Science.gov

Sample records for hybrid organic-inorganic nanomaterials

  1. Characterization of medium-range order in organic-inorganic hybrid nanomaterials by fluctuation x-ray microscopy.

    SciTech Connect

    Fan, L.; Paterson, D.; McNulty, I.; Treacy, M. M. J.; Kumar, D.; Du, P.; Wiesner, U.; Gibson, J. M.; Experimental Facilities Division; Arizona State Univ.; Cornell Univ.

    2006-01-01

    Medium-range order (MRO) is crucial for understanding the nature of defects, mechanical behaviors, rheology in polymers, order-disorder processes and nucleation, etc. Measuring MRO is a challenging problem. Recently, we have developed fluctuation x-ray microscopy (FXM), which offers quantitative insight into MRO in materials at the micrometer scale. In this paper, we have applied our further-developed technique for characterization of MRO in nanomaterials. The study of mesostructured polymer-inorganic hybrid materials is an exciting, emerging research area offering enormous scientific and technological promise. The ability to control the shape, size and order of hybrid materials is a key requirement for their future development. By choice of the appropriate block copolymer system and inorganic precursors, the shape and size of the hybrid materials can be controlled at the nanometer scale. However, the control of formation and ordering of the nanostructures with medium to long range order remains a challenge that limits advances in many fields of nanotechnology. By using FXM here we examine the influence of sol-gel process variables on medium range order. The FXM method is described elsewhere. Two hybrids of PI-b-PEO/aluminosilicates with {approx}20nm phase separation length scale were prepared using known procedures. The PI-b-PEO amphiphilic block copolymer was synthesized via anionic polymerization techniques. Hybrids were fabricated by dissolving 0.05 g of PI-b-PEO in tetrahydrofuran (THF) (sample A) or a THF/chloroform mixture (28/72 v/v) (sample B) and adding 0.3 g of pre-hydrolyzed sol-gel inorganic precursors (3-glycidyloxypropyl-trimethoxysilane and aluminum-tri-secbutoxide). Samples were spin coated onto Si{sub 3}N{sub 4} windows on Si substrate. Both samples were UV/ozone treated for degrading the isoprene components in order to increase contrast for x-ray scattering experiments. The sample A was further cacinated at 350 C to remove all organic components

  2. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  3. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  4. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  5. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  6. Natural hybrid organic-inorganic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  7. Special section guest editorial: Hybrid organic-inorganic solar cells

    DOE PAGES

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  8. Special section guest editorial: Hybrid organic-inorganic solar cells

    SciTech Connect

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  9. Hybrid organic-inorganic electrolytic capacitors.

    PubMed

    Stura, Enrico; Erokhin, Victor; Nicolini, Claudio

    2002-12-01

    Organic capacitors are among the most significant applications of conductive polymers, allowing the realization of lightweight and flexible dispositives. The main drawback of completely organic capacitors is the very low dielectric rigidity, due to irregular surface of the polymer-polymer interface. This paper describes our hybrid solution using aluminum electrodes, with the very important characteristic of easy connection between contacts of the discrete dispositive and electrodes. Chemical, technological, and functional tests have been conducted to estimate the effective values of this device, and natural properties of self-healing and nonpolarity have been investigated.

  10. Novel organic-inorganic hybrid mesoporous materials and nanocomposites

    NASA Astrophysics Data System (ADS)

    Feng, Qiuwei

    Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A

  11. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects.

    PubMed

    Lee, Seung Woo; Cheon, Seon Ah; Kim, Moon Il; Park, Tae Jung

    2015-01-01

    Organic-inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five major types of hybrid nanoflowers are discussed, i.e., copper-protein, calcium-protein, and manganese-protein hybrid nanoflowers, copper-DNA hybrid nanoflowers, and capsular hybrid nanoflowers. The structural features of these nanoflowers, such as size, shape, and protein ratio generally determine their applications. Thus, the specific characteristics of hybrid nanoflowers are summarized in this review. The interfacial mechanism of nanoflower formation is examined in three steps: first, combination of metal ion and organic matter; second, formation of petals; third, growth of nanoflowers. The explanations provided herein can be utilized in the development of innovative approaches for the synthesis of hybrid nanoflowers for prospective development of a plethora of hybrid nanoflowers. The future prospects of hybrid nanoflowers in the biotechnology industry, medicine, sensing, and catalysis are also discussed.

  12. Organic/inorganic hybrid materials: challenges for ab initio methodology.

    PubMed

    Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten

    2014-11-18

    CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in

  13. Organic/inorganic hybrid materials: challenges for ab initio methodology.

    PubMed

    Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten

    2014-11-18

    CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in

  14. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    PubMed

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices.

  15. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  16. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    PubMed

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices. PMID:27267266

  17. Organic-Inorganic Hybrids Using Novel Phenylethynyl Imide Silanes

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.

    2001-01-01

    In this presentation, polyimide-silica hybrids using novel phenylethynyl imide silanes are reported. The phenylethynyl group is present in the organic precursor as either a pendent or an end group to bond chemically with the polyimide adhesive containing phenylethynyl groups during processing, while the silane group of the organic precursor would chemically react with the inorganic precursor through oxane bond formation. The chemical compositions of these novel hybrids were examined using X-ray mapping modes of scanning electron microscopy (SEM), which revealed a silicon gradient interphase between the high surface energy substrate and the polyimide adhesive. Novel aromatic phenylethynyl imide silanes (APEISs) and pendent phenylethynyl imide oligomeric disilanes (PPEIDSs) have been synthesized, and sol-gel solutions containing the new silanes, a phenylethynyl terminated imide oligomer (PETI-5), and an inorganic precursor were formulated to develop a gradient hybrid interphase between a titanium alloy and the adhesive. Two different sol-gel systems were investigated to develop organic-inorganic hybrids. Hybrid I was composed of an organic precursor containing both phenylethynyl and silane groups (PPEIDS) and an inorganic precursor. Functional group concentrations were controlled by the variation of the molecular weight of the imide backbone of PPEIDS. Hybrid II was composed of organic and inorganic precursors and a coupling agent containing both phenylethynyl and silane groups. Morphology and chemical composition of the hybrid interphase between the inorganic substrate and the adhesive were investigated, and the bond strength and durability were evaluated using lap shear tests at various conditions. The assessment of how the bonding at an interface is affected by various sol-gel solution compositions and environments is reported.

  18. Novel organic-inorganic hybrid materials for optical interconnects

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuo

    2011-01-01

    Optical materials in the optical printed circuit board are required to overcome soldering process. In detail, the material should not have absorption and shape changes after several tens of seconds heating at around 250°C. For such application field, we have developed a novel organic-inorganic hybrid material having a high thermal stability and low absorption at telecom wavelength. The material is designed to UV and/or Thermal curable resin, and soluble to popular organic solvents. We fabricated a rigid optical waveguides on a SiO2/Si wafers by UV lithography. The size of waveguide was 40 μm in width, 30 μm in height, and 7 cm in length. Optical attenuation of the waveguide measured by the cut back method was 0.1 dB/cm at 850 nm, 0.29 dB/cm at 1310 nm, and 0.45 dB/cm at 1550 nm. These values are good low attenuation for the Near-IR optical communication. The 5% weight loss temperature of the UV cured material was 402°C. The waveguide showed almost no attenuation increase even after 1min heating at 300°C. In addition, the material is having a high refractive index of n=1.60 at 633 nm and a low curing shrinkage of 4.7%. We have demonstrated to fabricate a bulk body sample by UV curing, and obtained high uniformity cured materials with 5 mm-thick and 1 cm-diameter. From these properties, the developed organic-inorganic material is expected to be beneficial for the optical interconnection such as micro lenses and optical packages.

  19. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks.

    PubMed

    Chen, Yu; Shi, Jianlin

    2016-05-01

    Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials.

  20. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  1. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization.

  2. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization. PMID:27377145

  3. Hybrid organic/inorganic resonators for sensing and telecommunications applications

    NASA Astrophysics Data System (ADS)

    Armani, Andrea M.; Deka, Nishita; Harker, Audrey; Maker, Ashley J.; Mehrabani, Simin

    2013-03-01

    Historically, integrated photonic devices have been fabricated from inorganic material systems, such as silicon, silicon nitride, silica and gallium arsenide. As a result of their inherently low material loss and compatibility with nanofabrication tools, high performance waveguides and resonant cavities have been demonstrated. However, to achieve many of the desired performance metrics, it is necessary to implement active stabilization systems. For example, as a result of the thermo-optic effect, the resonant wavelength of a microcavity will change with temperature, resulting in an unpredictable resonant wavelength without temperature stabilization. Therefore, new materials and material systems are desired. One approach is to combine the inorganic materials conventionally used in telecommunications with organic polymeric materials. These hybrid systems offer the ability to tune the optical and mechanical properties of the inorganic materials, achieving athermal or temperature-independent performance. Additionally, given the wide range of polymeric material available, new material systems with previously unrealized behavior are possible; for example, materials which mechanically respond to UV, humidity and specific chemicals. Using silica toroidal whispering gallery mode resonant cavities as the device platform, a series of hybrid organic/inorganic resonators were fabricated. Several different types of organic layers were studied, varying both the specific polymeric material and the deposition method. For example, polyisobutylene was coated on the devices using either a spin-coating method or a surface initiated cationic polymerization process. With the wide range of possible organic materials, many different devices have been fabricated, including athermal devices, humidity and bio/chemical sensors, and microlasers.

  4. Nanocomposites for organic and hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Reale, A.; Brown, T. M.; Di Carlo, A.; Giannini, F.; Brunetti, F.; Leonardi, E.; Lucci, M.; Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Toschi, F.; Sessa, V.

    2006-08-01

    The importance of nanocomposites materials such as carbon nanotubes-polymers composites for the efficient realization of innovative solar cells based on organic as well hybrid organic-inorganic solar cells is more and more evident. We present a study on the realization of dye sensitized solar cells (DSSC) and sublimation deposited solar cells, considering the impact of using nanocomposite materials in the different sections composing the cells. We discuss the effect of using poly-3,4-ethylene dioxythiophene/poly(styrene sulfonate) (PEDOT/PSS)-Carbon nanotube (CNT) blend as counterelectrode in DSSC on the cell efficiency and fill factor, also considering DSSC structures where low cost, innovative dyes are used. Nanocomposites can be used as solution processed or electropolimerized electrodes, where accurate control of nanotube dispersion is obtained through specific chemical treatment of Carbon nanotubes solubility. The use of Carbon based nanostructured material is also investigated in terms of their positive impact on the realization of organic solar cells on flexible substrates.

  5. Organic-inorganic hybrid solar cells via electropolymerization

    NASA Astrophysics Data System (ADS)

    Feng, Wenchun

    /ZnO photovoltaics. Our electropolymerization approach to integrate the organic and inorganic phases aims at understanding the chemistry at the interface, and the electronic and morphological properties of the system. This work should be generally applicable to other conjugated polymers and nanostructures, and it contributes to an understanding of organic-inorganic interfaces and electronic structures that may be advantageous to a range of electronic/photonic applications.

  6. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  7. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    NASA Technical Reports Server (NTRS)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  8. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  9. Hybrid Organic-Inorganic Perovskites on the Move.

    PubMed

    Egger, David A; Rappe, Andrew M; Kronik, Leeor

    2016-03-15

    Hybrid organic-inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much "softer" mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly

  10. Hybrid Organic-Inorganic Perovskites on the Move.

    PubMed

    Egger, David A; Rappe, Andrew M; Kronik, Leeor

    2016-03-15

    Hybrid organic-inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much "softer" mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly

  11. Air stable organic-inorganic nanoparticles hybrid solar cells

    DOEpatents

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  12. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor

    NASA Astrophysics Data System (ADS)

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2013-12-01

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2

  13. Biomedical Applications of Magnetically Functionalized Organic/Inorganic Hybrid Nanofibers

    PubMed Central

    Lee, Hwa-Jeong; Lee, Sang Joon; Uthaman, Saji; Thomas, Reju George; Hyun, Hoon; Jeong, Yong Yeon; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Nanofibers are one-dimensional nanomaterial in fiber form with diameter less than 1 µm and an aspect ratio (length/diameter) larger than 100:1. Among the different types of nanoparticle-loaded nanofiber systems, nanofibers loaded with magnetic nanoparticles have gained much attention from biomedical scientists due to a synergistic effect obtained from the unique properties of both the nanofibers and magnetic nanoparticles. These magnetic nanoparticle-encapsulated or -embedded nanofiber systems can be used not only for imaging purposes but also for therapy. In this review, we focused on recent advances in nanofibers loaded with magnetic nanoparticles, their biomedical applications, and future trends in the application of these nanofibers. PMID:26084046

  14. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R. (Inventor); Dong, Wenting (Inventor); Deshpande, Kiranmayi (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  15. A highly crystalline microporous hybrid organic-inorganic aluminosilicate resembling the AFI-type zeolite.

    PubMed

    Bellussi, Giuseppe; Millini, Roberto; Montanari, Erica; Carati, Angela; Rizzo, Caterina; Parker, Wallace O; Cruciani, Giuseppe; de Angelis, Alberto; Bonoldi, Lucia; Zanardi, Stefano

    2012-07-28

    ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type. PMID:22717682

  16. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel process.

    PubMed

    Boury, Bruno; Corriu, Robert J P

    2002-04-21

    Silica-based hybrid organic-inorganic materials prepared by sol-gel chemistry exhibit chemical and physical properties revealing their anisotropic organisation. Besides the opportunities that this phenomenon opens for the preparation of new materials, it also provides arguments to the chemist looking for a better comprehension and control of the organisation of solids.

  17. Hybrid organic-inorganic network coatings for protecting metal substrates from abrasion and corrosion

    SciTech Connect

    Jordens, K.; Wilkes, G.

    1996-12-31

    Ceramers or Ormocers are hybrid organic-inorganic materials first created a decade ago, and are the subject of a recent review article. Recent research from the authors laboratory in this area of materials science has focused on synthesizing protective coatings for (soft) polymeric substrates, i.e. polycarbonate. The authors have now extended the application of such coatings to metallic substrates.

  18. Organic-inorganic hybrid gels for the selective absorption of oils from water.

    PubMed

    Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal

    2016-06-01

    Organic-inorganic hybrid gels were synthesized by the condensation of a linear aliphatic diol (1,8-octanediol) and altering the chain length of the alkyltriethoxysilanes (from ethyltriethoxysilane to hexadecyltrimethoxysilane) through a bulk polymerization process without using any initiator, activator, catalyst, or solvent for the selective removal of oils from water. Fourier transform infrared spectroscopy (FTIR) and solid-state (13)C and (29)Si cross-polarization magic-angle spinning nuclear magnetic resonance (CPMAS NMR) were used for the structural analysis of hybrid gels. Thermal properties of the hybrid gels were determined by thermogravimetric analysis (TGA). Oil absorbency of organic-inorganic hybrid gels was determined by oil absorption tests. The results showed that hybrid gels have high and fast absorption capacities and excellent reusability. Good selectivity, high thermal stability, low density, and excellent recyclability for the oil removal give the material potential applications. PMID:26939691

  19. Organosilica: Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks (Adv. Mater. 17/2016).

    PubMed

    Chen, Yu; Shi, Jianlin

    2016-05-01

    Organic-inorganic hybrid materials can combine the advantages of organic and inorganic materials, and overcome their drawbacks accordingly. On page 3235, Y. Chen and J. L. Shi review and discuss research progress on the design, synthesis, structure, and composition control of organic-inorganic hybrid mesoporous organosilica nanoparticles (MONs). Extensive applications of MONs in nanotechnology, mainly in nanomedicine, nanocatalysis and nanofabrication are discussed.

  20. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor.

    PubMed

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2014-01-01

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.

  1. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials.

    PubMed

    Rickert, Paul G; Antonio, Mark R; Firestone, Millicent A; Kubatko, Karrie-Ann; Szreder, Tomasz; Wishart, James F; Dietz, Mark L

    2007-05-10

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature "liquid POM" comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  2. A New Organic/Inorganic Hybrid with High Electrorheological Activity

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Duan, X.

    In-situ sol-gel method to prepare colloidal hybrids of surfactant modified polysucchride and titanium oxide has been presented, and experiments indicated these highly ER active particles exhibited a remarkable ER effect. The static shear stress can be up to 37 k Pa (shear rate 5 S-1) under DC field of 4 kV/mm at root temperature, well above that of simple blends of starch and TiO2. In the meanwhile, temperature dependence and sedimentation stability were also greatly improved. Based on recent experimental facts, we find that dielectric properties and surface (interface) activity are two necessary conditions fulfilling the requirement of high ER activity. Adequate grinding of particles with oil can effectively enhance the shear stress, which may be owed to the decline of the activation energy needed for restructuring. It has provided us a new horizon for preparation of excellent ER materials and further studies should be continued to make.

  3. Integrated optics structures on sol-gel derived organic-inorganic hybrids for optical communications

    NASA Astrophysics Data System (ADS)

    André, P. S.; Vicente, C. M. S.; Fernandes, V.; Marques, C. A. F.; Pecoraro, E.; Nogueira, R. N.; Wada, N.; Carlos, L. D.; Marques, P. G.; Ferreira, R. A. S.

    2011-05-01

    Organic-inorganic hybrid materials are a technologically key class of advanced multifunctional materials that fulfil the challenging strict requirements of the beginning of the century: higher levels of sophistication, miniaturisation, recyclability, reliability and low energy consumption with potential to be used as low-cost components in optical networks operating at high bit rates. In this work, high-rejection optical filters (19 dB) first-order Bragg gratings inscribed in channel waveguides written in thin films of sol-gel derived organic-inorganic hybrid based on methacrylic acid modified zirconium tetrapropoxide, Zr(OPrn)4, (so-called di-ureasils), using UV-laser direct-write method.

  4. Multisite organic-inorganic hybrid catalysts for the direct sustainable synthesis of GABAergic drugs.

    PubMed

    Leyva-Pérez, Antonio; García-García, Pilar; Corma, Avelino

    2014-08-11

    Multisite organic-inorganic hybrid catalysts have been prepared and applied in a new general, practical, and sustainable synthetic procedure toward industrially relevant GABA derivatives. The domino sequence is composed of seven chemical transformations which are performed in two one-pot reactions. The method produces both enantiomeric forms of the product in high enantiopurity as well as the racemate in good yields after a single column purification step. This protocol highlights major process intensification, catalyst recyclability, and low waste generation.

  5. Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters.

    PubMed

    Fang, Hong; Jena, Puru

    2016-04-21

    We show that the electronic properties, including the band gap, the gap deformation potential, and the exciton binding energy as well as the chemical stability of organic-inorganic hybrid perovskites can be traced back to their corresponding molecular motifs. This understanding allows one to quickly estimate the properties of the bulk semiconductors from their corresponding molecular building blocks. New hybrid perovskite admixtures are proposed by replacing halogens with superhalogens having compatible ionic radii. The mechanism of the boron-hydride based hybrid perovskite reacting with water is investigated by using a cluster model. PMID:27064550

  6. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  7. Design and synthesis of organic-inorganic hybrid capsules for biotechnological applications.

    PubMed

    Shi, Jiafu; Jiang, Yanjun; Wang, Xiaoli; Wu, Hong; Yang, Dong; Pan, Fusheng; Su, Yanlei; Jiang, Zhongyi

    2014-08-01

    Organic-inorganic hybrid capsules, which typically possess a hollow lumen and a hybrid wall, have emerged as a novel and promising class of hybrid materials and have attracted enormous attention. In comparison to polymeric capsules or inorganic capsules, the hybrid capsules combine the intrinsic physical/chemical properties of the organic and inorganic moieties, acquire more degrees of freedom to manipulate multiple interactions, create hierarchical structures and integrate multiple functionalities. Thus, the hybrid capsules exhibit superior mechanical strength (vs. polymeric capsules) and diverse functionalities (vs. inorganic capsules), which may give new opportunities to produce high-performance materials. Much effort has been devoted to exploring innovative and effective methods for the synthesis of hybrid capsules that exhibit desirable performance in target applications. This tutorial review firstly presents a brief description of the capsular structure and hybrid materials in nature, then classifies the hybrid capsules into molecule-hybrid capsules and nano-hybrid capsules based upon the size of the organic and inorganic moieties in the capsule wall, followed by a detailed discussion of the design and synthesis of the hybrid capsules. For each kind of hybrid capsule, the state-of-the-art synthesis methods are described in detail and a critical comment is embedded. The applications of these hybrid capsules in biotechnological areas (biocatalysis, drug delivery, etc.) have also been summarized. Hopefully, this review will offer a perspective and guidelines for the future research and development of hybrid capsules.

  8. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications.

    PubMed

    Andrade, G; Barbosa-Stancioli, E F; Piscitelli Mansur, A A; Vasconcelos, W L; Mansur, H S

    2006-12-01

    The purpose of this study was to develop novel hybrid organic-inorganic materials based on poly(vinyl alcohol) (PVA) polymer chemically crosslinked network to be tested as solid support on bovine herpesvirus immunoassay. Hybrids were synthesized by reacting PVA with three different alkoxysilanes modifying chemical groups: tetraethoxysilane (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). PVA-derived hybrids were also modified by chemically crosslinking with glutaraldehyde (GA) during the synthesis reaction. In order to investigate the structure in the nanometer-scale, PVA-derived hybrids were characterized by using small-angle x-ray scattering synchrotron radiation (SAXS) and x-ray diffraction (XRD). PVA hybrids' chemical functionalities and their interaction with herpesviruses were also characterized by Fourier transform infrared spectroscopy (FTIR). The bioactivity assays were tested through enzyme linked immunosorbent assay (ELISA). SAXS results have indicated nano-ordered disperse domains for PVA hybrids with different x-ray scattering patterns for PVA polymer and PVA-derived hybrids. FTIR spectra have shown major vibration bands associated with organic-inorganic chemical groups present in the PVA, PVA-derived by silane modifier and PVA chemically crosslinked by GA. The immunoassay results have shown that PVA hybrids with chemically functionalized structures regulated to some extent the specific bioimmobilization of herpesvirus onto solid phase. We think that it is due to the overall balance of forces associated with van der Waals interaction, hydrophilic and hydrophobic forces and steric hindrance acting at the surface. PVA and PVA-derived hybrid materials were successfully produced with GA crosslinking in a nanometer-scale network. Also, such a PVA-based material could be advantageously used in immunoassays with enhanced specificity for diagnosis.

  9. Facile fabrication of organic-inorganic hybrid beads by aminated alginate enabled gelation and biomimetic mineralization.

    PubMed

    Li, Jian; Wu, Hong; Liang, Yanpeng; Jiang, Zhongyi; Jiang, Yanjun; Zhang, Lei

    2013-01-01

    Inspired by biomineralization, design and preparation of biomimetic organic-inorganic composites have become a hot issue and a research frontier in many areas, including enzyme engineering. In this research, a unique and facile method for fabricating organic-inorganic hybrid beads is proposed. Modified alginate with a dual function of gelation and mineralization was synthesized for fabrication of hybrid carriers for enzyme immobilization. With the aid of EDC/NHS conjugation chemistry, the amine groups from diethylene triamine were grafted onto alginate in a controllable way. The resultant aminated alginate served manifold functions: forming a hydrogel via Ca(2+)-cross-linking, inducing the biomimetic silicification and manipulating the distribution of silica nanoparticles. Owing to the compact polymer network structure and the homogeneous silica nanoparticle dispersion, the as-prepared NH2-alginate/silica hybrid beads displayed superior swelling resistance and mechanical stability to pure alginate beads. The hybrid beads were subsequently utilized for encapsulation of yeast alcohol dehydrogenase (YADH). It was found that the thermal stability, pH tolerance and storage stability of the immobilized enzyme were all improved without significantly lowering the catalytic activity.

  10. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    PubMed

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-01

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications. PMID:27516265

  11. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    PubMed

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-01

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications.

  12. Electrochemical formation and optoelectronic property of hybrid organic/inorganic heterostructure of PPy/GaN

    NASA Astrophysics Data System (ADS)

    Hu, Li-Feng; Wang, Feng-Xia; Deng, Feng-Xiang; Zhao, Yu; Pan, Ge-Bo

    2014-02-01

    A new hybrid organic/inorganic heterostructure of p-type polypyrrole (PPy) and n-type gallium nitride (GaN) was fabricated by means of electrodeposition and characterized. The Raman spectra indicated that the GaN substrate had an obvious enhancement of Raman scattering of the PPy, and the PL spectra revealed that the excitonic emission and recombination were partially quenched at the PPy/GaN interface. Moreover, the prototype devices were fabricated on the basis of the PPy/GaN heterostructures. The current-voltage characteristics of the devices in dark and under ultraviolet light illumination showed obvious photovoltaic response.

  13. Organic-Inorganic Eu(3+)/Tb(3+) codoped hybrid films for temperature mapping in integrated circuits.

    PubMed

    Brites, Carlos D S; Lima, Patrícia P; Silva, Nuno J O; Millán, Angel; Amaral, Vitor S; Palacio, Fernando; Carlos, Luís D

    2013-01-01

    The continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu(3+) and Tb(3+) tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.8 ms. PMID:24790938

  14. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    PubMed

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  15. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    PubMed

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  16. Ruthenium cation substitutional doping for efficient charge carrier transfer in organic/inorganic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Degui; Jin, Xiao; Sun, Weifu; Du, Jiaxing; Tong, Jifeng; Chen, Changyong; Yang, Xuwei; Cheng, Yuanyuan; Li, Qinghua

    2015-01-01

    Solution-processed organic/inorganic hybrid solar cells have emerged as a new platform for low-cost optoelectronics. At the heart of photovoltaic devices lies the matching of a junction, which requires the suitable energy level alignment of n-type and p-type semiconductors. Incorporating foreign ions into bulk semiconductors has been largely employed for many decades, yet electronically active doping in energy level control of the hybrid bulk heterojunctions has been rarely involved and the demonstration of robust functional optoelectronic devices had thus far been elusive. Herein, we introduce Ru ions into TiO2 to decorate the energy level of the acceptor to gain better energy level alignment between the donor and acceptor. By reducing the 'excess' energy offset between the n-type and p-type semiconductors, the electron transfer becomes faster, thus leading to a notable enhancement in power conversion efficiency, i.e., from 2.20% to 2.89%. The results demonstrate that the energy level can be controlled effectively by the versatile Ru dopants. This work opens an effective route for accelerating the charge carrier transfer at the interface and achieving high-performance organic/inorganic hybrid optoelectronic devices.

  17. Bioadhesive film formed from a novel organic-inorganic hybrid gel for transdermal drug delivery system.

    PubMed

    Guo, Ruiwei; Du, Xiaoyan; Zhang, Rui; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2011-11-01

    A novel organic-inorganic hybrid film-forming agent for TDDS was developed by a modified poly(vinyl alcohol) (PVA) gel using γ-(glycidyloxypropyl)trimethoxysilane (GPTMS) as an inorganic-modifying agent, poly(N-vinyl pyrrolidone) (PVP) as a tackifier and glycerol (GLY) as a plasticizer. The prepared gels can be applied to the skin by a coating method and in situ form very thin and transparent films with good performance, comfortable feel and cosmetic attractiveness. The key properties of the bioadhesive films produced from the hybrid gels were investigated and the results showed that the incorporation of appropriate GPTMS (GPTMS/(PVA+GPTMS) in the range of 20-30%) into the PVA matrix not only can significantly enhance mechanical strength and skin adhesion properties of the resultant film, but also can decrease the crystalline regions of PVA and hence facilitate the diffusion of water vapor and drug. Furthermore, the investigations into in vivo skin irritation suggested the films caused non-irritation to skin after topical application for 120 h. In conclusion, the bioadhesive films formed from organic-inorganic hybrid gels possessed very good qualities for application on the skin and may provide a promising formulation for TDDS, especially when the patient acceptability from an aesthetic perspective of the dosage form is a prime consideration. PMID:21723945

  18. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.

    PubMed

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi

    2015-01-28

    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  19. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups. PMID:27598017

  20. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  1. Hard X-rays for processing hybrid organic-inorganic thick films.

    PubMed

    Jiang, Yu; Carboni, Davide; Pinna, Alessandra; Marmiroli, Benedetta; Malfatti, Luca; Innocenzi, Plinio

    2016-01-01

    Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

  2. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOEpatents

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Wertsching, Alan K [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Luther, Thomas A [Idaho Falls, ID; Jones, Michael G [Pocatello, ID

    2009-12-15

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  3. Preparation, characterization and application of organic-inorganic hybrid caffeine imprinted monolith.

    PubMed

    Liu, Xiaofang; Sun, Na; Zhu, Quanfei; Wu, Mei; Ye, Yong; Chen, Huaixia

    2013-08-23

    The present work aims to synthesize an organic-inorganic hybrid caffeine imprinted monolith using one-step method. The synthesis conditions such as the type of inorganic precursor and porogenic solvent, the molar ratios of the monomer and cross-linker, the volume ratio of the inorganic alcoholysate and organic part were optimized. The morphology of the monolith was studied by scanning electron microscopy and Fourier transform infrared spectra. The imprinted factor of the monolith for caffeine reached 3.02. A simple, rapid and sensitive method for the determination of caffeine in children's milk using the organic-inorganic hybrid caffeine imprinted polymer monolith microextraction combined with high-performance liquid chromatography-photodiodes array detector was developed. Several parameters affecting the sample pretreatment were investigated, including the type, flow rate and volume of eluent, the flow rate and volume of sample solution. The assay exhibited a linear dynamic range of 8-500μgL(-1) with the correlation coefficient above 0.9987. Lower limits of detection (LOD, at S/N=3) and quantification (LOQ, at S/N=10) in children's milk samples were 2.7 and 8μgL(-1). Recoveries of caffeine from spiked children's milk ranged from 85 to 104% with relative standard deviations of less than 8.9%.

  4. Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. I. Theory

    NASA Astrophysics Data System (ADS)

    Renshaw, C. Kyle; Forrest, Stephen R.

    2014-07-01

    The different cohesive forces that bond organic (i.e. excitonic) and inorganic semiconductors lead to widely disparate dielectric constants, charge mobilities, and other fundamental optoelectronic properties that make junctions between these materials interesting for numerous practical applications. Yet, there are no detailed theories addressing charge and energy transport across interfaces between these hybrid systems. Here, we develop a comprehensive physical model describing charge transport and photocurrent generation based on first-principles charge and excited state dynamics at the organic/inorganic heterojunction. We consider interfaces that are trap-free, as well as those with an exponential distribution of trap states. We find that the hybrid charge-transfer state resulting from photon absorption near the junction that subsequently migrates to the heterointerface is often unstable at room temperature, leading to its rapid dissociation into free charges that are collected at the device contacts. In the companion Paper II [A. Panda et al., Phys. Rev. B 90, 045303 (2014), 10.1103/PhysRevB.90.045303], we apply our theories to understanding the optical and electronic properties of archetype organic/inorganic heterojunction diodes. Our analysis provides insights for developing high performance optoelectronic devices whose properties are otherwise inaccessible to either conventional excitonic or inorganic semiconductor junctions.

  5. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    PubMed

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems.

  6. Highly Efficient Red-Light Emission in An Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl₃.

    PubMed

    Zhang, Yi; Liao, Wei-Qiang; Fu, Da-Wei; Ye, Heng-Yun; Chen, Zhong-Ning; Xiong, Ren-Gen

    2015-04-22

    Luminescence of ferroelectric materials is one important property for technological applications, such as low-energy electron excitation. However, the vast majority of doped inorganic ferroelectric materials have low luminescent efficiency. The past decade has envisaged much progress in the design of both ferroelectric and luminescent organic-inorganic hybrid complexes for optoelectronic applications. The combination of ferroelectricity and luminescence within organic-inorganic hybrids would lead to a new type of luminescent ferroelectric multifunctional materials. We herein report a hybrid molecular ferroelectric, (pyrrolidinium)MnCl3, which exhibits excellent ferroelectricity with a saturation polarization of 5.5 μC/cm(2) as well as intense red luminescence with high quantum yield of 56% under a UV excitation. This finding may extend the application of organic-inorganic hybrid compounds to the field of ferroelectric luminescence and/or multifunctional devices.

  7. Fabrication of nanoporous arrays from photosensitive organic-inorganic hybrid materials by using an UV soft nanoimprint technique.

    PubMed

    Zhang, Xuehua; Que, Wenxiu; Hu, Jiaxing; Chen, Jin; Zhang, Jin; Liu, Weiguo

    2013-02-01

    A honeycomb-like regular nanoporous pattern built in the photosensitive organic-inorganic hybrid film was fabricated by an UV soft nanoimprint technique. Polydimethylsiloxane (PDMS) soft mold was firstly replicated from an anodic aluminum oxide (AAO) template obtained by using a two-step anodization method. Scanning electron microscopy images show that the AAO template has a regular honeycomb-like nanoporous structure, while the PDMS soft mold has a relief structure of nanopillar arrays. Photosensitive TiO2-contained organic-inorganic hybrid films, which were prepared by combining a low temperature sol-gel process with a spin-coating technique, were used as the imprinted layer. Thus, a honeycomb-like regular nanoporous pattern built in the hybrid film can be easily obtained by imprinting the PDMS soft mold into the photosensitive hybrid film under an UV-irradiation. The as-fabricated organic-inorganic regular nonporous arrays have potential applications in two-dimensional photonic crystal.

  8. Solution-processed hybrid organic-inorganic complementary thin-film transistor inverter

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Kuribara, Kazunori; Ogura, Shintaro; Fukuda, Nobuko; Yoshida, Manabu; Ushijima, Hirobumi; Uemura, Sei

    2016-04-01

    We investigated hybrid organic-inorganic complementary inverters with a solution-processed indium-gallium-zinc-oxide (IGZO) n-channel thin-film transistor (TFT) and p-channel TFTs using the high-uniformity polymer poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-1,4(2H,5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene] (PDVT-10). The IGZO TFT was fabricated at 150 °C for 1 min. It showed a high field-effect mobility of 0.9 cm2·V-1·s-1 and a high on/off current ratio of 107. A hybrid complementary inverter was fabricated by combining IGZO with a PDVT-10 thin-film transistor and its operation was confirmed.

  9. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. PMID:26624204

  10. Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties

    NASA Astrophysics Data System (ADS)

    Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.

    2016-05-01

    Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.

  11. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.

  12. Amphiphilic Organic-Inorganic Hybrid Zeotype Aluminosilicate like a Nanoporous Crystallized Langmuir-Blodgett Film.

    PubMed

    Ikeda, Takuji; Hiyoshi, Norihito; Matsuura, Shun-ichi; Kodaira, Tetsuya; Nakaoka, Takuma; Irisa, Ami; Kawano, Miki; Yamamoto, Katsutoshi

    2015-06-26

    A new organic-inorganic hybrid zeotype compound with amphiphilic one-dimensional nanopore and aluminosilicate composition was developed. The framework structure is composed of double aluminosilicate layers and 12-ring nanopores; a hydrophilic layer pillared by Q(2) silicon atom species and a lipophilic layer pillared by phenylene groups are alternately stacked, and 12-ring nanopores perpendicularly penetrate the layers. The framework topology looks similar to that of an AFI-type zeolite but possesses a quasi-multidimensional pore structure consisting of a 12-ring channel and intersecting small pores equivalent to 8-rings. The hybrid material with alternately laminated lipophilic and hydrophilic nanospaces can be assumed as a crystallized Langmuir-Blodgett film. It demonstrates microporous adsorption for both hydrophilic and lipophilic adsorptives, and its outer surface tightly adsorbs lysozyme whose molecular size is much larger than its micropore opening. Our results suggest the possibility of designing porous adsorbent with high amphipathicity.

  13. Solution-processible organic-inorganic hybrid bipolar field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chae, Gil Jo; Kim, Kang Dae; Cho, Shinuk; Walker, Bright; Seo, Jung Hwa

    2016-04-01

    Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10-2 cm2V-1s-1 while the highest electron mobility (3.64 × 10-2 cm2V-1s-1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10-2 cm2V-1s-1 and 1.98 × 10-2 cm2V-1s-1, respectively.

  14. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  15. Organic-Inorganic Hybrid Solution-Processed H₂-Evolving Photocathodes.

    PubMed

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J; Reek, Joost N H; Kovalenko, Maksym V; Loi, Maria A

    2015-09-01

    Here we report for the first time an H2-evolving photocathode fabricated by a solution-processed organic-inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A photocurrent of -1.24 mA/cm(2) at 0 V versus reversible hydrogen electrode (V(RHE)), EQE of 15%, and an unprecedented Voc of 0.85 V(RHE) under illumination of AM1.5G (100 mW/cm(2)) in mild electrolyte were observed. Time-resolved photoluminescence (TRPL), internal quantum efficiency (IQE), and transient photocurrent measurements were carried out to clarify the carrier dynamics of the hybrids. The exciton lifetime of CdSe was reduced by one order of magnitude in the hybrid blend, which is a sign of the fast charge separation upon illumination. By comparing the current magnitude of the solid-state devices and water-splitting devices made with identical active layers, we found that the interfaces of the water-splitting devices limit the device performance. The electron/hole transport properties investigated by comparing IQE spectra upon front- and back-side illumination evidenced balanced electron/hole transport. The Faradaic efficiency is 80-100% for the hybrid photocathodes with Pt catalysts and ∼70% for the one without Pt catalysts.

  16. Release of ceria nanoparticles grafted on hybrid organic-inorganic films for biomedical application.

    PubMed

    Pinna, Alessandra; Figus, Cristiana; Lasio, Barbara; Piccinini, Massimo; Malfatti, Luca; Innocenzi, Plinio

    2012-08-01

    The controlled release of nanoparticles from a hybrid organic-inorganic surface allows for developing several applications based on a slow delivery of oxygen scavengers into specific environments. We have successfully grafted ceria nanoparticles on a hybrid film surface and tested their release in a buffer solution; the tests have shown that the particles are continuously delivered within a time scale of hours. The hybrid film has been synthesized using 3-glycidoxypropyltrimethoxysilane as precursor alkoxide; the synthesis has been performed in highly basic conditions to control the polycondensation reactions of both organic and inorganic networks via controlled aging of the solution. Only films prepared from aged solutions are able to graft ceria nanoparticles on their surface. The ceria nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy and UV-vis spectroscopy, the hybrid films have been analyzed by Fourier transform infrared spectroscopy, atomic force microscopy and Raman spectroscopy. Raman imaging has been used for the release test. The hybrid film-ceria nanoparticles system fulfils the requirements of optical transparency and stability in buffer solutions which are necessary for biomedical applications.

  17. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  18. Hybrid Organic-Inorganic Coordination Complexes as Tunable Optical Response Materials.

    PubMed

    Travis, Will; Knapp, Caroline E; Savory, Christopher N; Ganose, Alex M; Kafourou, Panagiota; Song, Xingchi; Sharif, Zainab; Cockcroft, Jeremy K; Scanlon, David O; Bronstein, Hugo; Palgrave, Robert G

    2016-04-01

    Novel lead and bismuth dipyrido complexes have been synthesized and characterized by single-crystal X-ray diffraction, which shows their structures to be directed by highly oriented π-stacking of planar fully conjugated organic ligands. Optical band gaps are influenced by the identity of both the organic and inorganic component. Density functional theory calculations show optical excitation leads to exciton separation between inorganic and organic components. Using UV-vis, photoluminescence, and X-ray photoemission spectroscopies, we have determined the materials' frontier energy levels and show their suitability for photovoltaic device fabrication by use of electron- and hole-transport materials such as TiO2 and spiro-OMeTAD respectively. Such organic/inorganic hybrid materials promise greater electronic tunability than the inflexible methylammonium lead iodide structure through variation of both the metal and organic components.

  19. Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics.

    PubMed

    Arnold, Heather N; Cress, Cory D; McMorrow, Julian J; Schmucker, Scott W; Sangwan, Vinod K; Jaber-Ansari, Laila; Kumar, Rajan; Puntambekar, Kanan P; Luck, Kyle A; Marks, Tobin J; Hersam, Mark C

    2016-03-01

    Solution-processed semiconductor and dielectric materials are attractive for future lightweight, low-voltage, flexible electronics, but their response to ionizing radiation environments is not well understood. Here, we investigate the radiation response of graphene field-effect transistors employing multilayer, solution-processed zirconia self-assembled nanodielectrics (Zr-SANDs) with ZrOx as a control. Total ionizing dose (TID) testing is carried out in situ using a vacuum ultraviolet source to a total radiant exposure (RE) of 23.1 μJ/cm(2). The data reveal competing charge density accumulation within and between the individual dielectric layers. Additional measurements of a modified Zr-SAND show that varying individual layer thicknesses within the gate dielectric tuned the TID response. This study thus establishes that the radiation response of graphene electronics can be tailored to achieve a desired radiation sensitivity by incorporating hybrid organic-inorganic gate dielectrics.

  20. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence.

    PubMed

    Nazarova, Dimana; Nedelchev, Lian; Sharlandjiev, Peter; Dragostinova, Violeta

    2013-08-01

    Hybrid materials based on combination of polymers and inorganic nanoparticles (NP) attracted considerable attention in the last decade due to their advantageous electrical, optical, or mechanical properties. Recently, we reported a significant improvement of the photoresponse by doping azopolymers with ZnO NP. To study the influence of the composition of the dopant, in our present work we have synthesized anisotropic organic/inorganic nanocomposite materials by incorporating 5-15 nm sized SiO2 NP in a side-chain azopolymer. As a result we observe an enhancement of the photoinduced birefringence in these composite materials with about 20% compared to the nondoped sample. Additionally, we discuss possible mechanisms leading to this enhancement related with the scattering caused by the NP and the increased mobility of the azochromophores in the vicinity of NP. PMID:23913084

  1. High-performance hybrid organic-inorganic solar cell based on planar n-type silicon

    SciTech Connect

    Chi, Dan; Qi, Boyuan; Wang, Jizheng; Qu, Shengchun Wang, Zhanguo

    2014-05-12

    Hybrid organic-inorganic solar cells were fabricated by spin coating the hole transporting conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film on n-type crystalline silicon (n-Si). By incorporating different additives into the PEDOT:PSS, the conductivity and wettability of PEDOT:PSS film are markedly improved, and the device performance is greatly enhanced accordingly. To further optimize the device performance, poly(3-hexylthiophene) (P3HT) layer was inserted between the n-Si and PEDOT:PSS layer. The P3HT layer blocks electrons from diffusing to the PEDOT:PSS, and hence reduces recombination at the anode side. The device eventually exhibits a high power conversion efficiency of 11.52%.

  2. Random Terpolymer Designed with Tunable Fluorescence Lifetime for Efficient Organic/Inorganic Hybrid Solar Cells.

    PubMed

    Li, Qinghua; Jin, Xiao; Song, Yinglin; Zhang, Qin; Xu, Zhongyuan; Chen, Zihan; Cheng, Yuanyuan; Luo, Xubiao

    2015-08-12

    The long photoluminescence lifetime of the organic semiconductor materials is of great importance in assuring the photoexcited extion to have enough time to achieve successful separation at the interface and improving the performances of organic/inorganic hybrid solar cells. Unfortunately, many efforts have been devoted to the bandgap or molecular energy level control, whereas this viewpoint is rarely referred. Herein, we prepare a random D-A terpolymers based on PZT and BDT cores in conjugation with electron withdrawing BT unit and explore their applications in HSCs. Except for the energy level and the bandgap, the role that monomers ratio plays in photoluminescence lifetime is particularly involved. As a result, the average PL lifetimes of the terpolymer are significantly tuned. The optimized terpolymer exhibits a longer PL lifetime and prominent charge transfer ability, thus leading to a notable enhancement of PCE when compared with its counterparts, although their bandgaps and molecular energy levels are almost the same. PMID:26196279

  3. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect

    Wen, J.; Jordens, K.; Wilkes, G.L.

    1996-12-31

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  4. Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    SciTech Connect

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-02-15

    Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 Degree-Sign C for 2 h and also possesses high total pore volumes (0.41 cm Superscript-Three g{sup -1}) and high specific BET surface area (161 m{sup 2} g{sup -1}), which is nine times larger than that of the pristine (19 m{sup 2} g{sup -1}). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic-inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: Black-Right-Pointing-Pointer A two-step synthesis method was used to prepare the CTAB-Al-MO. Black-Right-Pointing-Pointer The CTAB-Al-MO has the large basal spacing and high specific BET surface area. Black-Right-Pointing-Pointer The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. Black-Right-Pointing-Pointer The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  5. Ag-In-Zn-S quantum dots for hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Eung-min; Ruankham, Pipat; Lee, Jae-hyeong; Hachiya, Kan; Sagawa, Takashi

    2016-02-01

    Quantum dots of (AgIn)xZn2(1-x)S2 (x = 0.6, 0.8, and 1.0) capped by oleylamine were prepared and applied for hybrid organic-inorganic solar cells consisting of glass-indium-tin-oxide/ZnO/(AgIn)xZn2(1-x)S2/poly(3-hexylthiophene)/MoO3/Ag. The short-circuit current density (Jsc) and open-circuit voltage (Voc) of the hybrid solar cells were measured, and we found a low power conversion efficiency (PCE) below 0.1%. From the incident photon-to-current efficiency (IPCE) profiles of the hybrid devices, there is no marked photocurrent generation from 350 to 700 nm, which is ascribed to the absorption region of (AgIn)xZn2(1-x)S2. To improve the photovoltaic performance, ligand substitution from oleylamine to pyridine was performed. The PCE of the hybrid cell using the pyridine-capped (AgIn)xZn2(1-x)S2 was improved twofold in terms of both Jsc and Voc as compared with that of the oleylamine-capped one. In particular, from the IPCE measurements, a remarkable (more than doubled) enhancement of photocurrent generation from 400 to 450 nm was observed with the pyridine-substituted nanoparticles.

  6. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells.

    PubMed

    John, Łukasz; Podgórska, Marta; Nedelec, Jean-Marie; Cwynar-Zając, Łucja; Dzięgiel, Piotr

    2016-11-01

    Biomimetic organic-inorganic hybrid bioscaffolds are developed to complement or replace damaged fragments in bone tissue surgery. The aim of this work was to develop a simple and fast method to prepare composite material for bone engineering, avoiding time consuming and complex methodologies. The resulting materials (also called in this work as hybrid composites or hybrid scaffolds) have a three-dimensional macroporous polymer-like network derived from triethoxyvinylsilane (TEVS) and 2-hydroxyethylmethacrylate (HEMA) monomers, with incorporated calcium, strontium, and phosphate ions. The materials were fully characterized using FT-IR, biomineralization studies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, scratch tests, Young's modulus and compressive strength tests, and gas physisorption. We report a comprehensive study on the in vitro effect of novel strontium doped materials on human bone cells. In vitro investigations were conducted using a normal human osteoblast cell line that mimics the cellular events of the in vivo intramembranous bone formation process. The materials do not have a negative impact on the survival of the normal human osteoblasts; moreover, materials doped with strontium show that not only are cells able to survive, but they also attach to and grow on a bioscaffolds surface. For this reason, they may be used in future in vivo experiments. PMID:27524003

  7. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    SciTech Connect

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  8. Bridged polysilsesquioxane xerogels: A molecular based approach for the preparation of porous hybrid organic-inorganic materials

    SciTech Connect

    Small, J.H.; Shea, K.J.; Loy, D.A.

    1995-06-01

    Bridged polysilsesquioxanes represent an interesting family of hybrid organic-inorganic composite materials. It has been shown that manipulation of the organic bridging component offers the potential for the synthesis of a variety of materials with a range of surface areas and porosities. In addition, incorporation of a heteroatom within the bridging organic component allows for further chemical transformation of the polysilsesquioxane material.

  9. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    SciTech Connect

    Kaddami, H.; Cuney, S. |; Pascault, J.P.; Gerard, J.F.

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic{emdash}inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed {ital in} {ital situ} during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings. {copyright} {ital 1996 American Institute of Physics.}

  10. Synthesis of organic-inorganic hybrid azobenzene materials for the preparation of nanofibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Bućko, Aleksandra; Zielińska, Sonia; Ortyl, Ewelina; Larkowska, Maria; Barille, Regis

    2014-12-01

    The new photochromic hybrid materials containing different mole fractions of highly photoactive 4-[(E)-[4-[ethyl(2-hydroxyethyl)amino]phenyl]azo]-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (SMERe) were prepared by a low temperature sol-gel process. The guest-host systems with triethoxyphenylsilane matrix were obtained. These materials were used to form thin transparent films by a spin-coating technique. Then the ability of thin hybrid films to reversible trans-cis photoisomerization under illumination was investigated using ellipsometry and UV-Vis spectroscopy. The reversible changes of refractive index of the films under illumination were in the range of 0.005-0.056. The maximum absorption of these materials was located at 462-486 nm. Moreover, the organic-inorganic azobenzene materials were used to form nanofibers by electrospinning using various parameters of the process. The microstructure of electrospun fibers depended on sols properties (e.g. concentration and viscosity of the sols) and process conditions (e.g. the applied voltage, temperature or type of the collector) at ambient conditions. The morphology of obtained nanofibers was analyzed by an optical microscopy and scanning electron microscopy. In most instances, the beadless fibers were obtained. The wettability of the surface of electrospun fibers deposited on glass substrates was investigated.

  11. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    NASA Astrophysics Data System (ADS)

    Kaddami, H.; Cuney, S.; Pascault, J. P.; Gérard, J. F.

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic—inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed in situ during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings.

  12. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    PubMed

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  13. Organic-inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes

    SciTech Connect

    Cao Ruige; Liu Shuxia Liu Ying; Tang Qun; Wang Liang; Xie Linhua; Su Zhongmin

    2009-01-15

    Four organic-inorganic hybrid compounds based on Anderson-type polyoxoanions, namely, {l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 3}]{sub 2}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}{l_brace}[Cu(2,2'-bpy)(H{sub 2}O)Cl][Cu(2,2'-bpy) (H{sub 2}O)(NO{sub 3})][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.18H{sub 2}O (1), [Cu(2,2'-bpy)(H{sub 2}O){sub 2}Cl]{l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.4H{sub 2}O (2), (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.36H{sub 2}O (3), and (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.33H{sub 2}O (4), were isolated by conventional solution method, and crystal structures have been determined by single-crystal X-ray diffraction. Among them, compound 1 displays a discrete supramolecular structure, compound 2 shows a chainlike structure with chloro-copper complexes as counteranions, and compounds 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice water molecules residing in the channels. The compounds 3 and 4 represent the first example of 3D organic-inorganic hybrid compounds in the TMs/2,2'-bpy/POMs system. Investigation of the reaction conditions reveals that the geometry and size of the anions together with its coordinating abilities to the metal centers have a decisive influence on both the composition and the dimensionality of the final compounds. - Graphical Abstract: Four organic-inorganic hybrids based on Anderson-type polyoxoanions have been synthesized. Compound 1 displays a discrete structure, 2 shows a chainlike structure, 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice waters residing in the channels. The different structures suggest that the overall structures of the compounds are influenced by the nature of the acidic anions.

  14. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    NASA Astrophysics Data System (ADS)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  15. Efficient organic-inorganic hybrid perovskites and doped metal oxide heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    Organic-Inorganic hybrid perovskite CH3NH3PbI3 has recently attracted much attention for its high efficient solar energy conversion. This semiconducting pigment with a direct bandgap of 1.55 eV has made it an interesting optical and electronic material over the whole visible solar emission spectrum. The role of hole conducting has been found in this semiconductor that allows perovskite solar cell (PSC) to be formed by CH3NH3PbI3/TiO2 heterojunctions that use TiO2 as scaffold, and carbon as a back contact. We will report a double layer metal doped TiO2/Al2O3 mesoporous scaffold covered by the p-type semiconducting pigment to form a high efficient PSC through solution method. TiO2 and Al2O3 are both large band gap semiconductors that affect conducting and recombination rate in solar cells. One improvement work is doping other metal elements in TiO2 to raise the mobility while extend the recombination time. It has suggested that optimal amounts of doped metals such as Cu, Co, Mn can suppress the reduction of Ti4 + resulting better transportation. TiO2 thin films doped with metals are subjected to the EPR analysis and the results will be correlated with measurements of electronic-optical properties.

  16. Mechanism of charge recombination in organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin; organic Group Team

    2015-03-01

    In the recent popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and open circuit voltages, but the underlying mechanism remains unclear. In this work we study the recombination mechanism in perovskite solar cells and its roles on determining the device performance. Based on macroscopic device model simulations, the recombination resistances (Rrec) under different applied voltages are calculated to characterize the recombination mechanism, and the current density-voltage (J - V) curves are simulated to describe the device performance under at the same time. Through comparison with the impedance spectroscopy (IS) extracted Rrec data, it is found that bimolecular recombination (BR) is the dominant recombination process in the whole applied voltage regime and can determine the open circuit voltage, while the trap-assisted SRH monomolecular recombination (MR) is only important if the trap density is high or the BR rate is significantly reduced. The different electron injection barriers at the contact can induce different patterns for the Rrec- V characteristics. Under the cases of increased band gap or decreased BR rate, the Rrec's are enhanced which leads to high open circuit voltages. We are grateful to the support from the state key laboratory of surface physics, Fudan University.

  17. Rashba Effect and Carrier Mobility in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Yu, Zhi-Gang

    2016-08-18

    The outstanding photovoltaic performance in hybrid organic-inorganic perovskites (HOIPs) relies on their desirable carrier transport properties. In the HOIPs, strong spin-orbit coupling (SOC) and structural inversion asymmetry give rise to a giant spin splitting in the conduction and valence bands, that is, the Rashba effect (RE), a subject intensively studied in spintronics. Here we show that this giant RE can manifest itself in charge transport and is the key to understanding carrier mobility and its temperature dependence in the HOIPs. The RE greatly enhances acoustic-phonon scattering (APS) and alters the temperature dependence of carrier mobility from T(-3/2) to T(-1). Meanwhile, it reduces polar-optical phonon scattering (POPS). In CH3NH3PbI3, the carrier mobility is limited by the APS for temperatures up to 100 K, above which the POPS becomes dominant. The effective polar coupling is moderate, α = 1.1, indicating that band conduction is still a valid description of charge transport. Our results account for the observed carrier transport behaviors over the entire temperature range and highlight the importance of SOC in charge transport in the HOIPs. PMID:27459897

  18. Alkyl Surface Treatments of Planar Zinc Oxide in Hybrid Organic/Inorganic Solar Cells

    SciTech Connect

    Allen, C. G.; Baker, D. J.; Brenner, T. M.; Weigand, C. C.; Albin, J. M.; Steirer, K. X.; Olson, D. C.; Ladam, C.; Ginley, D. S.; Collins, R. T.; Furtak, T. E.

    2012-04-26

    Hybrid organic/inorganic solar cells have not lived up to their potential because of poor interface properties. Interfacial molecular layers provide a way of adjusting these devices to improve their performance. We have studied a prototypical system involving poly(3-hexylthiophene) (P3HT) on planar zinc oxide (ZnO) films that have been modified with two types of molecules having identical 18-carbon alkyl chain termination and different surface attachments: octadecanethiol (ODT) and octadecyltriethoxysilane (OTES). We examined the functionalized surfaces using water contact angle measurements, Kelvin probe measurements, infrared absorbance spectroscopy, and atomic force microscopy. These have shown that OTES forms disordered incomplete monolayers, while ODT is prone to develop multilayered islands. Both treatments enhance polymer ordering. However, inverted solar cell devices fabricated with these treated interfaces performed very differently. ODT improves the short circuit current (J{sub SC}), open circuit voltage (V{sub OC}), and power conversion efficiency ({eta}), while these parameters all decrease in devices constructed from OTES-treated ZnO. The differences in V{sub OC} are related to modifications of the surface dipole associated with deposition of the two types of alkyl molecules, while changes in J{sub SC} are attributed to a balance between charge transfer blocking caused by the saturated hydrocarbon and the improved hole mobility in the polymer.

  19. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwan Jung, Hyung; Ho Kim, Dong; Su Kim, Chang; Bae, Tae-Sung; Bum Chung, Kwun; Yoon Ryu, Seung

    2013-05-01

    We employed poly(styrenesulfonate)-doped poly (3,4-ethylenedioxythiophene) (PEDOT:PSS) as a p-layer on textured fluorine-tin-oxide (FTO) glass in pin-type hydrogenated amorphous silicon solar cells (a-Si:H SCs). An amorphous tungsten oxide (WO3) layer and gold nanoparticles (Au-NPs) 10 nm in size were included to prevent the degradation and to increase short-circuit current by the Plasmon effect, respectively, between the PEDOT:PSS and intrinsic-Si layer. The energy band between PEDOT:PSS and WO3 was meaningfully adjusted by Au-NPs. The p-type PEDOT:PSS layer in these organic-inorganic hybrid a-Si:H SCs results in an increased conversion efficiency from ˜2.42% to ˜5.49% and an increased open-circuit voltage from ˜0.29 V to ˜0.56 V. PEDOT:PSS on textured FTO glass is sufficiently showing that it can replace the p-type Si layer in pin-type a-Si:H SCs.

  20. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    NASA Astrophysics Data System (ADS)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  1. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  2. Preparation of porous clay minerals with organic-inorganic hybrid pillars using solvent-extraction route.

    PubMed

    Nakatsuji, Minori; Ishii, Ryo; Wang, Zheng-Ming; Ooi, Kenta

    2004-04-01

    A microporous clay mineral with organic-inorganic hybrid pillars was synthesized using a hydrochloric acid (HCl)/ethanol extraction method after intercalation of tetraethoxysilane (TEOS) or TEOS/methyltriethoxysilane (MTS) into the cetyltrimetylammonium ion (CTA)-exchanged vermiculite. The products retained their layered structure, due to the formation of stable pillars by the polymerization of hydrolyzed TEOS and MTS during the HCl/ethanol treatment. The BET surface areas, which increased to above 500 m2g(-1) with an increase in the HCl concentration up to 0.4 moldm(-3), are nearly equal to that of the calcined product obtained by the conventional method. However, the pore sizes of HCl/ethanol-treated materials were narrower than those of the calcined product, owing to the formation of the polysiloxane networks in the gallery. A water adsorption study showed that the product treated with a TEOS/MTS mixture had a hydrophobic surface as a result of the successful incorporation of methyl groups at the surface of the pillars. This novel method is advantageous for the synthesis of organophilic pillared clays with different kinds of organic materials in the interlayers. PMID:14985033

  3. Rashba Effect and Carrier Mobility in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Yu, Zhi-Gang

    2016-08-18

    The outstanding photovoltaic performance in hybrid organic-inorganic perovskites (HOIPs) relies on their desirable carrier transport properties. In the HOIPs, strong spin-orbit coupling (SOC) and structural inversion asymmetry give rise to a giant spin splitting in the conduction and valence bands, that is, the Rashba effect (RE), a subject intensively studied in spintronics. Here we show that this giant RE can manifest itself in charge transport and is the key to understanding carrier mobility and its temperature dependence in the HOIPs. The RE greatly enhances acoustic-phonon scattering (APS) and alters the temperature dependence of carrier mobility from T(-3/2) to T(-1). Meanwhile, it reduces polar-optical phonon scattering (POPS). In CH3NH3PbI3, the carrier mobility is limited by the APS for temperatures up to 100 K, above which the POPS becomes dominant. The effective polar coupling is moderate, α = 1.1, indicating that band conduction is still a valid description of charge transport. Our results account for the observed carrier transport behaviors over the entire temperature range and highlight the importance of SOC in charge transport in the HOIPs.

  4. Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane.

    PubMed

    Neumann, Daniel; Fisher, Mark; Tran, Linh; Matisons, Janis G

    2002-11-27

    Organic-inorganic hybrids are an important class of new materials that offer improved thermal and mechanical properties over normal polymers. They may be produced by either the sol-gel route or through the use of inorganic compounds possessing reactive functional groups. Polyhedral oligosilsesquioxanes (POSS) are completely defined molecules of nanoscale dimensions that may be functionalized with reactive groups suitable for the synthesis of new organic-inorganic hybrids. Here we report the synthesis and characterization of a novel POSS possessing eight isocyanate groups via the hydrosilylation of octakis(hydridodimethylsiloxy)octasilsesquioxane (Q8M8H) and m-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (m-TMI). The suitability of this new macromer to the synthesis of a organic-hybrids has been explored by forming a new type of highly cross-linked polyurethane elastomer via reaction of the macromer with poly(ethylene glycol) using dibutyltin dilaurate catalyst. PMID:12440890

  5. Highly-efficient Förster Resonance Energy Transfer in hybrid organic/inorganic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Savateeva, Diana; Melnikau, Dzmitry; Rakovich, Yury P.

    2012-04-01

    their photoluminescence lifetime, which is consistent with highly efficient FRET in hybrid organic/inorganic semiconductor nanostructures coupled to microcavity modes.

  6. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    PubMed

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  7. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films.

    PubMed

    Liu, Jun; Yoon, Byunghoon; Kuhlmann, Eli; Tian, Miao; Zhu, Jie; George, Steven M; Lee, Yung-Cheng; Yang, Ronggui

    2013-01-01

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques with atomic level control enable a new class of hybrid organic-inorganic materials with improved functionality. In this work, the cross-plane thermal conductivity and volumetric heat capacity of three types of hybrid organic-inorganic zincone thin films enabled by MLD processes and alternate ALD-MLD processes were measured using the frequency-dependent time-domain thermoreflectance method. We revealed the critical role of backbone flexibility in the structural morphology and thermal conductivity of MLD zincone thin films by comparing the thermal conductivity of MLD zincone films with an aliphatic backbone to that with aromatic backbone. Much lower thermal conductivity values were obtained in ALD/MLD-enabled hybrid organic-inorganic zincone thin films compared to that of the ALD-enabled W/Al2O3 nanolaminates reported by Costescu et al. [Science 2004, 303, 989-990], which suggests that the dramatic material difference between organic and inorganic materials may provide a route for producing materials with ultralow thermal conductivity.

  8. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer.

    PubMed

    Raj, Gijo; Swalus, Colas; Guillet, Alain; Devillers, Michel; Nysten, Bernard; Gaigneaux, Eric M

    2013-04-01

    Hybridization of polyoxometalates (POMs) via the formation of an organic-inorganic association constitutes a new route to develop a heterogeneous POM catalyst with tunable functionality imparted through supramolecular assembly. Herein, we report on strategies to obtain tunable well-defined supramolecular architectures of an organic-inorganic heterogeneous hybrid catalyst formed by the association of a hydrophobically substituted polyampholyte copolymer (poly N, N-diallyl-N-hexylamine-alt-maleic acid) and phosphotungstic acid (H3PW12O40) POMs. The self-assembling property of the initial polyampholyte copolymer matrix is modulated by controlling the pH of the hybridization solution. When deposited on a mica surface, isolated, long and extended polymer chains are formed under basic conditions (pH 7.9), while globular or coiled structures are formed under acidic conditions (pH 2). The supramolecular assembly of the POM-polymer hybrid is found to be directed by the type and quantities of charges present on the polyampholyte copolymer, which themselves depend on the pH conditions. The hypothesis is that the Keggin type [PW12O40](3-) anions, which have a size of ~1 nm, electrostatically bind to the positive charge sites of the polymer backbone. The hybrid material stabilized at pH 5.3 consists of POM-decorated polymer chains. Statistical analysis of distances between pairs of POM entities show narrow density distributions, suggesting that POM entities are attached to the polymer chains with a high level of order. Conversely, under acidic conditions (pH 2), the hybrid shows the formation of a core-shell type of structure. The strategies reported here, to tune the supramolecular assembly of organic-inorganic hybrid materials, are highly valuable for the design and a more rational utilization of POM heterogeneous catalysts in several chemical transformations. PMID:23480273

  9. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer.

    PubMed

    Raj, Gijo; Swalus, Colas; Guillet, Alain; Devillers, Michel; Nysten, Bernard; Gaigneaux, Eric M

    2013-04-01

    Hybridization of polyoxometalates (POMs) via the formation of an organic-inorganic association constitutes a new route to develop a heterogeneous POM catalyst with tunable functionality imparted through supramolecular assembly. Herein, we report on strategies to obtain tunable well-defined supramolecular architectures of an organic-inorganic heterogeneous hybrid catalyst formed by the association of a hydrophobically substituted polyampholyte copolymer (poly N, N-diallyl-N-hexylamine-alt-maleic acid) and phosphotungstic acid (H3PW12O40) POMs. The self-assembling property of the initial polyampholyte copolymer matrix is modulated by controlling the pH of the hybridization solution. When deposited on a mica surface, isolated, long and extended polymer chains are formed under basic conditions (pH 7.9), while globular or coiled structures are formed under acidic conditions (pH 2). The supramolecular assembly of the POM-polymer hybrid is found to be directed by the type and quantities of charges present on the polyampholyte copolymer, which themselves depend on the pH conditions. The hypothesis is that the Keggin type [PW12O40](3-) anions, which have a size of ~1 nm, electrostatically bind to the positive charge sites of the polymer backbone. The hybrid material stabilized at pH 5.3 consists of POM-decorated polymer chains. Statistical analysis of distances between pairs of POM entities show narrow density distributions, suggesting that POM entities are attached to the polymer chains with a high level of order. Conversely, under acidic conditions (pH 2), the hybrid shows the formation of a core-shell type of structure. The strategies reported here, to tune the supramolecular assembly of organic-inorganic hybrid materials, are highly valuable for the design and a more rational utilization of POM heterogeneous catalysts in several chemical transformations.

  10. Integrated optical components using hybrid organic-inorganic materials prepared by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Mishechkin, Oleg Viktorovich

    2003-10-01

    A technological platform based on low-temperature hybrid sol-gel method for fabrication of optical waveguides and integrated optical components has been developed. The developed chemistry for doping incorporation in the host network provides a range of refractive indexes (1.444--1.51) critical for device optimization. A passivation method for improving long-term stability of organic-inorganic sol-gel material is reported. The degradation of waveguide loss over time due to moisture adsorption from the atmosphere is drastically suppressed by coating the material with a protective thin SiO2 film. The results indicate a long-term optical loss below 0.3 dB/cm for protected waveguides. The theory of multimode interference couplers employing self-imaging effect is described. A novel approach for design of high-performance MMI devices in low-contrast material is proposed. The design method is based on optimization of refractive index contrast and width of a multimode waveguide (the body of MMI couplers) to achieve a maximum number of constructively interfering modes resulting to the best self-imaging. This optimization is carried out using 3D BPM simulations. This method was applied to design 1 x 4, 1 x 12, and 4 x 4 MMI couplers and led to a superior performance in excess loss, power imbalance in output ports, and polarization sensitivity. Taking advantage of the inherent input-output phase relations in a 4 x 4 MMI coupler, an optical 90° hybrid is realized by incorporation a Y-junction to coherently excite two ports of the coupler. A series of MMI couplers were fabricated and characterized. The experimental results are in good agreement with the design. Measured performance of the sol-gel derived MMI components was compared to analogues fabricated by other technologies. The comparison demonstrates the superior performance of the sol-gel devices. The polarization sensitivity of all fabricated couplers is below 0.05 dB.

  11. Triple hybrid materials: A novel concept within the field of organic-inorganic hybrids

    NASA Astrophysics Data System (ADS)

    Cuentas-Gallegos, A. Karina; Gómez-Romero, Pedro

    We explored a new approach within the field of hybrid materials, namely, an integration of an electroactive inorganic molecule into a conducting polymer that in turn is intercalated into an extended inorganic oxide. In particular we present the specific material formed by hexacyanoferrate-doped polypyrrole or polyaniline inserted in turn into layered V 2O 5. This novel kind of hybrid with three components interacting at a molecular level is what we have called, triple hybrid materials (THM). The synthetic approach was based on our earlier work on PAni/V 2O 5, PAni/HCF and PPy/HCF systems. The materials obtained were characterized by FTIR, XRD, TGA, elemental analyses, and ICP. The electrochemical properties of THMs as insertion cathodes in rechargeable Li cells were also explored. The initial specific charge was high for PPy/HCF/V 2O 5 system (160 Ah kg -1), giving a greater value than for their corresponding simple hybrids: PPy/HCF (69 Ah kg -1) and PPy/V 2O 5 (120 Ah kg -1). Repeated charge-discharge cycles showed a poor cyclability, which could be related to the voltage limit values during recharge, overoxidation of the polymer, or to the detrimental effect of structural water from THMs. Nevertheless, the present work showed a novel route towards a more complex and versatile electroactive hybrid design.

  12. Synthesis and electron microscopy of inorganic and hybrid organic-inorganic mesoporous and macroporous materials

    NASA Astrophysics Data System (ADS)

    Blanford, Christopher Francis

    This work describes the creation and analysis of ordered porous inorganic and organic-inorganic hybrid materials with an emphasis on the qualitative and quantitative characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two major systems were studied: MCM-41-type mesoporous molecular sieves and three-dimensionally ordered macroporous (3DOM) materials. The microanalysis of mesoporous samples is discussed first. Samples of unmodified siliceous MCM-41, MCM-41 with grafted titanium dioxide species, and MCM-41 with incorporated 3-mercaptopropyl groups were examined in the TEM at three accelerating voltages. The beam stability of all the samples increased with increasing accelerating voltage. The particles were significantly more resistant to beam damage with the surfactant template in place, when the samples were synthesized above room temperature, and when the silicate precursor was hydrolyzed in acid. The samples with organic and inorganic groups were more stable than siliceous analogs. The discussion of 3DOM materials begins with their synthesis and characterization: 3DOM materials were created from colloidal crystals of uniform, sub-micrometer diameter polystyrene and poly(methyl methacrylate) spheres. Metal alkoxides, solutions of metal salts, and mixed salt-alkoxide precursors were employed to create 3DOM metal oxides, silicates with incorporated organic groups and polyoxometalate clusters, metals, and metal alloys. SEM and TEM were used extensively to characterize the morphology, crystallinity, grain size, and phase of the 3DOM products. The formation of 3DOM nickel oxide was studied by heating a nickel oxalate-colloidal crystal composite in an environmental SEM. The growth of the grains in 3DOM cobalt metal and 3DOM iron oxide were observed by high-temperature TEM. The arrangement of the pores in 3DOM materials was studied by analyzing diffractograms of TEM images of single particles tilted into different orientations

  13. Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole

    NASA Astrophysics Data System (ADS)

    Pan, Haiyan; Zhang, Yuanyuan; Pu, Hongting; Chang, Zhihong

    2014-10-01

    A new series of organic-inorganic hybrid proton exchange membranes (PEMs) were prepared using sulfonated polyimides containing benzimidazole (SPIBIs) and glycidyl ether of polyhedral oligomeric silsesquioxanes (G-POSS). SPIBIs were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 5-amino-2-(4-aminophenyl) benzimidazole (APBIA) and 4,4‧-diaminodiphenyl ether-2,2‧-disulfonic acid (ODADS). The organic-inorganic cross-linked membranes can be prepared by SPIBIs with G-POSS by a thermal treatment process. The cross-linking density of the membranes was evaluated by gel fractions. The water uptake, swelling ratio, mechanical property, thermal behavior, proton conductivity, oxidative and hydrolytic stability of the cross-linked organic-inorganic membranes were intensively investigated. All the cross-linked membranes exhibit high cross-linking density for the gel fraction higher than 70%. Compared to pristine membranes (SPIBIs) and membranes without benzimidazole groups (SPI), the anti-free-radical oxidative and hydrolytic stabilities of cross-linked membranes are significantly higher. The anti-free-oxidative stability of SPIBI-100-P (cross-linked SPIBI membrane with 100% degree of sulfonation) is nearly four-fold higher than that of SPIBI-100. The proton conductivity of the cross-linked membranes ranges from 10-3 S cm-1 to 10-2 S cm-1 depending both on the degree of sulfonation (DS) of the SPIBI and temperature.

  14. Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

    NASA Astrophysics Data System (ADS)

    Shen, Po-Shen; Chiang, Yu-Hsien; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-01

    With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  15. Synthesis and Characterization of New Organic, Inorganic, and Organometallic Tetrathiafulvalenes and Cadmium Selenide Hybrid Materials

    NASA Astrophysics Data System (ADS)

    Belot, John Allen, Jr.

    1995-11-01

    A variety of new organic, inorganic, and organometallic complexes based on the tetrathiafulvalene (TTF) backbone have been synthesized and characterized for the development of new materials. The organic research of this thesis outlines a novel one-pot synthetic procedure and new purification route for the selective recovery of unsymmetrical TTFs. The advancements regarding this chemistry center around the phosphorus mediated coupling of two different thione heterocycles, and are based on the results of mechanistic studies using ^{31}P NMR. In addition to this, the successful synthesis and characterization of three new classes of tetrathiafulvalenes is presented. These materials may be used for conductive liquid crystals, metal -ion sensor, or high-spin organic materials. The inorganic chemistry developed in this manuscript presents two firsts in TTF chemistry. The work begins with a synopsis of a new procedure for the selective generation and isolation of tetrathiafulvalene tetrathiolate (TTFS _4^{4-}); and following the discovery of this ligand synthesis, we succeeded in making the first reported homobimetallic TTFS_4 inorganic coordination complexes using the late transition metals Pt and Ni. The reactions to produce these complexes were accomplished by introducing TTFS _4^{4-} Li^+ 4 to the metal cis-dichlorides rm Cl_2Pt(PPh_3)_2, Cl _2Ni(DPPP), and rm Cl_2Ni(4,4 ^'-Mebipy) and subsequently isolating the products. These studies led to the recovery and characterization of first metal-TTF hybrid materials. As a direct consequence of the difficulties encountered with the late transition metal coordination complexes, we also synthesized the first early transition metal organometallic TTFS_4^ecies using the reaction of TTFS_4^{4-} Li^+_4 with rm Cl_2TiR_2 (R = Cp, Cp*, i-PrCp). An important result of this research was the first single crystal X-ray structure of a homobimetallic TTFS _4 complex. In addition to this, these materials proved useful in elucidating the

  16. Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors.

    PubMed

    Liu, Ling; Shang, Li; Guo, Shaojun; Li, Dan; Liu, Changyu; Qi, Li; Dong, Shaojun

    2009-10-15

    In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism. The results and insight gained from the present experiments can be widely used to various biosensor designs.

  17. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  18. Synthesis and characterization of silicon-based polymers for use as organic/inorganic hybrids and silicon carbide precursors

    NASA Astrophysics Data System (ADS)

    Sellinger, Alan

    Organic/inorganic hybrids from silsesquioxanes. This Dissertation describes the synthesis and characterization of methacrylate, epoxy and liquid crystalline (LC)-containing organic/inorganic hybrid materials based on silsesquioxanes. While the methacrylate and epoxy groups provide polymerizable moieties to the hybrids, the LC component is anticipated to provide toughness, and oxidative stability as well as minimize shrinkage during curing. The inorganic silsesquioxane portion, ((RSiOsb{1.5})sb8, cubes), which closely resembles specific crystalline forms of silica and zeolites, may be covalently linked to a variety of organic functional groups. As a result, single-phase organic/inorganic hybrids are formed that when polymerized mimic silica-reinforced composites. The resultant hybrids are liquids at room temperature, and hence allow for single-phase composite processing, ideal for abrasion-resistant coatings and filling molds, as in dental restorative applications. The reactions are based on inexpensive starting materials, have high yields (>80%), and form soluble products containing up to 65% masked silica. The hybrids were characterized using NMR spectroscopy (sp1H,\\ sp{13}C,\\ sp{29}Si), FTIR, size exclusion chromatography (SEC), and thermal analysis (TGA, DSC). A modified polymethylsilane as a precursor of silicon carbide. It is generally known that polymer precursor routes to silicon carbide (SiC) are very important in the processing of SiC fibers and high performance SiC parts with specific shapes. It is further known that commercial SiC precursor polymers are often not resistant to oxidation, and are based on monomers rich in carbon. As a result of this, their pyrolysis yields SiC rich in oxygen and carbon, a feature which drastically reduces the final materials' ultimate properties (high temperature resistance, tensile strength, modulus). To remedy this, we describe in this work the synthesis and characterization of a modified polymethylsilane (mPMS) which

  19. Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol.

    PubMed

    Gong, Bo; Peng, Qing; Parsons, Gregory N

    2011-05-19

    Growing interest in nanoscale organic-inorganic hybrid network polymer materials is driving exploration of new bulk and thin film synthesis reaction mechanisms. Molecular layer deposition (MLD) is a vapor-phase deposition process, based on atomic layer deposition (ALD) which proceeds by exposing a surface to an alternating sequence of two or more reactant species, where each surface half-reaction goes to completion before the next reactant exposure. This work describes film growth using trimethyl aluminum and heterobifunctional glycidol at moderate temperatures (90-150 °C), producing a relatively stable organic-inorganic network polymer of the form (-Al-O-(C(4)H(8))-O-)(n). Film growth rate and in situ reaction analysis indicate that film growth does not initially follow a steady-state rate, but increases rapidly during early film growth. The mechanism is consistent with subsurface species transport and trapping, previously documented during MLD and ALD on polymers. A water exposure step after the TMA produces a more linear growth rate, likely by blocking TMA subsurface diffusion. Uniform and conformal films are formed on complex nonplanar substrates. Upon postdeposition annealing, films transform into microporous metal oxides with ∼5 Å pore size and surface area as high as ∼327 m(2)/g, and the resulting structures duplicate the shape of the original substrate. These hybrid films and porous materials could find uses in several research fields including gas separations and diffusion barriers, biomedical scaffolds, high surface area coatings, and others.

  20. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    PubMed

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places.

  1. Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores

    NASA Astrophysics Data System (ADS)

    Abbotto, Alessandro; Bozio, Renato; Brusatin, Giovanna; Facchetti, Antonio; Guglielmi, Massimo; Innocenzi, Plinio; Meneghetti, Moreno; Pagani, Giorgio A.; Signorini, Raffaella

    1999-10-01

    We report the synthesis of sol-gel materials based on highly efficient heterocycle-based push-pull chromophores showing second- and third-order nonlinear optical activity. We show the proper functionalization of the best performing chromophores and their incorporation into a hybrid organic- inorganic sol-gel matrix. Different types of functionalization of the active molecule have been considered, including hydroxyl and alkoxysilyl end-groups. The functionalization strategy responded to different criteria such as stability and synthetic availability of the final molecular precursors, their solubility, and the used synthetic approach to the sol-gel material. The synthesis of the sol-gel materials has been tuned in order to preserve molecular properties and control important factors such as final concentration of the active dye in the matrix. Both acid- and base-catalyzed sol-gel synthesis has been taken into account. 3-Glycidoxypropyltrimethoxysilane and 3- aminopropyltriethoxysilane have been used as the organically modified alkoxides to prepare the hybrid organic-inorganic matrix. Characterization of the spectroscopic properties of the sol-gel materials is presented.

  2. Rheological Behavior of a Novel Organic-Inorganic Hybrid: Micro/Nano-Tin Fluorophosphate Glass-Polycarbonate.

    PubMed

    Yang, Jing; Liu, Huiwen; Yu, Honglin; Zou, Xiaoxuan; Jing, Bo; Dai, Wenli

    2016-03-01

    The rheological behavior of a novel, binary organic-inorganic hybrid consisting of an ultra-low Tg tin fluorophosphate glass (Pglass) and polycarbonate (PC) was investigated using oscillatory rheometry. It was found that the complex viscosity of the hybrid showed Pglass content dependence. Under low Pglass content (10-30%), the complex viscosity of the hybrid was lower than that of pure PC. While the complex viscosity was dramatically increased and higher than that of pure PC with the content of Pglass above 30%. This phenomenon was particularly remarkable at low frequencies. Besides, with the addition of Pglass the hybrid material exhibited shear-thinning behavior and the shear-thinning characteristics became more obvious with the enhancement of the Pglass content, indicating the presence of nonlinear chemical and physical interactions between the hybrid components. Differential scanning calorimetry (DSC) measurements revealed that increasing the content of Pglass caused a decrease of the glass transition temperature (Tg) of the hybrids, suggesting that Pglass was acting as a macromolecular plasticizer for the PC. The microstructure of the Pglass in the hybrid material was characterized by scanning electron microscopy (SEM). The results showed that the Pglass were dispersed as micro- and nano-bead in the continuous phase of PC and the Pglass appeared aggregation partly with the increase of the Pglass content. This contribution was anticipated to be a guideline for the processing of this promising new class of hybrid materials.

  3. General Deposition of Metal-Organic Frameworks on Highly Adaptive Organic-Inorganic Hybrid Electrospun Fibrous Substrates.

    PubMed

    Liu, Chang; Wu, Yi-Nan; Morlay, Catherine; Gu, Yifan; Gebremariam, Binyam; Yuan, Xiao; Li, Fengting

    2016-02-01

    Electrospun nanofibrous mats are ideal substrates for metal-organic frameworks (MOFs) crystal deposition because of their specific structural parameters and chemical tenability. In this work, we utilized organic-inorganic hybrid electrospun fibrous mats as support material to study the deposition of various MOF particles. HKUST-1 and MIL-53(Al) were produced through solvothermal method, while ZIF-8 and MIL-88B(Fe) were prepared using microwave-induced heating method. The synthesis procedure for both methods were simple and effective because the hybrid nanofibrous mats showed considerable affinity to MOF particles and could be used without additional modifications. The obtained MOF composites exhibited effective incorporation between MOF particles and the porous substrates. MIL-53(Al) composite was applied as fibrous sorbent and showed enhanced adsorption capacity and removal rate, as well as easier operation, compared with thepowdered sample. Moreover, MIL-53(Al) composite was easier to be regenerated compared with powder form.

  4. Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Xu, Weidong; Liu, Lijia; Yang, Linju; Shen, Pengfei; Sun, Baoquan; McLeod, John A

    2016-07-13

    Organic-inorganic lead perovskites have shown great promise as photovoltaic materials, and within this class of materials (CH3NH3)PbI3-xClx is of particular interest. Herein we use soft X-ray spectroscopy and density functional theory calculations to demonstrate that the methylammonium cations in a typical photovoltaic layer may dissociate into a metastable arrangement of CH3I-Pb2 defects and trapped NH3. The possibility that other metastable configurations of the organic components in (CH3NH3)PbI3-xClx is rarely considered but adds an entirely new dimension in understanding the charge trapping, ionic transport, and structural degradation mechanisms in these materials. Understanding the influence of these other configurations is of critical importance for further improving the performance of these photovoltaics. PMID:27337149

  5. Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Xu, Weidong; Liu, Lijia; Yang, Linju; Shen, Pengfei; Sun, Baoquan; McLeod, John A

    2016-07-13

    Organic-inorganic lead perovskites have shown great promise as photovoltaic materials, and within this class of materials (CH3NH3)PbI3-xClx is of particular interest. Herein we use soft X-ray spectroscopy and density functional theory calculations to demonstrate that the methylammonium cations in a typical photovoltaic layer may dissociate into a metastable arrangement of CH3I-Pb2 defects and trapped NH3. The possibility that other metastable configurations of the organic components in (CH3NH3)PbI3-xClx is rarely considered but adds an entirely new dimension in understanding the charge trapping, ionic transport, and structural degradation mechanisms in these materials. Understanding the influence of these other configurations is of critical importance for further improving the performance of these photovoltaics.

  6. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    SciTech Connect

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-10-08

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 {mu}m laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 {mu}m laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  7. [Preparation of organic-inorganic hybrid boronate affinity monolith via thiol-ene click reaction for specific capture of glycoproteins].

    PubMed

    Yang, Fan; Mao, Jie; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2013-06-01

    A novel strategy for the preparation of the organic-inorganic hybrid boronate affinity monolith was developed via the "thiol-ene" click reaction. A thiol group-modified silica monolith was first synthesized via the sol-gel process by the in situ co-condensation with tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) as precursors. Then 3-acrylamidophenylboronic acid (AAPBA) was covalently immobilized on the hybrid monolith via the "thiol-ene" click reaction to form AAPBA-silica hybrid affinity monolith. The reaction conditions for the preparation of AAPBA-silica hybrid affinity monolith were optimized, including the ratio of TMOS to MPTMS, the contents of poly(ethylene glycol) (PEG) and methanol. The morphology and mechanical stability of the boronate affinity monolith were characterized and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained boronate affinity hybrid monolith exhibited excellent specificity toward the nucleosides containing cis-diols under neutral conditions. It was further applied to the specific capture of the glycoproteins ovalbumin and horseradish peroxidase. The method is novel and reliable, which has a great potential for the preparation of different kinds of the boronate affinity monoliths.

  8. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days.

  9. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. PMID:25014167

  10. Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Lee, Bo Ram; Lee, Ju Min; Kim, Ji-Seon; Kim, Sang Ouk; Song, Myoung Hoon

    2010-06-01

    We investigate the effect of self-assembled dipole molecules (SADMs) on ZnO surface in hybrid organic-inorganic polymeric light-emitting diodes (HyPLEDs). Despite the SADM being extremely thin, the magnitude and orientation of SADM dipole moment effectively influenced the work function of the ZnO. As a consequence, the charge injection barrier between the conduction band of the ZnO and the lowest unoccupied molecular orbital of poly(9,9'-dioctylfluorene)-co-benzothiadiazole could be efficiently controlled resulting that electron injection efficiency is remarkably enhanced. The HyPLEDs modified with a negative dipolar SADM exhibited enhanced device performances, which correspond to approximately a fourfold compared to those of unmodified HyPLEDs.

  11. Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials.

    PubMed

    Yoshimura, Tetsuzo; Iida, Makoto; Nawata, Hideyuki

    2014-06-15

    Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers.

  12. Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film

    SciTech Connect

    Molodtsova, O. V.; Babenkov, S. V.; Aristova, I. M.; Vilkov, O. V.; Aristov, V. Yu.

    2014-04-28

    The evolution of the morphology and the electronic structure of the hybrid organic-inorganic system composed of aluminum nanoparticles (NPs) distributed in an organic semiconductor matrix—copper phthalocyanine (CuPc)—as a function of nominal aluminum content was studied by transmission electron microscopy and by photoemission spectroscopy methods. The aluminum atoms deposited onto the CuPc surface diffuse into the organic matrix and self-assemble to NPs in a well-defined manner with a narrow diameter distribution, which depends on the amount of aluminum that is evaporated onto the CuPc film. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. The finally at high coverage about 64 Å the formation of metallic aluminum overlayer on CuPc thin film takes place.

  13. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst.

    PubMed

    Zhang, Zehui; Dong, Kun; Zhao, Zongbao Kent

    2011-01-17

    A clean, facile, and environment-friendly catalytic method has been developed for the conversion of furfuryl alcohol into alkyl levulinates making use of the novel solid catalyst methylimidazolebutylsulfate phosphotungstate ([MIMBS]₃PW₁₂O₄₀). The solid catalyst is an organic-inorganic hybrid material, which consists of an organic cation and an inorganic anion. A study for optimizing the reaction conditions such as the reaction time, the temperature and the catalyst loading has been performed. Under optimal conditions, a high n-butyl levulinate yield of up to 93 % is obtained. Furthermore, the kinetics of the reaction pathways and the mechanism for the alcoholysis of furfuryl alcohol are discussed. This method is environmentally benign and economical for the conversion of biomass-based derivatives into fine chemicals. PMID:21226220

  14. Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials.

    PubMed

    Yoshimura, Tetsuzo; Iida, Makoto; Nawata, Hideyuki

    2014-06-15

    Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers. PMID:24978520

  15. Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers

    NASA Astrophysics Data System (ADS)

    Wang, T.; Okuda, H.; Lee, S.-W.

    2015-07-01

    The development of an evanescent wave optical fibre (EWOF) sensor modified with an organic-inorganic hybrid nanoporous thin film for alcohol vapor detection was demonstrated. The optical fibre with a core diameter of 200 μm was bent into U-shape probe optic fibre to enhance the penetation depth of light transferred into the evanescent filed. The bended region of the fibre was modified with a multilayered thin film of poly(allyamine hydrochloride) and silica nanoparticels, (PAH/SiO2)n, by a layer-by-layer (LbL) film deposition technique, followed by infusion of tetrakis(4- sulfophenyl)porphine, TPPS. The mesoporous film structure showed high sensitivity and selectivity to methanol by the aid of the TPPS infused inside the film. The optical sensor response was reversible and reproducible over many times of exposures to analytes, which was caused by the change in refractive index (RI) of the film.

  16. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-11-01

    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  17. Enzymatically degradable hybrid organic-inorganic bridged silsesquioxane nanoparticles for in vitro imaging

    NASA Astrophysics Data System (ADS)

    Fatieiev, Y.; Croissant, J. G.; Julfakyan, K.; Deng, L.; Anjum, D. H.; Gurinov, A.; Khashab, N. M.

    2015-09-01

    We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes.We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved. These enzymatically degradable BS NPs were further tested as promising imaging nanoprobes. Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1-15. See DOI: 10.1039/c5nr03065j

  18. Nb-Ta, Nb-Mo and Nb-V oxides prepared from hybrid organic-inorganic precursors

    SciTech Connect

    Deligne, N.; Bayot, D.; Degand, M.; Devillers, M.

    2007-07-15

    New hybrid organic-inorganic materials based on group 5 elements and a well-defined polymeric matrix have been prepared and used as precursors for Nb-Ta and Nb-Mo mixed oxides. In this non-conventional but easily accessible route to multimetallic oxides, a copolymer of N,N-diallyl-N-hexylamine and maleic acid was synthesised and used as matrix to stabilise inorganic species generated in solution from (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}.4H{sub 2}O, NH{sub 4}VO{sub 3} (gu){sub 3}[Nb(O{sub 2}){sub 4}] and (gu){sub 3}[Ta(O{sub 2}){sub 4}]. Solid-state studies indicate that the homogeneity of the blends can be kept up to about 0.5 mol Nb{sup V} and Ta{sup V} and 0.25 mol V{sup V} per mol of repeat units of the copolymer. The calcination conditions of these homogeneous hybrid precursors were optimised to produce Nb-Mo, Nb-Ta and Nb-V oxides. While the thermal treatment of the Nb-V hybrid blends led only to a mixture of different phases, the characterisation of the final phases by X-ray diffraction (XRD) proved the formation of pure Nb{sub 2}Mo{sub 3}O{sub 14} and showed that Nb-Ta oxides could be synthesised as single phases corresponding to a continuous series of solid solutions. - Graphical abstract: An alternative route based on hybrid organic-inorganic materials was implemented to synthesise Nb-Ta, Nb-Mo and Nb-V oxides. The hybrid materials were prepared by incorporation of inorganic salts based on Nb{sup V}, Ta{sup V}, V{sup V} and Mo{sup VI} in an organic polymer bearing cationic as well as anionic moieties. A thermal treatment of these hybrid blends has allowed the formation of multimetallic oxides.

  19. High-performance organic/inorganic hybrid heterojunction based on Gallium Arsenide (GaAs) substrates and a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Jameel, D. A.; Felix, J. F.; Aziz, M.; Al Saqri, N.; Taylor, D.; de Azevedo, W. M.; da Silva, E. F.; Albalawi, H.; Alghamdi, H.; Al Mashary, F.; Henini, M.

    2015-12-01

    In this paper, we present an extensive study of the electrical properties of organic-inorganic hybrid heterojunctions. Polyaniline (PANI) thin films were deposited by a very simple technique on (1 0 0) and (3 1 1)B n-type Gallium Arsenide (GaAs) substrates to fabricate hybrid devices with excellent electrical properties. The hybrid devices were electrically characterized using current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements in the temperature range 20-440 K. The analysis of I-V characteristics based on the thermionic emission mechanism has shown a decrease of the barrier height and an increase of the ideality factor at lower temperatures for both hybrid devices. The interface states were analyzed by series resistance obtained using the C-G-V methods. The interface state density (Dit) of PANI/(1 0 0) GaAs devices is approximately one order of magnitude higher than that of PANI/(3 1 1)B GaAs devices. This behaviour is attributed to the effect of crystallographic orientation of the substrates, and was confirmed by DLTS results as well. Additionally, the devices show excellent air stability, with rectification ratio values almost unaltered after two years of storage under ambient conditions, making the polyaniline an interesting conductor polymer for future devices applications.

  20. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs.

  1. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs. PMID:25933531

  2. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  3. Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity.

    PubMed

    Truffault, Laurianne; Rodrigues, Danilo Fernando; Salgado, Hérida Regida Nunes; Santilli, Celso Valentim; Pulcinelli, Sandra Helena

    2016-11-01

    There are requirements for surfaces with antibacterial properties in various technological fields. U-PEO hybrids with antibacterial properties were synthesized by the sol-gel process, incorporating combinations of cerium and silver salts at different silver molar fractions (0, 0.02, 0.05, 0.10, and 1) relative to the total amount of doped cations. The loaded hybrids were characterized by TGA, XRD, and Raman spectroscopy. Release tests were performed using UV-vis spectroscopy, and the antibacterial properties of the hybrids were studied in agar tests and turbidimetry assays. The nanostructural evolution of the hybrids during the release of the antibacterial agents was investigated by in situ SAXS. XRD results showed the presence of the AgCl crystalline phase in the loaded hybrids from a silver molar fraction of 0.05. Raman spectroscopy evidenced the interaction of silver cations with the polymeric part of the hybrid. SAXS results confirmed these interactions and showed that cerium species interacted with both organic and inorganic parts of the hybrids. The loaded U-PEO hybrids were found to release all the incorporated cerium in 1h, while the hybrid containing 100% of silver released only 78% of the incorporated silver. All the loaded hybrids displayed antibacterial activity against the Pseudomonas aeruginosa bacterium. The antibacterial activity was found to increase with silver molar fraction. Due to its high antibacterial activity and low silver molar fraction, the loaded hybrid with silver molar fraction of 0.10 seemed to be a good compromise between efficiency, esthetic transparency, and photostability. PMID:27500358

  4. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes.

    PubMed

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-01-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m(2). Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084

  5. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes

    PubMed Central

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-01-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084

  6. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  7. Organic/inorganic hybrid pn-junction between copper phthalocyanine and CdSe quantum dot layers as solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Guchhait, Asim; Pal, Amlan J.

    2012-08-01

    We have introduced an organic/inorganic hybrid pn-junction for solar cell applications. Layers of II-VI quantum dots and a metal-phthalocyanine in sequence have been used as n- and p-type materials, respectively, to form a junction. The film of quantum dots has been formed through a layer-by-layer process by replacing the long-chain ligands of the nanoparticles in each ultrathin layer or a monolayer with short-chain ones so that interparticle distance becomes small leading to a decrease in resistance of the quantum dot layer. With indium tin oxide and Au as electrodes, we have formed an inverted sandwiched structure. These electrodes formed ohmic contacts with the neighboring materials. From the current-voltage characteristics of the hybrid heterostructure, we have inferred formation of a depletion region at the pn-junction that played a key role in charge separation and correspondingly a photocurrent in the external circuit. For comparison, we have also formed and characterized Schottky devices based on components of the pn-junction keeping the electrode combination same. From capacitance-voltage characteristics, we have observed that the depletion region of the hybrid pn-junction was much wider as compared to that in Schottky devices based on components of the junction.

  8. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-09-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n‑1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters.

  9. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system. PMID:27455702

  10. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes.

    PubMed

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-09-16

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m(2). Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters.

  11. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  12. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  13. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices. PMID:26883532

  14. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  15. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xia, Zhonggao; Du, Songnan; Yuan, Fang; Li, Zigang; Li, Zhenjun; Dai, Qing; Wang, Haolan; Luo, Shiqiang; Zhang, Shengdong; Zhou, Hang

    2016-04-01

    We present here solution-processed photodetectors based on a methyl ammonium lead iodide perovskite (MAPbI3) and nanocrystalline graphite (NCG) hybrid composite. The highest responsivity of the best MAPbI3/NCG photodetector was 795 mA W-1 at 500 nm visible light, which is almost twice as high as that of the NCG-free MAPbI3 photodetector (408 mA W-1). The enhanced performance of the MAPbI3/NCG photodetector arises from the improved charge extraction at the MAPbI3/NCG interface. The dependence of photodetector performance on the mass percentage of NCG (the ratio of NCG to MAPbI3) in the hybrid materials is also reported here, and is correlated to the fabrication process. Moreover, by comparing the responsivity of the devices with different channel lengths, we show that the performance of hybrid photodetectors can be further tuned by tailoring the channel length.

  16. Photothermal initiation of hybrid organic/inorganic metastable interstitial composites: synergistic effects on the dynamics of energy release.

    PubMed

    Mileham, Melissa L; Park, Chi-Dong; van de Burgt, Lambertus J; Kramer, Michael P; Stiegman, A E

    2008-12-11

    The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium. PMID:18942803

  17. Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin.

    PubMed

    Tan, Yi; Shao, Zhu-Bao; Chen, Xue-Fang; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong

    2015-08-19

    A novel multifunctional organic-inorganic hybrid was designed and prepared based on ammonium polyphosphate (APP) by cation exchange with diethylenetriamine (DETA), abbreviated as DETA-APP. Then DETA-APP was used as flame-retardant curing agent for epoxy resin (EP). Curing behavior, including the curing kinetic parameters, was investigated by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). The flame retardance and burning behavior of DETA-APP cured EP were also evaluated. The limiting oxygen index (LOI) value of DETA-APP/EP was enhanced to 30.5% with only 15 wt % of DETA-APP incorporated; and the UL-94 V-0 rating could be easily passed through with only 10 wt % of the hybrid. Compared with DETA/EP, the peak-heat release rate (PHRR), total heat release (THR), total smoke production (TSP), and peak-smoke production release (SPR) of DETA-APP/EP (15 wt % addition), obtained from cone calorimetry, were dropped by 68.3, 79.3, 79.0, and 30.0%, respectively, suggesting excellent flame-retardant and smoke suppression efficiency. The flame-retardant mechanism of DETA-APP/EP has been investigated comprehensively. The results of all the aforementioned studies distinctly confirmed that DETA-APP was an effective flame-retardant curing agent for EP.

  18. Photothermal initiation of hybrid organic/inorganic metastable interstitial composites: synergistic effects on the dynamics of energy release.

    PubMed

    Mileham, Melissa L; Park, Chi-Dong; van de Burgt, Lambertus J; Kramer, Michael P; Stiegman, A E

    2008-12-11

    The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium.

  19. Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin.

    PubMed

    Tan, Yi; Shao, Zhu-Bao; Chen, Xue-Fang; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong

    2015-08-19

    A novel multifunctional organic-inorganic hybrid was designed and prepared based on ammonium polyphosphate (APP) by cation exchange with diethylenetriamine (DETA), abbreviated as DETA-APP. Then DETA-APP was used as flame-retardant curing agent for epoxy resin (EP). Curing behavior, including the curing kinetic parameters, was investigated by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). The flame retardance and burning behavior of DETA-APP cured EP were also evaluated. The limiting oxygen index (LOI) value of DETA-APP/EP was enhanced to 30.5% with only 15 wt % of DETA-APP incorporated; and the UL-94 V-0 rating could be easily passed through with only 10 wt % of the hybrid. Compared with DETA/EP, the peak-heat release rate (PHRR), total heat release (THR), total smoke production (TSP), and peak-smoke production release (SPR) of DETA-APP/EP (15 wt % addition), obtained from cone calorimetry, were dropped by 68.3, 79.3, 79.0, and 30.0%, respectively, suggesting excellent flame-retardant and smoke suppression efficiency. The flame-retardant mechanism of DETA-APP/EP has been investigated comprehensively. The results of all the aforementioned studies distinctly confirmed that DETA-APP was an effective flame-retardant curing agent for EP. PMID:26186089

  20. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    NASA Astrophysics Data System (ADS)

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.

  1. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    PubMed Central

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399

  2. Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity

    NASA Astrophysics Data System (ADS)

    Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung

    2016-03-01

    In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.

  3. Structure and magnetic properties of SiO2/PCL novel sol-gel organic-inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Catauro, Michelina; Bollino, Flavia; Cristina Mozzati, Maria; Ferrara, Chiara; Mustarelli, Piercarlo

    2013-07-01

    Organic-inorganic nanocomposite materials have been synthesized via sol-gel. They consist of an inorganic SiO2 matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si-OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO2/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount.

  4. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  5. Hybrid organic/inorganic thin-film multijunction solar cells exceeding 11% power conversion efficiency.

    PubMed

    Roland, Steffen; Neubert, Sebastian; Albrecht, Steve; Stannowski, Bernd; Seger, Mark; Facchetti, Antonio; Schlatmann, Rutger; Rech, Bernd; Neher, Dieter

    2015-02-18

    Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given.

  6. Synthesis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction.

    PubMed

    Na, Moonkyong; Park, Hoyyul; Ahn, Myeongsang; Lee, Hyeonhwa; Chung, Ildoo

    2010-10-01

    Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

  7. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure. PMID:25822757

  8. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite.

    PubMed

    Wang, Yan; Xia, Zhonggao; Du, Songnan; Yuan, Fang; Li, Zigang; Li, Zhenjun; Dai, Qing; Wang, Haolan; Luo, Shiqiang; Zhang, Shengdong; Zhou, Hang

    2016-04-29

    We present here solution-processed photodetectors based on a methyl ammonium lead iodide perovskite (MAPbI3) and nanocrystalline graphite (NCG) hybrid composite. The highest responsivity of the best MAPbI3/NCG photodetector was 795 mA W(-1) at 500 nm visible light, which is almost twice as high as that of the NCG-free MAPbI3 photodetector (408 mA W(-1)). The enhanced performance of the MAPbI3/NCG photodetector arises from the improved charge extraction at the MAPbI3/NCG interface. The dependence of photodetector performance on the mass percentage of NCG (the ratio of NCG to MAPbI3) in the hybrid materials is also reported here, and is correlated to the fabrication process. Moreover, by comparing the responsivity of the devices with different channel lengths, we show that the performance of hybrid photodetectors can be further tuned by tailoring the channel length. PMID:26978061

  9. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    NASA Astrophysics Data System (ADS)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  10. Alkylene-bridged polygerm- and polygermsilsesqui-oxanes: New hybrid organic-inorganic materials

    SciTech Connect

    Jamison, G.M.; Loy, D.A.; Zender, G.; Shea, K.J.

    1993-12-31

    Alkylene-bridge polygerm- and polygermsilsequioxanes have been formed by hydrolysis-condensation of their corresponding (EtO){sub 3}M(CH{sub 2}){sub n}Ge(OEt){sub 3} monomers under HCl- and NEt{sub 3}-catalyzed conditions in ethanol. Solid state {sup 13}C and {sup 29}Si NMR indicate the retention of the alkylene bridging moiety during polymerization. The resulting aerogels are mesoporous materials with high surface areas. Incorporation of the short ethylene bridging unit results in higher surface areas than when heylene bridges are present. The porous nature of hexylene-bridged hybrid network [Si(CH{sub 2}){sub 6}GeO{sub 3}]{sub n} appears insensitive to the acidic or basic nature of the catalyst employed in it formation, in contrast to its polysilsesquioxane counterpart. Work is underway to determine the origin of porosity in these materials, and to characterize xerogel materials generated from these monomers.

  11. Designing artificial photosynthetic devices using hybrid organic-inorganic modules based on polyoxometalates.

    PubMed

    Symes, Mark D; Cogdell, Richard J; Cronin, Leroy

    2013-08-13

    Artificial photosynthesis aims at capturing solar energy and using it to produce storable fuels. However, while there is reason to be optimistic that such approaches can deliver higher energy conversion efficiencies than natural photosynthetic systems, many serious challenges remain to be addressed. Perhaps chief among these is the issue of device stability. Almost all approaches to artificial photosynthesis employ easily oxidized organic molecules as light harvesters or in catalytic centres, frequently in solution with highly oxidizing species. The 'elephant in the room' in this regard is that oxidation of these organic moieties is likely to occur at least as rapidly as oxidation of water, meaning that current device performance is severely curtailed. Herein, we discuss one possible solution to this problem: using self-assembling organic-polyoxometalate hybrid structures to produce compartments inside which the individual component reactions of photosynthesis can occur without such a high incidence of deleterious side reactions.

  12. Gold nanoparticles embedded in organic/inorganic hybrid matrix: electrical and electrochemical behavior (withdrawal notice)

    NASA Astrophysics Data System (ADS)

    Moreira, Sandra D. F. C.; Silva, J. P. B.; Silva, Carlos J. R.; Capan, I.; Gomes, M. J. M.; Costa, Manuel F. M.

    2013-05-01

    Gold nanoparticles (AuNPs) with different diameters, from 3 to 32 nm, were immobilized in amine-alcohol-silicate matrix by mixing a preformed nanoparticle colloid with the precursors of amine-alcohol-silicate (AAs) prior to the solgel transition. These nanocomposites show high optical quality and optical features dictated by the size of the nanoparticle dopants but also present a high degree of flexibility which can largely enhance the range of practical applications. The current-voltage, impedance and capacitance-voltage characteristics of these materials have been measured. The electrochemical and impedimetric results reveal that AuNPs with different sizes give different signals, thus providing useful information that allows the employment of AuNPs in electrochemical biosensors. Capacitance- voltage measurements showed that these composites embedded AuNPs exhibited a large hysteresis window of 2.4V which indicates the possibility of charge storage in the Au nanoparticles embedded AAs hybrids.

  13. Application of hybrid organic/inorganic polymers as coatings on metallic substrates

    NASA Astrophysics Data System (ADS)

    Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F.

    2016-09-01

    Acrylic polymers, particularly poly (methyl methacrylate) (PMMA), have certain specific properties, such as good film formation, transparency, and good mechanical properties, which have been widely used in paints, coatings and adhesives. However, the limited chemical and physical stability of these pure polymers limits their applications when exposed to hostile conditions, as in ship hulls, for example. A suitable way to enhance PMMA properties is the addition of silicon polymers with very good protective characteristics. In this study, a PMMA and HTT 1800 (commercial silazane) copolymer were applied on metallic substrate and compared to pure PMMA and HTT 1800. All the materials were applied as coatings. They were applied on stainless steel via dip-coating to investigate the coating properties. Thermal cycling was employed to analyze coating durability at high temperatures (50 °C to 600 °C). Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the coated surfaces, and the adhesion of pure PMMA, pure HTT 1800 and PMMA/HTT 1800 coatings on metallic substrate was investigated by Cross-Cut-Test (ASTM D 3359). The sessile drop method was used to determine the contact angle. PMMA coatings presented complete degradation from 250 °C, while hybrid coatings of PMMA and HTT 1800 have good protection until 400 °C. The adherence of the coating on metallic substrate showed improvement in all synthesized materials when compared to pure PMMA, obtaining the best adherence possible. The contact angle test showed that the hydrophobicity of the hybrid coatings is higher than that of the pure coatings.

  14. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  15. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites.

    PubMed

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-28

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. PMID:26705549

  16. Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via γ-radiation-induced graft polymerization.

    PubMed

    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Pang, Lijuan; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong

    2016-09-20

    A new kind of non-fluorine-based organic-inorganic hybrid superhydrophobic cotton fabric was successfully prepared by simultaneous radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxy silane (MAPS) and subsequent end-capping modification with hexamethyldisilazane (HMDS). The chemical structure and surface topography of the pristine and modified cotton fabrics were investigated in detail by ATR-FTIR, XPS, (29)Si NMR, SEM and TGA to confirm that the graft reaction and end-capping modification had taken place. The above results demonstrated that the grafting polymerization and following end-capping reaction were completed, and a grafting layer was immobilized onto the surface of the cotton fabric. Surface wettability measurement and oil-water separation showed that the modified cotton surface not only exhibited the superhydrophobicity with a water contact angle of 165°, but also afforded a high efficiency of oil-water separation (96%). In particular, this modified cotton fabric retains superhydrophobicity even after 30 laundering cycles or 400 cycles of abrasion. PMID:27261755

  17. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells.

    PubMed

    Ishii, Ayumi; Miyasaka, Tsutomu

    2014-04-14

    A thin solid-state dye-sensitized photovoltaic cell is fabricated by composing organic and inorganic heterojunctions in which the visible-light sensitizers are cyclopentadiene derivatives (Cp*) coordinated to a metal oxide, typically TiO2. The coordination bonds of the metallocene molecular complex (Ti-Cp*) create a new LMCT (ligand-to-metal charge transfer) absorption band and induce a rectified charge transfer from the organic ligands to TiO2, leading to photocurrent generation. Photovoltaic junctions are completed by coating crystalline organic molecules (perylene) as a hole-transport layer on the Cp*-coordinated TiO2 surface by using the vapor deposition method. The molecular plane of Cp* on the TiO2 surfaces seems to help the hole-transport layer to form ordered structures, which effectively improve carrier conductivities and minimize interfacial resistance. The organic-inorganic hybrid thin-film photocell with metallocene molecular complexes is capable of generating high open-circuit voltages exceeding 1.2 V.

  18. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  19. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters.

    PubMed

    Molard, Yann

    2016-08-16

    Inorganic phosphorescent octahedral metal nanoclusters fill the gap between metal complexes and nanoparticles. They are finite groups of metal atoms linked by metal-metal bonds, with an exact composition and structure at the nanometer scale. As their phosphorescence internal quantum efficiency can approach 100%, they represent a very attractive class of molecular building blocks to design hybrid nanomaterials dedicated to light energy conversion, optoelectronic, display, lighting, or theragnostic applications. They are obtained as AnM6X(i)8X(a)6 ternary salt powders (A = alkali cation, M = Mo, Re, W, X(i): halogen inner ligand, X(a) = halogen apical ligand) by high temperature solid state synthesis (750-1200 °C). However, their ceramic-like behavior has largely restricted their use as functional components in the past. Since these last two decades, several groups, including ours, started to tackle the challenge of integrating them in easy-to-process materials. Within this context, we have extensively explored the nanocluster ternary salt specificities to develop a new class of self-organized hybrid organic-inorganic nanomaterials known as clustomesogens. These materials, combine the specific properties of nanoclusters (magnetic, electronic, luminescence) with the anisotropy-related properties of liquid crystals (LCs). This Account covers the research and development of clustomesogens starting from the design concepts and synthesis to their introduction in functional devices. We developed three strategies to build such hybrid super- or supramolecules. In the covalent approach, we capitalized on the apical ligand-metal bond iono-covalent character to graft tailor-made organic LC promoters on the {M6X(i)8}(n+) nanocluster cores. The supramolecular approach relies on the host-guest complexation of the ternary cluster salt alkali cations with functional crown ether macrocycles. We showed that the hybrid LC behavior depends on the macrocycles structural features

  20. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes.

  1. Mesoporous Silicia Nanowires by Space-Confined Organic-Inorganic Hybrid Self-Assembly

    SciTech Connect

    Lai, Peng

    2007-10-01

    This research focuses on the space-confined self-assembly of P123-silica hybrid solution inside nano-scale channels. Mesoporous silica nanowires with various diameters (10-400nm) were synthesized via sol-gel combined evaporation-induced self-assembly in channels of both anodized aluminum oxide (AAO) and etched polycarbonate (EPC) substrate. Scanning transmission electron microscope (STEM) was utilized to characterize the samples in terms of nanopore size, ordering, and orientation. The mesoporous structures of silica wires formed in EPC channels with diameter less than 400 nm are investigated and reported for the first time. Substrate effect (EPC vs. AAO) and processing condition effect on the morphology of the mesoporous structure of silica wires are presented and discussed. The more ordered and uniform mesoporous structure is preferentially formed in narrower substrate channel confinement. A critical diameter of hard template channels is around 30-50 nm, below which the space confinement effect leads to more uniform nanostructured nanowires, and above which mixed meso-structures usually exist. The formation of various meso-structures of silica wires is sensitive to process conditions.

  2. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. PMID:26866821

  3. Synthesis, characterization and ion-exchange properties of a new and novel 'organic-inorganic' hybrid cation-exchanger: Nylon-6,6, Zr(IV) phosphate.

    PubMed

    Inamuddin; Khan, Shakeel Ahmad; Siddiqui, Weqar Ahmad; Khan, Asif Ali

    2007-02-15

    Organic-inorganic hybrid materials enable the integration of useful organic and inorganic characteristics within a single molecular-scale composite. Unique ion-exchange properties of these types of materials have been observed, and many others can be envisioned for this promising class of materials. In this paper, we describe the ion-exchange and physico-chemical properties of one family of self-assembling organic-inorganic hybrid based on nylon-6,6, framework with Zr(IV) phosphate an inorganic ion-exchanger. The physico-chemical properties of this hybrid material were determined using atomic absorption spectrophotometry (AAS), CHN elemental analysis, ICP-MS, UV-vis spectrophotometry, FTIR, TGA-DTA and scanning electron microscope (SEM) studies. Ion-exchange capacity (IEC), thermal stability and distribution behavior, etc. were also carried out to understand the cation-exchange behavior of the material. On the basis of distribution studies, the material was found to be highly selective for Hg(II), a highly toxic environmental pollutant. Its selectivity was examined by achieving some important binary separations like Hg(II)-Mg(II), Hg(II)-Zn(II), Hg(II)-Fe(III), Hg(II)-Bi(III), etc. Thus, the relatively new field of "organic-inorganic" hybrids offers a variety of exciting technological opportunities to decrease the environmental pollution.

  4. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  5. Three new organic-inorganic hybrids based on Keggin ions and aminopyridine: Crystal structure and catalytic property

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanlei; Shen, Xiaoming; Lü, Shuzi; Peng, Zhenshan; Zhu, Wei; Cai, Tiejun

    2012-05-01

    Three new organic-inorganic supramolecular hybrids, namely, (2-C5H7N2)4(PMo12O40)2·(2-C5H6N2)6·(C4H8N4)·H2O (compound 1), (3-C5H7N2)6·(PMo12O40)2·(3-C5H6N2)4·H8O4·(H2O)8 (compound 2), (4-C5H7N2)6(PMo12O40)2·(4-C5H6N2)4·(C4H6N3) (compound 3), have been synthesized by hydrothermal method and characterized by elemental analyses, IR, UV-vis, TGA and single-crystal X-ray diffraction. Compound 1-3 constructed from Keggin polyoxoanions and 2-/3-/4-aminopyridine organic ligands, exhibit an extended three-dimensional supramolecular network via hydrogen bonding and π-π stacking interactions, while compound 2 contains a tetramolecular water clusters. compounds 1 and 3 have a higher catalytic activity for the oxidation of acetone tested in a continuous-flow fixed-bed micro-reactor. When the initial concentration of the acetone is 6.1 g m-3 in air and the flow velocity is 4.5 mL min-1, the acetone is completely eliminated at 160 °C. But compound 2 has lower catalytic activity for the oxidation of acetone.

  6. The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study.

    PubMed

    Idígoras, J; Todinova, A; Sánchez-Valencia, J R; Barranco, A; Borrás, A; Anta, J A

    2016-05-11

    The interaction of hybrid organic-inorganic halide perovskite and selective contacts is crucial to get efficient, stable and hysteresis-free perovskite-based solar cells. In this report, we analyze the vibrational properties of methylammonium lead halide perovskites deposited on different substrates by infrared absorption (IR) measurements (4000-500 cm(-1)). The materials employed as substrates are not only characterized by different chemical natures (TiO2, ZnO and Al2O3), but also by different morphologies. For all of them, we have investigated the influence of these substrate properties on perovskite formation and its degradation by humidity. The effect of selective-hole contact (Spiro-OmeTad and P3HT) layers on the degradation rate by moisture has also been studied. Our IR results reveal the existence of a strong interaction between perovskite and all ZnO materials considered, evidenced by a shift of the peaks related to the N-H vibrational modes. The interaction even induces a morphological change in ZnO nanoparticles after perovskite deposition, pointing to an acid-base reaction that takes place through the NH3(+) groups of the methylammonium cation. Our IR and X-ray diffraction results also indicate that this specific interaction favors perovskite decomposition and PbI2 formation for ZnO/perovskite films subjected to humid conditions. Although no interaction is observed for TiO2, Al2O3, and the hole selective contact, the morphology and chemical nature of both contacts appear to play an important role in the rate of degradation upon exposure to moisture.

  7. Transformation of organic-inorganic hybrid films obtained by molecular layer deposition to photocatalytic layers with enhanced activity.

    PubMed

    Ishchuk, Sergey; Taffa, Dereje Hailu; Hazut, Ori; Kaynan, Niv; Yerushalmi, Roie

    2012-08-28

    We present the transformation of organic-inorganic hybrid titanicone films formed by TiCl(4) as metal precursor and ethylene glycol (EG) using solvent-free MLD to highly active photocatalytic films. The photocatalytic activities of the films were investigated using hydroxyl-functionalized porphyrin as a spectroscopic marker. TEM imaging and electron diffraction, XPS, UV-vis spectroscopy, and spectroscsopic ellipsometry were employed for structural and composition analyses of the films. The photocatalytic activity of Ti-EG films was investigated for different anneal temperatures and compared to TiO(2) films prepared by ALD using TiCl(4) as metal precursor and H(2)O (TiO(2) films). Overall, our results indicate that the photocatalytic activity of the thermally annealed Ti-EG film is about 5-fold increased compared to that of the TiO(2) film prepared by ALD for optimal process conditions. The combined results indicate that the structural and photocatalytic properties can be assigned to three states: (I) amorphous state, intermediate dye loading, low photocatalytic activity, (II) intermediate film state with both crystalline and amorphous regions, high dye loading, high catalytic activity, and (III) highly crystalline film with low dye loading and low photocatalytic activity. The formation of photocatalytic nanotubes (NTs) is demonstrated using sacrificial Ge nanowires (NWs) scaffolds to yield Ti-EG NT structures with controllable wall thickness structures and enhanced dye loading capacity. Our results demonstrate the feasibility and high potential of MLD to form metal oxides with high photocatalytic activity. PMID:22768917

  8. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    SciTech Connect

    Yang, Wenchao; Yao, Yao Wu, Chang-Qin

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  9. Strong and fast-recovery organic/inorganic hybrid AuNPs-supramolecular gels based on loofah-like 3D networks.

    PubMed

    He, Huiwen; Chen, Si; Tong, Xiaoqian; Chen, Yining; Wu, Bozhen; Ma, Meng; Wang, Xiaosong; Wang, Xu

    2016-01-21

    Super strong and fast-recovery organic/inorganic hybrid gold nanoparticle (AuNPs)-supramolecular gels based on a three-dimensional loofah-like nanoscale network self-assembled by polyhedral oligomeric silsesquioxane (POSS) core supramolecular gelators are reported for the first time. Two series of POSS core organic/inorganic hybrid gelators, POSS-BOC-l-Homophenylalanine (POSS-Hpy) and POSS-Boc-Cys(Bzl)-OH (POSS-Cys), with two types of peripherals having different abilities for driving the self-assembly of AuNPs in gels were designed and synthesized, both of which self-assembled into three-dimensional loofah-like nanoscale gel networks producing hybrid physical gels with fast-recovery behaviors. The mechanical properties of the resultant hybrid gels were dramatically increased by as much as 100 times in the system of sulfur containing POSS-Cys gelators without destroying the fast-recovery behaviors, with the addition of AuNPs, which had direct interaction with AuNPs to give S-Au non-covalent driving force to lead AuNPs self-assemble onto the 3D loofah-like network nanofibres in the supramolecular hybrid gel system. However, in the POSS-Hpy gelator system without sulfur, no strong interaction with AuNPs existed and the POSS-Hpy nanocomposites showed no clear changes in morphology, thermal stability or rheological properties, confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), tube-inversion and rotational rheometer measurements. This indicated that the organic/inorganic hybrid gelator POSS-Cys could be applied to the formation of soft materials in which AuNPs were self-assembled and closely arranged into three-dimensional nanoscale networks. This hybrid material has great potential for applications in self-recovery, nano- and micron-scale electronic devices, because it has both a large mechanical strength and a fast-recovery capability. PMID:26568047

  10. Bioresponsive peptide-inorganic hybrid nanomaterials.

    PubMed

    Aili, Daniel; Stevens, Molly M

    2010-09-01

    Bioanalytical techniques that enable simple, fast and reliable high sensitivity monitoring of biomolecular interactions are of immense importance for diagnostics and drug development. This tutorial review provides an overview of recent progress in the development of peptide-based hybrid nanomaterials that transduce molecular interactions by exploiting the optical and magnetic properties of nanoparticles. Peptides have emerged as an interesting alternative to conventional biomolecular receptors, such as antibodies, and are facilitating the design of responsive hybrid nanomaterials that are both robust and sensitive for biodiagnostic applications. PMID:20596582

  11. Low-frequency Raman study of the ferroelectric phase transition in a layered CuCl4-based organic-inorganic hybrid

    NASA Astrophysics Data System (ADS)

    Caretta, Antonio; Miranti, Rany; Havenith, Remco W. A.; Rampi, Elia; Donker, Michiel C.; Blake, Graeme R.; Montagnese, Matteo; Polyakov, Alexey O.; Broer, Ria; Palstra, Thomas T. M.; van Loosdrecht, Paul H. M.

    2014-01-01

    The ferroelectric phase transition at TC=340K in (C6H5CH2CH2NH3)2CuCl4 is studied by means of temperature-dependent low-frequency Raman scattering, focusing on the coupling of a low-energy librational mode to the order parameter of the transition. Analysis of the symmetry and characteristics of this mode links the dipolar order to the tilt angle of the organic cations. The thermal evolution of the Raman spectrum demonstrates the displacive component of the phase transition in combination with order-disorder phenomena and the importance of the organic-inorganic interplay to the physical properties of the compound. The ferroelectric properties investigated here can be generalized to the family of layered organic-inorganic hybrids.

  12. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  13. Characteristics of oxidative homolytic alkylation of imidazoles and organic-inorganic hybrid extended networks from large aromatic building blocks

    NASA Astrophysics Data System (ADS)

    Li, Kunhao

    The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were

  14. Preparation of an aptamer based organic-inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins.

    PubMed

    Zhao, Jin-Cheng; Zhu, Qing-Yun; Zhao, Ling-Yu; Lian, Hong-Zhen; Chen, Hong-Yuan

    2016-08-01

    A novel strategy for the preparation of an aptamer based organic-inorganic hybrid affinity monolithic column was developed successfully using gold nanoparticles (GNPs) as an intermediary for a sandwich structure to realize the functional modification of the surface of the monolithic matrix. This monolithic matrix was facilely pre-synthesized via one-step co-condensation. Due to the high surface-to-volume ratio of GNPs and the large specific surface area of the hybrid matrix, the average coverage density of aptamers on the hybrid monolith reached 342 pmol μL(-1). With the combination of an aptamer based hybrid affinity monolithic column and enzymatic chromogenic assay, the quantitation and detection limits of thrombin were as low as 5 nM and 2 nM, respectively. These results indicated that the GNPs attached monolith provided a novel technique to immobilize aptamers on an organic-inorganic hybrid monolith and it could be used to achieve highly selective recognition and determination of trace proteins. PMID:27307035

  15. Patterning organic/inorganic hybrid Bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors.

    PubMed

    Wang, Zhanhua; Zhang, Junhu; Xie, Jing; Yin, Yushu; Wang, Zhaoyi; Shen, Huaizhong; Li, Yunfeng; Li, Jiaxin; Liang, Sen; Cui, Liying; Zhang, Liang; Zhang, Hao; Yang, Bai

    2012-03-01

    Herein, we report a simple method to fabricate patterned organic/inorganic hybrid 1DPCs by top-down assisted photolithography. Versatile colorful pattern with different size and shape can be produced by selectively exposing the 1DPCs under UV light with predesigned photomask directly. The period change, especially the thickness variation of the top polymer layer, is the main reason for the colorful pattern generation. Because of the swelling property of the polymer layers, the pattern color can be modulated by introducing or taking off organic solvents, leading the as-prepared patterned 1DPCs to be effective sensors with high selectivity.

  16. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes

    SciTech Connect

    Kang, Xinhuang; Wang, Jun; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-04-15

    A hybrid organic-inorganic nanocomposite film of chitosan/sol-gel/multi-walled carbon nanotubes was constructed for the immobilization of horseradish peroxidase (HRP). This film was characterized by scanning electron microscopy. Direct electron transfer (DET) and bioelectrocatalysis of HRP incorporated into the composite film were investigated. The results indicate that the film can provide a favorable microenvironment for HRP to perform DET on the surface of glassy carbon electrodes with a pair of quasi-reversible redox waves and to retain its bioelectrocatalytic activity toward hydrogen peroxide.

  17. Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium; X=I, Br, Cl) hybrid organic-inorganic materials

    NASA Astrophysics Data System (ADS)

    Mancini, Alessandro; Quadrelli, Paolo; Amoroso, Giuseppe; Milanese, Chiara; Boiocchi, Massimo; Sironi, Angelo; Patrini, Maddalena; Guizzetti, Giorgio; Malavasi, Lorenzo

    2016-08-01

    In this paper we report the synthesis, the crystal structure and the optical response of APbX3 (A=MA, DMA, and TMA; X=I, Br) hybrid organic-inorganic materials including some new phases. We observe that as the cation group increases in size, the optical absorption edge shifts to higher energies with energy steps which are systematic and independent on the anion. A linear correlation between the optical bad gap and the tolerance factor has been shown for the series of samples investigated.

  18. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    PubMed

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.

  19. Organic and organic-inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon Jin; Nam, Sang-Hun; Kim, Sungsoo; Boo, Jin-Hyo

    2015-11-01

    Organic and organic-inorganic hybrid polymer thin films were deposited on Si(1 0 0) substrates at various ratios of TEOS (tetraethoxysilane) to cyclohexene by the plasma enhanced chemical vapor deposition (PECVD) method. The as-grown polymerized thin films were first analyzed by FT-IR and XPS. The results of FT-IR showed that the hybrid polymer thin films were polymerized with each fragmented precursor. The XPS results showed the chemical species and binding energies of each species. The Si 2p core-level spectra from the hybrid polymer thin film showed the status of the Si oxidation number. Impedance analysis was utilized for the measurement of the capacitance values and I-V curves, and an ultra low-k value and leakage current density of 1.75 and 10-9 A/cm2 at 1 MV/cm were obtained, respectively.

  20. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

    PubMed

    Chiang, Yi-Fang; Jeng, Jun-Yuan; Lee, Mu-Huan; Peng, Shin-Rung; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin; Hsu, Yao-Jane; Hsu, Ching-Ming

    2014-04-01

    A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight. PMID:24553998

  1. Thermally Induced Reversible Double Phase Transitions in an Organic-Inorganic Hybrid Iodoplumbate C4H12NPbI3 with Symmetry Breaking.

    PubMed

    Liu, Guangfeng; Liu, Jie; Sun, Zhihua; Zhang, Zhenyi; Chang, Lei; Wang, Junling; Tao, Xutang; Zhang, Qichun

    2016-08-15

    A one-dimensional (1D) organic-inorganic hybrid iodoplumbate crystal (1, C4H12NPbI3, TMAPbI3) can undergo two reversible phase transitions as the temperature decreases. Its dynamic phase-transition behaviors were carefully studied by dielectric measurements, thermal analysis, and variable-temperature crystallographic studies. These results indicate that the phase transitions possess a disorder-order feature with a noncentrosymmetrical intermediate phase structure. Due to the existence of the ordered motion and reorientation of the C4H12N(+) cation, 1 undergoes two phase transitions: the first one from space group P63/m at room temperature to Pm at 163 K with symmetry breaking, and the second one from space group Pm at 163 K to P61 at 142 K with partial symmetry restoration. Our results indicate that there is an existence of a transitional structure with a low symmetry space group during the disorder-order-type phase transitions, which can provide us valuable information to deeply understand the disorder-order phase transition in organic-inorganic hybrids. PMID:27459127

  2. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    SciTech Connect

    Gao, Tianxi; Que, Wenxiu Shao, Jinyou; Wang, Yushu

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  3. Biodegradable polymer adhesives, hybrids and nanomaterials

    NASA Astrophysics Data System (ADS)

    Mylonakis, Andreas

    Biodegradable polymeric products and organic-inorganic hybrid materials for a diversity of applications are the two main fields on which this research has been focused. A novel biodegradable adhesive, which mimics marine adhesive proteins, has been synthesized by the covalent incorporation of 3,4-dihydroxybenzoic acid onto the chitosan backbone. The adhesive strength of these materials varies with the molecular weight of the polysaccharide, the amount of diphenolics present and the curing time. Infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and ultraviolet-visible spectroscopy (UV) have been used to qualitatively and quantitatively establish the amount of the diphenolic moiety present on the backbone of the biodegradable polymers. The as synthesized polymers combine both the adhesive capability of the diphenolic function and the healing effect of chitosan. The biocompatibility and biodegradability of these modified chitosans offer the promise of utility of these novel materials in dental and medical applications. Organic-inorganic hybrid materials with low volume shrinkage and excellent mechanical properties were synthesized by the covalent incorporation of 2-hydroxyethyl methacrylate and glycidyl methacrylate on pre-hydrolyzed sol-gel silica. These hybrid materials exhibited low volume shrinkage during polymerization and were crack-free during storage for about twelve months. The mechanical properties of these materials are composition dependent. Incorporation of silica effectively increased the compressive yield stress and modulus of the obtained poly(HEMAGMA-silica) hybrid materials. A series of new electroactive hybrid materials have been synthesized by covalent incorporation of polyaniline into polyacrylate-silica hybrids. The formulation involves the radical co-polymerization of glycidyl methacrylate-polyaniline (GMA-PANi) and glycidyl methacrylate2-hydroxyethyl methacrylate-silica (GMA-HEMA-silica) to yield poly

  4. Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques

    NASA Astrophysics Data System (ADS)

    Abdulagatov, Aziz Ilmutdinovich

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately

  5. Synthesis, crystal structure, vibrational spectra, optical properties and theoretical investigation of a two-dimensional self-assembled organic-inorganic hybrid material

    NASA Astrophysics Data System (ADS)

    Dammak, Hajer; Elleuch, Slim; Feki, Habib; Abid, Younes

    2016-11-01

    Organic-inorganic hybrid material of formula (C4H3SC2H4NH3)2[PbI4] was synthesized and studied by X-ray diffraction, Infrared absorption, Raman scattering, UV-Visible absorption and photoluminescence measurements. The molecule crystallizes as an organic-inorganic two-dimensional (2D) structure built up from infinite PbI6 octahedra surrounded by organic cations. Such a structure may be regarded as quantum wells system in which the inorganic layers act as semiconductor wells and the organic cations act as insulator barriers. Room temperature IR and Raman spectra were recorded in the 520-3500 and 10-3500 cm-1 frequency range, respectively. Optical absorption measurements performed on thin films of (C4H3SC2H4NH3)2[PbI4] revealed three distinct bands at 2.4, 2.66 and 3.25 eV. We also report DFT calculations of the electric dipole moments (μ), polarizability (α), the static first hyperpolarizability (β) and HOMO-LUMO analysis of the title compound investigated by GAUSSIAN 09 package. The calculated static first Hyperpolarizability is equal to 11.46 × 10-31 esu.

  6. Crystal structure, vibrational studies and optical properties of a new organic-inorganic hybrid compound (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O.

    PubMed

    Kessentini, A; Belhouchet, M; Suñol, J J; Abid, Y; Mhiri, T

    2015-01-01

    A new organic-inorganic hybrid material, 1,4-bis(3-ammoniumpropyl) piperazinium pentachloridocuprate(II) chloride tetrahydrate [(C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O], has been synthesized and characterized by X-ray diffraction, UV-visible absorption, Infrared and Raman spectroscopy. The compound crystallizes in the orthorhombic system and Pnma space group with a=8.18 (3)Å, b=10.96 (5)Å, c=21.26 (9)Å, V=2254.3 (15)Å(3). In this structure, the Cu(2+) ion, surrounded by five chlorides, adopts the square pyramidal coordination geometry. The structure of this compound consists of tetraprotonated 1,4-bis(3-ammoniumpropyl) piperazinium cations and the anionic sublattice is built up of isolated, square pyramid [CuCl₅](3)(-) units, chloride ion Cl(-) and water molecules connected with each other by hydrogen bonds. Organic and inorganic entities are interconnected by means of hydrogen bonding contacts [NH⋯O(Cl), O(W)H⋯Cl and O(W)H⋯O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The optical study was also investigated by UV-Vis absorption. In fact, the organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O hybrid compound and it showed absorptions characteristics of CuCl based layered compounds centered at 275 and 374 nm.

  7. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  8. Design and Simulation of 2×2 MMI Coupler and Thermo-optic Switch Using Sol-Gel Derived Organic-Inorganic Hybrid Material

    NASA Astrophysics Data System (ADS)

    Samah, M. Firdaus A.; Nawabjan, Amirjan; Abdullah, Ahmad Sharmi; Ibrahim, Mohd Haniff; Kassim, Norazan Mohd; Mohamad, Abu Bakar

    2011-05-01

    A new design of Multimode Interference (MMI) thermo-optic switch with improved crosstalk figure is demonstrated in this paper. The device is designed and simulated using BeamProp 3D from Rsoft and 3D BPM CAD softwares. The devices are designed based on sol-gel derived organic-inorganic hybrid material, vinyltriethoxysilane (VTES), tetraethoxysilane (TEOS) and tetrabutoxytitanate (TTBu) or VTT with refractive index of 1.47 as a core and surrounded by silica with refractive index of 1.45 at 1550 nm wavelength. The switching power is 164mW and the simulation result show that the propagation loss of the MMI device is 1.8 dB and zero crosstalk.

  9. High-energy X-ray detection by hafnium-doped organic-inorganic hybrid scintillators prepared by sol-gel method

    SciTech Connect

    Sun, Yan; Koshimizu, Masanori Yahaba, Natsuna; Asai, Keisuke; Nishikido, Fumihiko; Kishimoto, Shunji; Haruki, Rie

    2014-04-28

    With the aim of enhancing the efficiency with which plastic scintillators detect high-energy X-rays, hafnium-doped organic-inorganic hybrid scintillators were fabricated via a sol-gel method. Transmission electron microscopy of sampled material reveals the presence of Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles, dispersed in a polymer matrix that constitutes the active material of the X-ray detector. With Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles incorporated in the polymer matrix, the absorption edge and the luminescence wavelength is shifted, which we attribute to Mie scattering. The detection efficiency for 67.4-keV X-rays in a 0.6-mm-thick piece of this material is two times better than the same thickness of a commercial plastic scintillator-NE142.

  10. A possibility as a new type of thermoelectric application on organic-inorganic hybrid perovsike ABI3 system: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Hong, Jisook; Shim, Ji Hoon; Whangbo, Myung-Hwan; Postech Team

    2015-03-01

    The electronic structures of organic-inorganic hybrid systems ABI3 (A = CH3NH3, NH2CHNH2; B = Sn, Pb; X = I) in the distorted phase from their patent cubic phase are systematically studied using the first-principles calculations. Here, we examine thermoelectric properties for ABI3 compounds based on the DFT electronic structures of their optimized crystal structures. The ABI3 compounds should be considered for good thermoelectric application. We reveal that good thermoelectric performance of ABI3 systems originate from large seebeck coefficients and low thermal conductivities. As a consequence, we predict that ABI3 system is a promising material for new thermoelectric application compared to thermoelectric properties of well-known thermoelectric material Bi2Te3. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2013R1A1A2060341).

  11. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    PubMed

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed. PMID:27442602

  12. Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments.

    PubMed

    Long, Run; Fang, Weihai; Prezhdo, Oleg V

    2016-08-18

    Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations. PMID:27485025

  13. Template-free synthesis of a porous organic-inorganic hybrid tin(IV) phosphonate and its high catalytic activity for esterification of free fatty acids.

    PubMed

    Dutta, Arghya; Patra, Astam K; Uyama, Hiroshi; Bhaumik, Asim

    2013-10-23

    Here we have synthesized an organic-inorganic hybrid mesoporous tin phosphonate monolith (MLSnP-1) with crystalline pore walls by a template-free sol-gel route. N2 sorption analysis shows Brunauer-Emmett-Teller (BET) surface area of 347 m2 g(-1). Wide-angle powder X-ray diffraction (PXRD) pattern shows few broad diffraction peaks indicating crystalline pore wall of the material. High-resolution transmission electron microscopic (HR TEM) image further reveals the crystal fringes on the pore wall. Framework bonding and local environment around phosphorus and carbon were examined by Fourier transform infrared (FT IR) spectroscopy and solid-state MAS NMR spectroscopy. The material exhibits remarkable catalytic activity for esterification of long chain fatty acids under mild reaction conditions at room temperature.

  14. Thermochemistry of Multiferroic Organic-Inorganic Hybrid Perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn).

    PubMed

    Nagabhushana, G P; Shivaramaiah, Radha; Navrotsky, Alexandra

    2015-08-19

    Organic-inorganic hybrid materials have enormous potential for applications in catalysis, gas storage, sensors, drug delivery, and energy generation, among others. A class of hybrid materials adopts the ABX3 perovskite topology. We report here the synthesis and characterization of an isostructural series of dense hybrid perovskites, [(CH3)2NH2][M(HCOO)3], with M = Mn, Co, Ni, and Zn. These compounds have shown promising multiferroic behavior. Understanding their stability is crucial for their practical application. We report their formation enthalpies based on direct measurement by room-temperature acid solution calorimetry. The enthalpy of formation of this dimethylammonium metal formate series becomes less exothermic in the order Mn, Zn, Co, Ni. The stability of the hybrid perovskite decreases as the tolerance factor increases, unlike trends seen in inorganic perovskites. However, the trends are similar to those seen in a number of ternary transition metal oxides, suggesting that specific bonding interactions rather than geometric factors dominate the energetics. PMID:26214549

  15. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  16. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage.

    PubMed

    Chen, Ming-Luan; Zheng, Ming-Ming; Feng, Yu-Qi

    2010-05-21

    An organic-inorganic hybrid silica monolithic column with octyl and sulfonic acid groups has been prepared by sol-gel technique for capillary electrochromatograhpy. The structure of hybrid monolith was optimized by changing the composition of tetraethoxysilane (TEOS), octyltriethoxysilane (C(8)-TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in the mixture of precursors. Then, the obtained hybrid monolith was oxidized using hydrogen peroxide (30%, w/w) to yield sulfonic acid groups. The sulfonic acid group, which served as strong cation-exchanger, dominated the charge on the surface of the capillary column and generated stable electroosmotic flow (EOF) in a wide range of pH. The monolithic column was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis (EA), and the performance of column was evaluated in detail by separating different kinds of compounds with column efficiency up to 155,000 plates/m for thiourea. In addition, this monolithic column was also applied in the analysis of theophylline (TP) and caffeine (CA) in beverages. The detection limits were 0.39 and 0.48 microg/mL for theophylline and caffeine, respectively. The method reproducibility was tested by evaluating the intra- and inter-day precisions, and relative standard deviations of less than 3.9 and 8.4%, respectively, were obtained. Recoveries of compounds from spiked beverage samples ranged from 87.2 to 105.2%.

  17. Calcium phosphate-based organic-inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy.

    PubMed

    Nomoto, Takahiro; Fukushima, Shigeto; Kumagai, Michiaki; Miyazaki, Kozo; Inoue, Aki; Mi, Peng; Maeda, Yoshinori; Toh, Kazuko; Matsumoto, Yu; Morimoto, Yuji; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-05-26

    Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors in a light-selective manner. To improve the PDT efficacy, numerous kinds of nanocarriers have been developed to deliver photosensitizers (PSs) selectively into the tumor through leaky tumor-associated vasculature. However, the corresponding prolonged retention of the nanocarrier in the bloodstream may lead to unfavorable photochemical damage to normal tissues such as skin. Here, we report an organic-inorganic hybrid nanocarrier with a pH-responsive on/off switch of PDT efficacy. This hybrid nanocarrier is constructed by hydrothermal synthesis after simple mixing of calcium/phosphate ions, chlorin e6 (amphiphilic low molecular weight PS), and poly(ethylene glycol)-b-poly(aspartic acid) (PEG-PAsp) copolymers in an aqueous solution. The hybrid nanocarrier possesses a calcium phosphate (CaP) core encapsulating the PSs, which is surrounded by a PEG shielding layer. Under physiological conditions (pH 7.4), the nanocarrier suppressed the photochemical activity of PS by lowering the access of oxygen molecules to the incorporated PS, while PDT efficacy was restored in a pH-responsive manner because of the dissolution of CaP and eventual recovery of access between the oxygen and the PS. Owing to this switch, the nanocarrier reduced the photochemical damage in the bloodstream, while it induced effective PDT efficacy inside the tumor cell in response to the acidic conditions of the endo-/lysosomes. PMID:26971562

  18. Organic-inorganic crosslinked and hybrid membranes derived from sulfonated poly(arylene ether sulfone)/silica via sol-gel process

    NASA Astrophysics Data System (ADS)

    Feng, Shaoguang; Shang, Yuming; Wang, Yingzi; Xie, Xiaofeng; Mathur, V. K.; Xu, Jingming

    A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L -1 methanol aqueous solution at 80 °C slowly decreases from 26 to 19% with the increase of SiO 2 content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 × 10 -7 cm 2 s -1, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content.

  19. Fabrication and electrical characterization of a polycarbazole/ZnO based organic-inorganic hybrid heterojunction diode

    NASA Astrophysics Data System (ADS)

    Srivastava, Aditi; Chakrabarti, P.

    2015-12-01

    In the present paper a hybrid heterojuction of an organic and inorganic semiconductor junction diode has been proposed. The p-polycarbazole/n-ZnO hybrid-heterojunction (HHJ) diode has been fabricated and characterized. The organic semiconducting polymer has been deposited on the ITO coated glass by electrochemical method followed by deposition of inorganic ZnO semiconductor by vacuum thermal evaporation method. The electrical parameters such as barrier height, ideality factor, rectification ratio and reverse saturation current are extracted from the measured I-V characteristics of the hybrid heterojunction. The proposed hybrid heterojunction exhibits a very low dark current (∼10-11 A) and is therefore expected to have great commercial applications.

  20. Structural investigations of hybrid TiO2/CNTs nanomaterials.

    PubMed

    Lin, Kuan-Nan; Liou, Wei-Jen; Lin, Hong-Ming; Yang, Tsung-Yeh; Lin, Chung-Kwei

    2010-05-01

    In the present study, pure TiO2 and hybrid TiO2/CNTs nanomaterials are prepared by sol gel technique. Post heat treatment is performed at 600, 800, and 1000 degrees C, respectively. The structural characterizations are performed by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and synchrotron X-ray absorption spectroscopy techniques. Experimental results show that anatase to rutile transformation can be observed for pure TiO2 nanomaterials after heat treatment at 800 degrees C. The anatase to rutile transformation is inhibited by carbon nanotubes, and therefore only anatase phases for TiO2 nanomaterials can be observed in the hybrid nanomaterials. The 600 degrees C hybrid nanomaterials show a microstructure with CNTs covered by continuous TiO2 films of numerous small nanoparticles. After applying heat treatment on the hybrid nanomaterials at 1000 degrees C, only TiO2 nanoparticles adhere individually to the uncovered CNTs. Though all hybrid nanomaterials exhibit anatase TiO2, synchrotron X-ray absorption spectra investigations reveal that hybrid TiO2/CNTs exhibit different electronic properties as compared to those of pure TiO2 nanomaterials.

  1. From molecular chemistry to hybrid nanomaterials. Design and functionalization.

    PubMed

    Mehdi, Ahmad; Reye, Catherine; Corriu, Robert

    2011-02-01

    This tutorial review reports upon the organisation and functionalization of two families of hybrid organic-inorganic materials. We attempted to show in both cases the best ways permitting the organisation of materials in terms of properties at the nanometric scale. The first family concerns mesoporous hybrid organic-inorganic materials prepared in the presence of a structure-directing agent. We describe the functionalization of the channel pores of ordered mesoporous silica, that of the silica framework, as well as the functionalization of both of them simultaneously. This family is currently one of the best supports for exploring polyfunctional materials, which can provide a route to interactive materials. The second family concerns lamellar hybrid organic-inorganic materials which is a new class of nanostructured materials. These materials were first obtained by self-assembly, as a result of van der Waals interactions of bridged organosilica precursors containing long alkylene chains during the sol-gel process, without any structure directing agent. This methodology has been extended to functional materials. It is also shown that such materials can be obtained from monosilylated precursors.

  2. Formation of gel of preformed size-selected titanium-oxo-alkoxy nanoparticles: towards organic-inorganic hybrid material with efficient interfacial electron transfer

    NASA Astrophysics Data System (ADS)

    Gorbovyi, Pavlo; Uklein, Andrii; Traore, Mamadou; Museur, Luc; Kanaev, Andrei

    2014-12-01

    We report on preparation of a new organic-inorganic hybrid material with high photonic sensitivity, of which the inorganic component is gel of preformed size-selected titanium-oxo-alkoxy (TOA) nanoparticles. The inorganic nanoparticles of 5 nm size are generated in perfect micromixing conditions and assembled into the gel network in monomer HEMA (2-hydroxyethyl methacrylate) solutions at sufficiently slow input of water molecules in neutral pH conditions. The gelation is found to compete with precipitation and is promoted by an increase of the nanoparticle concentration. As a result, homogeneous optical-grade gels are obtained at titanium molar concentrations of 1.5 M and higher. After the organic polymerization, the organicinorganic pHEMA-TOA hybrids (pHEMA = poly(2-hydroxyethyl methacrylate)) show a high quantum yield of photoinduced charges separation (Ti3+/absorbed photons) and storage capacity (Ti3+/Ti4+), respectively 75% and 25%, which confirm the importance of the material nanoscale morphology control.

  3. Organic-Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite-Low Bandgap Polymer-PCBM for Improved Efficiency of Organic Solar Cells.

    PubMed

    Jeong, Hanbin; Lee, Jae Kwan

    2015-12-30

    A new organic-inorganic ternary bulk heterojunction (TBHJ) hybrid configuration comprised of nanostructured (CH3)3NHPbI3 (MAPbI3) perovskite-low bandgap PCPDTBT-PCBM was investigated. Well-organized TBHJ films were readily prepared by sequential spin-casting of sparsely covered MAPbI3 nano dots and PCPDTBT-PCBM bulk heterojunction (BHJ) composites on ITO/PEDOT:PSS substrates. The TBHJ hybrid device configuration comprising diiooctane (DIO) treated MAPbI3 perovskite nano dots and a PCPDTBT-PCBM BHJ composite processed with DIO additive exhibited excellent performances. The DIO additive played a key role in developing perovskite structures of MAPbI3 nano dots and induced the (110) directional crystallinity growth of longitudinal constructive morphologies such as nano rods. The improved photocurrent and fill factor compared to those of conventional BHJ devices led to an increase in efficiency of ∼28%. This improved photovoltaic performance originated from the higher quantum efficiencies contributed by the charge transfer from nanostructured MAPbI3 perovskite to PCBM. These TBHJs composed of nanostructured MAPbI3 perovskite, PCPDTBT, and PCBM also facilitated the exciton dissociation in the multi-BHJ system between MAPbI3 perovskite, PCPDTBT, and PCBM.

  4. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    SciTech Connect

    Wang Yige; Wang Li; Li Huanrong Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-03-15

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex.

  5. Organic-Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite-Low Bandgap Polymer-PCBM for Improved Efficiency of Organic Solar Cells.

    PubMed

    Jeong, Hanbin; Lee, Jae Kwan

    2015-12-30

    A new organic-inorganic ternary bulk heterojunction (TBHJ) hybrid configuration comprised of nanostructured (CH3)3NHPbI3 (MAPbI3) perovskite-low bandgap PCPDTBT-PCBM was investigated. Well-organized TBHJ films were readily prepared by sequential spin-casting of sparsely covered MAPbI3 nano dots and PCPDTBT-PCBM bulk heterojunction (BHJ) composites on ITO/PEDOT:PSS substrates. The TBHJ hybrid device configuration comprising diiooctane (DIO) treated MAPbI3 perovskite nano dots and a PCPDTBT-PCBM BHJ composite processed with DIO additive exhibited excellent performances. The DIO additive played a key role in developing perovskite structures of MAPbI3 nano dots and induced the (110) directional crystallinity growth of longitudinal constructive morphologies such as nano rods. The improved photocurrent and fill factor compared to those of conventional BHJ devices led to an increase in efficiency of ∼28%. This improved photovoltaic performance originated from the higher quantum efficiencies contributed by the charge transfer from nanostructured MAPbI3 perovskite to PCBM. These TBHJs composed of nanostructured MAPbI3 perovskite, PCPDTBT, and PCBM also facilitated the exciton dissociation in the multi-BHJ system between MAPbI3 perovskite, PCPDTBT, and PCBM. PMID:26636343

  6. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    NASA Astrophysics Data System (ADS)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  7. A new sensitive organic/inorganic hybrid material based on titanium oxide for the potentiometric detection of iron(III).

    PubMed

    Becuwe, M; Rouge, P; Gervais, C; Courty, M; Dassonville-Klimpt, A; Sonnet, P; Baudrin, E

    2012-12-15

    The formation of a new hybrid material based on titanium dioxide as inorganic support and containing an iron organochelator (ICL670) is described. An organophosphorous coupling agent was used to graft the organic molecule on the oxide surface. The attachment of the organic substrate was well-confirmed by FTIR (DRIFT), solid-state (31)P and (13)C CPMAS NMR, thermal analysis and the integrity of the structural and morphological parameters were verified using XRD and TEM analyses. The interaction between the material and dissolved iron(III) was also investigated through potentiometric measurements and demonstrated the interest of this new non-siliceous based hybrid material. The obtained linear evolution of the open circuit potential from 10(-2) to 10(-6) mol L(-1) can be used for the analytical detection of iron(III).

  8. A new type of organic-inorganic hybrid NLO-phore with large off-diagonal first hyperpolarizability tensors: a two-dimensional approach.

    PubMed

    Muhammad, Shabbir; Xu, Hongliang; Su, Zhongmin; Fukuda, Kotaro; Kishi, Ryohei; Shigeta, Yasuteru; Nakano, Masayoshi

    2013-11-14

    We report a novel type of organic-inorganic hybrid material with rare two-dimensional nonlinear optical (NLO) properties. The density functional theory (DFT) calculations combined with the finite-field (FF) method show that the designed molecules (6,9 organo-derivatives of B10H14) could carry the characteristic NLO properties of both organic and inorganic materials. Interestingly, due to their unique V-shaped structures, they have large off-diagonal first hyperpolarizability tensors or nonlinear anisotropy, which is an advantage in their practical applications over conventional donor-π-acceptor (D-π-A) NLO-phores. The systematic substitutions of terminal donor/acceptor groups as well as the extension of π-conjugation along the V-shape in these derivatives have been evaluated to guide a purpose-oriented synthesis of NLO material. All the systems in the present study have been categorized into Set-I and Set-II with D-π-A-π-D and A-π-D-π-A configurations, respectively. These designed derivatives show large amplitudes of βz values. For example, systems 3N (6,9-[(N=C=Ph-NO2)2]-B10H12) and 4N (6,9-[((N=C=Ph)2-NO2)2]-B10H12) have βz amplitudes as large as 34.16 and 276.91 × 10(3) a.u. which are 380 and 3000 times larger than those of a typical NLO molecule of urea, respectively. Remarkably, the substitution of nitrogen atoms with 6,9 hydrogen atoms in decaborane is shown to cause a lone pair back donation to vacant p orbitals of 6,9 boron atoms of the decaborane basket. This p orbital overlapping verticalizes the V-arms of the decaborane derivatives and boosts their nonlinear anisotropies due to their larger off-diagonal tensor components. The nonlinear anisotropy values are significantly larger, ranging from 1 (minimum in system 1) to 31.90 (maximum in system 3A) due to their unique V-shape. Comparison of their efficiencies with standard molecules demonstrates that our designed organic-inorganic hybrid molecules have significant potential as excellent

  9. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S; Mane, Rajaram S; Lee, Soo-Hyoung

    2016-03-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. PMID:26864170

  10. Studies on the synthesis, spectral, optical and thermal properties of l-Valine Zinc Sulphate: an organic inorganic hybrid nonlinear optical crystal.

    PubMed

    Puhal Raj, A; Ramachandra Raja, C

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid l-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36°C using a constant temperature bath (CTB) with an accuracy of ±0.01°C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a=9.969(3) Å, b=7.238(3) Å, c=24.334(9) Å and cell volume is 1736.00Å(3). Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with l-valine is confirmed by FTIR spectrum in LVZS crystal(.) A remarkable increase in optical transparency has been observed in LVZS when compared to l-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure l-valine.

  11. Development of hybrid organic-inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins.

    PubMed

    Tan, Lei; Huang, Cong; Peng, Rongfei; Tang, Youwen; Li, Weiming

    2014-11-15

    Applying molecular imprinting techniques to the surface of functionalized quantum dots (QDs) allows the preparation of molecularly imprinted polymers (MIPs) with accessible, surface exposed binding sites and excellent optical properties. This paper demonstrates a new strategy for producing such hybrid organic-inorganic imprinted Mn-doped ZnS QDs for specific recognition of bovine hemoglobin. The technique provides surface grafting imprinting in aqueous solutions using amino modified Mn-doped ZnS QDs as supports, acrylamide and methacrylic acid as functional monomers, γ-methacryloxypropyl trimethoxy silane as the grafting agent, and bovine hemoglobin as a template. The amino propyl functional monomer layer directs the selective occurrence of imprinting polymerization at the QDs surface through copolymerization of grafting agents with functional monomers, but also acts as an assistive monomer to drive the template into the formed polymer shells to create effective recognition sites. Using MIP-QDs composites as a fluorescence sensing material, trace amounts of bovine hemoglobin are signaled with high selectivity by emission intensity changes of Mn-doped ZnS QDs, which is embedded into the imprinted polymers.

  12. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Chunli; Huang, Gang; Yin, Dongming; Wang, Limin

    2016-10-01

    One-dimensional (1D) porous FeS2@C nanowires as a high cathode material for lithium-ion batteries (LIBs) are synthesized on a large-scale from an organic-inorganic hybrid nanowire precursor. The FeS2@C nanowires not only provide a continuous and fast electron transport pathway, favorable diffusion kinetics, but also provide the protection buffer the volume expansion and effectively prevent the polysulfides from dissolving in the electrolyte during cycling. Attributing to the synergistic advantages of both 1D porous nanostructure and the encapsulation of thin amorphous carbon layers, the FeS2@C nanowires exhibit remarkable lithium storage performance with a high specific capacity of 889 mA h g-1 at 0.1 A g-1 and 521 mA h g-1 at 10 A g-1. Moreover, a discharge energy density of 1225 Wh kg-1 is obtained at 2 A g-1 and remains as high as 637 Wh kg-1 after 1000 cycles, which is even higher than the LiCoO2 cathode. The results demonstrate that the potential for applications in LIBs with high power density and long cycling life.

  13. Heterogeneous Charge Carrier Dynamics in Organic-Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films.

    PubMed

    Bischak, Connor G; Sanehira, Erin M; Precht, Jake T; Luther, Joseph M; Ginsberg, Naomi S

    2015-07-01

    We reveal substantial luminescence yield heterogeneity among individual subdiffraction grains of high-performing methylammonium lead halide perovskite films by using high-resolution cathodoluminescence microscopy. Using considerably lower accelerating voltages than is conventional in scanning electron microscopy, we image the electron beam-induced luminescence of the films and statistically characterize the depth-dependent role of defects that promote nonradiative recombination losses. The highest variability in the luminescence intensity is observed at the exposed grain surfaces, which we attribute to surface defects. By probing deeper into the film, it appears that bulk defects are more homogeneously distributed. By identifying the origin and variability of a surface-specific loss mechanism that deleteriously impacts device efficiency, we suggest that producing films homogeneously composed of the highest-luminescence grains found in this study could result in a dramatic improvement of overall device efficiency. We also show that although cathodoluminescence microscopy is generally used only to image inorganic materials it can be a powerful tool to investigate radiative and nonradiative charge carrier recombination on the nanoscale in organic-inorganic hybrid materials.

  14. Role of Preparation Method on the Microstructure and Mechanical Properties of PPy/Ni Organic-Inorganic Hybrid Bilayer Coatings on Carbon Steel

    NASA Astrophysics Data System (ADS)

    Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Alanis-Valdelamar, A.; Onofre-Bustamante, E.; Escudero, M. L.; García-Alonso, M. C.; Lois-Correa, J. A.

    2015-04-01

    The efficacy of the conducting polymers as coating on a metallic substrate is strongly dependent on the manner how they are applied. Polypyrrole (PPy)/Ni organic-inorganic hybrid coatings were electropolymerized on commercial carbon steel (AISI 1018) by combining potentiostatic and potentiodynamic techniques. In first instance, it was analyzed the electrodeposition of PPy using a constant potential regime and cyclic voltammetry techniques evaluating different synthesis parameters such as deposition time, applied potential, and potential cycles, respectively. Thereafter, it was used a potentiostatic method to obtain PPy/Ni bilayer films. The morphological, mechanical, and adhesion properties of these films depend on the synthesis parameters. The results revealed that polypyrrole films formed by both methods provide a globular-type structure, although coatings produced by cyclic voltammetry are denser and slightly thicker than those produced potentiostatically. Ni (oxide/hydroxide) particles are capable of sealing the pores of globular PPy coatings, thus increasing the hardness of the carbon steel (CS)/PPy/Ni system. As a result of the study, we have seen that PPy/Ni bilayer films are more uniform, compact and enhanced the hardness when the PPy is obtained by cyclic voltammetry than that observed for potentiostatic approach. Specifically, when four potential cycles are used to electropolymerized pyrrole, the more convenience properties in the CS/PPy/Ni arrangement are obtained.

  15. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column.

    PubMed

    Domingues, Diego Soares; Souza, Israel Donizeti de; Queiroz, Maria Eugênia Costa

    2015-07-01

    This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column. The drugs were detected on a triple quadrupole tandem mass spectrometer (multiple reactions monitoring mode) with an electrospray ionization source in the positive ion mode. The developed method afforded adequate linearity for the sixteen target drugs; the coefficients of determination (R(2)) lay above 0.9932, the interassay precision had coefficients of variation lower than 6.5%, and the relative standard error values of the accuracy ranged from -14.0 to 11.8%. The lower limits of quantification in plasma samples ranged from 63 to 1250pgmL(-1). The developed method successfully analyzed the target drugs in plasma samples from schizophrenic patients for therapeutic drug monitoring (TDM).

  16. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.

    PubMed

    Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng

    2007-03-01

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption. PMID:17386667

  17. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters. PMID:27023632

  18. Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW 12 O 40 3- coating deposited on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

    2011-09-01

    A study of the stability of conducting fabrics of polyester (PES) coated with polypyrrole/PW12O403- (organic/inorganic hybrid material) in different pH solutions (1, 7, 13) has been done. Washing tests were also done in views of its possible application in electronic textiles such as antistatic clothing. X-ray photoelectron spectroscopy (XPS) studies have been done to quantify the amount of counter ion that remains in the polymer matrix and determine the doping ratio (N+/N) after the different tests. Scanning electron microscopy (SEM) was also used to observe morphological differences after the different tests. Surface resistivity changes were measured by means of electrochemical impedance spectroscopy (EIS). Scanning electrochemical microscopy (SECM) was employed to measure changes in electroactivity after the different tests. Higher pHs caused a decrease of the doping ratio (N+/N), the loss of part of the counter ions and the decrease of its conducting and electrocatalytic properties. The stability in acid media and neutral media and after the washing test was good. Only at pH 13 the loss of the counter ion was widespread and there was a decrease of its conducting and catalytic properties; although the fabrics continued acting mainly as a conducting material.

  19. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters.

  20. Studies on the synthesis, spectral, optical and thermal properties of L-Valine Zinc Sulphate: An organic inorganic hybrid nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Puhal Raj, A.; Ramachandra Raja, C.

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid L-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36 °C using a constant temperature bath (CTB) with an accuracy of ±0.01 °C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a = 9.969(3) Å, b = 7.238(3) Å, c = 24.334(9) Å and cell volume is 1736.00 Å3. Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with L-valine is confirmed by FTIR spectrum in LVZS crystal. A remarkable increase in optical transparency has been observed in LVZS when compared to L-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure L-valine.

  1. Preparation of 2,4-dichlorophenoxyacetic acid imprinted organic-inorganic hybrid monolithic column and application to selective solid-phase microextraction.

    PubMed

    Liu, Xiaofang; Zhu, Quanfei; Chen, Huaixia; Zhou, Liuzi; Dang, Xueping; Huang, Jianlin

    2014-03-01

    An organic-inorganic hybrid molecular imprinting monolith (HMIM) has been prepared, characterized and applied for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in rice with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD). By optimizing the polymerization conditions, such as the volume ratio of the inorganic alcoholysate and organic part, the 2,4-D-HMIM was synthesized in a micro pipette tip using acrylamide as the functional monomer, ethylene dimethacrylate as the cross-linker and methanol as the porogenic solvent. The morphology of the monolith was studied by scanning electronmicroscopy and Fourier transform infrared spectra. The imprinted factor of the monolith for 2,4-D reached 3.29. A simple, rapid and sensitive method for the determination of 2,4-D in rice using the HMIM microextraction combined with high-performance liquid chromatography-photodiodes array detector was developed. Some parameters affecting the sample pretreatment were investigated, including the type and volume of eluent, the flow rate and volume of sample solution. The assay exhibited a linear dynamic range of 167-4167μg/kg with the correlation coefficient above 0.9972. The detection limit (at S/N=3) was 50μg/kg. The proposed method was successfully applied for the selective determination of 2,4-D in rice.

  2. Unprecedented 1/∞[β-Mo8O26]4- polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    NASA Astrophysics Data System (ADS)

    Du, Hai-Juan; Zun-Zhe, Shu; Niu, Yun-Yin; Song, Li-Sha; Zhu, Yu

    2012-06-01

    AbstrctFour novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [β-Mo8O26] [NH4]2 (1), [BMIM] [β-Mo8O26]0.5·H2O (2), [BMIM] [1D-Mo8O26]0.5 (3) and {3D-[Cu(DIE)2] [1D-Mo8O26]0.5}∞ (4) [DEB= 1,1‧-diethyl-4,4‧-bipyridinium, BMIM=1,1‧-bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [β-Mo8O26]4- anions and [DEB]2+ or [BMIM]2+ organic cations. Compound 3 is the first external template example of Mo-POMs-based supramolecular network incorporated with novel 1/∞[β-Mo8O26]4- polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate 1/∞[β-Mo8O26]4- polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H2O2.

  3. Synthesis, crystal structure, and spectroscopic studies of organic-inorganic hybrid material: [C7H10NO]2BiBr5

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Ben Nasr, C.

    2016-08-01

    A novel organic-inorganic hybrid compound, 2-methoxyanilinium pentabromobismuthate(III), [C7H10NO]2BiBr5, was synthesized and its structure determined by means of single crystal X-ray diffraction studies at room temperature. The molecule crystallizes in the orthorhombic C2221 space group with cell parameters a = 11.8870(4), b = 23.4775(8), c = 8.1232(3) Å, V = 2267.0(1) Å3 and four molecules in the unit cell. The structure of the title compound is built up from one-dimensional [BiBr5]2n-n polyanionic zig-zag chains composed of deformed BiBr6 octahedra share Br(2) apex and 2-methoxyanilinium cations. The assignment of the vibrational bands was based on comparison with vibrational mode frequencies of homologous compounds. Theoretical calculations were performed using density functional theory (DFT) for studying the vibrational spectrum of the investigated molecule in its ground state. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure.

  4. New organic-inorganic hybrid assemblies based on copper(I) ion, bichelate-bridging ligand and Lindqvist-type polyoxometalate

    NASA Astrophysics Data System (ADS)

    Zhang, Mao-Mao; Hao, Xiu-Li; Xu, Li-Jie; Wang, Yong-Hui; Wang, Xin; Li, Yang-Guang

    2014-07-01

    Three new organic-inorganic hybrid compounds, namely [CuILp]2[W6O19]·H2O (1), [CuILp]3[W6O19]Cl (2) and [CuILp]2[W6O19]·2H2O (3) (Lp=α,α‧-bis-[3-(2-pyridyl)pyrazol-1-yl]-1,4-dimethylbenzene) based on copper(I) ion, a neutral N-donor bichelate-bridging ligand (Lp) and a Lindqvist-type polyoxometalate (POM) [W6O19]2-, have been hydrothermally prepared under different synthetic conditions and structurally characterized by elemental analyses, IR spectra, TG analyses, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction analyses. Compounds 1 and 2 contain two different but topologically similar meso-helical chainlike coordination moieties. Compound 3 contains both left- and right-handed chiral “mobius strip” units. These cationic meso-helical chains and “mobius strip” units in compounds 1-3 are further combined with Lindqvist-type polyoxoanions to form 3-D supramolecular assemblies through extensive electrostatic forces and/or π-π interactions. The photo-luminescent properties of 1-3 have also been investigated, which are mainly attributed to the Lp ligand-centered emission.

  5. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  6. Time-resolved photocurrent of an organic-inorganic hybrid solar cell based on Sb2S3

    NASA Astrophysics Data System (ADS)

    Jo, Hyun-Jun; Kim, Seung Hyun; Kim, Jong Su; Lee, Sang-Ju; Kim, Dae-Hwan

    2016-08-01

    In this study, the optical and the electrical properties of a hybrid solar cell (SC) based on a zinc oxide (ZnO)/antimony trisulfide (Sb2S3)/poly(3-hexylthiophene) (P3HT) heterojunction were investigated. ZnO and Sb2S3 films were grown using atomic layer deposition (ALD). Photoluminescence (PL) spectra show band-to-band emission of the Sb2S3 layer at around 724 nm at room temperature. The room-temperature current decay behaviors were investigated based on the time-resolved photocurrent (TRPC). With increasing intensity ( P) of the excitation pulse laser, the current decay time gradually decreased due to an enhancement of the carrier recombination. Optically biased TRPC was demonstrated with energies above and below the band gap of Sb2S3 to investigate the effect of the background carrier concentration during carrier transport. We found three carrier exhaustion processes during carrier transport due to the recombination behaviors at given carrier injection levels. At high injection level, the current decay times were also affected by the hole diffusion rate in the P3HT h-conducting layer.

  7. Effect of the condensation of hybrid organic-inorganic sol-gel materials on the optical properties of tripan blue

    NASA Astrophysics Data System (ADS)

    Hicks, Craig; Morshed, Muhammad; Melia, Garrett; Barton, Killian; Duffy, Brendan; Oubaha, Mohamed

    2015-09-01

    The work reported in this paper highlights the effect of sol-gel structures on the optical properties of a typical organic dye (Trypan Blue, TB). Three transition-metal-based hybrid sol-gel materials with different structures and morphologies were developed and characterised by TEM. The optical properties of TB were investigated by incorporating it in the different sol-gel materials and the UV-Visible spectra recorded in both liquid and solid state, in thin-coatings cured at temperatures in the range 100-150 °C. These studies revealed two relevant results. First, the sol-gel morphology plays a critical role in the optical properties of the dye. The effect of the sol-gel host matrix on the optical properties of the dye is attributed to the steric hindrance of the nanostructures, themselves intimately dependant on the reactivity of the transition metal. For instance, the less condensed system showed the highest reactivity with the dye, while the more condensed system exhibited limited interaction with the dye, symbolised by a significant change or quasi-unchanged UV-Visible spectra, respectively. It is also shown that the increase of the condensation degree of the sol-gel coatings by heat-curing can dramatically alter the optical properties of the dye especially for the most condensed sol-gel systems. This has been attributed to proximity effects enabled by the further increase of the materials densities. The results reported here aim to provide a better understanding of how material formulations can influence the optical properties of organic dyes and suggest that the structure of the host matrix along with the applied curing process have to be fully considered and assessed in the choice of organic dyes for a given application.

  8. Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells.

    PubMed

    Chen, Zihan; Li, Qinghua; Chen, Chuyang; Du, Jiaxing; Tong, Jifeng; Jin, Xiao; Li, Yue; Yuan, Yongbiao; Qin, Yuancheng; Wei, Taihuei; Sun, Weifu

    2014-11-28

    In this work, dysprosium ion decorated yttrium oxide (Dy(3+):Y2O3) nanocrystal phosphors were incorporated into TiO2 acceptor thin film in a bid to enhance the light harvest, charge separation and transfer in the hybrid solar cells. The results show that the energy level offset between the donor (P3HT) and the acceptor (Dy(3+):Y2O3-TiO2) has been narrowed down, thus leading to the enhanced electron and hole transports, and also photovoltaic performances as compared to pure TiO2 without incorporating Dy(3+):Y2O3. By applying femtosecond transient optical spectroscopy, after the incorporation of dopant Dy(3+):Y2O3 into TiO2 at 6 wt%, both the hot electron and hole transfer lifetimes have been shortened, that is, from 30.2 ps and 6.94 ns to 25.1 ps and 1.26 ns, respectively, and an enhanced efficiency approaching 3% was achieved as compared to 2.0% without doping, indicating that the energetic charges are captured more efficiently benefitting a higher power conversion efficiency. Moreover, these results reveal that both the conduction band (CB) and valence band (VB) edges of the acceptor were elevated by 0.57 and 0.32 eV, respectively, after incorporating 6 wt% Dy(3+):Y2O3. This work demonstrates that distinct energy level alignment engineered by Dy(3+):Y2O3 phosphor has an important role in pursuing efficient future solar cells and underscores the promising potential of rare-earth phosphor in solar applications.

  9. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-01

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs. PMID:26840992

  10. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-01

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  11. Comprehensive analysis of photonic effects on up-conversion of β-NaYF4:Er3+ nanoparticles in an organic-inorganic hybrid 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hofmann, C. L. M.; Fischer, S.; Reitz, C.; Richards, B. S.; Goldschmidt, J. C.

    2016-04-01

    Upconversion (UC) presents a possibility to exploit sub-bandgap photons for current generation in solar cells by creating one high-energy photon out of at least two lower-energy photons. Photonic structures can enhance UC by two effects: a locally increased irradiance and a modified local density of photon states (LDOS). Bragg stacks are promising photonic structures for this application, because they are straightforward to optimize and overall absorption can be increased by adding more layers. In this work, we present a comprehensive simulation-based analysis of the photonic effects of a Bragg stack on UC luminescence. The investigated organic-inorganic hybrid Bragg stack consists of alternating layers of Poly(methylmethacrylate) (PMMA), containing purpose-built β-NaYF4:25% Er3+ core-shell nanoparticles and titanium dioxide (TiO2). From optical characterization of single thin layers, input parameters for simulations of the photonic effects are generated. The local irradiance enhancement and modulated LDOS are first simulated separately. Subsequently they are coupled in a rate equation model of the upconversion dynamics. Using the integrated model, UC luminescence is maximized by adapting the Bragg stack design. For a Bragg stack of only 5 bilayers, UC luminescence is enhanced by a factor of 3.8 at an incident irradiance of 2000 W/m2. Our results identify the Bragg stack as promising for enhancing UC, especially in the low-irradiance regime, relevant for the application in photovoltaics. Therefore, we experimentally realized optimized Bragg stack designs. The PMMA layers, containing UC nanoparticles, are produced via spin-coating from a toluene based solution. The TiO2 layers are produced by atomic layer deposition from molecular precursors. The reflectance measurements show that the realized Bragg stacks are in good agreement with predictions from simulation.

  12. Development of ethenetetrathiolate hybrid thermoelectric materials consisting of cellulose acetate and semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Sakura, Naoko; Oshima, Keisuke; Shiraishi, Yukihide; Toshima, Naoki

    2016-02-01

    We investigated novel organic/inorganic hybrid thermoelectric materials prepared using several metal-polymer complexes, binders (insulating polymers), and inorganic semiconductor nanomaterials. It was found that the three-component hybrid thermoelectric materials, which consisted of nanodispersed poly(nickel 1,1,2,2-ethenetetrathiolate) (Ni-PETT), cellulose acetate (CA), and carbon nanotubes (CNTs), showed high thermoelectric performance. Ni-PETT had a large negative Seebeck coefficient of -42 µV K-1 and was an n-type semiconducting polymer complex. Ni-PETT sufficiently dispersed p-type CNTs in N-methyl-2-pyrrolidone. The charge transfer interaction between Ni-PETT and CNTs could provide a strong contact. Good films could be obtained by using CA as a binder. In addition, the electrical conductivity of the three-component hybrid films was increased by methanol treatment. The Seebeck coefficient, electrical conductivity, and power factor of Ni-PETT/CA/CNT films normalized on the basis of the CNT mass were 1.9, 5.2, and 2.8 times higher than those of the CNT sheets.

  13. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  14. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

    SciTech Connect

    Bauer, Elvira M. Bellitto, Carlo; Gomez Garcia, Carlos J. Righini, Guido

    2008-05-15

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

  15. Synthesis and characterization of a new layered organic inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with Tc˜21 K

    NASA Astrophysics Data System (ADS)

    Bauer, Elvira M.; Bellitto, Carlo; Gómez García, Carlos J.; Righini, Guido

    2008-05-01

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni 2[(NDI-BP)(H 2O) 2]·2H 2O has been prepared in very mild conditions from N, N'- bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl 2. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 Å. The inorganic layers consist of corner sharing [NiO 5(H 2O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at Tc˜21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound.

  16. Biomolecule/nanomaterial hybrid systems for nanobiotechnology.

    PubMed

    Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar

    2012-01-01

    The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.

  17. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic-inorganic hybrid compound: [C3H4NS][CdBr3].

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen

    2015-06-21

    A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.

  18. Atomic force microscopy of electrospun organic-inorganic lipid nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhong; Cohn, Celine; Qiu, Weiguo; Zha, Zhengbao; Dai, Zhifei; Wu, Xiaoyi

    2011-09-01

    An organic-inorganic hybridization strategy has been proposed to synthesize polymerizable lipid-based materials for the creation of highly stable lipid-mimetic nanostructures. We employ atomic force microscopy (AFM) to analyze the surface morphology and mechanical property of electrospun cholesteryl-succinyl silane (CSS) nanofibers. The AFM nanoindentation of the CSS nanofibers reveals elastic moduli of 55.3 ± 27.6 to 70.8 ± 35 MPa, which is significantly higher than the moduli of natural phospholipids and cholesterols. The study shows that organic-inorganic hybridization is useful in the design of highly stable lipid-based materials.

  19. Synthesis, characterization, and biosensing application of novel hybrid nanomaterials

    NASA Astrophysics Data System (ADS)

    Mao, Shun

    Hybrid nanomaterials consisting of nanoparticles (NPs) distributed on the surface of the carbon nanotube (CNT)/graphene represent a new class of materials. These materials could potentially display not only the unique properties of NPs and those of the CNT/graphene, but also additional novel properties due to the interaction between the NP and the CNT/graphene. This thesis entails the synthesis and characterization of NP-CNT/graphene hybrid nanomaterials and the demonstration of their use for biosensors. A simple method that combines an electrospray technique with electrostatic force directed assembly (ESFDA) was developed for successful functionalization of the CNT/thermally-reduced graphene oxide (TRGO) with NPs. Colloidal CdSe NPs, Au NPs, and Au NP-antibody conjugates were electrosprayed and assembled onto random CNTs, vertically-aligned CNT arrays, and TRGO sheets in a controlled manner. CNT and TRGO field-effect transistors (FETs) were fabricated; and novel electronic protein biosensors based on the CNTFET/TRGO FET and Au NP-antibody conjugates were demonstrated. The electrical detection of the protein binding was accomplished by the introduction of Au NP-antibody conjugates in the CNTFET/TRGO FET, in which the Au-coated CNT/TRGO serves as the electrical conducting channel. Antibody (anti-horseradish peroxidase/anti-Immunoglobulin G) and antigen (horseradish peroxidase/Immunoglobulin G) binding events led to the change in the CNT/TRGO conductivity, which was sensitively detected by FET and direct current (dc) measurements. The CNTFET biosensor had a detection limit of 0.2 mg/ml (˜4.5 microM, horseradish peroxidase) while the TRGO FET biosensor exhibited a detection limit of 2 ng/ml (˜13 pM, Immunoglobulin G), which is among the best of carbon nanomaterial (e.g., CNT, graphene, GO)-based protein sensors. The dependence of the sensor response on the TRGO resistance and the antibody areal density on the TRGO sheet was systematically studied, and the sensor

  20. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.

    PubMed

    Yang, Xianguang; Liu, Yong; Lei, Hongxiang; Li, Baojun

    2016-08-25

    The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits. PMID:27417337

  1. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.

    PubMed

    Yang, Xianguang; Liu, Yong; Lei, Hongxiang; Li, Baojun

    2016-08-25

    The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits.

  2. Fabrication of a Homogeneous, Integrated, and Compact Film of Organic-Inorganic Hybrid Ni(en)3Ag2I4 with Near-Infrared Absorbance and Semiconducting Features.

    PubMed

    Chen, Tian-Yu; Shi, Lei; Yang, Hao; Ren, Xiao-Ming; Xiao, Chen; Jin, Wanqin

    2016-02-01

    The organic-inorganic hybrid crystal Ni(en)3Ag2I4 (where en represents 1,2-ethylenediamine) crystallizes in hexagonal space group P63, in which the AgI4(3-) tetrahedra connect into a diamondlike inorganic framework via sharing of the vertex and the Ni(en)3(2+) octahedra fill in the pores of the framework. UV-vis-near-IR (NIR) spectroscopy disclosed that this hybrid shows intense NIR absorbance centered at ca. 870 nm, and the variable-temperature conductivity measurement revealed that the hybrid is a semiconductor with Ea = 0.46 eV. The electronic band structure of Ni(en)3Ag2I4 was calculated using the density functional theory method, indicating that the NIR absorbance arises from d-d transition within the Ni(2+) cation of Ni(en)3(2+). The homogeneous, compact, and transparent crystalline film of Ni(en)3Ag2I4 was fabricated via a secondary seed growth strategy, which has promising application in NIR devices.

  3. High polar organic-inorganic hybrid coating stir bar sorptive extraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of seleno-amino acids and seleno-oligopeptides in biological samples.

    PubMed

    Mao, Xiangju; Hu, Bin; He, Man; Chen, Beibei

    2012-09-21

    In this work, partially sulfonated polystyrene-titania (PSP-TiO(2)) organic-inorganic hybrid stir bar coating was prepared by sol-gel and blending methods, and a new method of PSP-TiO(2) coating stir bar sorptive extraction (SBSE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) was established for the analysis of seleno-amino acids (selenocystine (SeCys(2)), methylseleno-cysteine (MeSeCys), selenomethionine (SeMet) and selenoethionine (SeEt)) and seleno-oligopeptides (γ-glutamyl-Se-methyl-selenocysteine (γ-GluMeSeCys) and selenodiglutathione (GS-Se-SG)) in biological samples. The prepared high polar PSP-TiO(2) hybrid coating avoided the swelling of PSP and cracking of TiO(2) coating by combining the good film-forming property of PSP with the high mechanical strength of TiO(2). The scanning electron microscope (SEM) showed that no obvious swelling and damage occurred for the PSP-TiO(2) hybrid stir bar coating after 30 extraction/desorption cycles. The preparation reproducibility of PSP-TiO(2) coated stir bar, evaluated with the relative standard deviations (RSDs), was in the range of 6.7-12.6% (n=5) in one batch, and 9.9-17.6% (n=7) among different batches. The limits of detection (LODs) of the developed method for six target selenium species were in the range of 50.2-185.5 ngL(-1) (as (77)Se) and 45.9-158.8 ngL(-1) (as (82)Se) with the RSDs within 4.9-11.7%. The dynamic linear range was found to cover three orders of magnitude with correlation coefficient of 0.9995-0.9999. The developed method was applied for the analysis of Certified Reference Material SELM-1 selenium enriched yeast and the determined values were in good agreement with the certified values. The method has also been applied for the analysis of seleno-amino acids and seleno-oligopeptides in human urine and garlic samples. Different from the conventional organic polymer SBSE coatings (such as polydimethylsiloxane, PDMS), the extraction mechanism

  4. Optical and thermal response of single-walled carbon nanotube-copper sulfide nanoparticle hybrid nanomaterials.

    PubMed

    Tseng, Yi-Hsuan; He, Yuan; Lakshmanan, Santana; Yang, Chang; Chen, Wei; Que, Long

    2012-11-16

    This paper reports the optical and thermal response of a single-walled carbon nanotube-copper sulfide nanoparticle (SWNT-CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 ×  by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. PMID:23089651

  5. A new paratungstate-A-based organic-inorganic hybrid compound: Synthesis, structure and photocatalytic property of [Co(en)3]2[H2W7O24]·8H2O

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Wang, Xin; Ma, Yuanyuan; Cheng, Xin; Wang, Yonghui; Li, Yangguang

    2013-03-01

    A new paratungstate-A-based organic-inorganic hybrid compound with the chemical formula of [Co(en)3]2[H2W7O24]·8H2O (en = ethylenediamine) (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, IR, TG, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 17.216(3) Å, b = 14.986(3) Å, c = 23.088(8) Å, β = 128.151(2)°, V = 4684.2 Å3, Z = 1, R1 = 0.0484, and wR2 = 0.1087. The structure of 1 consists of the [H2W7O24]4- building blocks and [Co(en)3]2+ metal-organic cationic moieties, which are packed together via the electrostatic forces and extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. Interestingly, compound 1 represents the first structurally-defined hybrid compound based on the metastable paratungstate-A polyoxoanions and metal-organic units. The degradation of Rhodamine-B (RhB) under UV irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.

  6. Bioinspired Synthesis of All-in-One Organic-Inorganic Hybrid Nanoflowers Combined with a Handheld pH Meter for On-Site Detection of Food Pathogen.

    PubMed

    Ye, Ranfeng; Zhu, Chengzhou; Song, Yang; Lu, Qian; Ge, Xiaoxiao; Yang, Xu; Zhu, Mei-Jun; Du, Dan; Li, He; Lin, Yuehe

    2016-06-01

    With a mild elaborately bioinspired one-pot process, Con A-GOx-CaHPO4 nanoflowers are prepared. Employing the as-prepared all-in-one hybrid nanoflowers as signal tags, a simple but potentially powerful amplification biosensing technology for the detection of food pathogen with excellent simplicity, portability, sensitivity, and adaptability is achieved.

  7. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  8. Optical properties of the organic-inorganic hybrid perovskite C H3N H3Pb I3 : Theory and experiment

    NASA Astrophysics Data System (ADS)

    Demchenko, D. O.; Izyumskaya, N.; Feneberg, M.; Avrutin, V.; Özgür, Ü.; Goldhahn, R.; Morkoç, H.

    2016-08-01

    We perform a theoretical and experimental study of the optical properties of a C H3N H3Pb I3 perovskite prepared by a vapor-assisted solution process, motivated in part by very high photovoltaic cell efficiencies. Several widespread theoretical approaches are used in an attempt to determine the most appropriate approach which would reproduce the experimental electronic structure and optical properties of the C H3N H3Pb I3 perovskite. We compare a semilocal approximation to the density functional theory with hybrid functionals and time-dependent hybrid functional calculations, evaluating the effects of exchange tuning and spin-orbit coupling. Using these methods we calculate the electronic structure, optical absorption spectrum, and frequency-dependent dielectric function of the C H3N H3Pb I3 perovskite. The results are compared to the experimentally obtained dielectric functions acquired from ellipsometry measurements. We demonstrate that inclusion of spin-orbit coupling in theoretical calculations is critical in describing the electronic and optical properties of the C H3N H3Pb I3 perovskite. Good agreement with experimental data is achieved when the optical spectra are computed using time-dependent hybrid density functional theory with spin-orbit coupling.

  9. Synthesis, characterization and antioxidant activity of a novel organic-inorganic hybrid material trans-2,5-dimethylpiperazine-1,4-diium pentachlorobismuthate(III): [C6H16N2]BiCl5

    NASA Astrophysics Data System (ADS)

    Essid, Manel; Rzaigui, Mohamed; Marouani, Houda

    2016-08-01

    A novel organic-inorganic hybrid compound, trans-2,5-dimethylpiperazine-1,4-diium pentachlorobismuthate(III), [C6H16N2]BiCl5, was synthesized and its structure determined by means of single crystal X-ray diffraction studies. It crystallizes in the monoclinic space group C2/c, with the following parameters: a = 15.365(5), b = 12.634(3), c = 8.313(3) Å, β = 120.59(3)°, Z = 4 and V = 1389.1(7) Å3. Its crystal structure consists of [BiCl5]2- anions surrounded by [C6H16N2]2+ cations. Complex hydrogen bonding interactions between [BiCl5]2- and organic cations through N(C)-H … Cl hydrogen bonds to form a three-dimensional network. The crystal packing is stabilized by Cl … Cl interactions. The structure reveals that the piperazine ring is in a chair conformation. The vibrational spectrum has been measured at room temperature by FT-infrared spectroscopy (4000-400 cm-1) on polycrystalline samples. The number of the NMR components in the 13C CP-MAS NMR spectrum proves the presence of three crystallographically independent carbons as revealed by X-ray structure determination. Investigation of antioxidant activity of compound was carried out by 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical, Ferric Reducing Power (FRP) and Ferrous ion chelating (FIC) methods. The synthesized compound exhibited significant antioxidant activities.

  10. Evidence and detailed study of a second-order phase transition in the (C{sub 6}H{sub 11}NH{sub 3}){sub 2}[PbI{sub 4}] organic-inorganic hybrid material

    SciTech Connect

    Yangui, A.; Pillet, S.; Garrot, D.; Boukheddaden, K.; Triki, S.; Abid, Y.

    2015-03-21

    The thermal properties of the organic-inorganic hybrid material (C{sub 6}H{sub 11}NH{sub 3}){sub 2}[PbI{sub 4}] are investigated using diffuse reflectivity, spectroscopic ellipsometry, differential scanning calorimetry, Raman spectroscopy, and X-ray diffraction. The diffuse reflectivity, performed in heating mode, clearly evidences the presence of a singularity at 336 K. This is confirmed by the temperature dependence of the spectroscopic ellipsometry spectra, which points out a second-order phase transition at 336 K with a critical exponent ∼0.5. Differential scanning calorimetry measurements on a polycrystalline powder of (C{sub 6}H{sub 11}NH{sub 3}){sub 2}[PbI{sub 4}] show a reversible phase transition detected at T{sub C} = 336 K without hysteresis. Raman spectroscopy data suggest that this transition arises from a change in the interactions between inorganic sheets (([PbI{sub 4}]{sup 2−}){sub ∞}) and organic protonated molecules ([C{sub 6}H{sub 11}NH{sub 3}]{sup +}). The structural analysis from power X-ray diffraction reveals an incomplete order-disorder transition of the cyclohexylammonium cation, causing a subtle contraction of the inter-plane distance. The transition results from repulsive close contacts between the organic molecules in the interlayer spacing.

  11. Hydrothermal synthesis of a new organic-inorganic hybrid with Dawson type polyanions as building blocks: Na3(C7NH8O2)3[P2W18O62]·16H2O

    NASA Astrophysics Data System (ADS)

    Hmida, Fatma; Ayed, Brahim; Haddad, Amor

    2016-07-01

    A new organic-inorganic hybrid compound based on dawson polyoxotungstate, Na3(C7NH8O2)3 [P2W18O62].16H2O have been isolated under autogenous pressure method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy, cyclic voltammetry and Thermogravimetric analysis (TGA). This compound crystallized in the triclinic system, space group P-1, with a = 14.063 (1) Å; b = 17.009 (1) Å; c = 17.868 (1) Å; α = 79.88 (1)°; β = 77.14 (1)°; γ = 79.25 (1)° and Z = 2. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Dawson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 295 nm.

  12. Strain-induced crystallization in elastomeric polymer networks prepared in solution and sol-gel derived high-temperature organic-inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Premachandra, Jagath Kumara

    Cross-linking polymer chains in solution should bring about fewer inter-chain entanglements in the resulting network. The subsequent drying of this network should compress the chains into a "super-contracted" state. The opposing effects of these changes on strain-induced crystallization in cis-1,4-polyisoprene networks formed in solution were investigated. Higher elongations were required to achieve strain-induced crystallinity in the networks prepared at higher dilutions, suggesting that in this regard the compressed states of the chains was more important than their reduced entangling. The constrained-junction theory was applied to strain-induced crystallization in the above networks. The stress-strain isotherms generated from this theory were in satisfactory agreement with experiment. It was found that the constraint parameter kappa decreases with increase in dilution during cross-linking mainly due to the fact that cross-linking in solution decreases chain interpenetration. The dependence of hydrolysis and condensation of gamma-ureidopropyltrimethoxysilane on pH in the water-methanol system at 23sp°C was investigated by FTIR spectroscopy. Quantitative analysis of rates of hydrolysis showed that gamma-ureidopropyltrimethoxysilane is most stable in the water-methanol system at pH 7.7. The rate of overall condensation of silanols produced by the hydrolysis was qualitatively analyzed. These silanol groups are relatively more stable around pH 4.87. The mechanical properties, thermal stability and water absorption of high-temperature sulfopolybenzobisthiazole-silica hybrid materials were investigated. The use of a bonding agent N,N-diethylaminopropyltrimethoxysilane facilitated the interfacial bonding between the organic and inorganic phases in these materials prepared through the sol-gel process. Tensile modulus, thermal stability and the resistant to water absorption were increased with increase in silica content in the resulting composites

  13. The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells

    SciTech Connect

    Zhang, Yunfang; Liu, Ruiyuan; Lee, Shuit-Tong; Sun, Baoquan

    2014-02-24

    We report an ultra-thin layer of lithium fluoride (LiF) between silicon (Si) and aluminum (Al) in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cell which resulted in a power conversion efficiency (PCE) of 11.09%. The insertion of a thin layer of LiF improved the contact between Si and Al, which decreased the contact resistance from 5.4 × 10{sup −1} Ω cm{sup 2} to 2.6 × 10{sup −2} Ω cm{sup 2}. Also, the electron transport from Si to Al was improved and charge carrier recombination was suppressed. As a result, the short circuit current density, the open circuit voltage, and the fill factor were all improved with the presence of the LiF layer. The solar cell with the LiF/Al bilayer as a cathode displayed a 14.45% enhancement on PCE when compared with the device using pristine Al as a cathode.

  14. Impact of preparation condition of ZnO electron transport layer on performance of hybrid organic-inorganic light-emitting diodes

    SciTech Connect

    Huang, Chun-Yuan; Yang, Chih-Chiang; Yu, Hsin-Chieh; Chen, Ying-Chih

    2014-02-28

    In this article, we have demonstrated the hybrid polymer light-emitting diodes (PLEDs) with a sol-gel derived or rf-sputtered ZnO electron transport layer (ETL). For the ZnO films prepared under different conditions, low annealing temperature (300 °C) leads to the film amorphous while the polycrystalline films is readily achieved by sputtering. Though the surface roughness can be improved by thermal annealing at 400 °C for sputtered films, the release of compressive stress after treatment has shrunk the optical band gap from 3.282 to 3.268 eV. As the ETL in PLEDs, the reduced band gap could increase potential barrier for electron injection and decrease the hole blocking capability. In our cases, luminance larger than 7000 cd/m{sup 2} can be obtained in device with pristine sputtered ZnO ETL. It is concluded that crystalline structure of ZnO films is important to facilitate the balance of carrier mobility to obtain high luminance and high efficiency devices.

  15. Hybrid organic/inorganic band-edge modulation of p-Si(111) photoelectrodes: effects of R, metal oxide, and Pt on H2 generation.

    PubMed

    Seo, Junhyeok; Kim, Hark Jin; Pekarek, Ryan T; Rose, Michael J

    2015-03-11

    The efficient generation of dihydrogen on molecularly modified p-Si(111) has remained a challenge due to the low barrier heights observed on such surfaces. The band-edge and barrier height challenge is a primary obstruction to progress in the area of integration of molecular H2 electrocatalysts with silicon photoelectrodes. In this work, we demonstrate that an optimal combination of organic passivating agent and inorganic metal oxide leads to H2 evolution at photovoltages positive of RHE. Modulation of the passivating R group [CH3 → Ph → Naph → Anth → Ph(OMe)2] improves both the band-edge position and ΔV (Vonset - VJmax). Subsequent atomic layer deposition (ALD) of Al2O3 or TiO2 along with ALD-Pt deposition results in to our knowledge the first example of a positive H2 operating potential on molecularly modified Si(111). Mott-Schottky analyses reveal that the flat-band potential of the stable Ph(OMe)2 surface approaches that of the native (but unstable) hydride-terminated surface. The series resistance is diminished by the methoxy functional groups on the phenyl unit, due to its chemical and electronic connectivity with the TiO2 layer. Overall, judicious choice of the R group in conjunction with TiO2|Pt effects H2 generation on p-Si(111) photoelectrodes (Voc = 207 ± 5.2 mV; Jsc = -21.7 mA/cm(2); ff = 0.22; ηH2 = 0.99%). These results provide a viable hybrid strategy toward the operation of catalysts on molecularly modified p-Si(111).

  16. Near-infrared sensitive organic-inorganic photorefractive device

    NASA Astrophysics Data System (ADS)

    Marinova, Vera; Liu, Ren-Chung; Lin, Shiuan-Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken-Yuh

    2016-07-01

    Organic-inorganic hybrid structure, assembled by Rh-doped Bi12TiO20 crystal and liquid crystal (LC) layer, operating at near-infrared range is proposed and demonstrated. Due to the photorefractive properties of inorganic substrate, light illumination caused a space charge field which acts as a driving force for LC molecules re-alignment and subsequent refractive index modulation. All optically controlled phase retardation ability has been demonstrated supporting possibilities for further infrared applications.

  17. Near-infrared sensitive organic-inorganic photorefractive device

    NASA Astrophysics Data System (ADS)

    Marinova, Vera; Liu, Ren-Chung; Lin, Shiuan-Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken-Yuh

    2016-10-01

    Organic-inorganic hybrid structure, assembled by Rh-doped Bi12TiO20 crystal and liquid crystal (LC) layer, operating at near-infrared range is proposed and demonstrated. Due to the photorefractive properties of inorganic substrate, light illumination caused a space charge field which acts as a driving force for LC molecules re-alignment and subsequent refractive index modulation. All optically controlled phase retardation ability has been demonstrated supporting possibilities for further infrared applications.

  18. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    PubMed

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  19. Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting.

    PubMed

    Quyen Chau, Ngoc Do; Ménard-Moyon, Cécilia; Kostarelos, Kostas; Bianco, Alberto

    2015-12-18

    Nanosized materials and multifunctional nanoscale platforms have attracted in the last years considerable interest in a variety of different fields including biomedicine. Carbon nanotubes and graphene are some of the most widely used carbon nanomaterials (CNMs) due to their unique morphology and structure and their characteristic physicochemical properties. Their high surface area allows efficient drug loading and bioconjugation and makes them the ideal platforms for decoration with magnetic nanoparticles (MNPs). In the biomedical area, MNPs are of particular importance due to their broad range of potential applications in drug delivery, non-invasive tumor imaging and early detection based on their optical and magnetic properties. The remarkable characteristics of CNMs and MNPs can be combined leading to CNM/MNP hybrids which offer numerous promising, desirable and strikingly advantageous properties for improved performance in comparison to the use of either material alone. In this minireview, we attempt to comprehensively report the most recent advances made with CNMs conjugated to different types of MNPs for magnetic targeting, magnetic manipulation, capture and separation of cells towards development of magnetic carbon-based devices.

  20. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. PMID:24967541

  1. Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C9H6NOBr2]2CuBr4·2H2O

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    Single crystals of a hybrid organic/inorganic material with the formula [C9H6NOBr2]2CuBr4·2H2O were studied by X-ray diffraction. The compound crystallizes in the monoclinic system, space group C2/c with the following unit cell parameters: a = 7.8201 (12) Ǻ, b = 18.203 (3) Ǻ, c = 19.486 (3) Ǻ, β = 98.330 (5)°, Z = 4, V = 2744.6 (7) Ǻ3. Crystal structure was solved with a final R = 5.66% for 3483 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via Osbnd H⋯Br, Csbnd H⋯Br, Nsbnd H⋯Br, Nsbnd H⋯O and Osbnd H⋯O hydrogen bending. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements have been carried out on [C9H6NOBr2]2CuBr4·2H2O crystal in the temperature range between 50 and 500 °C. The assignment of the observed bands in the solid state FTIR and Raman spectra of the compound was assisted by the theoretically predicted frequencies and compared with data previously reported for similar compounds. The theoretical geometrical parameters in the ground state have been investigated by density functional theory (DFT) with the B3LYP/LanL2DZ level of theory. The optical properties were investigated by optical absorption and show two bands at 279, 300 nm. The percentages of hydrogen bonding interactions are analyzed by Fingerprint plots of Hirshfeld surface.

  2. Enhancement of the Curie temperature by isomerization of diarylethene (DAE) for an organic-inorganic hybrid system: Co4(OH)7(DAE)0.5.3H2O.

    PubMed

    Shimizu, H; Okubo, M; Nakamoto, A; Enomoto, M; Kojima, N

    2006-12-11

    Intercalation of an organic photochromic molecule into layered magnetic systems may provide multifunctional properties such as photomagnetism. To build up a photosensitive multifunctional magnet, an organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2'-dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (DAE), and cobalt LDHs (layered double hydroxides), Co4(OH)7(DAE)0.5.3H2O, was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO).H2O and DAE. In the dark and under UV-irradiated (313 nm) conditions, Co4(OH)7(DAE)0.5.3H2O with open and closed forms of DAE were obtained, respectively. The magnetic susceptibility measurements elucidated ferromagnetic intra- and interlayer interactions and Curie temperatures of TC = 9 and 20 K for cobalt LDHs with the open and closed forms of DAE, respectively. The enhancement of the Curie temperature from 9 to 20 K by substitution of the open form of DAE with the closed form of DAE as an intercalated molecule is attributed to the delocalization of the pi-electrons in the closed form of DAE, which enhances the interlayer magnetic interaction. The enhancement of the interlayer magnetic interaction induced by the delocalization of pi-electrons in intercalated molecules is strongly supported by the fact that the Curie temperature (26.0 K) of cobalt LDHs with (E,E)-2,4-hexadienedioate having a conjugated pi-electron system is enormously higher than that (7.0 K) of the cobalt LDHs with hexanedioate. By UV irradiation at 313 nm, Co4(OH)7(DAE)0.5.3H2O shows the photoisomerization of DAE from the open form to the closed one in the solid state, which leads to the enhancement of Curie temperature.

  3. Two anionic [Cu{sup I}{sub 6}X{sub 7}]{sub n}{sup n-} (X=Br and I) chain-based organic-inorganic hybrid solids with N-substituted benzotriazole ligands

    SciTech Connect

    Gao Xia; Zhai Quanguo; Li Shuni; Xia Rui; Xiang Haijuan; Jiang Yucheng; Hu Mancheng

    2010-05-15

    Solvothermal reactions of the flexible ligand 1,6-Bi(benzotriazole)hexane with CuI and KI or CuBr and KBr in ethanol generate two hybrid compounds, namely, {l_brace}(HETA)[(Cu{sub 6}I{sub 7})(ETA){sub 2}]{r_brace}{sub n}(1) and {l_brace}K(Cu{sub 6}Br{sub 7})(BBTH){r_brace}{sub n}(2) (ETA=N-ethylbenzotriazole, HETA=protonated N-ethylbenzotriazole, BBTH=1,6-bi(benzotriazole)hexane). In 1, two [Cu{sub 3}I{sub 4}] vertex missing cubane-like subunits link each other by sharing one I atom to give a [Cu{sub 6}I{sub 7}] cluster, which further form novel 1D [Cu{sub 6}I{sub 7}]{sub n}{sup n-} anionic chain. Two in-situ generated ETA ligands finished the 4-coordinated environments of copper centers and another one discrete protonated ETA ligand keeps the charge neutrality for 1. In complex 2, bowl-shaped [Cu{sub 5}Br{sub 4}] clusters and rhomboid [Cu{sub 2}Br{sub 2}] dimers link each other to generate a [Cu{sub 6}Br{sub 7}]{sub n}{sup n-} 1D chain. BBTH ligands complete the tetrahedral spheres of Cu(I), and 7-coordinated K atoms further extend the 1D chain motifs to a 2D hybrid layer of 2. The UV-vis diffuse reflectance spectrum and luminescence measurements show that compound 1 and 2 both are potential semiconductor and photoluminescence materials. - Graphical abstract: Two unprecedented anionic [Cu{sup I}{sub 6}X{sub 7}]{sub n}{sup n-} (X=Br and I) chain-based organic-inorganic hybrid solids, namely, {l_brace}(HETA)[(Cu{sub 6}I{sub 7})(ETA){sub 2}]{r_brace}{sub n} (1) and {l_brace}K(Cu{sub 6}Br{sub 7})(BBTH){r_brace}{sub n}(2) (ETA=N-ethylbenzotriazole, HETA=protonated N-ethylbenzotriazole, BBTH=1,6-bi(benzotriazole)- hexane) have been synthesized under solvothermal reactions and characterized.

  4. Cr[(H3N-(CH2)2-PO3)(Cl)(H2O)]: X-ray single-crystal structure and magnetism of a polar organic-inorganic hybrid chromium(II) organophosphonate.

    PubMed

    Bauer, Elvira M; Bellitto, Carlo; Colapietro, Marcello; Portalone, Gustavo; Righini, Guido

    2003-10-01

    Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)], a rare example of a polar organic-inorganic hybrid material containing Cr(2+), was prepared from CrCl(2), 2-aminoethylphosphonic acid, and urea in water and isolated as light-blue crystals. It crystallizes in the noncentrosymmetric monoclinic space group P2(1), with a = 5.249(1) A, b = 14.133(3) A, c = 5.275(1) A, and beta = 105.55(2) degrees. The inorganic layer of the hybrid network is formed by Cr(II) five-coordinated by three oxygen atoms from the phosphonates and one from the water molecule in a square pyramidal unit, whose apical position is occupied by the Cl(-) ion. Hydrogen bonds are established between the coordinating water molecule and the oxygen atoms of adjacent phosphonate ligands. The inorganic network is interspersed by ethylammonium groups, and the terminal ammonium moiety is linked to the apical Cl(-) ions through hydrogen bonds. Electrostatic interactions as well as hydrogen bonds and the coordinated chlorine atoms ensure the cohesion of the 3D structure. The lattice is polar (lack of inversion center), and this fact determines the magnetic behavior of the compound at low temperatures. The magnetic susceptibility data in the temperature range from 300 to 50 K show Curie-Weiss behavior, with C = 2.716 cm(3) K mol(-1) and the Weiss constant theta = -2.2 K. The corresponding effective magnetic moment of 4.7 mu(B) compares well with the expected value for Cr(2+) in d(4) high-spin configuration. A slight decrease of the chiT product versus T observed at temperatures below 50 K indicates nearest-neighbor antiferromagnetic exchange interactions. On cooling below T = 6 K, the magnetic susceptibility increases sharply up to a maximum at ca. 5 K and then decreases again. Below T = 6 K, hysteresis loops taken at different temperatures show that Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] behaves as a weak ferromagnet with the critical temperature T(N) at 5.5 K. The spin canting is responsible of the long-range magnetic

  5. Macro-ions collapse leading to hybrid bio-nanomaterials.

    SciTech Connect

    Achyuthan, Komandoor E.

    2009-10-01

    I used supramolecular self-assembling cyanine and the polyamine spermine binding to Escherichia coli genomic DNA as a model for DNA collapse during high throughput screening. Polyamine binding to DNA converts the normally right handed B-DNA into left handed Z-DNA conformation. Polyamine binding to DNA was inhibited by the supramolecular self-assembling cyanine. Self-assembly of cyanine upon DNA scaffold was likewise competitively inhibited by spermine as signaled by fluorescence quench from DNA-cyanine ensemble. Sequence of DNA exposure to cyanine or spermine was critical in determining the magnitude of fluorescence quench. Methanol potentiated spermine inhibition by >10-fold. The IC{sub 50} for spermine inhibition was 0.35 {+-} 0.03 {micro}M and the association constant Ka was 2.86 x 10{sup -6}M. Reversibility of the DNA-polyamine interactions was evident from quench mitigation at higher concentrations of cyanine. System flexibility was demonstrated by similar spermine interactions with {lambda}DNA. The choices and rationale regarding the polyamine, the cyanine dye as well as the remarkable effects of methanol are discussed in detail. Cyanine might be a safer alternative to the mutagenic toxin ethidium bromide for investigating DNA-drug interactions. The combined actions of polyamines and alcohols mediate DNA collapse producing hybrid bio-nanomaterials with novel signaling properties that might be useful in biosensor applications. Finally, this work will be submitted to Analytical Sciences (Japan) for publication. This journal published our earlier, related work on cyanine supramolecular self-assembly upon a variety of nucleic acid scaffolds.

  6. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Cruz Hernández, Norge; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; de Los Santos, Desireé M.; Aguilar, Teresa; Martín-Calleja, Joaquín

    2015-03-01

    This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn2+, Sr2+ and Cd2+ did not modify the normal tetragonal phase. When doping with Ca2+, the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr2+ < Cd2+ < Ca2+ < CH3NH3PbI3 ~ Sn2+. The biggest decrease was generated by Sr2+, which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn2+ ~ Pb2+ > Cd2+ > Sr2+ for the tetragonal structure and Pb2+ > Ca2+ for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn2+-doped tetragonal structures, which were different from those doped with Sr2+ and Cd2+. Furthermore, when Cd2+ was incorporated, the Cd-I interaction was strengthened. For Ca2+ doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed

  7. Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    SciTech Connect

    Du Haijuan; Zunzhe Shu; Niu Yunyin; Song Lisha; Zhu Yu

    2012-06-15

    Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is the first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net

  8. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization.

    PubMed

    Baudron, Stéphane A; Batail, Patrick; Coulon, Claude; Clérac, Rodolphe; Canadell, Enric; Laukhin, Vladimir; Melzi, Roberto; Wzietek, Pawel; Jérome, Denis; Auban-Senzier, Pascale; Ravy, Sylvain

    2005-08-24

    (EDT-TTF-CONH2)6[Re6Se8(CN)6], space group R, was prepared by electrocrystallization from the primary amide-functionalized ethylenedithiotetrathiafulvalene, EDT-TTF-CONH2 (E(1/2)1 = 0.49 V vs SCE in CH3CN), and the molecular cluster tetraanion, [Re6Se8(CN)6]4- (E(1/2) = 0.33 V vs SCE in CH3CN), equipped with hydrogen bond donor and hydrogen bond acceptor functionalities, respectively. Its Kagome topology is unprecedented for any TTF-based materials. The metallic state observed at room temperature has a strong two-dimensional character, in coherence with the Kagome lattice symmetry, and the presence of minute amounts of [Re6Se8(CN)6](3-)* identified by electron spin spectroscopy. A structural instability toward a distorted form of the Kagome topology of lesser symmetry is observed at ca. 180 K. The low-temperature structure is associated with a localized, electrically insulating electronic ground state and its magnetic susceptibility accounted for by a model of uniform chains of localized S = 1/2 spins in agreement with the 100 K triclinic crystal structure and band structure calculations. A sliding motion, within one out of the three (EDT-TTF-CONH2)2 dimers coupled to the [Re6Se8(CN6)(3-)*]/[Re6Se8(CN6)4-] proportion at any temperature, and the electronic ground state of the organic-inorganic hybrid material are analyzed on the basis of ESR, dc conductivity, 1H spin-lattice relaxation, and static susceptibility data which qualify a Mott localization in [EDT-TTF-CONH2]6[Re6Se8(CN)6]. The coupling between the metal-insulator transition and a structural transition allows for the lifting of a degeneracy due to the ternary axis in the high temperature, strongly correlated metallic phase which, in turn, leads to Heisenberg chains at low temperature.

  9. Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications

    PubMed Central

    Vivero-Escoto, Juan L.; Huang, Yu-Tzu

    2011-01-01

    Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted. PMID:21747714

  10. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    PubMed Central

    Liu, Jinhuai; Liu, Jinyun; Yang, Liangbao; Chen, Xing; Zhang, Meiyun; Meng, Fanli; Luo, Tao; Li, Minqiang

    2009-01-01

    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated. PMID:22399999

  11. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions.

  12. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. PMID:26201274

  13. Recent NMR developments applied to organic-inorganic materials.

    PubMed

    Bonhomme, Christian; Gervais, Christel; Laurencin, Danielle

    2014-02-01

    In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.

  14. Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing

    PubMed Central

    2015-01-01

    Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF–Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research. PMID:25268035

  15. Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hammond, Paula

    2015-03-01

    Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.

  16. Engineering Synergy: Energy and Mass Transport in Hybrid Nanomaterials.

    PubMed

    Cho, Eun Seon; Coates, Nelson E; Forster, Jason D; Ruminski, Anne M; Russ, Boris; Sahu, Ayaskanta; Su, Norman C; Yang, Fan; Urban, Jeffrey J

    2015-10-14

    An emerging class of materials that are hybrid in nature is propelling a technological revolution in energy, touching many fundamental aspects of energy-generation, storage, and conservation. Hybrid materials combine classical inorganic and organic components to yield materials that manifest new functionalities unattainable in traditional composites or other related multicomponent materials, which have additive function only. This Research News article highlights the exciting materials design innovations that hybrid materials enable, with an eye toward energy-relevant applications involving charge, heat, and mass transport. PMID:25754355

  17. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  18. Hybrid Nanomaterials by Surface Grafting of Synthetic Polypeptides Using N-Carboxyanhydride (NCA) Polymerization.

    PubMed

    Borase, Tushar; Heise, Andreas

    2016-07-01

    The interaction of materials with their environment is largely dictated by interfacial phenomena. Polymers are very versatile materials to modulate material interfaces to provide functionality, stability and compatibility. A class of polymers that can close the gap between fully synthetic and natural macromolecules are polypeptides derived from N-carboxyanhydride (NCA) polymerization. Recent advances in using this technique to create biomimetic interfaces and hybrid materials are highlighted, with special emphasis on nanomaterials.

  19. Giant photostriction in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  20. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Laurila, Tomi

    2015-09-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films.

  1. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    NASA Astrophysics Data System (ADS)

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  2. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial.

    PubMed

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-20

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 10(6) and 3.72 × 10(6) respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  3. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    PubMed Central

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications. PMID:26785682

  4. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial.

    PubMed

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 10(6) and 3.72 × 10(6) respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications. PMID:26785682

  5. Biocompatible hybrid nanomaterials involving polymers and hydrogels interfaced with phosphorescent complexes and toxin-free metallic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Marpu, Sreekar B.

    The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches.

  6. Excellent fluoride decontamination and antibacterial efficacy of Fe-Ca-Zr hybrid metal oxide nanomaterial.

    PubMed

    Dhillon, Ankita; Nair, Manjula; Bhargava, Suresh K; Kumar, Dinesh

    2015-11-01

    The aim of the present study is to develop an efficient nanomaterial for the removal of fluoride and disinfection of harmful bacteria in order to make water potable according to Environmental Protection Agency (EPA) guidelines. Hydrous hybrid Fe-Ca-Zr oxide nanoadsorbent presented a marked fluoride adsorption capacity of 250 mg/g at pH 7.0 (±0.1) much greater than other commercially accessible adsorbents for both synthetic and real water samples. The adsorption isotherms, Freundlich and Dubinin-Radushkevich (D-R) fitted reasonably well fine having high coefficient of regression values. The adsorption of fluoride was established well using pseudo-second-order kinetics. The fluoride loaded adsorbent was efficiently regenerated by using an alkali solution. Interestingly, the developed nanomaterial not only showed excellent fluoride removal capacity but also demonstrated good antibacterial activity against Escherichia coli with IC50 (25 μg/mL). PMID:26196712

  7. Synthesis, crystal structure and high temperature phase transition in the new organic-inorganic hybrid [N(C4H9)4]3Zn2Cl7H2O crystals

    NASA Astrophysics Data System (ADS)

    Ben Gzaiel, Malika; Oueslati, Abderrazek; Lhoste, Jérôme; Gargouri, Mohamed; Bulou, Alain

    2015-06-01

    The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound tri-tetrabutylammonium heptachloro-dizincate (I) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/n space group) containing ZnCl42- and ZnCl3H2O1- tetrahedra. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers stacked along the c direction. Differential scanning calorimetry (DSC) in the range 250-450 K disclosed a reversible structural phase transition of order-disorder type at 358 K, prior to the melting at 395 K. The temperature dependence of the Raman spectra of [N(C4H9)4]3Zn2Cl7H2O single crystals was studied in the spectral range 100-3500 cm-1 and for temperatures between 300 and 386 K. The most important changes are observed for the line at 261 cm-1 issued from ν1(ZnCl4). The analysis of the wavenumber, intensity and the line width based on an order-disorder model allowed to obtain information relative to the activation energy and the correlation length. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the anionic parts. The assumption of cluster fluctuations also allowed the critical exponents to be obtained for the transition δ = 0.011 and the correlation length ξ0 = 598 Å.

  8. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    PubMed

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed. PMID:24749433

  9. Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes.

    PubMed

    Xue, Zheng; Yang, Hui; Gao, Juan; Li, Jiaofu; Chen, Yanhuan; Jia, Zhiyu; Li, Yongjun; Liu, Huibiao; Yang, Wensheng; Li, Yuliang; Li, Dan

    2016-08-24

    A new method of in situ electrically induced self-assembly technology combined with electrochemical deposition has been developed for the controllable preparation of organic/inorganic core/shell semiconductor heterojunction nanowire arrays. The size of the interface of the heterojunction nanowire can be tuned by the growing parameter. The heterojunction nanowires of graphdiyne/CuS with core/shell structure showed the strong dependence of rectification ratio and perfect diode performance on the size of the interface. It will be a new way for controlling the structures and properties of one-dimensional heterojunction nanomaterials. PMID:27472226

  10. New Hybrid Nanomaterial Based on Self-Assembly of Cyclodextrins and Cobalt Prussian Blue Analogue Nanocubes.

    PubMed

    Carvalho, Caio L C; Silva, Anna T B; Macedo, Lucyano J A; Luz, Roberto A S; Moita Neto, José M; Rodrigues Filho, Ubirajara P; Cantanhêde, Welter

    2015-01-01

    Supramolecular self-assembly has been demonstrated to be a useful approach to developing new functional nanomaterials. In this work, we used a cobalt Prussian blue analogue (PBA, Co3[Co(CN)6]2) compound and a β-cyclodextrin (CD) macrocycle to develop a novel host-guest PBA-CD nanomaterial. The preparation of the functional magnetic material involved the self-assembly of CD molecules onto a PBA surface by a co-precipitation method. According to transmission electronic microscopy results, PBA-CD exhibited a polydisperse structure composed of 3D nanocubes with a mean edge length of 85 nm, which became shorter after CD incorporation. The supramolecular arrangement and structural, crystalline and thermal properties of the hybrid material were studied in detail by vibrational and electronic spectroscopies and X-ray diffraction. The cyclic voltammogram of the hybrid material in a 0.1 mol · L(-1) NaCl supporting electrolyte exhibited a quasi-reversible redox process, attributed to Co2+/Co3+ conversion, with an E1/2 value of 0.46 V (vs. SCE), with higher reversibility observed for the system in the presence of CD. The standard rate constants for PBA and PBA-CD were determined to be 0.07 and 0.13 s(-1), respectively, which suggests that the interaction between the nanocubes and CD at the supramolecular level improves electron transfer. We expect that the properties observed for the hybrid material make it a potential candidate for (bio)sensing designs with a desirable capability for drug delivery.

  11. New Hybrid Nanomaterial Based on Self-Assembly of Cyclodextrins and Cobalt Prussian Blue Analogue Nanocubes

    PubMed Central

    Carvalho, Caio L. C.; Silva, Anna T. B.; Macedo, Lucyano J. A.; Luz, Roberto A. S.; Neto, José M. Moita; Filho, Ubirajara P. Rodrigues; Cantanhêde, Welter

    2015-01-01

    Supramolecular self-assembly has been demonstrated to be a useful approach to developing new functional nanomaterials. In this work, we used a cobalt Prussian blue analogue (PBA, Co3[Co(CN)6]2) compound and a β-cyclodextrin (CD) macrocycle to develop a novel host-guest PBA-CD nanomaterial. The preparation of the functional magnetic material involved the self-assembly of CD molecules onto a PBA surface by a co-precipitation method. According to transmission electronic microscopy results, PBA-CD exhibited a polydisperse structure composed of 3D nanocubes with a mean edge length of 85 nm, which became shorter after CD incorporation. The supramolecular arrangement and structural, crystalline and thermal properties of the hybrid material were studied in detail by vibrational and electronic spectroscopies and X-ray diffraction. The cyclic voltammogram of the hybrid material in a 0.1 mol·L−1 NaCl supporting electrolyte exhibited a quasi-reversible redox process, attributed to Co2+/Co3+ conversion, with an E1/2 value of 0.46 V (vs. SCE), with higher reversibility observed for the system in the presence of CD. The standard rate constants for PBA and PBA-CD were determined to be 0.07 and 0.13 s−1, respectively, which suggests that the interaction between the nanocubes and CD at the supramolecular level improves electron transfer. We expect that the properties observed for the hybrid material make it a potential candidate for (bio)sensing designs with a desirable capability for drug delivery. PMID:26132565

  12. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  13. Selective Inactivation of Resistant Gram-Positive Pathogens with a Light-Driven Hybrid Nanomaterial.

    PubMed

    Grüner, Malte; Tuchscherr, Lorena; Löffler, Bettina; Gonnissen, Dominik; Riehemann, Kristina; Staniford, Mark C; Kynast, Ulrich; Strassert, Cristian A

    2015-09-23

    Herein, we present a straightforward strategy to disperse highly insoluble photosensitizers in aqueous environments, without major synthetic efforts and keeping their photosensitizing abilities unaffected. A layered nanoclay was employed to adsorb and to solubilize a highly efficient yet hydrophobic Si(IV) phthalocyaninate in water. The aggregation of the photoactive dye was correlated with its photophysical properties, particularly with the ability to produce highly cytotoxic singlet oxygen. Moreover, the resulting hybrid nanomaterial is able to selectively photoinactivate Gram-positive pathogens, due to local interactions between the bacterial membranes and the negatively charged nanodiscs. Nanotoxicity assays confirmed its innocuousness toward eukaryotic cells, showing that it constitutes a new class of "phototriggered magic bullet" for the inactivation of pathogens in phototherapy, as well as in the development of coatings for self-disinfecting surfaces. PMID:26360157

  14. Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials.

    PubMed

    Fagadar-Cosma, Eugenia; Mirica, Marius Constantin; Balcu, Ionel; Bucovicean, Carmen; Cretu, Carmen; Armeanu, Ileana; Fagadar-Cosma, Gheorghe

    2009-01-01

    The present work is concerned with the manganese complexes of 5,10,15,20-tetraphenylporphyrin and of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin, which were prepared by metallation of the corresponding porphyrin ligands, and the study of their spectroscopic and photophysical behavior under strongly acidic and alkaline conditions. The second objective was to obtain and study some new hybrid materials, with special optoelectronic and surface properties, by impregnation of silica gels obtained by one step acid and by two steps acid-base catalysis with these Mn-porphyrins. The resulting nanomaterials exhibited interesting bathochromic and hyperchromic effects of their second band in the emission spectra in comparison with the Mn-porphyrins and also they have distinct orientation of the aggregates on surfaces, as shown by AFM images, making them useful for applications in medicine, formulation of sensors and for environmental-friendly catalysts for photodegradation of organic compounds.

  15. Dielectric properties and electrical conductivity of the hybrid organic-inorganic polyvanadates (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}

    SciTech Connect

    Nefzi, H.; Sediri, F.; Hamzaoui, H.; Gharbi, N.

    2012-06-15

    Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357 K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.

  16. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  17. Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion.

    PubMed

    Hauser, Christoph P; Jagielski, Nicole; Heller, Jeannine; Hinderberger, Dariush; Spiess, Hans W; Lieberwirth, Ingo; Weiss, Clemens K; Landfester, Katharina

    2011-11-01

    Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal β-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formation is attributed to an interaction between free coordination sites of metal β-diketonato complexes and coordinating anionic surfactants. Lamellar structures are already present in the miniemulsion. By subsequent polymerization the lamellae can be embedded in a great variety of different polymeric matrices. The morphology of the lamellar structures, as elucidated by transmission electron microscopy (TEM), can be controlled by the choice of anionic surfactant. Using sodium alkylsulfates and sodium dodecylphosphate, "nano-onions" are formed, while sodium carboxylates lead to "kebab-like" structures. The composition of the hybrid nanostructures can be described as bilayer lamellae, embedded in a polymeric matrix. The metal complexes are separated by surfactant molecules which are arranged tail-to-tail; by increasing the carbon chain length of the surfactant the layer distance of the structured nanomaterial can be adjusted between 2 and 5 nm. PMID:21977909

  18. Piezoelectric Enhancement of Hybrid Organic/Inorganic Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Briscoe, Joe; Shoaee, Safa; Durrant, James R.; Dunn, Steve

    2013-12-01

    Solar cells are produced using solution processing that combine ZnO nanorods with the conjugated polymer poly(3-hexylthiophene) (P3HT). ZnO nanorods have an average length and diameter of 2.7 μm and 81 nm, and are well coated with P3HT. The solar cells have a power conversion efficiency of 1.24 %, which increases to 1.78 % when 10 kHz acoustic vibrations are applied to the device at 75 dB using a loudspeaker. Transient absorption studies demonstrate that the efficiency increase originates from a decrease in the non-geminate recombination rate in the system. It is proposed that electric fields at the ZnO:P3HT interface arising from the piezoelectric effect in ZnO increase the charge-carrier separation, producing this reduction in recombination and associated efficiency increase.

  19. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    NASA Astrophysics Data System (ADS)

    Guo, Xiaopeng; Tang, Libin; Xiang, Jinzhong; Ji, Rongbin; Zhang, Kai; Lai, Sin Ki; Zhao, Jun; Kong, Jincheng; Lau, Shu Ping

    2016-05-01

    Ultraviolet (UV) photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA) detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl)(PFO)/ZnO/ITO) to demonstrate the UV photovoltaic (PV) response. A rather smooth surface (RMS roughness: 0.28 nm) may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  20. Organic-inorganic planar hybrid materials for spasers

    NASA Astrophysics Data System (ADS)

    Toropov, Nikita A.; Kamalieva, Aisylu N.; Vartanyan, Tigran A.

    2015-05-01

    We strive to obtain highly fluorescent planar materials that may be used for the development of nanolasers based on localized plasmons. The promissing candidates for this purpose are materials consisting of mixtures of organic molecules, polymer, and silver nanoparticles. Silver nanoparticles were preliminary deposited on the quartz substrates. These samples were characterized by SEM and absorption spectroscopy. Then, they were covered by the polymer/rhodamine and polymer/coumarin layers using either spin-coating or evaporation techniques and characterized by confocal luminescent microscopy and spectroscopy. As a result of the localized surface plasmon excitation, we observed the enhancement of the rhodamine and coumarine absorption in the near fields of silver nanoparticles. The fluorescence of the thin films of polymer activated by dyes molecules with silver nanoparticles was almost 20-fold more intense than that on the bare dielectric surfaces without silver nanoparticles. In the presence Ag nanoparticles and at increased intensities of excitation we found also slight narrowing of the luminescence spectrum of polymer/coumarin layers.

  1. Charge extraction from nanostructured hybrid organic-inorganic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Goh, Chiatzun

    Conjugated polymers are attractive for use in photovoltaic (PV) cells because they are highly absorptive, their absorption spectrum can be tuned to match various regions of the solar spectrum and their solubility in common solvents enables the use of low-cost printing technique to mass produce PV panels. Photoexcitation of conjugated polymers forms excitons, which are bound electron-hole pairs. In order to convert these excitons into free carriers, the polymers have to be blended with an electron acceptor in close promixity of ˜10 nm. The charge transfer process at the donor-acceptor interface provides the necessary driving force to split excitons, while the close proximity guarantees excitons reaching an interface before decaying. Once the carriers are split, they have to be transported to their respective electrodes before recombining. Ordered nanostructured titania (TiO2) matrix infiltrated with conjugated polymers is a promising acceptor-donor system, which can potentially meet these requirements. In this work, several optimizations are shown to be essential for increasing the performance of TiO2/polymer cells. First, we measure the hole mobility of poly(3-hexylthiophene) (P3HT) in a thin film diode in the space-charge limited regime. We show that the mobility increases with the polymer molecular weight and can be correlated to the film morphology. The anisotropy in P3HT chain packing suggests that its diode mobility of 10-4 cm 2/Vs can be further enhanced upon chain alignment in straight nanopores. Second, we investigate the use of molecular surface modification to control the interfacial energetics and charge transfer dynamics. By introducing dipoles at the TiO2/P3HT interface, the interfacial energy offset can be changed resulting in a concomitant change in the open circuit voltage. In addition, certain modifiers improve exciton harvesting by mediating charge transfer from the polymer to TiO2. We further show that the use of an amphiphilic molecule suppresses charge recombination across the TiO 2/P3HT interface. By controlling open circuit voltage, enhancing photocurrent and suppressing recombination through interface modification, the power efficiency of TiO2/P3HT device is almost doubled. Lastly, we demonstrate a novel imprinting method to nanostructure straight pores in TiO2, which can be infiltrated with conjugated polymers to make ordered inorganic-organic PV cells.

  2. The field-dependent interface recombination velocity for organic-inorganic heterojunction

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Jędrzej

    2016-10-01

    We have derived an analytical formula which describes the field-dependent interface recombination velocity for the boundary of two materials characterized by different permittivities. The interface recombination of charge carriers has been considered in the presence of image force Schottky barrier. We suggest that this effect may play an important role in the loss of current for organic-inorganic hybrid heterojunctions. It has been proved that the presented method is a generalization of the Scott-Malliaras model of surface recombination at the organic/metal interface. We also discuss that this model is intuitively similar but not analogous to the Langevin mechanism of bulk recombination.

  3. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina

    2012-12-01

    The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications. PMID:22949098

  4. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-06-01

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials. PMID:27175790

  5. Self-assembly of ferromagnetic organic-inorganic perovskite-like films.

    PubMed

    Akhtar, Naureen; Polyakov, Alexey O; Aqeel, Aisha; Gordiichuk, Pavlo; Blake, Graeme R; Baas, Jacob; Amenitsch, Heinz; Herrmann, Andreas; Rudolf, Petra; Palstra, Thomas T M

    2014-12-10

    Perovskite-based organic-inorganic hybrids hold great potential as active layers in electronics or optoelectronics or as components of biosensors. However, many of these applications require thin films grown with good control over structure and thickness--a major challenge that needs to be addressed. The work presented here is an effort towards this goal and concerns the layer-by-layer deposition at ambient conditions of ferromagnetic organic-inorganic hybrids consisting of alternating CuCl4-octahedra and organic layers. The Langmuir-Blodgett technique used to assemble these structures provides intrinsic control over the molecular organization and film thickness down to the molecular level. Magnetic characterization reveals that the coercive field for these thin films is larger than that for solution-grown layered bulk crystals. The strategy presented here suggests a promising cost effective route to facilitate the excellently controlled growth of sophisticated materials on a wide variety of substrates that have properties relevant for the high density storage media and spintronic devices.

  6. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    PubMed

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. PMID:23541891

  7. Mixture interlayer for high performance organic-inorganic perovskite photodetectors

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Chen, Qi; Chen, Lei; Ye, Fengye; Cai, Jinhua; Chen, Liwei

    2016-09-01

    Organic-inorganic perovskites are promising light absorbing active materials for photodetectors; however, the performance of current organic-inorganic perovskite-based photodetectors are limited by the high dark current due to hole injection at the cathode interlayer typically composed of fullerene derivatives. We have developed a mixture interlayer by simply blending polymethyl methacrylate (PMMA) with [6,6]-phenyl-C61-butyric acidmethyl ester (PCBM). Scanning Kelvin probe microscopy imaging reveals that the presence of PMMA reduced the work function of the PCBM:PMMA interlayer, which leads to increased energy barrier for hole injection and better hole-blocking property. Optimized perovskite photodetector with PCBM:PMMA hole-blocking interlayer exhibits a high detectivity of 1.1 × 1013 Jones, a broad linear dynamic range of 112 dB, and a fast response time of 2.2 μs.

  8. Organic/Inorganic Complex Pigments: Ancient Colors Maya Blue

    SciTech Connect

    Polette-Niewold, L.A.; Manciu, F.S.; Torres, B.; Alvarado, M.; Jr.; Chianelli, R.R.

    2009-06-04

    Maya Blue is an ancient blue pigment composed of palygorskite clay and indigo. It was used by the ancient Maya and provides a dramatic background for some of the most impressive murals throughout Mesoamerica. Despite exposure to acids, alkalis, and chemical solvents, the color of the Maya Blue pigment remains unaltered. The chemical interaction between palygorskite and indigo form an organic/inorganic complex with the carbonyl oxygen of the indigo bound to a surface Al{sup 3+} in the Si-O lattice. In addition indigo will undergo an oxidation to dehydroindigo during preparation. The dehydro-indigo molecule forms a similar but stronger complex with the Al{sup 3+}. Thus, Maya Blue varies in color due to the mixed indigo/dehydroindigo complex. The above conclusions are the result of application of multiple techniques (X-ray diffraction, differential thermal analysis/thermal gravimetric analysis, high resolution transmission electron microscopy, scanning electron microscopy, infrared and Raman spectroscopy) to the characterization of the organic/inorganic complex. A picture of the bonding of the organic molecule to the palygorskite surface forming a surface complex is developed and supported by the results of density functional theory calculations. We also report that other organic molecules such as thioindigo form similar organic/inorganic complexes thus, opening an entirely new class of complex materials for future applications.

  9. Organic/inorganic complex pigments: ancient colors Maya Blue.

    PubMed

    Polette-Niewold, Lori Ann; Manciu, Felicia S; Torres, Brenda; Alvarado, Manuel; Chianelli, Russell R

    2007-11-01

    Maya Blue is an ancient blue pigment composed of palygorskite clay and indigo. It was used by the ancient Maya and provides a dramatic background for some of the most impressive murals throughout Mesoamerica. Despite exposure to acids, alkalis, and chemical solvents, the color of the Maya Blue pigment remains unaltered. The chemical interaction between palygorskite and indigo form an organic/inorganic complex with the carbonyl oxygen of the indigo bound to a surface Al(3+) in the Si-O lattice. In addition indigo will undergo an oxidation to dehydroindigo during preparation. The dehydro-indigo molecule forms a similar but stronger complex with the Al(3+). Thus, Maya Blue varies in color due to the mixed indigo/dehydroindigo complex. The above conclusions are the result of application of multiple techniques (X-ray diffraction, differential thermal analysis/thermal gravimetric analysis, high resolution transmission electron microscopy, scanning electron microscopy, infrared and Raman spectroscopy) to the characterization of the organic/inorganic complex. A picture of the bonding of the organic molecule to the palygorskite surface forming a surface complex is developed and supported by the results of density functional theory calculations. We also report that other organic molecules such as thioindigo form similar organic/inorganic complexes thus, opening an entirely new class of complex materials for future applications.

  10. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  11. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth.

    PubMed

    Gordon, Lyle M; Joester, Derk

    2011-01-13

    Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements. In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization. The remarkable functional properties of the resulting composites-such as outstanding fracture toughness and wear resistance-can be attributed to buried organic-inorganic interfaces at multiple hierarchical levels. Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials. However, elucidating the structural and chemical complexity of buried organic-inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5-10 nm in the surrounding nano-crystalline magnetite (Fe(3)O(4)) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata. Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix-mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not

  12. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth.

    PubMed

    Gordon, Lyle M; Joester, Derk

    2011-01-13

    Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements. In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization. The remarkable functional properties of the resulting composites-such as outstanding fracture toughness and wear resistance-can be attributed to buried organic-inorganic interfaces at multiple hierarchical levels. Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials. However, elucidating the structural and chemical complexity of buried organic-inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5-10 nm in the surrounding nano-crystalline magnetite (Fe(3)O(4)) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata. Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix-mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not

  13. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    PubMed

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-01

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

  14. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    PubMed

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-01

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  15. A synthetic nanomaterial for virus recognition produced by surface imprinting.

    PubMed

    Cumbo, Alessandro; Lorber, Bernard; Corvini, Philippe F-X; Meier, Wolfgang; Shahgaldian, Patrick

    2013-01-01

    Major stumbling blocks in the production of fully synthetic materials designed to feature virus recognition properties are that the target is large and its self-assembled architecture is fragile. Here we describe a synthetic strategy to produce organic/inorganic nanoparticulate hybrids that recognize non-enveloped icosahedral viruses in water at concentrations down to the picomolar range. We demonstrate that these systems bind a virus that, in turn, acts as a template during the nanomaterial synthesis. These virus imprinted particles then display remarkable selectivity and affinity. The reported method, which is based on surface imprinting using silica nanoparticles that act as a carrier material and organosilanes serving as biomimetic building blocks, goes beyond simple shape imprinting. We demonstrate the formation of a chemical imprint, comparable to the formation of biosilica, due to the template effect of the virion surface on the synthesis of the recognition material. PMID:23422671

  16. Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials

    SciTech Connect

    Peter C. Kong

    2011-12-01

    INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The

  17. Organic-Inorganic Thermoelectrics from Single Monomers to Polymer Devices

    NASA Astrophysics Data System (ADS)

    Chang, William Bee

    nanocrystal arrays are a good model platform to scale molecular junctions to the macroscale, I aim to bring the same Landauer transport physics observed in single molecule junctions to macroscale devices. I further investigate the role of different binding groups, where I find that the character of the ligand binding group directly affects whether the sign of the Seebeck coefficient of the overall array. Finally, I elaborate on our work with conductive polymers as thermoelectric materials, and specifically investigate the thermoelectric effect in polymers that are solely ion conductors or are capable of both ions and electrons transport. I demonstrate that thermoelectrics based ionic or mixed conduction can be well-described using the developed fundamental equations, and by using these rules we develop positive or negative Seebeck coefficient materials. I present our work on the newly developed thermoelectric AFM technique and how we use the thermoelectric response of different domains to understand the morphology of PEDOT:PSS. By fully understanding the thermoelectric properties of organic-inorganic hybrids from the monomer level, we can extend this same understanding to develop polymer thermoelectrics.

  18. The role of molecular layer mixing on the thermal conductance of organic-inorganic heterojunctions

    NASA Astrophysics Data System (ADS)

    Majumdar, Shubhaditya; McGaughey, Alan J. H.; Malen, Jonathan A.

    The role of interfacial properties in affecting energy transport characteristics is an extensive area of research. Hybrid materials composed of organic-inorganic heterojunctions are gaining popularity as alternatives to conventional semiconductors for various energy-generation devices, thus requiring detailed study of their interfacial properties - especially thermal transport. Previous works have isolated the organic-inorganic interface thermal properties using self-assembled monolayer (SAM) junctions between two inorganic substrates and characterized them based on interfacial bonding strength, vibrational mismatch and molecule length. Here, we investigate the effect of having a mixed SAM layer on the thermal conductance of the SAM junction. The mixed SAM layers either have molecules of the same length but different end groups (thiols and methyl) or different lengths. This creates a modifiable bonding environment at one interface either through a varying ratio of strong and weakly bonded end groups or a decreasing surface coverage of the molecule. Both these scenarios are investigated to study the cooperative nature of the molecules/interface bonds and their effect on the heat transport across the junction. We follow a combined experimental and computational approach in our investigation - we fabricate the SAM junctions (alkanethiols between two gold substrates) and measure their thermal conductance using Frequency Domain Thermoreflectance, and use molecular dynamics simulations to get a deeper understanding of the role of intermolecular cross talk.

  19. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    PubMed

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-01

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction. PMID:27396858

  20. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  1. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  2. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes.

  3. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  4. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect

    Smith, Sean W.; Matthews, David J.; Conley, John F.; Buesch, Christian; Simonsen, John

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoated CNC aerogels, an improvement of over 100 °C.

  5. Oysters produce an organic-inorganic adhesive for intertidal reef construction.

    PubMed

    Burkett, Jeremy R; Hight, Lauren M; Kenny, Paul; Wilker, Jonathan J

    2010-09-15

    Coastal ecosystems rely upon oyster reefs to filter water, provide protection from storms, and build habitat for other species. From a chemistry perspective, few details are available to illustrate how these shellfish construct such extensive reef systems. Experiments presented here show that oysters generate a biomineralized adhesive material for aggregating into large communities. This cement is an organic-inorganic hybrid and differs from the surrounding shells by displaying an alternate CaCO(3) crystal form, a cross-linked organic matrix, and an elevated protein content. Emerging themes and unique aspects are both revealed when comparing oyster cement to the adhesives of other marine organisms. The presence of cross-linked proteins provides an analogy to mussel and barnacle adhesives whereas the high inorganic content is exclusive to oysters. With a description of oyster cement in hand we gain strategies for developing synthetic composite materials as well as a better understanding of the components needed for healthy coastal environments.

  6. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.

    PubMed

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-28

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-[triple bond, length as m-dash]) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click

  7. A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials.

    PubMed

    Zhang, Jun; Liu, Xianghong; Guo, Xianzhi; Wu, Shihua; Wang, Shurong

    2010-07-19

    A novel, facile, and general one-pot strategy is explored for the synthesis of diverse noble-metal (Au, Pt, Ag, or Pt/Au)/Fe(2)O(3) hybrid nanoparticles with the assistance of lysine (which is a nontoxic, user friendly amino acid that is compatible with organisms) and without using any other functionalization reagents. Control experiments show that lysine, which contains both amino and carboxylic groups, plays dual and crucial roles as both linker and capping agents in attaching noble metals with a small size and uniform distribution onto an Fe(2)O(3) support. Considering the perfect compatibility of lysine with organism, this approach may find potentials in biochemistry and biological applications. Furthermore, this novel route is also an attractive alternative and supplement to the current methods using a silane coupling agent or polyelectrolyte for preparing hybrid nanomaterials. To demonstrate the usage of such hybrid nanomaterials, a chemical gas sensor has been fabricated from the as-synthesized Au/Fe(2)O(3) nanoparticles and investigated for ethanol detection. Results show that the hybrid sensor exhibits significantly improved sensor performances in terms of high sensitivity, low detection limit, better selectivity, and good reproducibility in comparison with pristine Fe(2)O(3). Most importantly, this general approach can be further employed to fabricate other hybrid nanomaterials based on different support materials.

  8. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    NASA Astrophysics Data System (ADS)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  9. A van der Waals pn heterojunction with organic/inorganic semiconductors

    SciTech Connect

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi E-mail: xrwang@nju.edu.cn; Wang, Xinran E-mail: xrwang@nju.edu.cn; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  10. High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

    NASA Astrophysics Data System (ADS)

    Li, Dong; Dong, Guifang; Li, Wenzhe; Wang, Liduo

    2015-01-01

    Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 104 is obtained at bias of 0-4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W-1 at 341.3 μWcm-2 at an input voltage of 6 V. The device also exhibits rapid response times of τrise ~ 20 μs and τfall ~ 17 μs as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics.

  11. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by

  12. Synthesis of Photoswitchable Magnetic Au-Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications.

    PubMed

    Wang, Min; Jeon, Seaho; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Chiang, Long Y

    2015-01-01

    We designed and synthesized several nanomaterials 3 of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9) 1 or 2]n nanoparticles (NPs). These NPs having e(-)-polarizable fullerosome structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Fullerosomic polarization of 3 was found to be capable of causing a large amplification of material permittivity that is also associated with the photoswitching effect in the frequency range of 0.5-4.0 GHz. Multilayered synthetic construction allows Förster resonance energy transfer (FRET) of photoinduced accumulative surface plasmon resonance (SPR) energy in the gold layer to the partially bilayered C60(>DPAF-C9) 1 or 2-derived fullerosome membrane shell layer in a near-field of direct contact without producing radiation heat, which is commonly associated with SPR. PMID:26287136

  13. Optical Spintronics in Organic-Inorganic Perovskite Photovoltaics

    PubMed Central

    Li, Junwen; Haney, Paul M.

    2016-01-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3. We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified 3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect. PMID:27453958

  14. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials. PMID:23218240

  15. Nanostructured organic-inorganic photodiodes with high rectification ratio.

    PubMed

    Karan, Santanu; Mallik, Biswanath

    2008-12-10

    High quality organic-inorganic heterojunction photodiodes based on nanostructured copper (II) phthalocyanine (CuPc) and intrinsic zinc oxide (i-ZnO) have been fabricated. The i-ZnO thin films/layers were grown by RF magnetron sputtering on clean indium tin oxide (ITO) coated glass substrates. These films have been characterized by optical absorption and field emission scanning electron microscopy (FESEM). CuPc thin films deposited at room temperature on i-ZnO have exhibited a change in their surface morphology with the post-deposition annealing temperature under normal atmosphere. The electrical dark conductivity and the photoconductivity of ITO/i-ZnO/CuPc/Au sandwich structures have been measured under various photoexcitation intensities using a xenon light source. The devices have shown excellent reproducibility of their electrical characteristics and high rectification ratios. The highest rectification ratio is nearly 831 calculated above the threshold voltage at room temperature for the sample annealed at 250 °C (i.e. Pc 250). The effects of the annealing temperature of CuPc on the surface morphology, rectification ratio, and optical properties have been discussed. PMID:21730664

  16. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials.

  17. Organic-inorganic composites for THz device fabrication

    NASA Astrophysics Data System (ADS)

    Cai, B.; Ye, T. M.; Bo, G.; Wang, X. C.; Li, Y. Z.; Zhu, Y. M.; Sugihara, O.

    2016-02-01

    In this paper, several organic-inorganic composites were prepared for Terahertz (THz) devices fabrication. First, a two-layer structure was designed for femtosecond (fs) laser/THz radiation separation. The top layer was made by sintered 20-40 nm hollow quartz particles which can diffuse the incident fs laser thus decrease the power intensity. The bottom layer comprised of silicon 100 nm particles and cycle-olefine polymer (COP), by which the fs laser light can be greatly scattered and absorbed but THz radiation can propagate insusceptibly. With this two-layer structure a high efficient fs-laser/THz filter was fabricated successfully. Second, titania-polymer composites with a very high refractiveindex tunability and high transparency in the THz region were prepared. By controlling the blending ratio of the titania particle, a broad refractive-index tuning range from 1.5 to 3.1 was realized. Then, the composites were used to fabricate antireflective (AR) layers on a high-resistivity silicon (HR-Si) substrate. By utilizing the thermoplasticity of the titania- polymer composite, a graded-index structure was fabricated via a hot-embossing method. Because of the good refractive-index matching between the composite and the HR-Si substrate, a broadband AR layer was fabricated.

  18. Nanostructured organic inorganic photodiodes with high rectification ratio

    NASA Astrophysics Data System (ADS)

    Karan, Santanu; Mallik, Biswanath

    2008-12-01

    High quality organic-inorganic heterojunction photodiodes based on nanostructured copper (II) phthalocyanine (CuPc) and intrinsic zinc oxide (i-ZnO) have been fabricated. The i-ZnO thin films/layers were grown by RF magnetron sputtering on clean indium tin oxide (ITO) coated glass substrates. These films have been characterized by optical absorption and field emission scanning electron microscopy (FESEM). CuPc thin films deposited at room temperature on i-ZnO have exhibited a change in their surface morphology with the post-deposition annealing temperature under normal atmosphere. The electrical dark conductivity and the photoconductivity of ITO/i-ZnO/CuPc/Au sandwich structures have been measured under various photoexcitation intensities using a xenon light source. The devices have shown excellent reproducibility of their electrical characteristics and high rectification ratios. The highest rectification ratio is nearly 831 calculated above the threshold voltage at room temperature for the sample annealed at 250 °C (i.e. Pc 250). The effects of the annealing temperature of CuPc on the surface morphology, rectification ratio, and optical properties have been discussed.

  19. Multifunctional slow-release organic-inorganic compound fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture. PMID:21058723

  20. Optical spintronics in organic-inorganic perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-04-01

    Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. When inversion symmetry is broken, these materials should exhibit interesting spin-dependent properties as well, owing to their strong spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 . We first use density functional theory to compute the ballistic spin current generated by absorption of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, nonselective contact. The spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified three-dimensional Rashba model of the electronic structure of the valence and conduction bands. We provide analytic expressions for the photon flux required to induce measurable spin densities, and propose that these spin densities can provide useful information about the role of grain boundaries in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the optically generated spin current with the inverse spin Hall effect.

  1. Multifunctional slow-release organic-inorganic compound fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture.

  2. Synthesis, structural characterization, and solid-state NMR spectroscopy of [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (phen=1, 10-phenanthroline), two organic-inorganic hybrid compounds with 1-D chain structures

    SciTech Connect

    Chang, W.-J.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. . E-mail: liikh@cc.ncu.edu.tw

    2005-12-15

    Two new organic-inorganic hybrid compounds, [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O (1) and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (2) (phen=1,10-phenanthroline), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. Their structures consist of 1-D chains of strictly alternating GaO{sub 4}N{sub 2} octahedra and phosphate tetrahedra. The phen ligands in both compounds bind in a bidentate fashion to the gallium atoms and the 1-D structures extend into 3-D supramolecular arrays via {pi}-{pi} stacking interactions of phen ligands and hydrogen bonds. {sup 2}H MAS NMR spectroscopy was applied to study the deuterated sample of 1 which contains very short hydrogen bonds with an O-O distance of 2.406(2) A. Crystal data for 1: monoclinic, space group C2/c (No. 15), a=11.077(1) A, b=21.496(2) A, c=7.9989(7) A, {beta}=127.211(2){sup o}, and Z=4. The crystal symmetry is the same for 2 as for 1 except a=27.555(2) A, b=6.3501(5) A, c=21.327(2) A, {beta}=122.498(1){sup o}, and Z=8.

  3. Fabrication and characterization on an organic/inorganic 2 × 2 Mach-Zehnder interferometer thermo-optic switch

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Qv, Lucheng; Zhang, Lijun; Zheng, Chuantao; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2014-04-01

    An organic/inorganic hybrid 2 × 2 directional coupler (DC) Mach-Zehnder interferometer (MZI) thermo-optic (TO) switch was successfully designed and fabricated using simple direct ultraviolet photolithography process. The hybrid organic/inorganic waveguide structure includes poly-methyl-methacrylate-glycidyl-methacrylate (P(MMA-GMA)), SU-8 2005 and silica as core, upper cladding and under cladding, respectively. Device optimization and simulation were performed to decrease radiation loss and leakage loss, quicken response time and cut down power consumption. Measurements of the fabricated devices at 1550 nm wavelength result in a switching power of 7.2 mW, a response time of ˜100 μs, and crosstalk of -22.8 and -26.5 dB under cross state and bar state, respectively. Besides, the driving-noise-tolerance characteristics of this device were experimentally investigated by directly imposing a generated tunable noise on the pure driving signal (4 Vpp) and the minimum extinction ratio is larger than 18 dB under a noise level of 2.5 Vpp. The effect of noise on extinction ratio was found decreased with the increase of noise frequency.

  4. Study on Preparation of High-k Organic-Inorganic Thin Film for Organic-Inorganic Thin Film Transistor Gate Dielectric Application

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Hsi; Liu, Chao-Te; Lee, Ying-Chieh

    2012-06-01

    A simple solution-based deposition technique combined with spin-coating is a plausible way to prepare ultra-thin organic-inorganic nanocomposite films. In this study, we describe the spin-coating deposition of a colloidal nanoparticle suspension to obtain an ultra-thin organic-inorganic composite film as a gate insulator for organic thin film transistor (O-TFT) application. To obtain a homogenous organic-inorganic composite film, well-dispersed TiO2 nanoparticles in γ-butyrolactone and polyimide are important; therefore, several dispersants were assessed on the basis of the measurement of the rheological behavior of slurries. The thickness of the organic-inorganic composite film is mainly determined by the speed of spin-coating and viscosity of slurries. An approximately 4000-Å-thick nanocomposite film with homogeneous distribution of TiO2 nanoparticles in polyimide and low roughness was obtained after curing at 200 °C, resulting in a low leakage current density of the nano-composite film, when less than 2 vol % TiO2 nanoparticles were well dispersed in polyimide slurry. The dielectric constant of the organic-inorganic nanocomposite increases with increasing TiO2 content in polyimide, being situated in the range between 4 and 5.

  5. Purifying Nanomaterials

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  6. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Herz, Laura M.

    2016-05-01

    Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms.

  7. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites.

    PubMed

    Herz, Laura M

    2016-05-27

    Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms.

  8. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Changhong; Li, Na; Wang, Qiannan; Tang, Zhenghua

    2016-07-01

    Nanocomposites based on gold nanoclusters (AuNCs) with polyvinyl pyrrolidone as ligand and reduced graphene oxide (RGO) have been prepared and employed as efficient electrocatalysts for oxygen reduction reaction (ORR). AuNCs were synthesized through a wet chemical approach and then loaded onto the RGO. The as-prepared hybrid materials were pyrolyzed to remove the organic ligands. The composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) as well as other techniques. Electrochemical tests demonstrated that the hybrid materials exhibited effective ORR activity in alkaline media. Among a series of samples tested, the pyrolyzed sample with 50 % AuNCs mass loading exhibited the best activity, superior than AuNCs alone, RGO alone, and the others, in terms of onset potential and kinetic current density as well as durability. The method here may provide a generic approach to prepare supported noble metal nanoclusters with excellent reactivity and robust stability for ORR.

  9. Core-Shell γ-Fe2O3/SiO2/PCA/Ag-NPs Hybrid Nanomaterials as a New Candidate for Future Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Soleyman, R.; Pourjavadi, A.; Masoud, N.; Varamesh, A.

    2014-04-01

    In the current study, γ-Fe2O3/SiO2/PCA/Ag-NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ-Fe2O3 core nanoparticles were modified by SiO2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles (Ag-NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag-NPs and drugs to cancer cells and then Ag-NPs can affect those cells via Ag-NPs anti-angiogenesis effect. Size and structure of the prepared magnetic hybrid nanomaterials were characterized using FTIR and UV-Vis spectra, AFM and TEM pictures and XRD data.

  10. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  11. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  12. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-08-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  13. Nanostructured organic/inorganic semicondutor photovoltaics: Investigation on morphology and optoelectronics performance

    NASA Astrophysics Data System (ADS)

    Wanninayake, Aruna Pushpa Kumara

    Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density. Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure. Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc

  14. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  15. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.

  16. Combined organic-inorganic fouling of forward osmosis hollow fiber membranes.

    PubMed

    Arkhangelsky, Elizabeth; Wicaksana, Filicia; Tang, Chuyang; Al-Rabiah, Abdulrahman A; Al-Zahrani, Saeed M; Wang, Rong

    2012-12-01

    This research focused on combined organic-inorganic fouling and cleaning studies of forward osmosis (FO) membranes. Various organic/inorganic model foulants such as sodium alginate, bovine serum albumin (BSA) and silica nanoparticles were applied to polyamide-polyethersulfone FO hollow fiber membranes fabricated in our laboratory. In order to understand all possible interactions, experiments were performed with a single foulant as well as combinations of foulants. Experimental results suggested that the degree of FO membrane fouling could be promoted by synergistic effect of organic foulants, the presence of divalent cations, low cross-flow velocity and high permeation drag force. The water flux of fouled FO hollow fibers could be fully restored by simple physical cleaning. It was also found that hydrodynamic regime played an important role in combined organic-inorganic fouling of FO membranes.

  17. A novel nanomolecular organic-inorganic hybrid compound: Na{sub 2}[NH(CH{sub 2}CH{sub 2}OH){sub 3}]{sub 4}{l_brace}Mo{sub 36}O{sub 112}(OH{sub 2}){sub 14}[OHCH{sub 2}CH{sub 2}NH(CH{sub 2}CH{sub 2}OH){sub 2}]{sub 2}{r_brace}.nH{sub 2}O (n{approx}72) exhibiting a supramolecular one-dimensional chainlike structure

    SciTech Connect

    Liang Dadong; Liu Shuxia Wang Chunling; Ren Yuanhang

    2007-02-15

    A novel nanomolecular organic-inorganic hybrid compound, Na{sub 2}[NH(CH{sub 2}CH{sub 2}OH){sub 3}]{sub 4}{l_brace}Mo{sub 36}O{sub 112}(OH{sub 2}){sub 14} [OHCH{sub 2}CH{sub 2}NH(CH{sub 2}CH{sub 2}OH){sub 2}]{sub 2}{r_brace}.nH{sub 2}O (n{approx}72) (1), was synthesized in aqueous acidic medium with a high yield (85%) and characterized by single crystal X-ray crystallography, IR spectroscopy, {sup 1}H NMR, XRD and TG analysis. Compound 1 exhibits a supramolecular one-dimensional chainlike structure which consists of nanosized {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 14}(HOC{sub 2}H{sub 4}){sub 2}NHC{sub 2}H{sub 4}OH]{sub 2}{r_brace}{sup 6-} anions ({l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} for short) and cage-like dimers of TEAH{sup +} cations (TEAH{sup +}=protonated triethanolamine). In the {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} anion, two TEAH{sup +} cations connect to one ring-like {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 16}]{sup 8-} ({l_brace}Mo{sub 36}{r_brace} for short) anion by covalent bonds via replacing two water ligands by the alkoxy ligands. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets. Crystal Data: triclinic, P-1, a=16.019(9) A, b=17.372(4) A, c=18.287(2) A, {alpha}=101.410(0){sup o}, {beta}=95.904(0){sup o}, {gamma}=116.332(0){sup o}, Z=1. - Graphical abstract: A novel organic-inorganic hybrid material based on macroisopolyanion {l_brace}Mo{sub 36}{r_brace} has been synthesized and characterized by X-ray single-crystal crystallography, XRD, IR spectroscopy, and TG analysis. The material exhibits a supramolecular one-dimensional chainlike structure. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets.

  18. Magnetic properties of Fe-doped organic-inorganic nanohybrids

    NASA Astrophysics Data System (ADS)

    Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; de Zea Bermudez, V.

    2003-05-01

    We present a magnetic study of Fe-doped diureasils (siloxane-based networks to which poly(ethylene oxide)-based chains are grafted by urea cross linkages doped with Fe(II) or Fe(III) ions. Structural studies show that the Fe(II) ions interact mainly with the organic chain, whereas the incorporation of Fe(III) leads to the formation of iron-based nanoclusters, with radius increasing from 20 to 40 Å. Fe(II)-doped samples behave as simple paramagnets, with μeff=5.32μB. Fe(III)-doped hybrids present antiferromagnetic interactions, with TN increasing with Fe(III) concentration up to 13.6 K for 6% doping. Thermal irreversibility was observed below ˜40 K and is stronger for higher concentrations. The coercive fields (HC) are of the order of 1000 Oe at 5 K. Hysteresis cycles are shifted to negative fields, revealing the presence of exchange anisotropy interactions with exchange fields (HE) of the order of 100 Oe. Both fields decrease rapidly with increasing temperature. We analyze this behavior in terms of the contribution of surface spin disorder to exchange anisotropy.

  19. Reactivity II: A Second Foundation-Level Course in Integrated Organic, Inorganic, and Biochemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; McIntee, Edward J.; Jones, T. Nicholas; Johnson, Brian J.

    2016-01-01

    A foundation-level course is described that integrates material related to reactivity in organic, inorganic, and biochemistry. Designed for second-year students, the course serves majors in chemistry, biochemistry, and biology, as well as prehealth-professions students. Building on an earlier course that developed concepts of nucleophiles and…

  20. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    NASA Astrophysics Data System (ADS)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  1. Remarkable enhancement of the photoreactivity of a polyfluoroalkyl azobenzene derivative in an organic-inorganic nano-layered microenvironment.

    PubMed

    Ramakrishnan, Vivek; Yamamoto, Daisuke; Sasamoto, Shin; Shimada, Tetsuya; Nabetani, Yu; Tachibana, Hiroshi; Inoue, Haruo

    2014-11-21

    Organic-inorganic hybrids composed of polyfluoroalkyl azobenzene surfactant (abbreviated as C3F-Azo-C6H) and inorganic layered compounds are able to undergo reversible three-dimensional morphology changes such as interlayer space changes and nanosheet sliding in a giant scale due to reversible trans-cis isomerization of the azobenzene moiety upon photo-irradiation. In this paper, we have systematically studied the relationship between the layered hybrid microstructures of C3F-Azo-C6H-clay and their photoreactivity for understanding the mechanism of the photo-induced morphology change. The photoreactivity was found to be very much affected by the surrounding microenvironments. As compared with it in solution, the cis-trans photo-isomerization in C3F-Azo-C6H-clay nano-layered film was substantially enhanced with the quantum yield exceeding unity (Φ = 1.9), while the trans-cis isomerization was rather retarded. The corresponding hydrocarbon analogue of the azobenzene surfactant (C3H-Azo-C6H) did not show such an enhancement. The enhancement was discussed in terms of a cooperative effect among adjacent azobenzene moieties along with polyfluoroalkyl chains and the inorganic clay nanosheet to prevent a dissipation of the excess energy being liberated during the photo-isomerization within the nano-layered microenvironment.

  2. Remarkable enhancement of the photoreactivity of a polyfluoroalkyl azobenzene derivative in an organic-inorganic nano-layered microenvironment.

    PubMed

    Ramakrishnan, Vivek; Yamamoto, Daisuke; Sasamoto, Shin; Shimada, Tetsuya; Nabetani, Yu; Tachibana, Hiroshi; Inoue, Haruo

    2014-11-21

    Organic-inorganic hybrids composed of polyfluoroalkyl azobenzene surfactant (abbreviated as C3F-Azo-C6H) and inorganic layered compounds are able to undergo reversible three-dimensional morphology changes such as interlayer space changes and nanosheet sliding in a giant scale due to reversible trans-cis isomerization of the azobenzene moiety upon photo-irradiation. In this paper, we have systematically studied the relationship between the layered hybrid microstructures of C3F-Azo-C6H-clay and their photoreactivity for understanding the mechanism of the photo-induced morphology change. The photoreactivity was found to be very much affected by the surrounding microenvironments. As compared with it in solution, the cis-trans photo-isomerization in C3F-Azo-C6H-clay nano-layered film was substantially enhanced with the quantum yield exceeding unity (Φ = 1.9), while the trans-cis isomerization was rather retarded. The corresponding hydrocarbon analogue of the azobenzene surfactant (C3H-Azo-C6H) did not show such an enhancement. The enhancement was discussed in terms of a cooperative effect among adjacent azobenzene moieties along with polyfluoroalkyl chains and the inorganic clay nanosheet to prevent a dissipation of the excess energy being liberated during the photo-isomerization within the nano-layered microenvironment. PMID:25269755

  3. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  4. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    PubMed

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  5. Organic-inorganic nanostructures for luminescent indication in the near-infrared range

    NASA Astrophysics Data System (ADS)

    Kondratenko, T. S.; Ovchinnikov, O. V.; Grevtseva, I. G.; Smirnov, M. S.

    2016-04-01

    Amplifying and quenching of IR luminescence of colloidal Ag2S quantum dots were revealed to take place when they couple to organic dye molecules of 3,3'-di-(γ-sulfopropyl)-9-ethyl-4,5,4',5'-dibenzothiacarbocyanine betaine and erytrosine pyridinium salts, respectively. The observed effects are explained as due to the formation of organic-inorganic heterostructures with different mutual arrangement of electronic states of the dyes and the quantum dots.

  6. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    PubMed

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  7. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers.

    PubMed

    Zhao, Xin; Zhao, Jingwen; Lin, Zhi Yuan William; Pan, Guoqing; Zhu, Yueqi; Cheng, Yingsheng; Cui, Wenguo

    2015-06-01

    Implantable tissue engineering scaffolds with temporally programmable multi-drug release are recognized as promising tools to improve therapeutic effects. A good example would be one that exhibits initial anti-inflammatory and long-term anti-tumor activities after tumor resection. In this study, a new strategy for self-coated interfacial layer on drug-loaded mesoporous silica nanoparticles (MSNs) based on mussel-mimetic catecholamine polymer (polydopamine, PDA) layer was developed between inorganic and organic matrix for controlling drug release. When the interface PDA coated MSNs were encapsulated in electrospun poly(L-lactide) (PLLA) fibers, the release rates of drugs located inside/outside the interfacial layer could be finely controlled, with short-term release of anti-inflammation ibuprofen (IBU) for 30 days in absence of interfacial interactions and sustained long-term release of doxorubicin (DOX) for 90 days in presence of interfacial interactions to inhibit potential tumor recurrence. The DOX@MSN-PDA/IBU/PLLA hybrid fibrous scaffolds were further found to inhibit proliferation of inflammatory macrophages and cancerous HeLa cells, while supporting the normal stromal fibroblast adhesion and proliferation at different release stages. These results have suggested that the interfacial obstruction layer at the organic/inorganic phase was able to control the release of drugs inside (slow)/outside (rapid) the interfacial layer in a programmable manner. We believe such interface polymer strategy will find applications in where temporally controlled multi-drug delivery is needed. PMID:25879640

  8. Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    NASA Astrophysics Data System (ADS)

    Reyes-Esqueda, J.; Darracq, B.; García-Macedo, J.; Canva, M.; Blanchard-Desce, M.; Chaput, F.; Lahlil, K.; Boilot, J. P.; Brun, A.; Lévy, Y.

    2001-10-01

    In the last years, important non-linear optical (NLO) results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages, however they require significant improvement at the molecular level—by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their NLO properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of tetraethoxysilane concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.

  9. Abnormal Current-Voltage Hysteresis Induced by Reverse Bias in Organic-Inorganic Hybrid Perovskite Photovoltaics.

    PubMed

    Rajagopal, Adharsh; Williams, Spencer T; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-03-17

    In this study, reverse bias (RB)-induced abnormal hysteresis is investigated in perovskite solar cells (PVSCs) with nickel oxide (NiOx)/methylammonium lead iodide (CH3NH3PbI3) interfaces. Through comprehensive current-voltage (I-V) characterization and bias-dependent external quantum efficiency (EQE) measurements, we demonstrate that this phenomenon is caused by the interfacial ion accumulation intrinsic to CH3NH3PbI3. Subsequently, via systematic analysis we discover that the abnormal I-V behavior is remarkably similar to tunnel diode I-V characteristics and is due to the formation of a transient tunnel junction at NiOx/CH3NH3PbI3 interfaces under RB. The detailed analysis navigating the complexities of I-V behavior in CH3NH3PbI3-based solar cells provided here ultimately illuminates possibilities in modulating ion motion and hysteresis via interfacial engineering in PVSCs. Furthermore, this work shows that RB can alter how CH3NH3PbI3 contributes to the functional nature of devices and provides the first steps toward approaching functional perovskite interfaces in new ways for metrology and analysis of complex transient processes. PMID:26927828

  10. LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials

    SciTech Connect

    Jamison, G.M.; Loy, D.A.; Saunders, R.S.; Alam, T.M.

    1996-06-01

    Thermal, electrochemical and transition metal mediated reactions of phosphaacetylene monomers were conducted in attempts to form novel polyphosphaacetylenes as a new class of potentially electrically conducting polymers. Molecular modeling was used to simulate the molecular conformations of optimized, isolated oligomers to identify the proper monomeric repeat units for highly conjugated molecules. Electrodeposition of suitable monomers led to low molecular weight oligomers. Thermal polymerization of phosphaacetylene monomers bearing aromatic substituents ed to the formation of polyhedral cage oligomers. Under metathesis polymerization conditions the phosphaacetylene monomers form unique complexes via an unprecedented sequence of intermediates which suggest that metathesis to linear oligomers is achievable. Conductivity measurements on electrodeposited oligomers indicate modest electrical conductivity.

  11. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Leguy, Aurelien M. A.; Frost, Jarvist Moore; McMahon, Andrew P.; Sakai, Victoria Garcia; Kochelmann, W.; Law, Chunhung; Li, Xiaoe; Foglia, Fabrizia; Walsh, Aron; O'Regan, Brian C.; Nelson, Jenny; Cabral, João T.; Barnes, Piers R. F.

    2015-05-01

    Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ~14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1-200-ps time window. Monte Carlo simulations of interacting CH3NH3+ dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3+ in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3+ to screen a device's built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ~0.1-1 ms, faster than most observed hysteresis.

  12. Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage.

    PubMed

    Son, Seunghwan; Won, Jongok; Kim, Jeong-Jin; Jang, Yun Deuk; Kang, Yong Soo; Kim, Sa Dug

    2009-02-01

    Alkoxysilane solutions based on tetraethoxysilane (TEOS) have been widely used for the consolidation of decaying heritage stone surfaces. TEOS-based products polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the grains of stone components. However, they suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developing capillary force and dense gel fractures left inside of the stone. In this study, a TEOS-based stone consolidant containing functional (3-glycidoxypropyl)trimethoxysilane (GPTMS) and polyhedral oligomeric silsesquioxane (POSS) has been prepared in order to reduce gel crack formation during the drying phase. The addition of nanometer-sized POSS and/or GPTMS having a flexible segment reduces the capillary force developed during solvent evaporation. The properties of the TEOS/GPTMS/POSS composite solutions were compared with those of commercial products (Wacker OH and Unil sandsteinfestiger OH 1:1). The gelation time was similar to that of commercial consolidants, and the TEOS/GPTMS/POSS solution was stable over a period of up to 6 months. The addition of POSS and GPTMS provided a crack-free gel, while the gel from the commercial consolidants exhibited cracks after drying. The surface hydrophobicity of the treated decayed granite increased with the addition of POSS and GPTMS, and it was higher than that of the commercial product, implying the possibility of POSS and GPTMS as barriers to the penetration of water. This result implies that the TEOS/GPTMS/POSS solution showed a high suitability for the consolidation of granite heritage.

  13. Development of durable self-cleaning coatings using organic-inorganic hybrid sol-gel method

    NASA Astrophysics Data System (ADS)

    Kumar, Divya; Wu, Xinghua; Fu, Qitao; Ho, Jeffrey Weng Chye; Kanhere, Pushkar D.; Li, Lin; Chen, Zhong

    2015-07-01

    Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol-gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Sisbnd Osbnd Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1-5 μm to 10-20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10-20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10-20 nm silica particles show the best self-cleaning performance both before and after mechanical abrasion. The developed coating process is simple and can be easily scaled-up for large surfaces that require self-cleaning function.

  14. Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-08-24

    Considering the evaporation of solvents during fabrication of perovskite films, the organic ambience will present a significant influence on the morphologies and properties of perovskite films. To clarify this issue, various ambiences of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and chlorobenzene (CBZ) are introduced during fabrication of perovskite films by two-step sequential deposition method. The results reveal that an ambient CBZ atmosphere is favorable to control the nucleation and growth of CH3NH3PbI3 grains while the others present a negative effect. The statistical results show that the average efficiencies of perovskite solar cells processed in an ambient CBZ atmosphere can be significantly improved by a relatively average value of 35%, compared with those processed under air. The efficiency of the best perovskite solar cells can be improved from 10.65% to 14.55% by introducing this ambience engineering technology. The CH3NH3PbI3 film with large-size grains produced in an ambient CBZ atmosphere can effectively reduce the density of grain boundaries, and then the recombination centers for photoinduced carriers. Therefore, a higher short-circuit current density is achieved, which makes main contribution to the improvement in efficiency. These results provide vital progress toward understanding the role of ambience in the realization of highly efficient perovskite solar cells. PMID:27489961

  15. New Hybrid Organic/Inorganic Polysilsesquioxane-Silica Particles as Sunscreens.

    PubMed

    Tolbert, Stephanie H; McFadden, Peter D; Loy, Douglas A

    2016-02-10

    Effectiveness of organic sunscreens is limited by phototoxicity and degradation. Both of which can be significantly reduced by encapsulation in hollow particles or covalent incorporation into the solid structure of particles, but direct comparisons of the two methods have not been reported. In this study, physical encapsulation and covalent incorporation of sunscreens were compared with 1 mol % salicylate and curcumeroid sunscreens. 2-Ethylhexyl salicylate was physically encapsulated in hollow silica nanoparticles prepared by oil-in-water (O/W) microemulsion polymerizations (E-Sal). Some of these particles were coated with an additional shell or cap of silica to reduce leaking of sunscreen (cap-E-Sal). Covalent incorporation involved co-polymerizing tetraethoxysilane (TEOS) with 0.2 mol % of new salicylate and curcuminoid sunscreen monomers with triethoxsilyl groups. Particles were prepared with the salicylate attached to the silica matrix through single silsesquioxane groups (pendant; P-Sal) and two silsesquioxane groups (bridged; B-Sal). Particles based on a new curcuminoid-bridged monomer were also prepared (B-Curc). Sunscreen leaching, photodegradation, and sunscreen performance were determined for the E-Sal, cap-E-Sal, P-Sal, B-Sal, and B-Curc particles. Covalent attachment, particularly with bridged sunscreen monomers, reduced leaching and photodegradation over physical encapsulation, even with capping. PMID:26730573

  16. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    PubMed

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  17. Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate.

    PubMed

    Feng, Mei-Ling; Sarma, Debajit; Qi, Xing-Hui; Du, Ke-Zhao; Huang, Xiao-Ying; Kanatzidis, Mercouri G

    2016-09-28

    Uranium is important in the nuclear fuel cycle both as an energy source and as radioactive waste. It is of vital importance to recover uranium from nuclear waste solutions for further treatment and disposal. Herein we present the first chalcogenide example, (Me2NH2)1.33(Me3NH)0.67Sn3S7·1.25H2O (FJSM-SnS), in which organic amine cations can be used for selective UO2(2+) ion-exchange. The UO2(2+)-exchange kinetics perfectly conforms to pseudo-second-order reaction, which is observed for the first time in a chalcogenide ion-exchanger. This reveals the chemical adsorption process and its ion-exchange mechanism. FJSM-SnS has excellent pH stability in both strongly acidic and basic environments (pH = 2.1-11), with a maximum uranium-exchange capacity of 338.43 mg/g. It can efficiently capture UO2(2+) ions in the presence of high concentrations of Na(+), Ca(2+), or HCO3(-) (the highest distribution coefficient Kd value reached 4.28 × 10(4) mL/g). The material is also very effective in removing of trace levels of U in the presence of excess Na(+) (the relative amounts of U removed are close to 100%). The UO2(2+)···S(2-) interactions are the basis for the high selectivity. Importantly, the uranyl ion in the exchanged products could be easily eluted with an environmentally friendly method, by treating the UO2(2+)-laden materials with a concentrated KCl solution. These advantages coupled with the very high loading capacity, low cost, environmentally friendly nature, and facile synthesis make FJSM-SnS a new promising remediation material for removal of radioactive U from nuclear waste solutions.

  18. Microstructures and photovoltaic properties of fullerene-based organic-inorganic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Oku, T.; Takeda, A.; Nagata, A.; Fujimoto, K.; Akiyama, T.; Suzuki, A.

    2012-03-01

    C60-based bulk heterojunction solar cells were fabricated, and the electronic and optical properties were investigated. C60 were used as n-type semiconductors, and copper oxides, CuInS2 and diamond were used as p-type semiconductors. Electronic structures of the molecules were investigated by molecular orbital calculation, and energy levels of the solar cells were discussed. Nanostructures of the solar cells were investigated by transmission electron microscopy, electron diffraction and X-ray diffraction, which indicated formation of mixed nanocrystals.

  19. Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate.

    PubMed

    Feng, Mei-Ling; Sarma, Debajit; Qi, Xing-Hui; Du, Ke-Zhao; Huang, Xiao-Ying; Kanatzidis, Mercouri G

    2016-09-28

    Uranium is important in the nuclear fuel cycle both as an energy source and as radioactive waste. It is of vital importance to recover uranium from nuclear waste solutions for further treatment and disposal. Herein we present the first chalcogenide example, (Me2NH2)1.33(Me3NH)0.67Sn3S7·1.25H2O (FJSM-SnS), in which organic amine cations can be used for selective UO2(2+) ion-exchange. The UO2(2+)-exchange kinetics perfectly conforms to pseudo-second-order reaction, which is observed for the first time in a chalcogenide ion-exchanger. This reveals the chemical adsorption process and its ion-exchange mechanism. FJSM-SnS has excellent pH stability in both strongly acidic and basic environments (pH = 2.1-11), with a maximum uranium-exchange capacity of 338.43 mg/g. It can efficiently capture UO2(2+) ions in the presence of high concentrations of Na(+), Ca(2+), or HCO3(-) (the highest distribution coefficient Kd value reached 4.28 × 10(4) mL/g). The material is also very effective in removing of trace levels of U in the presence of excess Na(+) (the relative amounts of U removed are close to 100%). The UO2(2+)···S(2-) interactions are the basis for the high selectivity. Importantly, the uranyl ion in the exchanged products could be easily eluted with an environmentally friendly method, by treating the UO2(2+)-laden materials with a concentrated KCl solution. These advantages coupled with the very high loading capacity, low cost, environmentally friendly nature, and facile synthesis make FJSM-SnS a new promising remediation material for removal of radioactive U from nuclear waste solutions. PMID:27584863

  20. Adhesion and degradation of organic and hybrid organic-inorganic light-emitting devices

    SciTech Connect

    Momodu, D. Y.; Chioh, A. V.; Tong, T.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2014-02-28

    This paper presents the results of a combined analytical, computational, and experimental study of adhesion and degradation of Organic Light Emitting Devices (OLEDs). The adhesion between layers that are relevant to OLEDs is studied using an atomic force microscopy technique. The interfacial failure mechanisms associated with blister formation in OLEDs and those due to the addition of TiO{sub 2} nanoparticles into the active regions are then elucidated using a combination of fracture mechanics, finite element modeling and experiments. The blisters observed in the models are shown to be consistent with the results from adhesion, interfacial fracture mechanics models, and prior reports of diffusion-assisted phenomena. The implications of the work are then discussed for the design of OLED structures with improved lifetimes and robustness.

  1. Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-08-24

    Considering the evaporation of solvents during fabrication of perovskite films, the organic ambience will present a significant influence on the morphologies and properties of perovskite films. To clarify this issue, various ambiences of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and chlorobenzene (CBZ) are introduced during fabrication of perovskite films by two-step sequential deposition method. The results reveal that an ambient CBZ atmosphere is favorable to control the nucleation and growth of CH3NH3PbI3 grains while the others present a negative effect. The statistical results show that the average efficiencies of perovskite solar cells processed in an ambient CBZ atmosphere can be significantly improved by a relatively average value of 35%, compared with those processed under air. The efficiency of the best perovskite solar cells can be improved from 10.65% to 14.55% by introducing this ambience engineering technology. The CH3NH3PbI3 film with large-size grains produced in an ambient CBZ atmosphere can effectively reduce the density of grain boundaries, and then the recombination centers for photoinduced carriers. Therefore, a higher short-circuit current density is achieved, which makes main contribution to the improvement in efficiency. These results provide vital progress toward understanding the role of ambience in the realization of highly efficient perovskite solar cells.

  2. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Wan, Xiang; Shi, Yi; Wan, Qing

    2016-01-01

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  3. Removal of aliphatic amino acids by hybrid organic inorganic layered compounds

    NASA Astrophysics Data System (ADS)

    Silverio, Fabiano; dos Reis, Márcio José; Tronto, Jairo; Valim, João Barros

    2007-04-01

    Amino acids have been extensively used in several processes of the pharmaceutical and food industries. Treatments for the recovery and reuse of the wastewaters generated from these processes are few and little known. This work aims at studying the influence of variables like temperature, pH and ionic strength on the adsorption of the amino acids Asp and Glu, contained in aqueous solutions, on layered double hydroxides of the Mg-Al-CO 3-LDH system. The adsorption experiments were performed at two different temperatures (298 and 310 K), two different pH values (7.0 and 10.0), and two ionic strength conditions (with or without the addition of NaCl). The adsorption isotherms exhibited similar profiles under the various conditions studied: an increase in temperature as well as an increase in the pH value decreased the amount of adsorbed amino acid while an increase in the ionic strength increased Asp and Glu adsorption. The PXRD analysis showed that the diffractograms obtained before and after the adsorption of amino acids have a similar pattern. The FT-IR spectra of the adsorbed material presented specific bands, which are related to the amino acids. The concentration range varied up to the anion solubility product and the extraction rate lay between 2.7 and 23.4% at higher equilibrium concentrations, showing that Mg-Al-CO 3-LDH is efficient at removing the amino acids from the aqueous medium.

  4. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    PubMed

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems. PMID:27571339

  5. High-performance ultraviolet photodetector based on organic-inorganic hybrid structure.

    PubMed

    Shao, Dali; Yu, Mingpeng; Sun, Hongtao; Xin, Guoqing; Lian, Jie; Sawyer, Shayla

    2014-08-27

    An ultraviolet (UV) photodetector is fabricated by sandwiching a nanocomposite active layer between charge-selective semiconducting polymers. The nanocomposite active layer composed of TiO2 nanoparticles (NPs) blended with 1,3-bis(N-carbazolyl)benzene (mCP), which acts as a "valve" controller that enables hole injection into the device upon UV illumination. The UV photodetector demonstrated a high photocurrent to dark current ratio (∼10(4)), a large linear dynamic range of 60 dB, and a remarkable external quantum efficiency (∼8.5 × 10(4)%) for the UV light at 351 nm. In addition to discussing the performance of the UV photodetector, a general strategy for design and fabrication of high-performance UV photodetectors with hole injection operation mode is suggested.

  6. Hybrid organic-inorganic composites for applications in Vis-NIR photodiodes

    NASA Astrophysics Data System (ADS)

    Luszczynska, Beata; Szymanski, Marek Z.

    2015-10-01

    Active layers of bulk heterojunction are extensively studied because of their great potential for application in low-cost optoelectronic devices like photovoiltaic cells and photodiodes. The performance of such devices is strongly influenced by the formed nanostructures which determine the transport ability of the organic composite. We investigated the charge carrier transport properties of two organic composites: poly(3-hexyothiophene) (P3HT) with (6,6)-phenyl-C60-butyric acid methyl ester (60PCBM)and poly(triarylamine) (PTTA) blended with 60PCBM. The optimised organic blend was used as a matrix material for Cu-In-Se nanocrystals. Adding Cu-In-Se nanocrystals to a P3HT/60PCBM bulk heterojunction leads to a significant improvement of the maximum external quantum efficiency of the investigated system from 48% to 70% (at wavelength 520 nm).

  7. ON-OFF luminescence signaling of hybrid organic-inorganic switches.

    PubMed

    Natarajan, Palani; Schmittel, Michael

    2013-08-01

    The dyads 1OFF and 2OFF were prepared by combining the inorganic luminophores [Ru(phen)2(2-[imidazol-2-yl]pyridine)](2+) and [Re(CO)3Cl(2-[imidazol-2-yl]pyridine)] with 2-(anthracen-9-yl)-4-methylphenol as a second photoactive moiety. In both cases, the inorganic unit operates as the emitter, whereas the organic part acts as a controller. Emission of the inorganic luminophore can be reversibly switched ON and OFF by adjusting the energetic level of the (3)π-π* state of the appended anthracene unit through either dearomatization using a photohydration or aromatization applying a thermal dehydration. Emission of both switches is reversibly recorded and erased multiple times without significant degradation. PMID:23841568

  8. Hybrid organic-inorganic porous semiconductor transducer for multi-parameters sensing.

    PubMed

    Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca

    2015-07-01

    Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion.

  9. Combined experimental and density functional theory studies of an organic-inorganic hybrid perovskite.

    PubMed

    Kassou, S; El-Mrabet, R; Kaiba, A; Guionneau, P; Belaaraj, A

    2016-04-14

    Single crystals of [C6H5-C2H4-NH3]2ZnCl4 were obtained by slow evaporation at room temperature. Single-Crystal X-Ray Diffraction (SCXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and UV-Visible spectroscopy were used to characterize the crystal structure, and thermal and optical properties, respectively. At 293 K, PEA-ZnCl4 crystallizes in a monoclinic unit-cell in the P21/c space group a = 7.449(2) Å, b = 24.670(3) Å, c = 11.187(2) Å and β = 91.762(5)°, V = 2054.8(2) Å(3) and Z = 4. The DSC and TGA analyses show respectively the presence of two first order reversible phase transitions and a sample thermal stability below 541 K. The optical study reveals that the compound undergoes a direct optical transition and an energy gap about of Eg = 4.46 eV. In parallel, ab initio DFT calculations are performed to study the electronic band structure, to examine electronic density and to calculate the gap energy value. The calculated values are in good agreement with the experimental data.

  10. Hybridization Between Natural Extract of Angelica gigas Nakai and Inorganic Nanomaterial of Layered Double Hydroxide via Reconstruction Reaction.

    PubMed

    Kim, Tae-Hyun; Kim, Hyoung-Jun; Choi, Ae-Jin; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    We have hybridized layered double hydroxide (LDH) with Angelica gigas Nakai root extract (AGNR) through reversible dehydration-rehydration reaction which is known as reconstruction. LDHs having well-ordered hydrotalcite-like crystal structure and average size 250 ± 20 nm were prepared by hydrothermal method. The root of Angelica gigas Nakai, which has been utilized in the treatment of female disorders as herbal medicine, was treated with methanol to obtain extract. Pristine LDHs were calcined at 400 °C for 8 hours to obtain layered double oxide (LDO), which was further dispersed into extract solution with various AGNR/LDO weight ratios, 0.11, 0.21 and 0.43. The extract content in each hybrid increased in proportion to initial AGNR/LDO ratio, showing the highest content of ~12%. The zeta potential of LDH shifted from +44 mV to +20 mV upon hybridization with extract, which was attributed to the adsorption of negatively charged organic moieties in AGNR on LDH surface. The scanning electron microscopic (SEM) results exhibited that the random stacking of LDH nanolayers resulted in LDH-AGNR hybrid with house-of-cards structure, of which inter-particle cavity serves nano-reservoir for natural extract. According to quantitative analyses, it was revealed that the content of active components in AGNR increased when they were hybridized with LDHs compared with those in AGNR alone.

  11. Hybridization Between Natural Extract of Angelica gigas Nakai and Inorganic Nanomaterial of Layered Double Hydroxide via Reconstruction Reaction.

    PubMed

    Kim, Tae-Hyun; Kim, Hyoung-Jun; Choi, Ae-Jin; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    We have hybridized layered double hydroxide (LDH) with Angelica gigas Nakai root extract (AGNR) through reversible dehydration-rehydration reaction which is known as reconstruction. LDHs having well-ordered hydrotalcite-like crystal structure and average size 250 ± 20 nm were prepared by hydrothermal method. The root of Angelica gigas Nakai, which has been utilized in the treatment of female disorders as herbal medicine, was treated with methanol to obtain extract. Pristine LDHs were calcined at 400 °C for 8 hours to obtain layered double oxide (LDO), which was further dispersed into extract solution with various AGNR/LDO weight ratios, 0.11, 0.21 and 0.43. The extract content in each hybrid increased in proportion to initial AGNR/LDO ratio, showing the highest content of ~12%. The zeta potential of LDH shifted from +44 mV to +20 mV upon hybridization with extract, which was attributed to the adsorption of negatively charged organic moieties in AGNR on LDH surface. The scanning electron microscopic (SEM) results exhibited that the random stacking of LDH nanolayers resulted in LDH-AGNR hybrid with house-of-cards structure, of which inter-particle cavity serves nano-reservoir for natural extract. According to quantitative analyses, it was revealed that the content of active components in AGNR increased when they were hybridized with LDHs compared with those in AGNR alone. PMID:27398576

  12. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites.

    PubMed

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-01-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic-inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic-inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic-inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic-inorganic composites. PMID:27251015

  13. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  14. Profile storage of organic/inorganic carbon in soil: from forest to desert.

    PubMed

    Wang, Yugang; Li, Yan; Ye, Xuehua; Chu, Yu; Wang, Xinping

    2010-03-15

    Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest>grassland>shrub-grassland>shrub desert>desert; for density of soil inorganic carbon: forest, grassland

  15. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    SciTech Connect

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-12-31

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties.

  16. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles.

    PubMed

    Han, Wei; MacEwan, Sarah R; Chilkoti, Ashutosh; López, Gabriel P

    2015-07-28

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well. PMID:26114664

  17. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.

    PubMed

    Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi

    2015-06-01

    Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods.

  18. Electronic structure, phase stability and resistivity of hybrid hexagonal Cx(BN) 1 - x two-dimensional nanomaterial: A first-principles study

    NASA Astrophysics Data System (ADS)

    D'Souza, Ransell; Mukherjee, Sugata

    2015-05-01

    We use density functional theory based first-principles method to investigate the bandstructure and phase stability in the laterally grown hexagonal Cx(BN) 1 - x, two-dimensional Graphene and h-BN hybrid nanomaterials, which were synthesized by experimental groups recently (Liu et al., 2013). Our detailed electronic structure calculations on such materials, with both armchair and zigzag interfaces between the Graphene and h-BN domains, indicate that the band-gap decreases non-monotonically with the concentration of Carbon. The calculated bandstructure shows the onset of Dirac cone like features near the band-gap at high Carbon concentration (x ∼ 0.8). From the calculated energy of formation, the phase stability of Cx(BN) 1 - x was studied using a regular solution model and the system was found to be in the ordered phase below a few thousand Kelvin. Furthermore, using the Boltzmann transport theory we calculate the electrical resistivity from the bandstructure of Cx(BN) 1 - x at different temperature (T), which shows a linear behavior when plotted in the logarithmic scale against T-1, as observed experimentally.

  19. Exciton Binding Energy in Organic-Inorganic Tri-Halide Perovskites.

    PubMed

    Askar, Abdelrahman M; Shankar, Karthik

    2016-06-01

    The recent dramatic increase in the power conversion efficiencies of organic-inorganic tri-halide perovskite solar cells has triggered intense research worldwide and created a paradigm shift in the photovoltaics field. It is crucial to develop a solid understanding of the photophysical processes underlying solar cell operation in order to both further improve the photovoltaic performance of perovskite solar cells as well as to exploit the broader optoelectronic applications of the tri-halide perovskites. In this short review, we summarize the main research findings about the binding energy of excitons in tri-halide perovskite materials and find that a value in the range of 2-22 meV at room temperature would be a safe estimate. Spontaneous free carrier generation is the dominant process taking place directly after photoexcitation in organic-inorganic tri-halide perovskites at room temperature, which eliminates the exciton diffusion bottleneck present in organic solar cells and constitutes a major contributing factor to the high photovoltaic performance of this material. PMID:27427650

  20. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  1. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.

    2013-01-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  2. Temperature-stable and optically transparent thin-film zinc oxide aerogel electrodes as model systems for 3D interpenetrating organic-inorganic heterojunction solar cells.

    PubMed

    Krumm, Michael; Pawlitzek, Fabian; Weickert, Jonas; Schmidt-Mende, Lukas; Polarz, Sebastian

    2012-12-01

    Novel, nanostructured electrode materials comprising porous ZnO films with aerogel morphology are presented. Almost any substrate including polymers, metals, or ceramics can be coated using a method that is suitable for mass production. The thin, porous films can be prepared from the wet gels via conventional drying, supercritical drying is not necessary. The filigree ZnO network is thermally very stable and exhibits sufficient electrical conductivity for advanced electronic applications. The latter was tested by realizing a highly desired architecture of organic-inorganic hybrid solar cells. After sensitizing of the ZnO with a purely organic squarine dye (SQ2), a nanostructured, interpenetrating 3D network of the inorganic semiconductor (ZnO) and organic semiconductor (P3HT) was prepared. The solar cell device was tested under illumination with AM 1.5G solar light (100 mW/cm(2)) and exhibited an energy conversion efficiency (η(eff)) of 0.69%.

  3. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  4. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH

    SciTech Connect

    Tiwari, Ida Gupta, Mandakini

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated a nanostructured hybrid material of GNPs/neutral red/MWCNTs. • GNPs decorated on MWCNT template by using neutral red as interlinker for first time. • Nanocomposite modified electrode employed successfully as sensor for NADH. • The electrode has high stability as it does not involve any biological entity. - Abstract: A novel nanocomposite of gold nanoparticles/neutral red/MWCNTs was prepared which was used to modify glassy carbon electrode. The prepared nanocomposite was physically characterized by scanning electron microscopy, transmission electron microscopy, zeta potential measurement, energy dispersive X-ray, FTIR spectroscopy, UV–visible spectroscopy. Electrochemical characterization was done using cyclic voltammetry technique. The modified glassy carbon electrode showed electrocatalytic activity toward the oxidation of NADH in 0.1 M phosphate buffer solution, pH 5.0. The modified electrode has better adhesion over the electrode surface, good stability as no leaching of neutral red based nanocomposite was observed. The oxidation of NADH started at 0.37 V and reached maxima at 0.52 V at the modified electrode surface. So the prepared composite modified electrode can be applied as electrochemical sensor for NADH. The sensitivity and detection limits of the modified glassy carbon electrode were found to be 0.588 μA/mM and 5 × 10{sup −7} at signal to noise ratio 3.

  5. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  6. Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess.

    PubMed

    Feng, Enke; Ma, Guofu; Wu, Yajuan; Wang, Haiping; Lei, Ziqiang

    2014-10-13

    A new, low-cost, and eco-friendly organic-inorganic composite superabsorbent was successfully synthesized in aqueous solution by polymerization xanthan gum (XG), neutralized acrylic acid (AA) and loess using ammonium persulfate (APS) as initiator and N,N-methylenebisacrylamide (MBA) as crosslinker. Structure and morphological characterizations of the composite superabsorbent were investigated by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The loess content, pH values, surfactants, salts and temperature which could affect the swelling and water-retention capabilities of the composite superabsorbent were investigated. The composite superabsorbent exhibits excellent water absorbency (610 g/g in distilled water), pH-stability (pH 5-10), and higher swelling capacity in anionic surfactant solution; on the other hand, the composite superabsorbent can be used for removing multivalent metal ions. PMID:25037376

  7. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors

    SciTech Connect

    Niu, Wendy Baumberg, Jeremy J.; Eiden, Anna; Vijaya Prakash, G.

    2014-04-28

    Ultra-thin flakes of 2D organic-inorganic perovskite (C{sub 6}H{sub 9}C{sub 2}H{sub 4}NH{sub 3}){sub 2}PbI{sub 4} are produced using micromechanical exfoliation. Mono- and few-layer areas are identified using optical and atomic force microscopy, with an interlayer spacing of 1.6 nm. Refractive indices extracted from the optical spectra reveal a sample thickness dependence due to the charge transfer between organic and inorganic layers. These measurements demonstrate a clear difference in the exciton properties between “bulk” (>15 layers) and very thin (<8 layer) regions as a result of the structural rearrangement of organic molecules around the inorganic sheets.

  8. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    PubMed

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies.

  9. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    PubMed

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies. PMID:27038221

  10. Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells.

    PubMed

    Yun, Jae S; Ho-Baillie, Anita; Huang, Shujuan; Woo, Sang H; Heo, Yooun; Seidel, Jan; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin A

    2015-03-01

    The past 2 years have seen the uniquely rapid emergence of a new class of solar cell based on mixed organic-inorganic halide perovskite. Grain boundaries are present in polycrystalline thin film solar cell, and they play an important role that could be benign or detrimental to solar-cell performance. Here we present efficient charge separation and collection at the grain boundaries measured by KPFM and c-AFM in CH3NH3PbI3 film in a CH3NH3PbI3/TiO2/FTO/glass heterojunction structure. We observe the presence of a potential barrier along the grain boundaries under dark conditions and higher photovoltage along the grain boundaries compare to grain interior under the illumination. Also, c-AFM measurement presents higher short-circuit current collection near grain boundaries, confirming the beneficial roles grain boundaries play in collecting carriers efficiently.

  11. Effect of temperature on series resistance of organic/inorganic semiconductor junction diode

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek; Bharti, Shivani

    2016-05-01

    The paper reports the fabrication and characterization of CuPc/n-Si organic/inorganic semiconductor diode. Copper phthalocyanine, a p-type organic semiconductor layer has been deposited on Si substrate by thermal evaporation technique. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Temperature dependence of the schottky diode parameters has been studied and discussed in the temperature range, 303 K to 353 K. Series resistance of the diode has been determined using Cheung's function method. Series resistance decreases with increase in temperature. The large value of series resistance at low temperature has been explained on the basis of barrier inhomogeneities in the diode.

  12. Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells.

    PubMed

    Yun, Jae S; Ho-Baillie, Anita; Huang, Shujuan; Woo, Sang H; Heo, Yooun; Seidel, Jan; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin A

    2015-03-01

    The past 2 years have seen the uniquely rapid emergence of a new class of solar cell based on mixed organic-inorganic halide perovskite. Grain boundaries are present in polycrystalline thin film solar cell, and they play an important role that could be benign or detrimental to solar-cell performance. Here we present efficient charge separation and collection at the grain boundaries measured by KPFM and c-AFM in CH3NH3PbI3 film in a CH3NH3PbI3/TiO2/FTO/glass heterojunction structure. We observe the presence of a potential barrier along the grain boundaries under dark conditions and higher photovoltage along the grain boundaries compare to grain interior under the illumination. Also, c-AFM measurement presents higher short-circuit current collection near grain boundaries, confirming the beneficial roles grain boundaries play in collecting carriers efficiently. PMID:26262666

  13. Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess.

    PubMed

    Feng, Enke; Ma, Guofu; Wu, Yajuan; Wang, Haiping; Lei, Ziqiang

    2014-10-13

    A new, low-cost, and eco-friendly organic-inorganic composite superabsorbent was successfully synthesized in aqueous solution by polymerization xanthan gum (XG), neutralized acrylic acid (AA) and loess using ammonium persulfate (APS) as initiator and N,N-methylenebisacrylamide (MBA) as crosslinker. Structure and morphological characterizations of the composite superabsorbent were investigated by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The loess content, pH values, surfactants, salts and temperature which could affect the swelling and water-retention capabilities of the composite superabsorbent were investigated. The composite superabsorbent exhibits excellent water absorbency (610 g/g in distilled water), pH-stability (pH 5-10), and higher swelling capacity in anionic surfactant solution; on the other hand, the composite superabsorbent can be used for removing multivalent metal ions.

  14. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    SciTech Connect

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  15. Toward white light emission through efficient two-step energy transfer in hybrid nanofibers.

    PubMed

    Vohra, Varun; Calzaferri, Gion; Destri, Silvia; Pasini, Mariacecilia; Porzio, William; Botta, Chiara

    2010-03-23

    Nanosized zeolite L crystals containing about 550 strongly luminescent acceptor molecules have been modified by grafting a conjugated oligomer on their external surface. The 25 nm sized crystals have consequently been embedded in polymeric nanofibers obtained by electrospinning. The fluorescent molecule grafted on the external surface allows addressing the guests in the zeolite nanochannels through an efficient two-step energy transfer from the polymer nanofiber. The so obtained hybrid nanofibers exhibit intense emissions from the three fundamental colors using a single excitation wavelength. The molecule grafted on the external surface of the nanocrystal also induces a higher compatibility of the hybrid organic/inorganic nanomaterials in the conjugated polymer and therefore high concentrations of zeolites embedded in the nanofibers are obtained. Playing on this concentration, the emission of the nanofiber can be tuned and eventually be used for fabricating white-light emitting nanofibers. This hybrid nanomaterial opens new perspectives for low-cost nano organic light emitting diodes fabrication with considerable impact on the lighting and display technologies.

  16. Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate

    NASA Astrophysics Data System (ADS)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Matkovska, Olga; Demchenko, Valeriy; Lebedev, Eugene; Boiteux, Gisele; Serghei, Anatoli

    2014-12-01

    In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS). It was found that LiClO4 impacts on the structure of the synthesized hybrid epoxy polymers, probably, by formation of coordinative complexes {ether oxygen-lithium cations-ether oxygen} as evidenced from a significant increase in their glass transition temperatures with increasing LiClO4 concentration and WAXS studies. The presence of ether oxygen in DEG macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide (PEO). Thus, the obtained hybrid polymers have high values of ionic conductivity σ' (approximately 10-3 S/cm) and permittivity ɛ' (6 × 105) at elevated temperatures (200°C). On the other hand, DEG has higher heat resistance compared to PEO that makes these systems perspective as solid polymer electrolytes able to operate at high temperature.

  17. Keggin polyoxoanion supported organic-inorganic trinuclear lutetium cluster, {Na(H2O)3[Lu(pydc)(H2O)3]3}[SiW12O40]·26.5H2O.

    PubMed

    Li, Suzhi; Zhang, Dongdi; Guo, Yuan Yuan; Ma, Pengtao; Qiu, Xiaoyang; Wang, Jingping; Niu, Jingyang

    2012-09-01

    A novel strawberry-like organic-inorganic hybrid, {Na(H(2)O)(3)[Lu(pydc)(H(2)O)(3)](3)}[SiW(12)O(40)]·26.5H(2)O (H(2)pydc = pyridine-2,6-dicarboxylate) containing an intriguing trinuclear lutetium cluster {Na(H(2)O)(3)[Lu(pydc)(H(2)O)(3)](3)}(4+) has been synthesized and its luminescent properties, IR, UV, TG, PXRD analyses and single crystal X-ray diffraction were investigated.

  18. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  19. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  20. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF

  1. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells.

    PubMed

    Wojciechowski, Konrad; Stranks, Samuel D; Abate, Antonio; Sadoughi, Golnaz; Sadhanala, Aditya; Kopidakis, Nikos; Rumbles, Garry; Li, Chang-Zhi; Friend, Richard H; Jen, Alex K-Y; Snaith, Henry J

    2014-12-23

    Organic-inorganic perovskites, such as CH3NH3PbX3 (X=I, Br, Cl), have emerged as attractive absorber materials for the fabrication of low cost high efficiency solar cells. Over the last 3 years, there has been an exceptional rise in power conversion efficiencies (PCEs), demonstrating the outstanding potential of these perovskite materials. However, in most device architectures, including the simplest thin-film planar structure, a current-voltage response displays an "anomalous hysteresis", whereby the power output of the cell varies with measurement time, direction and light exposure or bias history. Here we provide insight into the physical processes occurring at the interface between the n-type charge collection layer and the perovskite absorber. Through spectroscopic measurements, we find that electron transfer from the perovskite to the TiO2 in the standard planar junction cells is very slow. By modifying the n-type contact with a self-assembled fullerene monolayer, electron transfer is "switched on", and both the n-type and p-type heterojunctions with the perovskite are active in driving the photovoltaic operation. The fullerene-modified devices achieve up to 17.3% power conversion efficiency with significantly reduced hysteresis, and stabilized power output reaching 15.7% in the planar p-i-n heterojunction solar cells measured under simulated AM 1.5 sunlight.

  2. Organic-inorganic templates in biomineralization of shells, bone, teeth, and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    de Stasio, Gelsomina Pupa

    2005-03-01

    Recent experiments with the Spectromicroscope for PHotoelectron Imaging of Nanostructure with X-rays (SPHINX)[1] on the biofilm formed by Fe-oxidizing bacteria in fresh, ground water, demonstrated that microbially extruded polysaccharide filaments provide the precipitation site for amorphous FeOOH filaments [2]. Upon aging the mineralized filaments crystallize to ferrihydrite (2-line FeOOH), with one curved pseudo-single crystal of akaganeite β-FeOOH), at the core of each filament. The crystals are only 2 nm wide and up to 10 micron long (aspect ratio 1:1000:1), and their structure and morphology is unprecedented. Furthermore, akaganeite should not form in fresh water, therefore a templation mechanism was hypothesized, and supported by SPHINX analysis of carbon XANES. The results indicate that after formation of the crystal fiber, the polysaccharide structure is also altered, and C1s spectra suggest that the COO^- group is involved in the templation mechanism. This was the first successful attempt to understand the organic-inorganic chemical interface in a biomineralized system. Many more templated biomineral systems can and will now be analyzed with this new approach. *Ultramicroscopy 99, 87-94 (2004). *Science 303, 1656-1658 (2004).

  3. Efficient epoxidation over cyanocobalamine containing SBA-15 organic-inorganic nanohybrids

    NASA Astrophysics Data System (ADS)

    Karimi, Z.; Mahjoub, A. R.

    2010-05-01

    SBA-15 mesoporous silica is synthesized using triblock copolymer P123 surfactant and chemically modified by aminopropyl, thiol, ammonium and sulfonic acid functional groups. Functionalization is performed via post synthesize method using 3-aminopropyltriethoxysilane (APTES) or 3-mercatopropyl trimethoxysilane (MPTMS) precursor. The as synthesized mesoporous systems are applied for immobilization of cyanocobalamine. Functionalization effectively improves sorption properties of the supports, while different functional groups exert different effects. The organic-inorganic mesoporous materials are characterized via X-ray diffraction (XRD), nitrogen adsorption and desorption, transmission electron microscopy (TEM), FT-IR and inductively coupled plasma-optical emission (ICP). The newly synthesized systems exhibit high catalytic activity for heterogeneous epoxidation of cyclooctene in presence of hydrogen peroxide. Reaction conditions are optimized, effect of functional groups on performance of the catalysts is taken into consideration and reusability of the designed heterogeneous systems is studied. Systems with chemically modified supports are shown to be more efficient and stable catalysts however; chemical nature of functional groups plays a crucial role.

  4. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  5. Photo-induced halide redistribution in organic-inorganic perovskite films

    NASA Astrophysics Data System (ADS)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  6. Nano-sized nickel oxide powder synthesized by organic-inorganic solution route.

    PubMed

    Lee, Sang-Jin; Han, Young-Min; Jung, Choong-Hwan; Kwak, Ji-Yeon

    2013-02-01

    Nano-sized nickel oxide powders were synthesized by an organic-inorganic solution route employing polyvinyl alcohol (PVA) as an organic carrier. In this study, it was possible to control the physical properties of the nickel oxide powders by change of the PVA content. The experimental factors, such as the PVA content, heating temperature and time, were studied for the synthesis of nano crystalline powders. Nickel nitrate, (Ni(NO3)2, reagent grade) was used as a source of nickel cation. Once the cation source was completely dissolved in de-ionized (DI) water, 5 wt% PVA solution was added to the sol solution. The resulting gel-type precursors were completely dried and then calcined or crystallized at various temperatures in an air atmosphere in a box furnace. In the high PVA content of 2:1 mixing ratio, nano crystallite nickel oxide powders of below 5 nm in size with a high specific surface area of 151.19 m2/g were obtained at low temperature of 400 degrees C for 1 h. The PVA polymer contributed to homogeneous nickel cations in atomic scale through the fabrication process of the sol precursor. In this paper, the PVA solution technique for the fabrication of nano-sized nickel oxide powders is introduced. The effects of PVA content and heating time on the powder crystallization, morphology and specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, TEM and nitrogen gas adsorption.

  7. [Development and evaluation of fertilizers cemented and coated with organic-inorganic materials].

    PubMed

    Xiao, Qiang; Wang, Jia-Chen; Zuo, Qiang; Zhang, Lin; Liu, Bao-Cun; Zhao, Tong-Ke; Zou, Guo-Yuan; Xu, Qiu-Ming

    2010-01-01

    Four kinds of organic-inorganic cementing and coating materials were prepared by a coating method using water as the solvent, and the corresponding cemented and coated fertilizers (B2, PS, F2, and F2F) were produced by disc pelletizer. The tests on the properties of these fertilizers showed that the granulation rate, compression strength, and film-forming rate were B2 > PS > F2 > F2F. Soil column leaching experiment showed that the curve of accumulated nitrogen-dissolving rate was the gentlest for B2. In 48 days, the accumulated nitrogen-dissolving rate was in the order of B2, 54.65% < PS, 56.16% < F2, 59.47%, < F2F, 63.12%. Field experiment showed that compared with the same application amount of NPK, all the test fertilizers had better effects on corn yield, among which, B2 was the best, with the corn yield and fertilizer use efficiency increased by 19.72% and 20.30%, respectively. The yield-increasing effect of other test fertilizers was in the order of PS > F2 > F2F. PMID:20387432

  8. Development of a process for treating red water by organic/inorganic separation and biodegradation

    SciTech Connect

    Chaiko, D.J.; Reichley-Yinger, L.; Orth, E.R.; Van Deventer, E.H.; Vandegrift, G.F.; Krumpole, M.; Helt, J.E.; Coleman, R.D.; Kakar, S.N.; Tsai, T.S.; Horken, K.; Killian, W.; Sather, N.F.

    1989-01-01

    The final stage of TNT production involves the purification of TNT by selective conversion of the unsymmetrical isomers into water-soluble sulfonates by reaction of the crude TNT with an aqueous sulfite (sellite) solution. This treatment generates an intense, red-colored waste stream commonly referred to as red water,'' which has been listed as a hazardous waste by the EPA. Its composition is primarily soluble organic sulfonates and the sodium salts of sulfate, sulfite, nitrate and nitrite. Argonne National Laboratory (ANL) is developing a process for treating red water. This process couples the separation of the organic and inorganic constituents of red water, followed by treatment of the organics by biodegradation to nonhazardous products. Sludge formation in the biotreatment step is further minimized by conversion of the sodium-containing organics to their respective acidic forms during the organic/inorganic separation. The level of separation will be such that the inorganic residues can qualify as nonhazardous byproducts. Initial efforts have been directed towards performing proof-of-concept demonstrations of processes that can achieve these goals. Candidate technologies that are being examined for separating the organic constituents from actual red water samples are (1) flocculation, (2) foam fractionation, and (3) aqueous biphasic solvent extraction. 22 refs.

  9. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation.

    PubMed

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-01-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems. PMID:26923611

  10. Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification

    NASA Astrophysics Data System (ADS)

    Tang, Shuangshuang; Tang, Ning; Meng, Xiuqing; Huang, Shihua; Hao, Yafei

    2016-09-01

    We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm-2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m-2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.

  11. Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material

    NASA Astrophysics Data System (ADS)

    Demir, Ahmet; Atahan, Alparslan; Bağcı, Sadık; Aslan, Metin; Saif Islam, M.

    2016-01-01

    A novel 1,3,4-oxadiazole-substituted benzo[b]triphenylene was synthesized by three-step synthetic procedure and OFET device design was successfully designed after theoretical calculations made using Gaussian software. For investigating the field-effect properties of designed organic electronic device, a SiO2 (300 nm) was thermally grown on p-Si wafer at 1000 °C as a dielectric layer and gate, source and drain contacts have been deposited using Au metal with physical vapour deposition. 1,3,4-Oxadiazole-substituted benzo[b]triphenylene was spin coated on the source and drain electrodes of our device, forming organic/inorganic interfaced field-effect transistors. Surface morphology and thin film properties were investigated using AFM. All electrical measurements were done in air ambient. The device showed a typical p-type channel behaviour with increasing negative gate bias voltage values. Our results have surprisingly shown that the saturation regime of this device has high mobility (μFET), excellent on/off ratio (Ion/Ioff), high transconductance (gm) and a small threshold voltage (VTh). The values of μFET, Ion/Ioff, gm and VTh were found as 5.02 cm2/Vs, 0.7 × 103, 5.64 μS/mm and 1.37 V, respectively. These values show that our novel organic material could be a potential candidate for organic electronic device applications in the future.

  12. Real-Space Imaging of the Atomic Structure of Organic-Inorganic Perovskite.

    PubMed

    Ohmann, Robin; Ono, Luis K; Kim, Hui-Seon; Lin, Haiping; Lee, Michael V; Li, Youyong; Park, Nam-Gyu; Qi, Yabing

    2015-12-30

    Organic-inorganic perovskite is a promising class of materials for photovoltaic applications and light emitting diodes. However, so far commercialization is still impeded by several drawbacks. Atomic-scale effects have been suggested to be possible causes, but an unequivocal experimental view at the atomic level is missing. Here, we present a low-temperature scanning tunneling microscopy study of single crystal methylammonium lead bromide CH3NH3PbBr3. Topographic images of the in situ cleaved perovskite surface reveal the real-space atomic structure. Compared to the bulk we observe modified arrangements of atoms and molecules on the surface. With the support of density functional theory we explain these by surface reconstruction and a substantial interplay of the orientation of the polar organic cations (CH3NH3)(+) with the position of the hosting anions. This leads to structurally and electronically distinct domains with ferroelectric and antiferroelectric character. We further demonstrate local probing of defects, which may also impact device performance.

  13. Photo-induced halide redistribution in organic-inorganic perovskite films.

    PubMed

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-01-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  14. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre

    NASA Astrophysics Data System (ADS)

    Sellinger, Alan; Weiss, Pilar M.; Nguyen, Anh; Lu, Yunfeng; Assink, Roger A.; Gong, Weiliang; Brinker, C. Jeffrey

    1998-07-01

    Nanocomposite materials are widespread in biological systems. Perhaps the most studied is the nacre of abalone shell, an orientated coating composed of alternating layers of aragonite (CaCO3) and a biopolymer. Its laminated structure simultaneously provides strength, hardness and toughness: containing about 1vol.% polymer, nacre is twice as hard and 1,000 times as tough as its constituent phases. Such remarkable properties have inspired chemists and materials scientists to develop synthetic, `biomimetic' nanocomposite assemblies. Nonetheless, the efficient processing of layered organic-inorganic composites remains an elusive goal. Here we report a rapid, efficient self-assembly process for preparing nanolaminated coatings that mimic the structure of nacre. Beginning with a solution of silica, surfactant and organic monomers, we rely on evaporation during dip-coating to induce the formation of micelles and partitioning of the organic constituents into the micellar interiors. Subsequent self-assembly of the silica-surfactant-monomer micellar species into lyotropic mesophases simultaneously organizes the organic and inorganic precursors into the desired nanolaminated form. Polymerization fixes this structure, completing the nanocomposite assembly process. This approach may be generalized both to other composite architectures and to other materials combinations.

  15. [Development and evaluation of fertilizers cemented and coated with organic-inorganic materials].

    PubMed

    Xiao, Qiang; Wang, Jia-Chen; Zuo, Qiang; Zhang, Lin; Liu, Bao-Cun; Zhao, Tong-Ke; Zou, Guo-Yuan; Xu, Qiu-Ming

    2010-01-01

    Four kinds of organic-inorganic cementing and coating materials were prepared by a coating method using water as the solvent, and the corresponding cemented and coated fertilizers (B2, PS, F2, and F2F) were produced by disc pelletizer. The tests on the properties of these fertilizers showed that the granulation rate, compression strength, and film-forming rate were B2 > PS > F2 > F2F. Soil column leaching experiment showed that the curve of accumulated nitrogen-dissolving rate was the gentlest for B2. In 48 days, the accumulated nitrogen-dissolving rate was in the order of B2, 54.65% < PS, 56.16% < F2, 59.47%, < F2F, 63.12%. Field experiment showed that compared with the same application amount of NPK, all the test fertilizers had better effects on corn yield, among which, B2 was the best, with the corn yield and fertilizer use efficiency increased by 19.72% and 20.30%, respectively. The yield-increasing effect of other test fertilizers was in the order of PS > F2 > F2F.

  16. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    PubMed

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  17. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine)1/2 and ZnS(p-xylylenediamine)1/2

    NASA Astrophysics Data System (ADS)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W.

    2016-06-01

    Hybrid organic-inorganic layered materials of the type ZnS(amine)1/2, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA)1/2 in non-centrosymmetric Ccm21, ZnS(PXDA)1/2 in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. The organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS.

  18. Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Rinke, Patrick

    2016-07-01

    We have studied the prototype hybrid organic-inorganic perovskite CH3NH3PbI3 and its three close relatives, CH3NH3SnI3 ,CH3NH3PbCl3 , and CsPbI3, using relativistic density function theory. The long-range van der Waals (vdW) interactions were incorporated into the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the Tkatchenko-Scheffler pairwise scheme. Our results reveal that hydrogen bonding, which is well described by the PBE functional, plays a decisive role for the structural parameters of these systems, including the position and orientation of the organic cation as well as the deformation of the inorganic framework. The magnitude of the inorganic-framework deformation depends sensitively on the orientation of the organic cation, and directly influences the stability of the hybrid perovskites. Our results suggest that the organic and the inorganic components complement each other; the low symmetry of the organic cation is the origin of the inorganic-framework deformation, which then aids the overall stabilization of the hybrid perovskite structure. This stabilization is indirectly affected by vdW interactions, which lead to smaller unit-cell volumes than in PBE and therefore modulate the interaction between the organic cation and the inorganic framework. The vdW-induced lattice-constant corrections are system dependent and lead to PBE+vdW lattice constants in good agreement with experiment. Further insight is gained by analyzing the vdW contributions. In all iodide-based hybrid perovskites, the interaction between the organic cation and the iodide anions provides the largest lattice-constant change, followed by iodine-iodine and the organic cation—heavy-metal cation interaction. These corrections follow an almost linear dependence on the lattice constant within the range considered in our study and are therefore approximately additive.

  19. Fundamental understanding of the synthesis and tribological behavior of organic-inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Arpana

    The objective of this doctoral research is to design, synthesize, and test an advanced lubricant additive using novel active nanostructures of inorganic layered solid lubricant particles (MoS2), integrated and encapsulated with organic molecules, namely triglycerides and phospholipids, respectively. It was hypothesized that this combination can uniquely respond under severe boundary lubrication conditions (where high frictional losses exist). These organic-inorganic nanoparticles were synthesized using a top-down nanomanufacturing process, commonly known as high-energy ball milling or mechanical milling. It was performed in the presence of ambient air followed by organic molecules (triglycerides) to produce nanoparticles with controlled morphologies and surface properties. SEM, particle size analysis, and XRD showed a particle size reduction up to 100 nm and a grain size of 6 nm. TEM showed that after air milling for 48 hrs, agglomerated clusters of quasi-spherical nanoparticles of MoS2 were formed. HRTEM shows that the inter-planar defects and milling assisted shearing between the platelets caused the resultant curling of the planes, forming these unique nanostructures. Further milling of these clusters for 48 hrs in an organic medium (triglycerides) produced mono-dispersed quasi-spherical nanoparticles (<100 nm size). Surface analysis showed the presence of hydrocarbons, COO- molecules on the deagglomerated nanoparticles indicating a chemisorbed capping layer. A capping layer was also confirmed by zeta potential analysis. Tribological studies using pin-on-disk and four-ball tests showed that this novel active material can significantly reduce friction and wear. The coefficient of friction was reduced in pin-on-disk from 0.15 to 0.04 when these nanoparticles were mixed with the base oil. Similarly, in four-ball tests, significant reduction in coefficient of friction (0.06-0.07) and wear (0.47 mm) reduction were observed. To understand the underlying mechanism of

  20. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    PubMed

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-01

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications. PMID:26371965

  1. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    PubMed

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-01

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  2. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  3. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    PubMed

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management.

  4. Defect states at organic-inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman V.; Rashkeev, Sergey N.; Kuklja, Maija M.

    2015-07-01

    Light-responsive organic-inorganic interfaces offer experimental opportunities that are otherwise difficult to achieve. Since laser light can be manipulated very precisely, it becomes possible to engineer selective, predictive, and highly controlled interface properties. Photochemistry of organic-inorganic energetic interfaces is a rapidly emerging research field in which energy absorption and interface stability mechanisms have yet to be established. To explore the interaction of the laser irradiation with molecular materials, we performed first principle calculations of a prototype organic-inorganic interface between a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a magnesium oxide (MgO) surface. We found that the light absorption is defined by the band alignment between interface components and interfacial charge transfer coupled with electronic states in the band gap, generated by oxide surface defects. Hence the choice of an oxide substrate and its morphology makes the optical absorption tunable and governs both the energy accumulation and energy release at the interface. The obtained results offer a possible consistent interpretation of experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by excitation energy much lower than the band gap. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. Our conclusions predict ways for a complete separation of thermo- and photo-stimulated interface chemistry of molecular materials, which is imperative for highly controllable fast decomposition and was not attainable before. The methodology described here can be applied to any type of molecular material/wide band gap dielectric interfaces. It provides a solid basis for novel design and targeted improvements of organic-inorganic interfaces with desired properties that promise to enable vastly new concepts

  5. Development of a Nanomaterials One-Week Intersession Course

    ERIC Educational Resources Information Center

    Walters, Keith A.; Bullen, Heather A.

    2008-01-01

    A novel one-week intersession lecture-lab hybrid course on nanomaterials is presented. The course provided a combination of background theory and hands-on laboratory experiments to educate students about nanomaterials and nanotechnology. The design of the course, subject matter, and laboratory experiments are discussed. Topics and level were…

  6. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.

  7. Organic-Inorganic Nanocomposites via Placing Monodisperse Ferroelectric Nanocrystals in Direct and Permanent Contact with Ferroelectric Polymers.

    PubMed

    Jiang, Beibei; Pang, Xinchang; Li, Bo; Lin, Zhiqun

    2015-09-16

    Organic-inorganic nanocomposites composed of polymers and nanoparticles offer a vast design space of potential material properties, depending heavily on the properties of these two constituents and their spatial arrangement. The ability to place polymers in direct contact with functional nanoparticles via strong bonding, that is, stable chemical interaction without the dissociation of surface capping polymers, provides a means of preventing nanoparticles from aggregation and increasing their dispersibility in nanocomposites, and promises opportunities to explore new properties and construction of miniaturized devices. However, this is still a challenging issue and has not yet been largely explored. Here, we report an unconventional strategy to create in situ organic-inorganic nanocomposites comprising monodisperse ferroelectric nanoparticles directly and permanently tethered with ferroelectric polymers by capitalizing on rationally designed amphiphilic star-like diblock copolymer as nanoreactors. The diameter of ferroelectric nanoparticles and the chain length of ferroelectric polymers can be precisely tuned. The dielectric and ferroelectric properties of nanocomposites containing different sizes of ferroelectric nanoparticles were scrutinized. Such bottom-up crafting of intimate organic-inorganic nanocomposites offers new levels of tailorability to nanostructured materials and promises new opportunities for achieving exquisite control over the surface chemistry and properties of nanocomposites with engineered functionality for diverse applications in energy conversion and storage, catalysis, electronics, nanotechnology, and biotechnology.

  8. ECOTOXICOLOGY OF NANOMATERIALS

    EPA Science Inventory

    An overview of issues associated with potential ecological toxicity of nanomaterials with research needs outlined, current literature reviewed and discussion of nanomaterial toxicity relative to concerns that EPA and state risk assessors might have.

  9. Intimate organic-inorganic nanocomposites via rationally designed conjugated polymer-grafted precursors.

    PubMed

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-09-28

    Semiconducting organic-inorganic nanocomposites comprising the conjugated polymer poly(3-hexylthiophene) (P3HT) in intimate contact with CdSe nanocrystals were crafted by exploiting rationally designed P3HT-grafted cadmium precursors (i.e., Cd-P3HT complexes). The bifunctional ligand 4-bromobenzyl phosphonic acid (BPA-Br) that possesses two terminal functional groups at each end was employed, enabling the coordination of BPA-Br with Cd first to yield Cd-phosphonic acid complexes (Cd-BPA-Br) followed by the subsequent substitution of the bromide moiety into the azide (N3) group to form N3-functionalized Cd-phosphonic acid complexes (Cd-BPA-N3). Cd-P3HT complexes were then synthesized via a click reaction between Cd-BPA-N3 and ethynyl-terminated P3HT (P3HT-[triple bond, length as m-dash]). The success of the click reaction was confirmed by spectroscopic measurements. The morphology of CdSe nanocrystals (i.e., quantum dot and multi-branched) in P3HT-CdSe nanocrystal nanocomposites can be altered by tuning the concentration of Cd-P3HT complexes and the addition of excess Cd-BPA-Br (i.e., Cd-P3HT solely for the synthesis of CdSe quantum dots, and Cd-P3HT and Cd-BPA-Br at the ratio Cd-P3HT : Cd-BPA-Br = 1 : 1 for the synthesis of multi-branched CdSe nanocrystals). The photophysical properties of the resulting P3HT-CdSe nanocomposites were examined via absorption and photoluminescence studies. In comparison with P3HT-[triple bond, length as m-dash], the significant emission quenching of nanocomposites suggested the efficient charge transfer at the P3HT/CdSe interface. It is noteworthy that the implementation of judiciously synthesized Cd-P3HT complexes as precursors rendered the in situ synthesis of P3HT-CdSe nanocrystal nanocomposites, dispensing with the need for the use of insulating aliphatic ligands and tedious ligand exchange procedures for the preparation of functional polymer-tethered nanocrystals. PMID:27604874

  10. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy.

    PubMed

    Xie, Li-Qiang; Zhang, Tai-Yang; Chen, Liang; Guo, Nanjie; Wang, Yu; Liu, Guo-Kun; Wang, Jia-Rui; Zhou, Jian-Zhang; Yan, Jia-Wei; Zhao, Yi-Xin; Mao, Bing-Wei; Tian, Zhong-Qun

    2016-07-21

    Organolead halide perovskites exhibit superior photoelectric properties, which have given rise to the perovskite-based solar cells whose power conversion efficiency has rapidly reached above 20% in the past few years. However, perovskite-based solar cells have also encountered problems such as current-voltage hysteresis and degradation under practical working conditions. Yet investigations into the intrinsic chemical nature of the perovskite material and its role on the performance of the solar cells are relatively rare. In this work, Raman spectroscopy is employed together with CASTEP calculations to investigate the organic-inorganic interactions in CH3NH3PbI3 and CH3NH3PbBr3-xClx perovskite single crystals with comparison to those having ammonic acid as the cations. For Raman measurements of CH3NH3PbI3, a low energy line of 1030 nm is used to avoid excitation of strong photoluminescence of CH3NH3PbI3. Raman spectra covering a wide range of wavenumbers are obtained, and the restricted rotation modes of CH3-NH3(+) embedded in CH3NH3PbBr3 (325 cm(-1)) are overwhelmingly stronger over the other vibrational bands of the cations. However, the band intensity diminishes dramatically in CH3NH3PbBr3-xClx and most of the bands shift towards high frequency, indicating the interaction with the halides. The details of such an interaction are further revealed by inspecting the band shift of the restricted rotation mode as well as the C-N, NH3(+) and CH3 stretching of the CH3NH3(+) as a function of Cl composition and length of the cationic ammonic acids. The results show that the CH3NH3(+) interacts with the PbX3(-) octahedral framework via the NH3(+) end through N(+)-HX hydrogen bonding whose strength can be tuned by the composition of halides but is insensitive to the size of the organic cations. Moreover, an increase of the Cl content strengthens the hydrogen bonding and thus blueshifts the C-N stretching bands. This is due to the fact that Cl is more electronegative than Br

  11. Rapid and robust spatiotemporal dynamics of the first-order phase transition in crystals of the organic-inorganic perovskite (C12H25NH3)2PbI4

    PubMed Central

    Yangui, Aymen; Sy, Mouhamadou; Li, Liang; Abid, Younes; Naumov, Panče; Boukheddaden, Kamel

    2015-01-01

    The dynamics of the thermally induced first-order structural phase transition in a high-quality single crystal of the organic-inorganic perovskite (C12H25NH3)2PbI4 was investigated by optical microscopy. The propagation of the straight phase front (habit plane) during the phase transition along the cooling and heating pathways of the thermal hysteresis was observed. The thermochromic character of the transition allowed monitoring of the thermal dependence of average optical density and aided the visualization of the interface propagation. The thermal hysteresis loop is 10 K wide, and the interface velocity is constant at V ≈ 1.6 mm s–1. The transition is accompanied with sizeable change in crystal size, with elongation of ~6% along the b axis and compression of ~ –2% along the a axis, in excellent agreement with previously reported X-ray diffraction data. The progression of the habit plane is at least 160 times faster than in spin-crossover materials, and opens new prospects for organic-inorganic perovskites as solid switching materials. Moreover, the crystals of (C12H25NH3)2PbI4 are unusually mechanically robust and present excellent resilience to thermal cycling. These hitherto unrecognized properties turn this and possibly similar hybrid perovskites into perspective candidates as active medium for microscopic actuation. PMID:26568147

  12. FOREWORD Nanomaterials science Nanomaterials science

    NASA Astrophysics Data System (ADS)

    Rohrer, Heinrich

    2010-10-01

    can only emerge from a common understanding of the respective languages and problems. The lack of such an understanding is the Achilles' heel of so many collaborations. Despite the intrinsic interdisciplinary nature, materials science has split into various segments according to the type of material, for example, metals, organic, inorganic, biological, molecular, and so on. Each of them leads an independent life with little understanding for the others. This segmentation has made materials science lose, to an undesirable extent, its all-embracing mission for science and technology. There are laudable efforts to reunite different branches of materials science into comprehensive institutions; examples are NIMS in Tsukuba and IMR at Tohoku University, but institutions alone do not make the day. The nanoscale provides an excellent opportunity for scientists. The nanoscale was the bifurcation point where disciplines split and developed their own disciplinary views and language. This was the necessary core for the tremendous developments of science. Technology always had to rely on broader views. Now, disciplines merge again at the nanoscale, which will hopefully bring back to materials science much of what was lost over recent decades. It is difficult to delimit the nanodomain using general criteria since everything consists of atoms that are roughly a third of a nanometer in size, as is their distance from each other in condensed matter. In most cases, the individual addressabilities of nanostructures, properties, and processes are important. Atoms emerged from the anonymity as members of an ensemble; they have become our partners as individuals. As upper limits for nano, we might agree on 100-200 nm in object size and 1-10 nm in accuracy for local positioning, measuring, modifying, and controlling processes. The lower limit is open; a hundredth of a nanometer in positioning and measuring is nothing extraordinary. As a reviewer, I would accept a very interesting and

  13. EDITORIAL: Whither nanomaterials? Whither nanomaterials?

    NASA Astrophysics Data System (ADS)

    Mallouk, Thomas E.; Pinkerton, Fred; Stetson, Ned

    2009-10-01

    As the journal Nanotechnology enters its third decade it is interesting to look back on the field and to think about where it may be headed in the future. The growth of the journal over the past twenty years mirrors that of the field, with exponentially rising numbers of citations and a widening diversity of topics that we identify as nanotechnology. In the early 1990s, Nanotechnology was focused primarily on nanoscale electronics and on scanning probe tools for fabricating and characterizing nanostructures. The synthesis and assembly of nanomaterials was already an active area in chemical research; however, it did not yet intersect strongly with the activities of the physics community, which was interested primarily in new phenomena that emerged on the nanoscale and on the devices that derived from them. In the 1990s there were several key advances that began to bridge this gap. Techniques were developed for making nanocrystals of compound semiconductors, oxides, and metals with very fine control over shape and superstructure. Carbon nanotubes were discovered and their unique electronic properties were demonstrated. Research on the self-assembly of organic molecules on surfaces led to the development of soft lithography and layer-by- layer assembly of materials. The potential to use DNA and then proteins as building blocks of precise assemblies of nanoparticles was explored. These bottom-up structures could not be made by top-down techniques, and their unique properties as components of sensors, electronic devices, biological imaging agents, and drug delivery vehicles began to change the definition of the field. Ten years ago, Inelke Malsch published a study on the scientific trends and organizational dynamics of nanotechology in Europe (1999 Nanotechnology 10 1-7). Scientists from a variety of disciplines were asked which areas of research they would include in the definition of nanotechnology. Although the article concluded with forward-looking thoughts in the

  14. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    PubMed

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting

  15. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas. PMID:23880913

  16. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  17. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography.

    PubMed

    Garnweitner, Georg; Goldenberg, Leonid M; Sakhno, Oksana V; Antonietti, Markus; Niederberger, Markus; Stumpe, Joachim

    2007-09-01

    We present a multigram scale, one-step nonaqueous synthesis route to monodisperse, highly crystalline ZrO(2) nanoparticles. The nanoparticles can be stabilized in nonpolar solvents via a simple functionalization procedure using only minute amounts of organic stabilizers. Their great potential in materials applications is demonstrated by the fabrication of organic-inorganic nanocomposites that can be selectively photopolymerized to inscribe extremely effective and volume holographic gratings with the highest refractive index contrast (n(1) of up to 0.024) achieved so far.

  18. Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Friend, Richard H

    2016-08-18

    We report on the optimization of the interfacial properties of titania in mesoscopic CH3NH3PbI3 solar cells. Modification of the mesoporous TiO2 film by TiCl4 treatment substantially reduced the surface traps, as is evident from the sharpness of the absorption edge with a significant reduction in Urbach energy (from 320 to 140 meV) determined from photothermal deflection spectroscopy, and led to an order of magnitude enhancement in the bulk electron mobility and corresponding decrease in the transport activation energy (from 170 to 90 meV) within a device. After optimization of the photoanode-perovskite interface using various sizes of TiO2 nanoparticles, the best photovoltaic efficiency of 16.3% was achieved with the mesoporous TiO2 composed of 36 nm sized nanoparticles. The improvement in device performance can be attributed to the enhanced charge collection efficiency that is driven by improved charge transport in the mesoporous TiO2 layer. Also, the decreased recombination at the TiO2-perovskite interface and better perovskite coverage play important roles. PMID:27472458

  19. Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Friend, Richard H

    2016-08-18

    We report on the optimization of the interfacial properties of titania in mesoscopic CH3NH3PbI3 solar cells. Modification of the mesoporous TiO2 film by TiCl4 treatment substantially reduced the surface traps, as is evident from the sharpness of the absorption edge with a significant reduction in Urbach energy (from 320 to 140 meV) determined from photothermal deflection spectroscopy, and led to an order of magnitude enhancement in the bulk electron mobility and corresponding decrease in the transport activation energy (from 170 to 90 meV) within a device. After optimization of the photoanode-perovskite interface using various sizes of TiO2 nanoparticles, the best photovoltaic efficiency of 16.3% was achieved with the mesoporous TiO2 composed of 36 nm sized nanoparticles. The improvement in device performance can be attributed to the enhanced charge collection efficiency that is driven by improved charge transport in the mesoporous TiO2 layer. Also, the decreased recombination at the TiO2-perovskite interface and better perovskite coverage play important roles.

  20. Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid.

    PubMed

    Barounian, M; Hesaraki, S; Kazemzadeh, A

    2012-07-01

    In this research, light cured calcium phosphate cements (LCCPCs) were developed by mixing a powder phase (P) consisting of tetracalcium phosphate and dicalcium phosphate and a photo-curable resin phase (L), mixture of hydroxyethylmethacrylate (HEMA)/poly acrylic-maleic acid at various P/L ratios of 2.0, 2.4 and 2.8 g/mL. Mechanical strength, phase composition, chemical groups and microstructure of the cured cements were evaluated at pre-set times, i.e. before and after soaking in simulated body fluid (SBF). The proliferation of Rat-derived osteoblastic cells onto the LCCPCs as well as cytotoxicity of cement extracts were determined by cell counting and 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazolium bromide assay after different culture times. It was estimated from Fourier transforming infrared spectra of cured cements that the setting process is ruled by polymerization of HEMA monomers as well as formation of calcium poly-carboxylate salts. Microstructure of the cured cements consisted of calcium phosphate particles surrounded by polymerized resin phase. Formation of nano-sized needlelike calcium phosphate phase on surfaces of cements with P/L ratios of 2.4 and 2.8 g/mL was confirmed by scanning electron microscope images and X-ray diffractometry (XRD) of the cured specimen soaked in SBF for 21 days. Also, XRD patterns revealed that the formed calcium phosphate layer was apatite phase in a poor crystalline form. Biodegradation of the cements was confirmed by weight loss, change in molecular weight of polymer and morphology of the samples after different soaking periods. The maximum compressive strength of LCCPCs governed by resin polymerization and calcium polycarboxylate salts formation was about 80 MPa for cement with P/L ratio of 2.8 g/mL, after incubation for 24 h. The strength of all cements decreased by decreasing P/L ratio as well as increasing soaking time. The preliminary cell studies revealed that LCCPCs could support proliferation of osteoblasts cultured on their surfaces and no cytotoxic effect was observed for the extracts of them.

  1. Nanomaterials in preventive dentistry

    NASA Astrophysics Data System (ADS)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  2. Nanomaterials meet microfluidics.

    PubMed

    Pumera, Martin

    2011-05-28

    Nanomaterials and lab-on-a-chip platforms have undergone enormous development during the past decade. Here, we present an overview of how microfluidics benefited from the use of nanomaterials for the enhanced separation and detection of analytes. We also discuss how nanomaterials benefit from microfluidics in terms of synthesis and in terms of the simulation of environments for nanomotors and nanorobots. In our opinion, the "marriage" of nanomaterials and microfluidics is highly beneficial and is expected to solve vital challenges in related fields.

  3. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  4. [Photoexcitation mechanism of photoconductive device by organic/inorganic thin-film heteropairing].

    PubMed

    Jin, Hui; Teng, Feng; Liu, Jun-Feng; Meng, Xian-Guo; Xu, Zheng; Hou, Yan-Bing; Xu, Xu-Rong

    2004-08-01

    Photoconductive devices with organic (polyvinylcarbazole-PVK)/inorganic (zinc-sulfide--ZnS) thin-film heteropairing were fabricated. In external field, the excitation profile of the steady-state photoconductivity and the primary photoexcitation process of hybrid devices were presented and discussed. Comparison of photoconductivity of the devices and absorption spectra of PVK and ZnS implied that both layers absorption contributes to the photocurrent, but the effective part is at the interface of PVK and ZnS. The dependence of maximum photocurrent on the applied voltage and the dark and illuminated current spectra indicates the ultrafast charge transfer at the interface.

  5. Organic/inorganic-polyimide nanohybrid materials for advanced opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ando, Shinji

    2009-02-01

    Nano-hybridization techniques based on the pyrolytic reactions of organo-soluble metallic precursors dissolved in poly(amic acid)s followed by spontaneous precipitation of metal/inorganic nano-particles in solid polyimide (PI) films is facile and effective for functionalization of PI optical and electronic materials. The organic/inorganinc PI nanohybrid materials, which were recently developed by the authors, having a variety of functionalities such as a) high refractive indices, b) low refractive indices, c) controlled thermo-optical property and its anisotropy, d) high polarizing property, and e) high thermal conductivity are reviewed with future prospects on their advanced opto-electronic applications.

  6. New magnetic organic inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-04-01

    The structural "memory effect" of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  7. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  8. Phototoxicity of Selected Nanomaterials

    EPA Science Inventory

    Quantification of exposure to nanomaterials is critical for assessing their environmental hazard and risk. This is an immediate issue for nano-TiO2 because it is one of more common nanomaterials now in commerce, and is difficult to analyze using common acid-digestion techniques. ...

  9. Resonance energy transfer in self-organized organic/inorganic dendrite structures.

    PubMed

    Melnikau, D; Savateeva, D; Lesnyak, V; Gaponik, N; Fernández, Y Núnez; Vasilevskiy, M I; Costa, M F; Mochalov, K E; Oleinikov, V; Rakovich, Y P

    2013-10-01

    Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra. PMID:23949098

  10. Resonance energy transfer in self-organized organic/inorganic dendrite structures

    NASA Astrophysics Data System (ADS)

    Melnikau, D.; Savateeva, D.; Lesnyak, V.; Gaponik, N.; Fernández, Y. Núnez; Vasilevskiy, M. I.; Costa, M. F.; Mochalov, K. E.; Oleinikov, V.; Rakovich, Y. P.

    2013-09-01

    Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.

  11. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Li, Chaoxu; Mezzenga, Raffaele

    2013-06-01

    Recent advances in bio-nanotechnology have not only rapidly broadened the applications and scope of hybrid nanomaterials in biological fields, but also greatly enriched the examples of ordered materials based on supramolecular self-assembly. Among eminent examples of functional nanostructured materials of undisputed impact in nanotechnology and biological environments, carbon nanomaterials (such as fullerenes, carbon nanotubes and graphene) and amyloid fibrils have attracted great attention because of their unique architectures and exceptional physical properties. Nonetheless, combination of these two classes of nanomaterials into functional hybrids is far from trivial. For example, the presence of carbon nanomaterials can offer either an inhibitory effect or promotion of amyloid fibrillation, depending on the structural architectures of carbon nanomaterials and the starting amyloid proteins/peptides considered. To date, numerous studies have been devoted to evaluating both the biological toxicity of carbon nanomaterials and their use in developing therapies for amyloidosis. At the same time, hybridization of these two classes of nanomaterials offers new possibilities for combining some of their desirable properties into nanocomposites of possible use in electronics, actuators, sensing, biomedicine and structural materials. This review describes recent developments in the hybridization of carbon nanomaterials and amyloid fibrils and discusses the current state of the art on the application of carbon nanomaterial-amyloid fibril hybrids in bio-nanotechnology.

  12. Computation of Phase Equilibria, State Diagrams and Gas/Particle Partitioning of Mixed Organic-Inorganic Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.

    2009-04-01

    The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part

  13. Silver-zwitterion organic-inorganic nanocomposite with antimicrobial and antiadhesive capabilities.

    PubMed

    Hu, Rong; Li, Guozhu; Jiang, Yujiao; Zhang, Yi; Zou, Ji-Jun; Wang, Li; Zhang, Xiangwen

    2013-03-19

    In this work, we demonstrate a convenient, efficient, and environmentally benign strategy to achieving antimicrobial and antiadhesive purposes using a silver-zwitterion nanocomposite. The synthesis of the nanocomposite relies on loading zwitterionic polymer brushes with Ag(+) precursor ions, followed by their in situ reduction to Ag nanoparticle by ultraviolet (UV) irradiation. Both poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) have been studied as matrices for the embedding of silver. Well-dispersed silver nanoparticles are embedded into pCBMA matrices. The obtained pCBMA-silver hybrid (CB-Ag) is capable of killing bacteria upon contact and releasing dead bacteria under wet conditions. Results suggest the feasibility of using this nanocomposite system as a robust and reliable antimicrobial and antiadhesive platform for the prevention of microbial colonization. PMID:23425314

  14. Synthesis and properties of cellulose functionalized -4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nanocomposites materials for high performance applications

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Heung-Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2013-04-01

    The general class of organic-inorganic hybrid nanocomposites materials is a fast growing area of research. The significant effort is focused on the ability to control the nanoscale structures via organic functional synthetic approaches with inorganic metal oxides. The properties of nanocomposites material depends on the properties of their individual components but also their morphological and interfacial characteristics. This rapidly expanding field is generating many exciting new materials with novel properties. Mainly, cellulose is considered as the richest renewable materials are presently among the most promising candidates for use in photonics due to their versatility, flexibility, light weight, low cost and ease of modification. Cellulose-metal oxide nanomaterials were developed the technologies to manipulate selfassembly and multifunctionallity, of new technologies to the point where industry can produce advanced and costcompetitive cellulose metal oxide hybrid materials. Therefore, the present study is focused on cellulose-functionalized - 4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nano-composites materials by in-situ sol-gel process. The chemical and morphological properties of cellulose-functionalized SiO2/TiO2 materials via covalent crosslinking hybrids were characterized by FTIR, XRD, TGA, DSC, SEM, TEM and optical properties.

  15. Hybrid gate dielectric materials for unconventional electronic circuitry.

    PubMed

    Ha, Young-Geun; Everaerts, Ken; Hersam, Mark C; Marks, Tobin J

    2014-04-15

    Recent advances in semiconductor performance made possible by organic π-electron molecules, carbon-based nanomaterials, and metal oxides have been a central scientific and technological research focus over the past decade in the quest for flexible and transparent electronic products. However, advances in semiconductor materials require corresponding advances in compatible gate dielectric materials, which must exhibit excellent electrical properties such as large capacitance, high breakdown strength, low leakage current density, and mechanical flexibility on arbitrary substrates. Historically, conventional silicon dioxide (SiO2) has dominated electronics as the preferred gate dielectric material in complementary metal oxide semiconductor (CMOS) integrated transistor circuitry. However, it does not satisfy many of the performance requirements for the aforementioned semiconductors due to its relatively low dielectric constant and intransigent processability. High-k inorganics such as hafnium dioxide (HfO2) or zirconium dioxide (ZrO2) offer some increases in performance, but scientists have great difficulty depositing these materials as smooth films at temperatures compatible with flexible plastic substrates. While various organic polymers are accessible via chemical synthesis and readily form films from solution, they typically exhibit low capacitances, and the corresponding transistors operate at unacceptably high voltages. More recently, researchers have combined the favorable properties of high-k metal oxides and π-electron organics to form processable, structurally well-defined, and robust self-assembled multilayer nanodielectrics, which enable high-performance transistors with a wide variety of unconventional semiconductors. In this Account, we review recent advances in organic-inorganic hybrid gate dielectrics, fabricated by multilayer self-assembly, and their remarkable synergy with unconventional semiconductors. We first discuss the principals and functional

  16. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Saliba, Michael; Moore, David T; Pathak, Sandeep K; Hörantner, Maximilian T; Stergiopoulos, Thomas; Stranks, Samuel D; Eperon, Giles E; Alexander-Webber, Jack A; Abate, Antonio; Sadhanala, Aditya; Yao, Shuhua; Chen, Yulin; Friend, Richard H; Estroff, Lara A; Wiesner, Ulrich; Snaith, Henry J

    2015-01-01

    To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.

  17. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.

    PubMed

    Chang, Myung Chul

    2008-11-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite was prepared by the solution-precipitation process using Ca(OH)(2) in water and aqueous solution of H(3)PO(4) in GEL. Before the co precipitation process the GEL powders were dissolved in the aqueous phosphoric acid solution for the phosphorylation of GEL molecules. The chemical variation of the phosphorylated GEL macromolecules was investigated by using attenuated total reflection (ATR) measurement. The crystal growth of HAp became bigger with the long-time aging of the GEL molecules in the phosphoric acid solution, and it resulted from the reduction of length scale of the GEL molecules. The degree of the organic-inorganic interaction was decreased because of the degradation of the GEL macromolecules.

  18. Synthesis and characterisation of a new stable organo-mineral hybrid nanomaterial: 4-Chlorobenzenesulfonate in the zinc-aluminium layered double hydroxide

    SciTech Connect

    Lakraimi, Mohamed; Legrouri, Ahmed . E-mail: legrouri@aui.ma; Barroug, Allal; De Roy, Andre; Besse, Jean Pierre

    2006-09-14

    4-Chlorobenzenesulfonate (4-CBS) was intercalated between layers of Zn-Al layered double hydroxides (LDHs). Two methods of incorporation were applied: (1) direct synthesis by coprecipitation of metal nitrates and sodium 4-CBS and (2) ion exchange of the LDH nitrate with the organic ion. The solids were characterized by X-ray diffraction and infrared spectroscopy. The direct method, effected at different pH values, led to a hybrid material with good degree of intercalation. In order to optimise the exchange conditions, particular attention was given to the effect of solution pH, 4-CBS/NO{sub 3} ratio and exchange temperature. The total exchange was successful and a new stable hybrid nanostructured material was obtained at pH 8 and with a 4-CBS concentration of 0.0028 M. This solid was further characterised by chemical and thermal analyses.

  19. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  20. Potential risks of nanomaterials

    NASA Astrophysics Data System (ADS)

    Bakalova, Totka; Louda, Petr

    2014-05-01

    Nanotechnology is the design and manipulation of materials at the nanometer scale such that novel or enhanced properties emerge. It is a new area of knowledge that promises a dazzling array of opportunities in areas as diverse as manufacturing, energy, health care, and waste treatment. But while the ability to develop nanomaterials and incorporate them into products is advancing rapidly, our understanding of the potential environmental, health, and safety effects of nanomaterials — and of the most effective ways to manage such effects — has proceeded at a much slower pace. Because of the novel properties that emerge at the nano scale, nanomaterials may require more and different information than called for under traditional risk management systems. And given the enormous commercial and societal benefits that may potentially come from this technology, it is likely that nanomaterials, and the products and other applications containing them, will be widely produced and used. Therefore it is especially important to understand and minimize the potential risks.