani, M.; Khoshkharam, S.; Ashrafi, Z.

    2014-01-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc99_m activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  3. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  4. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  5. The effects of radioisotopes used in nuclear medicine on diagnostic radioimmunoassay testing. Is there any significant interference

    SciTech Connect

    Riccio, J.A.; Maturani, D.; Wright, J.; Fleetwood, M.K. )

    1990-11-01

    The administration of radioisotopes for diagnostic nuclear medicine scans and therapeutic procedures is quite prevalent today. A period of interference with the counting of a radioimmunoassay (RIA) test may occur with the serum of a patient receiving an in vivo radionuclide that decays by gamma emission. Because the logistics of precounting all specimens may be cumbersome and prohibitive, it is important to determine the degree of this interference. In this study, the authors evaluate the potential interference of the most commonly used radioisotopes with RIA studies. For two months (March and August 1988) 10,650 patient serum specimens were counted for significant background gamma radiation before RIA testing. Forty-three patients, on whom 105 RIA tests were performed, were identified as having preassay gamma radiation in their serum. With the use of selective energy windows for each different interfering radionuclide, proportional determinations were made as to the amount of interfering gamma radiation spilling into the iodine 125 test marker window. It was shown that initial whole serum pretest gamma counts as high as 111,000 counts/minute did not significantly affect the results of the RIA. Because of the meticulous washing and decanting procedures required in modern RIA and the monoclonal nature of most antibodies used currently, it appears the degree of nonspecific binding of this potentially interfering radiation is minuscule. The energy level of cobalt 57, however, and many of the other commonly used radioisotopes, overlaps so closely that it is difficult to window for this interference. It is possible, therefore, that this distinction cannot be made and folate and vitamin B12 test systems using cobalt 57 markers may have to be routinely prescreened.

  6. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine

    SciTech Connect

    Smith, M.F.; Jaszczak, R.J. |

    1997-11-01

    The sensitivity of a pinhole collimator for gamma ray imaging in nuclear medicine is dependent on the angle of incidence of the gamma rays. The effect of penetration near the pinhole aperture on angle-dependent sensitivity was investigated using experimental measurements and numerical modeling. Projection data measurements were acquired with Tc-99m and I-131 point sources using tungsten pinhole inserts with 1.0 to 4.0 mm diameter apertures. Curves of the form sin{sup x}{theta}, where {theta} is the angle of the incident ray with the surface of the detector crystal, were fit to sensitivity measurements from the projection data. Experimentally measured x values were between 3.3 and 4.1 for Tc-99m and between 5.1 and 7.2 for I-131. Penetration near the pinhole aperture was modeled using (1) an expression for effective pinhole diameter that is a generalization of Anger{close_quote}s formula for normally incident photons and (2) a photon transport simulation code. Experimentally measured sensitivity exponents x from new and previously reported experimental observations were modeled within 15{percent} by the numerical simulations. For modeling using the generalized expression for effective diameter the average error was 1.4{percent} and the standard deviation was 7.7{percent}. For the photon transport simulation code the average error was 1.5{percent} and the standard deviation also was 7.7{percent}. The effect of pinhole aperture design parameters on angle-dependent sensitivity for high resolution pinhole apertures was modeled using a photon transport simulation code. The sensitivity exponents x were greater for 364 keV photons than for 140 keV photons and were greater for small aperture diameters, small acceptance angles, and large aperture channel heights. (Abstract Truncated)

  7. Radiation exposure to nuclear medicine staffs during 18F-FDG PET/CT procedures at Ramathibodi Hospital

    NASA Astrophysics Data System (ADS)

    Donmoon, T.; Chamroonrat, W.; Tuntawiroon, M.

    2016-03-01

    The aim of this study is to estimate the whole body and finger radiation doses per study received by nuclear medicine staff involved in dispensing, administration of 18F-FDG and interacting with radioactive patients during PET/CT imaging procedures in a PET/CT facility. The whole-body doses received by radiopharmacists, technologists and nurses were measured by electronic dosimeter and the finger doses by ring dosimeter during a period of 4 months. In 70 PET/CT studies, the mean whole-body dose per study to radiopharmacist, technologist, and nurse were 1.07±0.09, 1.77±0.46, μSv, and not detectable respectively. The mean finger doses per study received by radiopharmacist, technologist, and nurse were 265.65±107.55, 4.84±1.08 and 19.22±2.59 μSv, respectively. The average time in contact with 18F-FDG was 5.88±0.03, 39.06±1.89 and 1.21±0.02 minutes per study for radiopharmacist, technologist and nurse respectively. Technologists received highest mean effective whole- body dose per study and radiopharmacist received the highest finger dose per study. When compared with the ICRP dose limit, each individual worker can work with many more 18F- FDG PET/CT studies for a whole year without exceeding the occupational dose limits. This study confirmed that low levels of radiation does are received by our medical personnel involved in 18F-FDG PET/CT procedures.

  8. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  9. Assessment of personal occupational radiation exposures received by nuclear medicine and oncology staff in Punjab (2003-2012).

    PubMed

    Zafar, T; Masood, K; Zafar, J

    2015-09-01

    The impact of occupational radiation exposures on oncology staff working in the disciplines of Nuclear Medicine (NM), Radiotherapy (RT), and Diagnostic Radiology (DR) is of significance to ensure a health risk free environment. In this study, occupationally received radiation doses amongst Pakistani oncology staff in NM, RT and DR during the period (2003-2012) were assessed. The Film Badge Dosimetry (FBD) technique has been utilized to process over 81,000 films (13,237 workers) concerning the occupationally exposed workers data (2003-2012) at a national scale. The annual effective doses were found to range between 0.30-0.97 mSv for NM, 0.44-1.02 mSv for RT and 0.31-1.09 mSv for DR. The annual effective doses averaged over a period of 10 years were assessed to be 0.63, 0.70 and 0.68 mSv for NM, RT and DR respectively. The exposure data were categorized into three exposure levels (≤0.99, 1-4.99 and 5-9.99 mSv) to establish the staff distribution in these categories. It was found that 89.8-96% in NM, 82-94.5% in RT and 76-96.8% staff workers in DR have received doses within the range from the Minimum Detectable Limit (MDL)--0.99 mSv. The annual effective doses, in all categories, were measured to be less than the recommended annual limit of 20 mSv.

  10. Study of the cost-savings potential of the Military - Civilian Health Services Partnership Program in the nuclear medicine and radioimmunoassay services at Ireland Army Community Hospital, Fort Knox, Kentucky. Master's thesis, July 1987-July 1988

    SciTech Connect

    Amon, T.M.

    1989-01-01

    Using workload data for Calendar Year 1987, a cost savings analysis was performed on the following three options (involving the Nuclear Medicine Department at Ireland Army Community Hospital); (1) Elimination of Radioimmunoassay Internal Service, (2) Civilian Military Health Service Partnership Program and (3) Fixed price contract for Nuclear Medicine Services. This study revealed the Civilian-Military Health Services Partnership Program would potentially generate the greatest cost savings and recommended that it be implemented in other areas throughout the Army Medical Department.

  11. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay.

    PubMed

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-09-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency.

  12. Global detection and identification of components from crude and processed traditional Chinese medicine by liquid chromatography connected with hybrid ion trap and time-of-flight-mass spectrometry.

    PubMed

    Cao, Gang; Zhang, Chengrong; Zhang, Yun; Cong, Xiaodong; Cai, Hao; Cai, Baochang; Li, Xiaomeng; Yao, Jinting

    2011-08-01

    We herein present a chemical profiling method to efficiently process the information acquired by ultra fast liquid chromatography (UFLC)-electrospray ionization source in combination with hybrid ion trap and high-resolution time-of-flight mass spectrometry (UFLC-(ESI)-IT-TOF/MS), facilitating the structural determination of serial components contained in crude or processed traditional Chinese medicine (TCM). Under the optimized UFLC and IT-TOF-MS(n) conditions, over 39 compounds were separated and detected in crude or processed Fructus corni within 25 min. The components were identified by comparing the mass spectra and retention time with reference compounds, or tentatively assigned by elucidating low-energy collision-induced dissociation (CID) fragment ions and matching empirical molecular formula with that of the published compounds. Several factors in the processing procedure were examined. The experimental results demonstrate that the chemical reactions that occurred in the processing procedure can be used to elucidate the processed mechanism of F. corni, which is regularly affected by the processing conditions. This study provides a novel approach and methodology to identify the complicated components from various complex mixtures such as crude TCM, processed TCM, and biological samples. It can be used as a valid analytical method for further understanding the processing mechanism of TCM, along with the intrinsic quality control of TCM and its processed product.

  13. Strategy for Migration of Traditional to Hybrid Control Boards in a Nuclear Power Plant

    SciTech Connect

    Boring, Ronald Laurids; Joe, Jeffrey Clark; Ulrich, Thomas Anthony

    2014-07-01

    This strategy document describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of new digital control room elements in a legacy analog main control room (MCR). Information from previous planning and analysis work serves as the foundation for creating a human-machine interface (HMI) specification for distributed control systems (DCSs) to be implemented as part of nuclear power plant (NPP) modernization. This document reviews ways to take the HMSI specification and use it when migrating legacy displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then an integrated system validation (ISV) in the full-scope control room training simulator. Following successful demonstration of operator performance using the systems during the ISV, the new DCS is implemented at the plant, first in the training simulator and then in the MCR. This document concludes with a sample project plan, including a 15-month timeline from DCS design through implementation. Included is a discussion of how the U.S. Department of Energy’s Human System Simulation Laboratory (HSSL) can be used to support design and V&V activities. This report completes a Level 4 (M4) milestone under the U.S. Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program.

  14. Actinide incineration in fusion-fission hybrid-A model nuclear synergy

    NASA Astrophysics Data System (ADS)

    Taczanowski, Stefan

    2012-06-01

    The alliance of fusion with fission is a cause worthy of great efforts, as being able to ease (if not even to solve) serious problems that both these forms of nuclear energy are facing. Very high investment costs caused by tokamak enormous size, material consumption and difficult technology put in doubt whether alone the minute demand for fuel raw material (Li) and lack of danger of uncontrolled supercriticality prove sufficient for making it competitive. Preliminary evaluations demonstrated that a radical shift of energy production i.e. the energy gain from plasma to fission blanket is feasible [1]. A reduction in the fusion component to about 2% at given system power allows for a radical drop in plasma Q down to the values of ˜0.2-0.3 achievable in small systems [2] (e.g. mirrors) of sizes comparable to fission reactors. As a result in a Fusion-Driven Actinide Incinerator (FDI) both radiations from the plasma: corpuscular (i.e. neutrons and ions) and photons are drastically reduced. Thus are too, first of all - the neutron induced radiation damage: DPA and gas production, then plasma-wall interactions. The fundamental safety of the system has been proved by simulation of its collapse that has shown preservation its subcriticality. Summarizing, all the above problems may be solved with synergic union of fusion with fission embodied in the concept of FDI - small and less expensive.

  15. [Nuclear medicine in oncotherapy].

    PubMed

    Pávics, László; Besenyi, Zsuzsanna

    2015-09-01

    After a brief historical overview, the basic concept of therapy with radionuclides is summarised. This is followed by a review of the physical and biological features of the different radiopharmaceuticals that are available. A clinical application of the different techniques commences with the treatment of differentiated thyroid cancer using radio-iodine. From the various bone-seeking radiopharmceuticals, we opted for the alpha-emitting 223-RaCl2 for treatment purposes. Due to the increasing prevalence of neuroendocrine tumors nowadays, somatostatin receptor and adrenerg analog radiotherapy are discussed. Next, one of the most promising new techniques is presented along with some radioimmunological applications. Lastly, the importance of multidisciplinary cooperation is analysed from the viewpoint of successful individual oncotherapy and safe radionuclide treatment for the benefit of patients.

  16. General Nuclear Medicine

    MedlinePlus

    ... the examination table which slides in between the parallel gamma camera heads which are suspended over the ... energy from the radiotracer in your body. A computer aids in creating the images from the data ...

  17. Cardiac nuclear medicine

    SciTech Connect

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  18. Nuclear Medicine Imaging

    MedlinePlus

    ... taking it by mouth or inhaling it in aerosol form. It travels through your bloodstream to a ... tomándolo vía oral o inhalándolo en forma de aerosol. El radiofár- maco viaja a través del torrente ...

  19. Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss.

    PubMed

    Shan, X H; Ou, X F; Liu, Z L; Dong, Y Z; Lin, X Y; Li, X W; Liu, B

    2009-11-01

    We have reported previously that the most active miniature inverted terminal repeat transposable element (MITE) of rice, mPing, was transpositionally mobilized in several rice recombinant inbred lines (RILs) derived from an introgressive hybridization between rice and wild rice (Zizania latifolia Griseb.). To further study the phenomenon of hybridization-induced mPing activity, we undertook the present study to investigate the element's behavior in a highly asymmetric somatic nuclear hybrid (SH6) of rice and Z. latifolia, which is similar in genomic composition to that of the RILs, though probably contains more introgressed alien chromatins from the donor species than the RILs. We found that mPing, together with its transposase-donor, Pong, underwent rampant transpositional activation in the somatic hybrid (SH6). Because possible effects of protoplast isolation and cell culture can be ruled out, we attribute the transpositional activation of mPing and Pong in SH6 to the process of asymmetric somatic hybridization, namely, one-step introgression of multiple chromatin segments of the donor species Z. latifolia into the recipient rice genome. A salient feature of mPing transposition in the somatic hybrid is that the element's activation was accompanied by massive loss of its original copies, i.e., abortive transpositions, which was not observed in previously reported cases of mPing activity. These data not only corroborated our earlier finding that wide hybridization and introgression may trigger transpositional activation of otherwise quiescent transposable elements, but also suggest that transpositional mobilization of a MITE like mPing can be accompanied by dramatic reduction of its original copy numbers under certain conditions, thus provide novel insights into the dynamics of MITEs in the course of genome evolution. PMID:19711051

  20. Rapid identif ication and comparative analysis of chemical constituents in herbal medicine Fufang decoction by ultra-high-pressure liquid chromatography coupled with a hybrid linear ion trap-high-resolution mass spectrometry.

    PubMed

    Cao, Gang; Chen, Xiaocheng; Wu, Xin; Li, Qinglin; Zhang, Hongyan

    2015-05-01

    This study was conducted to reveal the relation between herbal medicine Fufang decoction and a single drug in terms of material base. Da-Cheng-Qi decoction (DCQD) was used as a model. Ultrahigh-pressure liquid chromatography coupled with a hybrid linear ion trap-high-resolution mass spectrometry (UHPLC-LTQ-Orbitrap) was applied to detect and identify the main chemical compounds. This technique was also employed to determine the different chemical components. Under optimized liquid chromatography and mass spectrometry conditions, 64 components, including iridoids, flavonoids, anthraquinones and coumarins, were separated and tentatively characterized in Da-Cheng-Qi decoction. After decoction, the contents of 18 compounds were markedly changed, and two components were no longer detected in Fufang decoction compared with single-medicine decoction. The established method provided a good example for the rapid identification of complicated polar constituents in herbal medicine prescriptions.

  1. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Hannequin, Pascal Paul

    2015-06-01

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images. Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable. The proposed filters have been applied to nuclear

  2. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis. PMID:25143053

  3. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related

  4. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy Systems

    SciTech Connect

    Bragg-Sitton, Shannon Michelle; Rabiti, Cristian; Kinoshita, Robert Arthur; Kim, Jong Suk; Deason, Wesley Ray; Boardman, Richard Doin; Garcia, Humberto E.

    2015-09-01

    An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This

  5. Introduction, audit and review of guidelines for delegated authorization of nuclear medicine investigations in compliance with the Ionising Radiation (Medical Exposure) Regulations 2000.

    PubMed

    Harris, A M; Greaves, C D; Taylor, C M; Taylor, C; Segasby, C A; Tindale, W B

    2003-08-01

    The introduction of the Ionising Radiation (Medical Exposure) Regulations 2000 in Great Britain required every nuclear medicine investigation to be justified by a practitioner holding an appropriate Administration of Radioactive Substances Committee (ARSAC) certificate. The task of authorizing the radiation exposure may be performed by the practitioner (direct authorization) or delegated to an appropriately trained operator working to written guidelines approved by the practitioner (delegated authorization). In this study, we look at the process of implementation, audit and review of a set of Delegated Authorization Guidelines (DAG). The process of drafting the DAG is outlined. Following the introduction of the DAG, an audit of nuclear medicine referrals was performed at two sites for a period of 3 months. Each referral was compared with the DAG to determine whether it matched the criteria set out. If it did not match, it was further categorized as being due to: (1) insufficient referral information; or (2) clinical indication not included in the DAG. All non-matching requests were reviewed by the practitioner. Four hundred and thirty-seven of 632 (69%) referrals fitted the DAG, 12% (n=75) required clarification from the referrer before fitting with the criteria and 19% (n=120) were directly authorized by the practitioner. From those referrals that were directly authorized, some additional indications were identified and the DAG were subsequently revised. In conclusion, a delegated authorization procedure for nuclear medicine investigations can be implemented successfully. Regular audit is essential. This study identified the need to improve the format of the request card and to obtain additional referral information from the referrer.

  6. Use of Rhenium-188 Liquid-Filled Balloons for Inhibition of Coronary Restenosis After PTCA - A New Opportunity for Nuclear Medicine

    SciTech Connect

    Knapp, F.F., Jr.; Spencer, R.H.; Stabin, M.

    1999-05-13

    Although the use of ionizing radiation for the treatment of benign lesions such as keloids has been available for nearly one hundred years, only recently have the cost effective benefits of such technology for the inhibition of arterial restenosis following controlled vessel damage from balloon angioplasty been fully realized. In particular, the use of balloons filled with solutions of beta-emitting radioisotopes for vessel irradiation provide the benefit of uniform vessel irradiation. Use of such contained ("unsealed") sources is expected to represent a new opportunity for nuclear medicine physicians working in conjunction with interventional cardiologists to provide this new approach for restenosis therapy.

  7. Phylogeny Reconstruction and Hybrid Analysis of Populus (Salicaceae) Based on Nucleotide Sequences of Multiple Single-Copy Nuclear Genes and Plastid Fragments

    PubMed Central

    Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments. PMID:25116432

  8. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sideris, Paul J.; Yew, Rowena; Nieves, Ian; Chen, Kaimin; Jain, Gaurav; Schmidt, Craig L.; Greenbaum, Steve G.

    2014-05-01

    Solid state 7Li and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) experiments are conducted on several cathodes containing CFx-Silver vanadium oxide (CFx-Ag2V4O11) hybrid cathodes discharged to 50% depth of discharge (DoD) and stored at their open-circuit voltage for a period of one and three months. Three carbonaceous sources for the CFx phase are investigated: petroleum coke-based, fibrous, and mixed fibrous. For each hybrid cathode, a measurable increase in the relative amount of lithium fluoride is observed after a three month resting period in both the 7Li and 19F NMR spectra. These changes are attributed to lithium ion migration from the silver vanadium oxide to the CFx phase during the resting period, and help clarify the mechanism behind high power handling capability of this cathode.

  9. Redirection of client/server relationship of X Window system as a simple, low-cost, departmental picture archiving and communication system solution for nuclear medicine.

    PubMed

    Datz, F L; Baune, D A; Christian, P E

    1994-08-01

    Picture archiving and communication systems (PACS) offer significant advantages over current film-management techniques. However, PACS are complex and expensive, factors that have limited their entry into the radiology and nuclear medicine communities. We present a simple, low-cost PACS solution that allows viewing of images from different computer systems by redirection of the X Window system. In this technique, multiple copies of the imaging software are remotely opened from generic UNIX workstations interfaced to the main computer system via Transmission Control Protocol/Internet Protocol over Ethernet. The X Window system that provides the windowing system for the main computer is redirected to the workstations' displays. With this technique, viewing and processing of images on a remote station is virtually identical to working at the main computer's console. The technique requires that the commercial imaging system's hardware, operating system, and imaging software support multiuser multitasking and the execution of multiple copies of its imaging software, and that they use X Windows as the graphical system. Advantages of the technique include low cost, ease of maintenance, ease of interconnecting different types of computers, the capacity to view images regardless of file format, and the capacity to both view and process images. The latter is a necessity for modalities such as nuclear medicine. A disadvantage of the technique is that the number of nodes that can be supported is limited.

  10. Redirection of client/server relationship of X Window system as a simple, low-cost, departmental picture archiving and communication system solution for nuclear medicine.

    PubMed

    Datz, F L; Baune, D A; Christian, P E

    1994-08-01

    Picture archiving and communication systems (PACS) offer significant advantages over current film-management techniques. However, PACS are complex and expensive, factors that have limited their entry into the radiology and nuclear medicine communities. We present a simple, low-cost PACS solution that allows viewing of images from different computer systems by redirection of the X Window system. In this technique, multiple copies of the imaging software are remotely opened from generic UNIX workstations interfaced to the main computer system via Transmission Control Protocol/Internet Protocol over Ethernet. The X Window system that provides the windowing system for the main computer is redirected to the workstations' displays. With this technique, viewing and processing of images on a remote station is virtually identical to working at the main computer's console. The technique requires that the commercial imaging system's hardware, operating system, and imaging software support multiuser multitasking and the execution of multiple copies of its imaging software, and that they use X Windows as the graphical system. Advantages of the technique include low cost, ease of maintenance, ease of interconnecting different types of computers, the capacity to view images regardless of file format, and the capacity to both view and process images. The latter is a necessity for modalities such as nuclear medicine. A disadvantage of the technique is that the number of nodes that can be supported is limited. PMID:7948169

  11. DOSE MEASUREMENTS TO THE LENS IN NUCLEAR MEDICINE AND IN FLUOROSCOPY-GUIDED INTERVENTIONAL PROCEDURES: ANALYSIS OF THE RESULTS AND ASSESSMENT OF THE EFFECTIVENESS OF PROTECTIVE EYEWEAR ANTI-X.

    PubMed

    Sarti, G; Busca, F; Carpano, L; Dottore, F Del; Dall'ara, D; Sanniti, S

    2016-09-01

    The new limit of 20 mSv to the lens raises the need for further assessment of the equivalent dose to the lens for nuclear medicine and interventional radiology operators. (a) A measurement campaign was performed in nuclear medicine, (b) a routine monitoring was organised in interventional procedures and (c) the effectiveness of protective eyewear was assessed. In nuclear medicine, for photon fields, the adequacy of Hp(0.07) of dosemeter worn on the trunk is confirmed; with (90)Y, the annual values of Hp(3) measured in therapeutic session are <5 mSv. In interventional procedures, routine monitoring of the dose to the lens must be maintained where the values of Hp(0.07) dosemeter worn on the trunk are higher than one-third of the new limits. The measures carried out have shown that the attenuation factor mean of the protective glasses is equal to ∼4 (range 1.7-11.4).

  12. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  13. Trypanosoma cruzi Genotypes of Insect Vectors and Patients with Chagas of Chile Studied by Means of Cytochrome b Gene Sequencing, Minicircle Hybridization, and Nuclear Gene Polymorphisms

    PubMed Central

    Arenas, Marco; Campos, Ricardo; Coronado, Ximena; Ortiz, Sylvia

    2012-01-01

    Abstract Fifty-six Trypanosoma cruzi stocks from Chile and neighboring countries and different hosts, humans, and Triatoma infestans and Mepraia sp., vectors of domiciliary and natural environments were characterized by using three molecular markers. These were cytochrome b (Cyt b) gene sequencing, minicircle DNA blotting, and hybridization with five genotype-specific DNA probes and nuclear analysis of 1f8 and gp72 by polymerase chain reaction–restriction fragment length polymorphism. The results with all three molecular markers are concordant, with minor limitations, grouping T. cruzi stocks into four discrete typing units (DTUs) (TcI, TcII, TcV, and TcVI). TcI and TcII stocks were heterogeneous. TcI and TcII stocks were clustered in two main subgroups determined by Cyt b gene sequencing and minicircle hybridization. However, TcV and TcVI stocks were homogeneous and not differentiated by Cyt b gene sequencing or minicircle DNA hybridization. The discriminatory power and limitations of the molecular markers are discussed, as well as the distribution of the four DTUs in the domiciliary and sylvatic transmission cycles of Chile and the limitations of each marker for molecular epidemiological studies performed with T. cruzi stocks rather than the analysis of direct T. cruzi samples from natural hosts. PMID:22022808

  14. Textbook of respiratory medicine

    SciTech Connect

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis.

  15. Investigation into developmental potential and nuclear/mitochondrial function in early wood and plains bison hybrid embryos.

    PubMed

    Seaby, R P; Mackie, P; King, W A; Mastromonaco, G F

    2012-08-01

    Studies to date have shown that bison embryo development in vitro is compromised with few embryos developing to the blastocyst stage. The aim of this study was to use bison-cattle hybrid embryos, an interspecific cross that is known to result in live offspring in vivo, as a model for assessing species-specific differences in embryo development in vitro. Cattle oocytes fertilized with cattle, plains bison and wood bison sperm were assessed for various developmental parameters associated with embryo quality, including cell number, apoptosis and ATP content. Decreased development to the blastocyst stage was observed in hybrid wood bison embryos compared with the other treatment groups. Although both wood bison and plains bison hybrid blastocysts had significantly lower cell numbers than cattle blastocysts, only wood bison hybrid blastocysts had a greater incidence of apoptosis than cattle blastocysts. Among the treatment groups, ATP levels and expression profiles of NRF1, TFAM, MT-CYB, BAX and BCL2 were not significantly different in both 8- to 16-cell stage and blastocyst stage embryos. These data provide evidence of decreased developmental competence in the wood bison hybrid embryos, owing to inadequate culture conditions that have increased apoptotic events.

  16. Simulation of Thermal Responses of 125TeO2 Solid Target to Energetic Proton Bombardment from Cyclotron When Fabricating 124I Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Peir, Jinn-Jer; Liang, Jenq-Horng; Duh, Ting-Shieh

    With nuclear medicine receiving greater attention due to its unique characteristics in both diagnostics and therapeutics during recent decades, finding a highly controllable fabrication method becomes more urgent. The radioisotope 124I (T1/2=4.18d Eβ+=2.13MeV Iβ+=25%) has gained plentiful interests in the medical usages such as functioning imaging of cell proliferation in brain tumors using [124I]iododeoxyuridine (IUdR), imaging of immunoreactions in tumors using 124I-labelled monoclonal antibodies, the in-vivo imaging of 124I-labelled tyrosine derivatives, and the classical imaging of thyroid diseases with 124I, among others. Furthermore, it is because that thermal response of target during the fabrication process may affect the production of 124I to some extent and needs thorough investigations. Hence, the compact cyclotron located in the Institute of Nuclear Energy Research was employed in this study to generate 20MeV protons to irradiate TeO2 solid targets in which the radioisotopes 124I were produced through the 125Te(p, 2n)124I nuclear reaction. In addition, the widely-used ANSYS computer code was adopted to theoretically analyze thermal responses of TeO2 to irradiation cases with variations in ion beam current and its thermal conductivity. The results indicate that TeO2 temperature is strongly dependent on its thermal conductivity and ion beam current. In particular, TeO2 surface temperature is extremely sensitive to the air-gap size between TeO2 and target holder. Thus the target holder is suggested to be re-designed in order to prevent TeO2 from melting and a high efficiency production of radioisotopes 124I for nuclear medical diagnostics can be successfully achieved.

  17. Proficiency tests in the determination of activity of radionuclides in radiopharmaceutical products measured by nuclear medicine services in 8 years of comparison programmes in Brazil.

    PubMed

    Tauhata, Luiz; Iwahara, Akira; de Oliveira, Antonio E; Rezende, Eduarda Alexandre; Delgado, José Ubiratan; da Silva, Carlos José; Dos Santos, Joyra A; Nícoli, Ieda G; Alabarse, Frederico G; Xavier, Ana Maria

    2008-01-01

    Proficiency tests were applied to assess the performance of 74 nuclear medicine services in activity measurements of (131)I, (123)I, (99)Tc(m), (67)Ga and (201)Tl. These tests produced 913 data sets from comparison programmes promoted by the National Laboratory for Ionizing Radiation Metrology (LNMRI) from 1999 to 2006. The data were evaluated against acceptance criteria for accuracy and precision and assigned as Acceptable or Not acceptable accordingly. In addition, three other statistical parameters were used as complementary information for performance evaluation which related to normative requirements and to radionuclide calibrators. The results have shown a necessity to improve quality control procedures and unsatisfactory performances of radionuclide calibrators, which incorporate Geiger-Müller detectors.

  18. Proficiency tests in the determination of activity of radionuclides in radiopharmaceutical products measured by nuclear medicine services in 8 years of comparison programmes in Brazil.

    PubMed

    Tauhata, Luiz; Iwahara, Akira; de Oliveira, Antonio E; Rezende, Eduarda Alexandre; Delgado, José Ubiratan; da Silva, Carlos José; Dos Santos, Joyra A; Nícoli, Ieda G; Alabarse, Frederico G; Xavier, Ana Maria

    2008-01-01

    Proficiency tests were applied to assess the performance of 74 nuclear medicine services in activity measurements of (131)I, (123)I, (99)Tc(m), (67)Ga and (201)Tl. These tests produced 913 data sets from comparison programmes promoted by the National Laboratory for Ionizing Radiation Metrology (LNMRI) from 1999 to 2006. The data were evaluated against acceptance criteria for accuracy and precision and assigned as Acceptable or Not acceptable accordingly. In addition, three other statistical parameters were used as complementary information for performance evaluation which related to normative requirements and to radionuclide calibrators. The results have shown a necessity to improve quality control procedures and unsatisfactory performances of radionuclide calibrators, which incorporate Geiger-Müller detectors. PMID:18346902

  19. A novel device for automatic withdrawal and accurate calibration of 99m-technetium radiopharmaceuticals to minimise radiation exposure to nuclear medicine staff and patient.

    PubMed

    Nazififard, Mohammad; Mahdizadeh, Simin; Meigooni, A S; Alavi, M; Suh, Kune Y

    2012-09-01

    A Joint Automatic Dispenser Equipment (JADE) has been designed and fabricated for automatic withdrawal and calibration of radiopharmaceutical materials. The thermoluminescent dosemeter procedures have shown a reduction in dose to the technician's hand with this novel dose dispenser system JADE when compared with the manual withdrawal of (99m)Tc. This system helps to increase the precision of calibration and to minimise the radiation dose to the hands and body of the workers. This paper describes the structure of this device, its function and user-friendliness, and its efficacy. The efficacy of this device was determined by measuring the radiation dose delivered to the hands of the nuclear medicine laboratory technician. The user-friendliness of JADE has been examined. The automatic withdrawal and calibration offered by this system reduces the dose to the technician's hand to a level below the maximum permissible dose stipulated by the international protocols. This research will serve as a backbone for future study about the safe use of ionising radiation in medicine.

  20. [Henri Beckquerel's discovery of radioactivity, and history of nuclear medicine. 100 years in the shadow or on the shoulder of Röntgen].

    PubMed

    Rootwelt, K

    1996-12-10

    In 1896 Henri Becquerel discovered that uranium emitted penetrating rays similar to X-rays. His finding started a series of discoveries that were rewarded with numerous Nobel prizes. Marie and Pierre Curie found that thorium was radioactive too, and discovered and described two new elements, polonium and radium. They also found that radioactive radiation could be separated into alpha, beta and gamma rays. In 1993 their daughter Irene Joliot-Curie and her husband Frederic Joliot managed to produce radioactivity artificially by bombarding atomic nuclei with alpha particles. Enrico Fermi did likewise, but bombarded the nuclei with neutrons. In the cyclotron invented by Ernest Lawrence, radioactive isotopes were produced by proton bombardment. The ability to produce radioisotopes of different elements initiated a variety of tracer studies in biology and medicine. The number of studies increased exponentially when the nuclear reactor in Oak Ridge, US, was opened for radionuclide production in 1946. This article summarises the history of the application of radionuclides in science and medicine internationally and in Norway until now.